
A Guide to SABiOx – the Extended Systematic

Approach for Building Ontologies

Camila Zacché de Aguiar, Vı́tor E. Silva Souza
Ontology & Conceptual Modeling Research Group – NEMO

Federal University of Esṕırito Santo, Brazil

September 23, 2024

Abstract

This document is a guide for the application of the Ontology Engineering
method SABiOx – the Extended Systematic Approach for Building Ontologies.
It presents the entire method in detail and is intended to be used by ontol-
ogy engineers that want to build reference and operational ontologies using a
systematic approach.

Contents

1 Introduction 3

2 Overview 4
2.1 Ontology Life Cycle . 4
2.2 Phase Life Cycles . 5
2.3 Agile Processes and Roles . 7
2.4 Running Example . 8

3 Requirements Phase 9
3.1 Define Purpose (REQ-PURP) . 9
3.2 Identify and Size Domain (REQ-DOMN) 10
3.3 Elicit Requirements (REQ-ELIC) 11
3.4 Identify Subdomains (REQ-SUBD) 13
3.5 Document Specification (DOC-SPEC) 14
3.6 Control Specification (MAN-SPEC) 16
3.7 Evaluate Specification (EVA-SPEC) 16

4 Setup Phase 18
4.1 Define Modeling Language (SET-LANG) 18
4.2 Define Foundational Ontology (SET-FOUN) 19
4.3 Define Concept Criteria (SET-CRIT) 20
4.4 Define Ontologies to Reuse (SET-REUS) 21
4.5 Document Premise of Reference Ontology (DOC-REFE) 23
4.6 Control Premise of Reference Ontology (MAN-REFE) 24
4.7 Evaluate Premise of Reference Ontology (EVA-REFE) 24

5 Capture Phase 26
5.1 Identify Concepts (CAP-CONC) 27

5.1.1 Catalog Concepts (CAP-CATA) 27
5.1.2 Extract Ontology View (CAP-VIEW) 29

5.2 Identify Axioms (CAP-AXIM) . 30
5.3 Model Ontology (CAP-MODE) 31
5.4 Integrate Ontology (CAP-INTE) 33
5.5 Modularize Ontology (CAP-MODU) 34

1

5.6 Document Reference Ontology (DOC-MODE) 36
5.7 Control Reference Ontology (MAN-MODE) 39
5.8 Evaluate Reference Ontology (EVA-MODE) 39
5.9 Publish Reference Ontology (PUB-REFE) 40

6 Design Phase 42
6.1 Define Encoding Language (DES-LANG) 42
6.2 Identify Vocabularies (DES-VOCA) 43
6.3 Define Ontology Encoding (DES-CODE) 44
6.4 Document Premise of Operational Ontology (DOC-OPER) 46
6.5 Control Premise of Operational Ontology (MAN-OPER) 47
6.6 Evaluate Premise of Operational Ontology (EVA-OPER) 48

7 Implementation Phase 49
7.1 Code Concepts (IMP-CONC) . 49
7.2 Code Relations (IMP-RELC) . 50
7.3 Code Axioms (IMP-AXIO) . 51
7.4 Document Operational Ontology (DOC-OPER) 51
7.5 Control Operational Ontology (MAN-OPER) 52
7.6 Evaluate Operational Ontology (EVA-OPER) 52
7.7 Publish Operational Ontology (PUB-OPER) 54

2

Chapter 1

Introduction

SABiOx is the Extended Systematic Approach for Building Ontologies. It builds
from the initial proposals made in a PhD Thesis [Agu21], which in turn were
based on the existing Ontology Engineering method SABiO, the Systematic
Approach for Building Ontologies [Fal14]. SABiOx incorporates agile principles
and provides more details on the activities that compose its process in order to
help guide inexperienced ontology engineers.

This technical report is structured as follows: Section 2 provides an overview
of the SABiOx method, describing its phases and activities. The following
chapters, then, provide detailed descriptions for the activities of each phase,
namely Requirements (Chapter 3), Setup (Chapter 4), Capture (Chapter 5),
Design (Chapter 6) and Implementation (Chapter 7).

At the end of this document, in page 56, a Glossary section provides an
index of SABiOx’s phases and their activities.

3

Chapter 2

Overview

The life cycle proposed by the SABiOx method is composed of two comple-
mentary types of cycles: the ontology life cycle presents the dynamic aspect
of the ontology building process, expressed through phases and iterations; the
phase life cycle presents the dynamic aspect of the phases that make up the
ontology life cycle, expressed through activities and iterations.

2.1 Ontology Life Cycle

The ontology life cycle is presented in Figure 2.1. It is formed by five phases
that indicate the emphasis of the activities at each moment of the life cycle and
the evolutionary nature of ontology construction, namely:

1. Requirements phase: elicits the requirements for the ontology, i.e., what is
the ontology intended to capture and represent;

2. Setup phase: defines the baseline (e.g., modeling language, reuse of other
ontologies, etc.) for building ontology models;

3. Capture phase: identifies and models the conceptualization (i.e., concepts,
relations, axioms, etc.) to meet the elicited requirements;

4. Design phase: specifies technological features (e.g., encoding language,
reuse of existing vocabularies, etc.) for the implementation of the ontol-
ogy;

5. Implementation phase: encodes the ontology in an operational language
(e.g., OWL).

At each cycle, i.e., at each passage through the five phases of the ontology life
cycle, a new complete version of the ontology is built. The first ontology cycle
is defined as the development cycle and subsequent ones as evolution cycles.
The development cycle is triggered by the need to build an ontology and the

4

Figure 2.1: Overview of SABiOx’s ontology life-cycle.

evolution cycles are triggered by changes or improvements in the already built
ontology.

The phases are defined in a progressive way so that each phase uses the
result of the previous phase to provide gradual enrichment in the life cycle. The
result of the Requirements phase is a specification document, the Setup and
Capture phases produce a reference ontology and the Design and Implemen-
tation phases result in an operational ontology.1 Therefore, the Setup phase
starts from the result of the Requirements phase and the Design phase starts
from the result of the Capture phase.

Conversely, the outcome of each phase can be revised (represented by the
dashed lines). For instance, the outcome of the Implementation phase can give
rise to a revision in the Design and Capture phases. In turn, the outcome of
the latter can give rise to a revision in the Setup and Requirements phases. In
addition, the life cycle is designed to accommodate the construction of ontolo-
gies that evolve over time, i.e., evolution cycles generate new increments of the
ontology.

2.2 Phase Life Cycles

Each one of SABiOx’s phases defines a phase life cycle, consisting of main
activities, which define the main procedures for producing the result of that

1For a detailed explanation on the difference between reference and operational ontologies,
refer to [Gui07].

5

Figure 2.2: Overview of SABiOx’ phases life cycles.

phase, and supporting activities, which define auxiliary procedures for the
main activities.

Figure 2.2 illustrates the life cycle for all phases of the SABiOx method,
with dots representing activities and lines representing the flow of each phase.
Each phase is represented by a different color, whereas supporting activities are
represented by gray dots/lines following the main activities (when performed in
sequence) or colored dotted circles around main activities (when performed in
parallel).

The goals of each phase of SABiOx have already been presented in Sec-
tion 2.1. The supporting activities that complement the main activities of these
phases are divided in six categories:

• Knowledge Acquisition: extracts knowledge from different sources;

• Documentation: records the results of the activities;

• Configuration Management: controls the versioning and changes in the
produced artifacts;

• Evaluation: assesses the quality of the produced results;

• Reuse: reuses existing ontological and non-ontological resources;

• Publication: makes the produced ontology available.

6

Figure 2.3: Application of Scrum principles on a SABiOx’ phase life-cycle.

The supporting activities from categories Knowledge Acquisition (represented
by the pink dotted circle) and Reuse (blue dotted circle) are performed simul-
taneously with the main activities they support.

2.3 Agile Processes and Roles

For each phase of the ontology life cycle there can be several phase life cycles,
executed based on agile principles. SABiOx does not prescribe a specific agile
process to be followed. Each organization is free to define its own process based
on their own context, such as the number of people that will participate, their
expertise, the complexity of the domain to be modeled, etc.

For instance, a given organization could choose to use principles from the
Scrum framework [SS20] in order to conduct the process of building ontologies
with SABiOx. Figure 2.3 illustrates how such an organization could perform the
phases of SABiOx as Scrum sprints. Requirements and other necessary tasks
are registered in an Ontology Backlog, which could be continuously updated and
prioritized. A set of items is then moved from this backlog to a Sprint Backlog
and stay stable during the execution of the sprint, in which ontology engineers
go through the processes and activities defined for the respective phase in a
predetermined period of time. Daily meetings can be held to track the work
done, resolve obstacles, and align priorities for the day. At the end of each sprint,
reviews and retrospectives ensure early feedback and allow accommodation of
new requirements and improvements in the next iterations.

Although a specific agile process is not prescribed, SABiOx takes inspiration
on Scrum [SS20] to at least define the roles involved in its phases and activities.
Such roles are used in the detailed description of each activity in the following
chapters and could be performed by the same person in an individual effort or
by different people in a collective effort in the context of an organization. The

7

roles involved in SABiOx activities are:

• Ontology Owner: a person interested in building the ontology for a
given purpose. Responsible for defining what kind of ontology should be
built and what are its requirements. Participates in the ontology building
process in order to prioritize and define changes;

• Ontology Team: a person or group of people effectively responsible for
building the ontology and working on tasks based on its requirements.
Ideally, the Ontology Team should be multidisciplinary and preferably
small, composed by one or more people with the following roles:

– Domain Experts: a person with knowledge/expertise on the do-
main of the ontology;

– Ontology Engineers: a person with knowledge/expertise on ontol-
ogy design and implementation;

Roles can also be extended or adjusted in case a specific process is adopted
by the organization. Going back to the Scrum example presented earlier, a new
role could be included, based on the Scrum Master role:

• Ontology Master: a person with knowledge of the SABiOx method that
acts as a facilitator for the construction of the ontology with the Ontology
Team and a mediator between the team and the Ontology Owner.

2.4 Running Example

With the purpose of guiding the different roles involved in building the ontology,
the following chapters provide detailed descriptions of each activity in order to
enable their reproduction even by inexperienced ontology engineers.

To make such descriptions more concrete, a running example is used through-
out the chapters: the development of OOC-O, an ontology on Object-Oriented
Code [AFS19]. OOC-O aims to identify and represent the semantics of the
entities present at compile time in object-oriented (OO) source code, with the
intention to assist the understanding of different programming languages in this
paradigm and to support the development of tools that work with these lan-
guages.

8

Chapter 3

Requirements Phase

The Requirements Phase aims to identify the purpose of the ontology within
a defined domain and to discover the needs that the ontology should satisfy
regarding its content and characteristics. Its main activities have the aid of
supporting activities of the following categories:

• Knowledge Acquisition (KNO): to extract knowledge through the use of
brainstorming, interview, questionnaire, concept mapping and other elici-
tation techniques;

• Documentation (DOC): to register the acquired knowledge as an ontology
specification;

• Configuration Management (MAN): to control the changes, versions and
deliveries of the information recorded in the ontology specification;

• Evaluation (EVA): to validate whether the information extracted and reg-
istered in the ontology specification meets the expectations.

The activities that compose this phase are presented in the following sec-
tions. Each activity is represented by a 4-letter acronym with a 3-letter prefix
indicating if it is a main activity of this phase (REQ) or a supporting activity,
whose prefixes are indicated above.

3.1 Define Purpose (REQ-PURP)

Requirements activity that defines and describes the purpose of the ontology in
order to answer: what is the domain that the ontology intends to represent,
for what the ontology will be useful, and why the ontology should be built.

Activity definition:

Who: ontology engineer as responsible and ontology owner as participant;

9

What-Input: need to build an ontology;

What-Output: answers to the questions what, for what, and why.

Support activities in parallel:

Capture Ontology Purpose (KNO-PURP)
Knowledge Acquisition activity in which the ontology engineer extracts
expectations from the ontology owner in order to answer the three ques-
tions (what, for what, and why) for the ontology. This knowledge is
usually acquired through brainstorming and interview techniques.

Running Example:

For OOC-O, the purpose of the ontology is: to represent the concepts of
object orientation present in a source code (what); so that these concepts can
be interpreted and identified by different programming languages in a unique
way (for what); because each programming language defines its own syntax
and semantics, and there is no standardization of source code concepts nor
mature initiatives that meet these requirements, resulting in source code with
heterogeneity and interoperability difficulties (why).

3.2 Identify and Size Domain (REQ-DOMN)

Requirements activity that identifies the domain that the ontology is intended
to represent according to its purpose and sizes its boundaries. It should identify
the knowledge as well as the level of detail that the ontology should cover of
the domain. It can also explicitly indicate which details or parts should not be
covered. Although the development of an ontology is primarily driven by the
application-related scenarios of that ontology [SFGP12], the goal of this activity
is not to list the application scenarios but rather to extract the knowledge
domain embedded in those scenarios.

Activity definition:

Who: ontology engineer as responsible and ontology owner as participant;

What-Input: purpose of the ontology defined in the activity Define Pur-
pose (REQ-PURP);

What-Output: the domain to be represented in the ontology and its bound-
aries.

10

Support activities in parallel:

Understanding Ontology Domain (KNO-DOMU)
Knowledge Acquisition activity in which the ontology engineer aims to
understand the domain related to the purpose of the ontology, consid-
ering the prior knowledge of the ontology owner, domain expert and
sources from the literature on the domain.

Size Ontology Domain (KNO-DOMS)
Knowledge Acquisition activity in which the ontology engineer aims to
size the domain boundaries to be represented in the ontology. This
activity is challenging, because real-world domains are interconnected
and it is not possible to define a clear boundary between them. There-
fore, the prior knowledge of the ontology owner about the threshold
dimensions of this domain must be considered.

Boundaries should be defined for horizontal dimension in order to limit
the external areas that are part of the domain and vertical dimension
in order to limit the level of detail that should be delved into in the
domain.

Running Example:

For OOC-O, the domain is defined as object-oriented (OO) programming, a
method of software implementation in which programs are organized as co-
operative collections of objects, whose objects represent an instance of some
class and whose classes are members of a hierarchy of classes linked by inher-
itance relationships. A class serves as a template from which objects can be
created, containing attributes and methods. In order for the attributes and
methods of a class to be used in the definition of a new class, inheritance is
applied as a means of creating abstractions.

In the horizontal dimension, the domain is defined as concepts related to
object-oriented software development; for the vertical dimension, the domain
is limited in representing source code at compile time and does not cover
the execution (runtime) perspective, such as objects and messages exchanged
between objects.

3.3 Elicit Requirements (REQ-ELIC)

Requirements activity that elicits functional and non-functional requirements for
the ontology.

For the functional requirements, SABiO [Fal14] suggests the use of infor-
mal competency questions, which are questions not expressed in formal lan-
guage [GF95]. Such questions are represented by interrogative sentences and
should be defined in a stratified manner, with higher-level questions requiring

11

the solution of lower-level questions [GF95].
The questions serve as constraints on what the ontology can be, i.e., they

restrict what is or is not relevant to the ontology. Furthermore, these questions
are used in the future to evaluate the ontology’s ontological commitment to
check whether the ontology meets the requirements.

For the non-functional requirements, SABiO suggests ontology quality re-
quirements (e.g., reasoning performance, availability, usability, maintainabil-
ity); design requirements (e.g., implementation language definition, consensus
and concepts, adherence to process model); and intended use requirements (e.g.,
data source selection, ontology grouping, etc.) [Fal14], i.e., requirements not re-
lated to the contents of the ontology.

Activity definition:

Who: ontology engineer as responsible and ontology owner as participant;

What-Input: ontology domain identified in the activity Identify and Size
Domain (REQ-DOMN);

What-Output: functional and non-functional requirements that the ontol-
ogy must answer/satisfy.

Support activities in parallel:

Capture Ontology Requirements (KNO-REQI)
Knowledge Acquisition activity in which the ontology engineer aims to
discover the needs or knowledge that should be represented in the on-
tology. One should consider that the needs will hardly be exhausted
and, therefore, the requirements must be discovered, analyzed, negoti-
ated and updated continuously, that is, one must return to this activity
whenever necessary. This knowledge is usually acquired through brain-
storming, interview and concept mapping techniques.

Negotiate Ontology Requirements (KNO-REQN)
Knowledge Acquisition activity in which the ontology engineer aims to
negotiate with the ontology owner which requirements should be con-
sidered for building the ontology. It should be considered that not all
the initial needs of the ontology owner are relevant to the ontology
domain.

12

Running Example:

For OOC-O, the following functional requirements (competency questions)
are defined:

• What are the main elements of an OO source code?

• Which classes are present in an OO source code?

• Which elements make up a class?

• What inheritance is present in a given class? ;

• What methods are present in OO code ..;

• What elements make up a method ?

• What methods of a class ?

• What variables are present in an OO code ?

• Which variables compose a class?

• Which variables are part of a method?

Further, the following non-functional requirements are elicited:

• Be modular to facilitate reuse by other ontologies;

• Be incorporated into a network of ontologies to facilitate the reuse of
other ontologies and, consequently, expand its own possibilities of reuse
and association;

• Be defined from recognized knowledge sources in the literature;

• Be defined from consensus knowledge of the domain;

• Be grounded by a foundation ontology in order to reuse ontological com-
mitments and axioms already consensually established.

3.4 Identify Subdomains (REQ-SUBD)

Requirements activity that identifies subdomains related to the competency
questions defined for the domain, in order to facilitate the identification of parts
of the domain present in the ontology purpose and modularize the ontology re-
quirements.

Modularization in subdomains allows the targeted or distributed construc-
tion of the ontology, i.e., subdomains can be treated in parallel in later phases.
To identify the subdomains, it is suggested to use pre-established categories in

13

the domain or to create categories that reflect the high frequency terms present
in the competency questions [SFGP12].

Activity definition:

Who: ontology engineer as responsible;

What-Input: functional requirements identified in the activity Elicit Re-
quirements (REQ-ELIC);

What-Output: subdomains of the domain to be represented in the ontol-
ogy.

Running Example:

For OOC-O, three subdomains are defined: Core, to represent the general
object-oriented concepts; Class, to represent the class-related concepts; and
Class Member, to represent the concepts related to class members (e.g., at-
tributes and methods).

3.5 Document Specification (DOC-SPEC)

Documentation activity that documents the specification of the ontology in an
Ontology Specification Document, which should include the requirements raised
for the ontology, as well as the following considerations:

• Purpose of the Ontology: natural language text following the standard
convention: The purpose of the ontology is to represent ⟨what⟩ ⟨what for⟩
⟨why⟩;

• Ontology Domain: natural language descriptive text describing the do-
main to be represented in the ontology;

• Ontology Dimension: natural language descriptive text clearly high-
lighting the horizontal and vertical boundaries of the ontology;

• Subdomains: name of the subdomains identified in the domain from the
competency questions;

• Functional Requirements: list of competency questions with a unique
identifier for each requirement, grouped by subdomains;

• Non-Functional Requirements: descriptive text in natural language
with a unique identifier for each item.

14

Activity definition:

Who: ontology engineer as responsible;

What-Input: results from the main activities of this phase;

What-Output: ontology specification document.

Running Example:

For OOC-O, a fragment of the Ontology Specification Document for the
object-orientation domain is presented in Table 3.1.

Table 3.1: Ontology Specification Document

Document: Ontology Specification Version: v.01
Ontology: OOC-O – Object-Oriented Code Date: Sep 13, 2018

Purpose of the Ontology:
The purpose of the ontology is to represent the object-oriented concepts present in source
code so that these concepts can be interpreted and identified in different programming
languages in a unique way. This is motivated by the fact that each programming language
defines its own syntax and semantics, and there is no standardization of source code con-
cepts nor mature initiatives that meet these requirements, resulting in source code with
heterogeneity and interoperability difficulties.

Ontology Domain:
Object-oriented programming (OO) is defined as a method of implementing software in
which programs are organized as cooperative collections of objects, whose objects represent
an instance of some class and whose classes are members of a hierarchy of classes linked by
inheritance relationships. A class serves as a template from which objects can be created,
containing attributes and methods. In order for the attributes and methods of a class
to be used in the definition of a new class, inheritance is applied as a means of creating
abstractions.

Ontology Dimension:
In the horizontal dimension, the domain is defined as concepts related to object-oriented
software development; for the vertical dimension, the domain is limited in representing
source code at compile time and does not cover the execution (runtime) perspective, such
as objects and messages exchanged between objects.

Functional Requirements:
ID Description
Subdomain: Core
RF01 What are the main elements of an OO source code?
Subdomain: Class
RF02 What classes are present in an OO code?
RF03 Which elements make up a class?
RF04 What inheritance relations are associated with a given class?
Subdomain: Class Member
RF05 Which methods are present in an OO code?
RF06 Which elements make up a method?
RF07 Which methods are part of a class?
RF08 Which variables are present in an OO code?
RF09 Which variables are part of a class?
RF10 Which variables are part of a method?

Non-Functional Requirements:
ID Description
RNF01 Be modular to facilitate reuse by other ontologies;

15

RNF02 Be part of a network of ontologies to facilitate reuse by other ontologies
and, consequently, expand its own possibilities of reuse and association;

RNF03 Be defined from recognized knowledge sources in the literature;
RNF04 Be defined from consensus knowledge of the domain;
RNF05 Be grounded on a foundational ontology in order to reuse well-established

ontological commitments and axioms.

3.6 Control Specification (MAN-SPEC)

Configuration Management activity that controls the changes, versions and de-
liveries of the information present in the Ontology Specification Document, de-
scribed in the activity Document Specification (DOC-SPEC).

Version control can be as simple as using the document header to register
the version and its respective date, storing the history of all versions in case of
need, to the use of version control systems such as, e.g., Git.1

Activity definition:

Who: ontology engineer as responsible;

What-Input: functional requirements identified in the activity Elicit Re-
quirements (REQ-ELIC);

What-Output: subdomains of the domain to be represented in the ontol-
ogy.

Running Example:

For OOC-O, version and date information are included in the Ontology Spec-
ification Document header, in order to control the different versions of the
document, as presented in Table 3.1.

3.7 Evaluate Specification (EVA-SPEC)

Evaluation activity that assesses whether the information extracted and regis-
tered in the Ontology Specification Document meets the expectations of the
ontology owner. To do so, it is necessary to validate the registered information
with the ontology owner and repeat the phase life cycle if necessary.

Activity definition:

Who: ontology owner as responsible;

1https://git-scm.com/

16

https://git-scm.com/

What-Input: ontology specification document prepared in the activity Doc-
ument Specification (DOC-SPEC);

What-Output: evaluation of the ontology specification document.

Running Example:

For OOC-O, meetings are held with the ontology owner in order to validate
the ontology specification document, presented in Table 3.1.

17

Chapter 4

Setup Phase

The Setup Phase aims to define questions that will guide the elaboration of
the reference ontology, that is, decisions that have an impact on the conceptual
modeling tasks to follow. Its main activities have the aid of supporting activities
of the following categories:

• Knowledge Acquisition (KNO): to extract knowledge from resources;

• Reuse (REU): to reuse recognized ontological and non-ontological resources;

• Documentation (DOC): to register this knowledge as part of the Reference
Ontology Document;

• Configuration Management (MAN): to control the changes, versions and
deliveries of the documented information;

• Evaluation (EVA): to verify that the questions defined for the reference
ontology meet its purpose.

The activities that compose this phase are presented in the following sec-
tions. Each activity is represented by a 4-letter acronym with a 3-letter prefix
indicating if it is a main activity of this phase (SET) or a supporting activity,
whose prefixes are indicated above.

4.1 Define Modeling Language (SET-LANG)

Setup activity that defines the modeling language to be used in the construction
of the reference ontology, i.e., the conceptual model. The choice of language
directly influences the integration and reuse of the ontology under construction,
since ontologies developed in different languages may require greater adaptation
efforts.

18

Activity definition:

Who: ontology engineer as responsible;

What-Input: ontology specification document prepared in the activity Doc-
ument Specification (DOC-SPEC);

What-Output: choice of modeling language to be adopted in the reference
ontology.

Support activities in parallel:

Adopt Modeling Language (REU-LANG)
Reuse activity that aims to adopt existing modeling languages for build-
ing the reference ontology. There are several languages to model, com-
municate and negotiate ontology concepts.

Running Example:

For OOC-O, the OntoUML language [GFB+18] is adopted for modeling the
reference ontology.

4.2 Define Foundational Ontology (SET-FOUN)

Setup activity that defines the foundational ontology to be adopted, which guides
the modeling process of the ontology under construction and the views of the
reused ontologies. To do this, the popularity, usability, and adherence of the
foundational ontology for the defined domain must be considered, as well as the
expertise of the ontology engineer in the chosen ontology.

SABiO highlights the importance of concepts and relationships being previ-
ously analyzed in light of a foundational ontology. Reuse of grounding ontologies
can be done by specialization or analogy, when concepts and relations are not
explicitly extended but rather implicitly used to derive the ontology under con-
struction [Fal14].

Activity definition:

Who: ontology engineer as responsible;

What-Input: ontology domain identified in activity Identify and Size Do-
main (REQ-DOMN) and modeling language defined in activity Define
Modeling Language (SET-LANG);

What-Output: choice of foundational ontology and conceptual patterns to
be applied to the ontology under construction.

19

Support activities in parallel:

Adopt Foundational Ontology (REU-FOUN)
Reuse activity that aims to adopt an existing foundational ontology for
the construction of the reference ontology.

Adopt Ontology Patterns (REU-PATT)
Reuse activity that aims to define the ontology patterns to be adopted
in the ontology construction process. Such patterns can be classified
as [FGGP13]:

• Conceptual Pattern: reusable fragments of grounding or domain
reference ontologies;

• Architectural Pattern: patterns that describe how to organize the
ontology in terms of subontologies or modules;

• Design Pattern: patterns related to reasoning and logical imple-
mentation constructs; and

• Programming Pattern: patterns related to the ontology implemen-
tation language.

Running Example:

For OOC-O, the Unified Foundational Ontology (UFO) [GBBF+22] and its
patterns are chosen for modeling the reference ontology.

4.3 Define Concept Criteria (SET-CRIT)

Setup activity that defines the criteria that will be adopted to identify if a
concept is adherent to the domain of the ontology under construction. For
this, a list of objective criteria, with quantitative information, or subjective
criteria, with qualitative information, is defined. These criteria can be defined
for individual analysis of each knowledge source or joint analysis over all the
cataloged sources.

Given the depth of domain knowledge at this point, defining criteria can be
challenging. Thus, as knowledge is enriched and decisions about the domain are
made, one should return to this activity to update these criteria.

Activity definition:

Who: ontology engineer as responsible and domain expert as participant.
Alternatively, to optimize the process, this activity can be conducted
unilaterally by the domain expert;

What-Input: ontology specification document prepared in the activity Doc-
ument Specification (DOC-SPEC);

20

What-Output: criteria defined for the domain concepts.

Running Example:

For OOC-O, the following criteria define whether a concept is adherent to
the object-orientation domain of the ontology under construction: the con-
cept refers to programming constructs used at compile-time; the concept is
present in more than 50% of the programming languages analyzed; and the
concept is related to the main elements of object-orientation: class, method
and attribute.

4.4 Define Ontologies to Reuse (SET-REUS)

Setup activity that defines the reference ontologies to be reused, i.e., ontologies
or ontology fragments that match the purpose of the ontology under construc-
tion.

Activity definition:

Who: ontology engineer as responsible;

What-Input: ontology specification document prepared in the activity Doc-
ument Specification (DOC-SPEC);

What-Output: ontologies to be reused in the ontology under construction.

Support activities in parallel:

Adopt Reused Ontology (REU-ONTO)
Reuse activity that aims to adopt core and domain ontologies related
to the purpose of the ontology under construction, regardless of its on-
tology grounding level. The reuse of ontologies is a challenge, since it
involves heterogeneity of formalism, diversity of languages, lexical and
semantic problems, implicit representation assumptions, loss of consen-
sus knowledge, lack of documentation, and others [FLGP02].

The reuse of a core ontology will position the ontology under construc-
tion within a broader domain, while that of a domain ontology will
provide concepts already formalized for its domain. To do this, one
must search for candidate ontologies in search engines, repositories, and
known ontologies.

To select core ontologies, one must analyze whether the candidate on-
tology represents appropriate concepts to anchor the ontology under
construction. To select domain ontologies, one should analyze the cov-
erage of the candidate ontology with respect to the requirements of the
ontology under construction.

21

Further, one must consider: (i) if any ontology analysis was applied
to the candidate ontologies; (ii) if the foundational ontology adopted
by the candidate ontology is adherent to the ontology under construc-
tion; and (iii) if the domain perspective represented in the candidate
ontology corresponds to that of the ontology under construction. The
candidate ontology may refer to an individual ontology or to a network
of ontologies.

Running Example:

For OOC-O, existing ontologies that deal with source code and object-orien-
tation are searched in search engines and known ontologies. Each ontology
found is analyzed according to its purpose and adherence to the domain of
the ontology under construction, namely:

• SWO: software ontology that represents software artifacts of a complex
nature, including systems, programs, and software code. It is identified
that an OO code can be represented in the SWO ontology as a source
code specification that makes up a piece of software;

• SPO: software process ontology that describes processes and activities
using process assets, such as, e.g., Artifact. It is identified that an OO
code can be represented in the SPO ontology as a software artifact;

• SCO: source code ontology that describes the general concepts of a
source code, independent of programming language. It is identified that
an OO code can be represented in the SCO ontology as a specialization;

• JAVAOWL: Java programming language ontology that describes the
main elements of the language captured from the JavaElement class. It
is identified that the JAVAOWL ontology only represents the structure
of the Java language and is not adherent to the purpose of the ontology
under construction;

• O3: ontology that represents the concepts of the object-oriented and
programming paradigm. It is identified that the O3 ontology represents
a different perspective of the domain of the ontology under construction.

Of the analyzed ontologies, the SCO ontology was selected in order to
specialize the source code domain to the object orientation domain, as well
as position the source code domain within the software process domain, given
that SCO specializes SPO and SWO. The other ontologies are disregarded,
since they do not present the same perspective as the source code domain of
the ontology under construction.

22

4.5 Document Premise of Reference Ontology
(DOC-REFE)

Documentation activity that documents the assumptions of the reference on-
tology in the Reference Ontology Document, which must include the questions
previously defined in this phase, namely:

• Modeling Language: description of the modeling language;

• Foundational Ontology: description of the foundational ontology and its
ontology patterns;

• Ontologies to Reuse: presentation of the core and/or domain ontologies
to be reused in the ontology under construction.

Activity definition:

Who: ontology engineer as responsible;

What-Input: results from the activities performed earlier in this phase;

What-Output: Reference Ontology Document with its respective premises.

Running Example:

In OOC-O, the Reference Ontology Document is prepared with the premises
established for the object-oriented reference ontology, as presented in Ta-
ble 4.1.

Table 4.1: Ontology Reference Document

Document: Reference Ontology Version: v.01
Ontology: OOC-O Object-Oriented Code Ontology Date: Jan 11, 2019

Modeling Language:
OntoUML
Foundational Ontology:
UFO: Ontology characterized in modal logic and cognitive psychology that aims to provide a
higher semantic level about the world in a conceptual model of a given knowledge domain,
systematizes issues such as notions of types and their instances; objects, and their intrinsic
properties; the relationship between identity and classification; distinctions between types and
their relationships; part-whole relationships, among others.
Criteria:
CR01 Concept refers to programming constructs used at compile-time;
CR02 Concept is present in more than 50% of the programming languages analyzed;
CR03 Concept related to the main elements of object-orientation: class, method and

attribute.
Ontologies to Reuse:
Prefix Definition Foundation Type Analysis
SCO Source code Ontology that describes

the general concepts of a source
code, independent of programming
language.

UFO Core OO code is a
specialization
of source code.

23

4.6 Control Premise of Reference Ontology (MAN-
REFE)

Configuration Management activity that controls the changes, versions and de-
liveries of the information registered in the Reference Ontology Document, de-
scribed in the activity Document Premise of Reference Ontology (DOC-REFE).

It is suggested that the same version control mechanism adopted in activity
Control Specification (MAN-SPEC) continues to be used here.

Activity definition:

Who: ontology engineer as responsible;

What-Input: Reference Ontology Document prepared in activity Docu-
ment Premise of Reference Ontology (DOC-REFE);

What-Output: control of the Reference Ontology Document.

Running Example:

For OOC-O, version and date headers int the Reference Ontology Document
are adopted to control its versions, as presented in Table 4.1, following the
same choice made earlier in activity Control Specification (MAN-SPEC).

4.7 Evaluate Premise of Reference Ontology (EVA-
REFE)

Evaluation activity that assesses whether the information registered in the Ref-
erence Ontology Document meets the expectations of the ontology owner and
is in accordance with the domain expert. This is done by validating the reg-
istered information with the ontology owner and returning to the beginning of
the phase whenever necessary.

Activity definition:

Who: ontology owner and domain expert as responsible;

What-Input: Reference Ontology Document prepared in activity Docu-
ment Premise of Reference Ontology (DOC-REFE);

What-Output: evaluation of the Reference Ontology Document.

Running Example:

In OOC-O, meetings are held with the ontology owner and the domain expert
in order to validate the Reference Ontology Document, presented in Table 4.1.

24

25

Chapter 5

Capture Phase

The Capture Phase aims to represent in a well-founded way the domain concep-
tualization based on the specification elaborated in the Requirements Phase and
the questions defined in the Setup Phase, which should be revised at each iter-
ation in order to add, detail, and delete requirements and questions related to
the domain needs. In this context, conceptualization is an intentional semantic
framework that encodes the implicit rules that constrain the structure of a part
of reality [UK95].

The main activities of this phase have the aid of supporting activities of the
following categories:

• Knowledge Acquisition (KNO): to extract the knowledge from the domain;

• Reuse (REU): to reuse recognized ontological and non-ontological resources;

• Documentation (DOC): to register this knowledge as a conceptual model
and part of the Reference Ontology Document;

• Configuration Management (MAN): to control the changes, versions and
deliveries of the documented information;

• Evaluation (EVA): to verify if the ontology is being built according to the
requested requirements and to validate if it meets its purpose;

• Publication (PUB): to make the reference ontology available.

Note that a single ontology specification can give rise to distributed processes
in the reference phase, according to the subdomains defined in the activity
Identify Subdomains (REQ-SUBD).

The activities that compose this phase are presented in the following sec-
tions. Each activity is represented by a 4-letter acronym with a 3-letter prefix
indicating if it is a main activity of this phase (CAP) or a supporting activity,
whose prefixes are indicated above.

26

5.1 Identify Concepts (CAP-CONC)

Capture activity that identifies which domain concepts are part of the purpose
of the ontology according to the knowledge sources. This activity treats concept
as a conception or idea of a reality and therefore types, properties and examples
are not identified as concepts, but as part of the description of concepts.

For this, the following sub-activities are defined:

5.1.1 Catalog Concepts (CAP-CATA)

Capture activity that catalogs the concepts related to the ontology domain,
according to the criteria defined in the activity Define Concept Criteria (SET-
CRIT).

The concepts can be cataloged using three different knowledge sources: data
source, domain expert, and ontology owner. A data source can be a book, a
standard, a specification, an article, or another source recognized by the domain-
related communities. These concepts form a simple list of terms and meanings
extracted from the different sources, i.e., containing conflicts, overlaps and syn-
onyms.

Although this activity is guided by criteria, it remains subjective and de-
pendent on the analysis of the roles involved. Only criteria defined from the
individual analysis of knowledge sources are applied in this activity. Criteria
that require joint analysis of knowledge sources will be applied in the activity
Model Ontology (CAP-MODE).

It is worth noting that the results of this activity are important to optimize
activity Model Ontology (CAP-MODE), since domain knowledge can be identi-
fied by different roles involved so that basic domain instructions are identified
and organized.

Activity definition:

Who: ontology engineer as responsible and domain expert and/or ontology
owner as participants. To optimize the process, this activity can be
conducted in a distributed way across roles, so that concept capture can
be conducted by the ontology engineer and/or domain expert and/or
ontology owner;

What-Input: ontology specification document prepared in the activity Doc-
ument Specification (DOC-SPEC);

What-Output: domain concepts extracted from the knowledge sources.

Support activities in parallel:

Capture Concepts (KNO-CONC)
Knowledge Acquisition activity that aims to capture the concepts related
to the ontology domain. To capture concepts from the ontology owner
and the domain expert, we suggest the application of brainstorming,

27

interview, form and concept mapping techniques to extract the concepts
with more evidence in the domain. To capture concepts from data
sources, it is suggested to search for data sources in search engines
and data repositories in order to apply text analysis to extract the
concepts with greater evidence in the domain. We emphasize that, in
this activity, it is important to capture all the concepts related to the
domain without worrying about their overlaps or relationships at this
point.

Reuse Data Source (REU-DATA)
Reuse activity that aims to adopt data sources related to the ontology
domain for capturing concepts. Good engineering practice is not to “in-
vent” descriptions, but to import them from authoritative sources [NM16].

Running Example:

For OOC-O, books and specification documents of programming languages
that apply object orientation were defined as knowledge source and used for
capturing the concepts, according to the established criteria (as defined in
activity Define Concept Criteria (SET-CRIT)). Since there are a large num-
ber of programming languages related to the domain, the knowledge source
search was targeted at Eiffel, Smalltalk, Java, C++ and Python programming
languages. Table 5.1 presents a fragment of the concept catalog developed for
the object-orientation domain.

Table 5.1: Fragment of the Concept Catalog for OOC-O

Source: Smalltalk and Object Orientation [Hun12]
Concept Definition Instance
Class Basic building block that acts as a tem-

plate for constructing instances.
Object subclass: #Polygon

Instance
Variable

Variable that holds its own value for each
instance of the class.

instanceVariableNames: ‘side’

Source: Eiffel: Analysis, Design and Programming Language [Eif06]
Concept Definition Instance
Class Implementation of an abstract data type

intended to be the modular unit of soft-
ware decomposition and to provide the
basis for the type system.

class Polygon end

Attribute Feature type that will be associated with
each instance of the class.

side : INTEGER

Source: Object-Oriented Programming in C++ [Laf97]
Concept Definition Instance
Class Class serves as a blueprint that specifies

which data and which functions will com-
pose the objects of that class.

class Polygon{ };

Data Mem-
ber

Data item included within a class. private: int side;

28

Source: Java Language Specification [GJS+18]
Concept Definition Instance
Class Defines new reference types and describes

how they are implemented.
public class Polygon{ }

Instance
Variable

Variable defined for each instance of the
class.

private int side;

Source: Python 3 Object Oriented Programming [Phi10]
Concept Definition Instance
Class A class is like a blueprint for creating ob-

jects.
class Polygon:

Data At-
tribute

Attribute that defines a data value for
each instance.

side = None

References:
[Eif06] EIFFEL, E. Analysis, design and programming language. ECMA Standard ECMA-367,
ECMA, 2006.

[GJS+18] GOSLING, J. et al. The Java language specification: Java SE 10 edition, 20 February
2018. 2018.
[Hun12] HUNT, J. Smalltalk and object orientation: an introduction. Springer Science & Busi-
ness Media, 2012.
[Laf97] LAFORE, R. Object-oriented programming in C++. Pearson Education, 1997.
[Phi10] PHILLIPS, D. Python 3 object oriented programming. Packt Publishing Ltd, 2010.

5.1.2 Extract Ontology View (CAP-VIEW)

Capture activity that extracts the view of the reference ontologies to be reused
in the modeling of the ontology under construction.

For the definition of the reused ontology, a modularization strategy should
be used over the original ontology, since a view of the ontology will be developed
that will reflect a part or a set of concepts extracted from it. As the view is
being built, ontological analysis should be applied to ensure compatibility with
the ontology under construction. Thus, the view of the reused ontology should
be built following some guidelines:

1. If the reused ontology completely matches the purpose of the ontology
under construction, the completely reused ontology should compose the
view;

2. if only a part of the reused ontology corresponds to the purpose of the
ontology under construction, the reused ontology must be partitioned and
only this part must compose the view; and

3. if only some concepts of the reused ontology correspond to the purpose
of the ontology under construction, the relevant concepts of the reused
ontology should be identified so that their relations can be recursively
visited in order to gather the concepts to compose the view.

It is worth noting that this activity is more related to modularization and ap-
plication of ontology analysis than ontology reengineering, which is the process
of retrieving and mapping a conceptual model from an implemented ontology
to another, more suitable conceptual model that is reimplemented [GPRA99].

29

Activity definition:

Who: ontology engineer as responsible;

What-Input: ontologies to be reused in the ontology under construction,
identified in the activity Define Ontologies to Reuse (SET-REUS);

What-Output: view of the ontologies to be reused in the ontology under
construction.

Support activities in parallel:

Capture View Concepts (KNO-VIEW)
Knowledge Acquisition activity that aims to identify the ontology con-
cepts that will form the view of the reused ontology as part of the
ontology under construction. For reused core ontologies, one should
identify the concepts that can anchor the concepts of the ontology un-
der construction. For reused domain ontologies, one should identify the
concepts that answer the competency questions of the ontology under
construction.

Running Example:

For OOC-O, the view of the SCO ontology was elaborated in order to represent
only the concepts from the object-orientation domain, presented in Figure 5.1.

Figure 5.1: View of the SCO ontology to be reused.

5.2 Identify Axioms (CAP-AXIM)

Capture activity that identifies the constraint and inference axioms that the con-
ceptual model of the ontology under construction must consider. You should

30

identify the constraints that the conceptual model cannot represent and record
them either as informal axioms (i.e., in natural language) or using some for-
malism (e.g., first-order logic, Object Constraint Language – OCL). As the
conceptual model is developed, one should return to this activity to ensure a
more complete and unambiguous model.

Activity definition:

Who: ontology engineer as responsible and domain expert as participant;

What-Input: concepts identified in the activity Catalog Concepts (CAP-
CATA);

What-Output: informal axioms of the ontology under construction.

Running Example:

For OOC-O, axioms were defined to establish model constraints, such as
the inheritance relationship, which is established when a subclass is inher-
ited from a superclass, by stating the following axiom: ∀c1, c2 : Class, i :
Inheritance, inheritsIn(c1, i) ∧ inheritedFrom(c2, i) → subClassOf(c1, c2)

5.3 Model Ontology (CAP-MODE)

Capture activity that models concepts and relationships covered by the purpose
of the ontology in a technology-independent ontology representation language.
This modeling should apply both ontological analysis, in order to categorize con-
cepts according to a foundational ontology, and conceptual ontology patterns,
in order to leverage fragments of foundational ontologies. This representation
of knowledge in the form of a conceptual model establishes ontological com-
mitments about the domain, since one must represent part of the information
about the world and ignore other parts [GDD06].

Ontology modeling can follow: (i) a top-down approach, starting with the
most general domain concepts and then specializing them; (ii) a bottom-up
approach, starting with the most domain-specific concepts and then grouping
them into more general concepts; or (iii) a middle-out approach, starting with
the most relevant concepts and then generalizing and specializing them by com-
bining the top-down and bottom-up approaches. The middle-out approach is
recommended, as it can decrease rework and modeling effort by finding balance
in the levels of detail, starting with the most relevant concepts and, only when
necessary, specializing or generalizing them [FLGP02].

The ontology concepts and relationships should be modeled using the mod-
eling language defined in activity Define Modeling Language (SET-LANG). For
each modeled concept, you must define its category according to the underlying
ontology defined in the activity Define Foundational Ontology (SET-FOUN). For

31

each relationship established, you must define its name, direction, type and car-
dinality. In addition, as the model is being built, conceptual ontology standards
must be applied to ensure the standard quality of the model. This activity
requires decision making about the domain and its representation, and should
consider the knowledge acquired from the knowledge sources.

This activity can be performed in a directed or distributed manner accord-
ing to the subdomains identified in activity Identify Subdomains (REQ-SUBD).
If performed in a distributed manner, this activity will generate views of the
ontology under construction that must later be integrated.

One must consider that modeling is evolutionary and, therefore, the model
must continuously undergo adjustments, apply ontology analysis, integrate on-
tology views, and reorganize its modules, i.e., one must return to this activity
whenever necessary.

Activity definition:

Who: ontology engineer as responsible and domain expert as participant;

What-Input: concepts identified in the activity Identify Concepts (CAP-
CONC) from the knowledge sources and the reused ontologies;

What-Output: conceptual model of the ontology under construction.

Support activities in parallel:

Concepts Consensus (KNO-CONS)
Knowledge Acquisition activity that aims to establish semantic consen-
sus on the concepts of the domain of the ontology under construction,
in order to define their conceptualization and clarify doubts, ambigui-
ties and conflicts. This activity is interested in mitigating the semantic
differences of the knowledge sources, regardless of lexical differences.
Thus, for each concept cataloged for the domain, one must exchange
information, argument different perceptions, and arrive at a shared con-
ceptualization.

Furthermore, the criteria for the set of knowledge sources, defined in
the Define Concept Criteria (SET-CRIT) activity, must be applied. To
do this, catalog concepts from different sources are validated against
the criteria and discussed with domain experts. The consensus can be
created from a synthesis of the knowledge sources or, according to the
purpose of the ontology and the experts’ discussion, favoring one source
or another.

Concepts Terminology (KNO-TERM)
Knowledge Acquisition activity that aims to define the representative
term for each consensus concept defined in the Concepts Consensus
(KNO-CONS) activity. Term is defined as the representation of the
domain concept in the ontology.

32

This is done by revisiting the cataloged concepts, considering: (i) if
the term is consensual among the different sources, then this should
be defined as the representative term of the concept in the ontology;
(ii) if the term is not consensual, then the representative term of the
ontology concept must be subjectively defined according to the greatest
relevance for the domain.

Running Example:

For OOC-O, the conceptual model of the object-oriented domain has been
built, and a fragment of it is presented in Figure 5.2.

Figure 5.2: Conceptual model of the main object-oriented concepts in OOC-O.

5.4 Integrate Ontology (CAP-INTE)

Capture activity that integrates both the views of the ontology under construc-
tion and the views of the reused ontologies. If the ontology is built in a dis-
tributed fashion according to the identified subdomains, each subdomain will
give rise to a view of the ontology. If the ontology is built by reusing existing
ontologies, each existing ontology will give rise to one or more views of the on-
tology. Such views must be integrated into the ontology under construction and
therefore this activity is performed iteratively with the Model Ontology (CAP-
MODE) activity, in order to elaborate a more cohesive and complete model.

For views built from foundational ontologies, the integration can be done
through specialization (concepts are explicitly extended) or analogy (concepts
are implicitly used to derive the ontology under construction) [Fal14], so that the
concepts of the reused ontology underlie the concepts represented in the ontology
under construction. Furthermore, the integration with the grounding ontology
makes the ontology commitment explicit and produces a uniform conceptual
model to integrate different views of ontologies.

For views built from core ontologies, integration can be done primarily
through specialization, so that concepts and relations from the core ontology are

33

extended to represent more domain-specific conceptualizations of the ontology
under construction [Fal14].

For views built from domain ontologies, integration can be based on the idea
of composition [MW04], via the join operation. In this case, an ontology O is
formed by merging the concepts of the ontology under construction O1 and the
view of the reused ontology O2 by merging the common concepts. Furthermore,
association, extension and specialization relations between the entities of O1 and
O2 may be necessary to establish the union of the ontologies. For the ontology
views under construction, the integration may follow a combination of these
strategies.

Activity definition:

Who: ontology engineer as responsible and domain expert as participant;

What-Input: views of the ontology under construction and the views of the
reused ontologies, elaborated in the activities Model Ontology (CAP-
MODE) and Extract Ontology View (CAP-VIEW);

What-Output: conceptual model of the ontology under construction.

Running Example:

For OOC-O, the integration was performed iteratively so that the view of the
reused SCO ontology (red color) anchored the concepts of the object-oriented
ontology (yellow color) with specialization relationships (yellow color), as pre-
sented in Figure 5.3.

5.5 Modularize Ontology (CAP-MODU)

Capture activity that identifies the modules into which the ontology can be
decomposed and which can be considered separately while being interconnected
with other modules [d’A12].

A complex domain ontology consisting of many concepts cannot be built and
maintained easily and is difficult to reuse in its entirety. Thus, the goal of using
modularization includes [d’A12]:

1. improving performance by allowing distributed or targeted processing;

2. facilitating the development and maintenance of the ontology by breaking
it into independent, loosely coupled components;

3. facilitating the reuse of parts of the ontology, since relevant adaptations
have already been applied.

This activity is executed iteratively in order to elaborate a more understand-
able and decoupled model, prioritizing more cohesion and less dependency. Dif-
ferent scenarios and applications require different ways to modularize [DSHS07]

34

Figure 5.3: Integration of the reused ontology (SCO) with the ontology under
construction (OOC-O).

and therefore an appropriate modularization strategy should be applied, con-
sidering: (i) comprehension criteria and ontology size; and (ii) preservation of
the completeness of the modules, assigning relationships among the associated
modules and replicating concepts needed for their understanding and visualiza-
tion.

Activity definition:

Who: ontology engineer as responsible and domain expert as participant;

What-Input: conceptual model of the ontology under construction, elab-
orated in the activities Model Ontology (CAP-MODE) and Integrate
Ontology (CAP-INTE);

What-Output: conceptual model of the ontology under construction, mod-
ularized.

Support activities in parallel:

Adopt Modularization Strategy (REU-MODU)
Reuse activity that aims to define the modularization strategy to be
adopted in modeling the ontology under construction and the views of
the reused ontologies. For this, it is suggested to consider two main
modularization strategies [d’A12]:

1. If the ontology aggregates many concepts that make it difficult to
understand and maintain it is recommended to apply the parti-
tioning strategy so that subdomains are treated independently and

35

Figure 5.4: Modularization of OOC-O.

maintain their completeness in the form of modules, i.e. partition-
ing the ontology;

2. If some concepts are treated in the ontology jointly, it is recom-
mended to apply the transversal extraction method so that, start-
ing from these concepts, their relationships are visited recursively
and, from them, the set of concepts and relationships needed to be
gathered is identified.

Running Example:

For OOC-O, the ontology was modularized adopting the partitioning strategy,
where Core represents the main concepts of the object-oriented code, Class
represents the concepts derived from class and Class Member represents the
concepts derived from class members, i.e., attributes and methods. Figure 5.4
presents the modularization adopted in OOC-O, as well as its relation to the
reused ontologies.

5.6 Document Reference Ontology (DOC-MODE)

Documentation activity that documents the conceptual model of the ontology
under construction by means of the Reference Ontology Document, complement-
ing the document elaborated in the activity Document Premise of Reference
Ontology (DOC-REFE), with the following considerations:

36

• Modularization: representation of the modules defined for the ontology
under construction. It is suggested to use a UML package diagram whose
packages are related through dependencies [Fal14] and standardized by
colors;

• Conceptual Model: presentation of the ontology conceptual model;

• Model Axioms: presentation of the constraints defined in informal axioms
for axioms written in first-order logic or OCL. Formal axioms support the
descriptions of the informal axioms, not replace them;

• Model Description: text in natural language containing a description of
the model and highlighting its concepts and relationships;

• Model Dictionary: presentation of concepts and their meanings in the
form of a dictionary.

Activity definition:

Who: ontology engineer as responsible;

What-Input: Reference Ontology Document produced in activity Docu-
ment Premise of Reference Ontology (DOC-REFE) and the results from
the activities performed earlier in this phase;

What-Output: a complete Reference Ontology Document.

Running Example:

For OOC-O, the Reference Ontology Document presented in Table 4.1 is com-
plemented with the conceptual model documentation, presented in Table 5.2.

Table 5.2: Fragment of OOC-O’s Reference Ontology Document.

Document: Reference Ontology Version: v.01
Ontology: OOC-O Object-Oriented Code Ontology Date: April 11, 2019

Modeling Language:
OntoUML
Foundational Ontology:
UFO Ontology characterized in modal logic and cognitive psychology that aims to

provide a higher semantic level about the world in a conceptual model of
a given knowledge domain, systematizes issues such as notions of types and
their instances; objects, and their intrinsic properties; the relationship between
identity and classification; distinctions between types and their relationships;
part-whole relationships, among others.

Criteria:
CR01 Concept refers to programming constructs used at compile-time;
CR02 Concept is present in more than 50% of the programming languages analyzed;
CR03 Concept related to the main elements of object-orientation: class, method and

attribute.

37

Ontologies to Reuse:
Prefix Definition Analysis
SCO Core Ontology - UFO

Source code Ontology that describes the gen-
eral concepts of a source code, independent
of programming language.

OO code is a specialization
of source code.

Modularization:
Sub-
ontology

Definition

Core Ontology that represents the main concepts of object-oriented code.
Class Ontology that details the concepts derived from class.
Class Member Ontology that details the concepts derived from class members, i.e.

attributes and methods.

Ontology: OOC-O Core

Axioms:
Axiom Definition

Dictionary of Concepts:
Concept Definition
Class Abstract data type and mechanism for defining an abstract data type in an

OO programming language. Class describes the attributes of its objects,
as well as the methods they can perform.

Member Members that make up the classes, such as Method and Attribute.
Method Named Block (Function or Procedure) that belongs to the class and pro-

vides a way to define the behavior of an object that is invoked when a
message is received by the object.

38

Attribute Variable that belongs to the class and provides a way to set the state of
its objects.

5.7 Control Reference Ontology (MAN-MODE)

Configuration Management activity that controls the changes, versions and de-
liveries of the information registered in the Reference Ontology Document, de-
scribed in the activity Document Reference Ontology (DOC-MODE), comple-
menting the records made in the activity Document Premise of Reference On-
tology (DOC-REFE).

It is suggested that the same version control mechanism adopted in activity
Control Specification (MAN-SPEC) continues to be used here.

Activity definition:

Who: ontology engineer as responsible;

What-Input: Reference Ontology Document prepared in activity Docu-
ment Reference Ontology (DOC-MODE);

What-Output: control of the Reference Ontology Document.

Running Example:

For OOC-O, the header of the Reference Ontology Document continues to
be used to control its versions, complementing the controls recorded in the
activity Control Premise of Reference Ontology (MAN-REFE), as presented in
Table 5.2.

5.8 Evaluate Reference Ontology (EVA-MODE)

Evaluation activity that assesses whether the information recorded in the Refer-
ence Ontology Document meet the expectations of the ontology owner and are
in accordance with the domain expert, applying static evaluation over the on-
tology’s requirements and purpose. This is done by validating the information
and returning to the beginning of the phase whenever necessary.

For ontology verification, one must assess through technical reviews whether
the functional requirements raised are answered by the concepts and relation-
ships represented in the ontology’s conceptual model. For this, it is suggested
that the competency questions raised in the activity Elicit Requirements (REQ-
ELIC) be answered exclusively by the concepts and relations of the ontology,
relating them in order to build a reasoning path.

39

The pattern c1 > r > c2 transcribes a relationship where c1 is the source
concept of the relationship, c2 is the target concept of the relationship and r is
the relationship between the concepts c1 and c2. The transcription of a given
relation r must follow its relation type: association relation is represented by
the relation name, composition relation is represented by componentOf, spe-
cialization relation is represented by subtypeOf and generalization relation is
represented by specializedBy.

For ontology validation, one must evaluate whether the ontology meets real
world situations by instantiating its concepts. For this, it is suggested that the
instances of the concepts cataloged in activity Catalog Concepts (CAP-CATA)
be mapped to instances of the ontology concepts.

Activity definition:

Who: ontology engineer as responsible;

What-Input: Reference Ontology Document prepared in the activity Doc-
ument Reference Ontology (DOC-MODE);

What-Output: evaluation of the Reference Ontology Document.

Running Example:

For OOC-C, ontology verification is provided by the answers to the com-
petency questions, such as for functional requirement RF03, answered by:
Member componentOf Class; Attribute and Method subtypeOf Member.

The validation of the ontology is given by instantiating its concepts, such
as the Java language code shown in Listing 5.1, in which: Polygon instanceOf
Class; side instanceOf Attribute; perimeter instanceOf Method; private and
public instanceOf Visibility; int instanceOf Primitive Type & Value Type; and
void, int instanceOf Primitive Type & Return Type.

Listing 5.1: Fragment of Java object-oriented code.

1 public c lass Polygon{
2 private int s i d e ;
3 public void per imeter () {} ;
4 }

5.9 Publish Reference Ontology (PUB-REFE)

Publication activity that publishes the Reference Ontology, defined in the activ-
ity Document Reference Ontology (DOC-MODE).

40

Activity definition:

Who: ontology engineer as responsible;

What-Input: Reference Ontology Document prepared in the activity Doc-
ument Reference Ontology (DOC-MODE);

What-Output: reference ontology made available.

Running Example:

For OOC-O, the Reference Ontology Document was published on the project
website and is accessible at https://nemo.inf.ufes.br/projetos/sabiox/.

41

https://nemo.inf.ufes.br/projetos/sabiox/

Chapter 6

Design Phase

The Design Phase aims to define technological issues that will guide the imple-
mentation of the operational ontology, i.e., decisions that are dependent on the
technological environment. In this context, the reference ontology, elaborated
in the Capture Phase, provides the initial information to specify the design that
may be originated by different technological choices.

This process aims to bridge the gap between the conceptual modeling of
reference ontologies and their encoding in terms of an operational ontology lan-
guage [Gui07]. To do this, it defines a set of activities that must be performed
iteratively until the expected quality standard is defined. Given the techni-
cal nature of the process, it is suggested that the non-functional requirements
defined in the activity Elicit Requirements (REQ-ELIC) be revisited at each it-
eration, in order to add, detail and delete non-functional requirements related
to the technological issues of the operational ontology. The activities of these
respective processes are presented in the following subsections.

6.1 Define Encoding Language (DES-LANG)

Design activity that defines the representation language to be applied in the
construction of the operational ontology, i.e., in the codification. The choice
of language directly influences the integration and reuse of the ontology under
construction, since ontologies developed in different languages may require a
great deal of effort to adapt.

Activity definition:

Who: ontology engineer as responsible;

What-Input: Reference Ontology Document prepared in the activity Doc-
ument Reference Ontology (DOC-MODE);

What-Output: coding language to be adopted in the operational ontology.

42

Support activities in parallel:

Adopt Encoding Language (REU-ELAN)
Activity that aims to define the encoding language to be adopted in
the construction of the operational ontology. There are several lan-
guages to represent ontologies, such as KIF, based on first-order logic;
RDF(S), based on semantic networks and frame-based primitives; and
OWL, based on properties and attributes of RDF(S) vocabularies cor-
responding to description logics [MH04]. Given the popularity, well-
defined meaning description and rich relationships, the use of the OWL
language is suggested.

Running Example:

For OOC-O, OWL is chosen for encoding the operational ontology.

6.2 Identify Vocabularies (DES-VOCA)

Design activity that identifies the vocabularies to be adopted in the coding of the
ontology under construction, both base vocabularies to assist in the construction
of the ontology and vocabularies of the reused ontologies.

These vocabularies must adopt an encoding language compatible with the
language adopted in the ontology under construction, defined in the activity
Define Encoding Language (DES-LANG). In this context, vocabulary is defined
as the set of concepts and relations of a given domain, without necessarily
adopting a complex formalism such as that of an ontology.

Activity definition:

Who: ontology engineer as responsible;

What-Input: Reference Ontology Document prepared in the activity Doc-
ument Reference Ontology (DOC-MODE);

What-Output: vocabularies to be reused in the operational ontology.

Support activities in parallel:

Understand Vocabulary (KNO-VOCA)
Knowledge Acquisition activity that aims to understand the classes and
properties of the vocabularies adopted for the construction of the oper-
ational ontology. Since not all vocabulary elements will be reused, those
that correspond to the ontology under construction must be defined.

Adopt Base Vocabularies (REU-BVOC)
Reuse activity that aims to select vocabularies to assist the encoding

43

of the ontology under construction, i.e. vocabularies that do not define
concepts and relations of the domain of the ontology under construction.
To do this, it is necessary to search for vocabularies in search engines
and repositories such as, e.g., https://lov.linkeddata.es/dataset/
lov/. Such vocabularies usually include, among others, http://www.
w3.org/2002/07/owl#, http://www.w3.org/1999/02/22-rdf-syntax-ns#
and http://www.w3.org/2000/01/rdf-schema.

Adopt Vocabularies from Reused Ontologies (REU-RVOC)
Reuse activity that aims to select vocabularies from the ontologies reused
in the reference ontology, i.e., vocabularies that define concepts and re-
lations from the domain of the ontology under construction. To do this,
the ontology engineer must search the available resources of the reused
ontologies. If the vocabulary of the reused ontology is not accessible,
it will be built in the Implementation Phase, together with the ontology
under construction.

Running Example:

For OOC-O, the following vocabularies were reused:
• OWL: http://www.w3.org/2002/07/owl#;

• RDF: http://www.w3.org/1999/02/22-rdf-syntax-ns#;

• XSD: http://www.w3.org/2001/XMLSchema#;

• RDFS: http://www.w3.org/2000/01/rdf-schema#;

• SCO: http://nemo.inf.ufes.br/projetos/oscin/sco#.

6.3 Define Ontology Encoding (DES-CODE)

Design activity that defines the coding to be applied in the operational ontology,
i.e., the structure of the elements that represent the reference ontology in the
operational language.

This activity indicates how the architecture of the operational ontology will
be derived from the reference ontology, considering the defined coding language.
An ontology can be defined as a set of representational primitives that model a
knowledge domain, characterized as concepts/classes, relations/properties, and
attributes/properties of data types [Sli15]. In the case of the OWL language,
the architecture will be based on classes and properties.

From the conceptual model, one must define the concepts and relationships
that will be represented as classes and properties in the operational ontology.
Based on the classes, a taxonomy of the ontology must be defined, i.e., to orga-

44

https://lov.linkeddata.es/dataset/lov/
https://lov.linkeddata.es/dataset/lov/
http://www.w3.org/2002/07/owl#
http://www.w3.org/2002/07/owl#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2002/07/owl#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2001/XMLSchema#
http://www.w3.org/2000/01/rdf-schema#
http://nemo.inf.ufes.br/projetos/oscin/sco#

nize the concepts in a hierarchical manner. In the case of the OWL language,
relationships of the type subClassOf can be created, inherited from RDFS.

The nomenclature and the use of vocabularies to be adopted in encoding
the ontology must be defined. For the nomenclature, we suggest adopting rules
that allow the association with the concepts and relationships defined in the
reference ontology. For the vocabulary, it is suggested to clearly define how the
concepts and relations will be used in the operational ontology. This activity is
relevant to ensure the standard encoding of the ontology, especially when the
Implementation Phase is performed in a parallel or distributed way.

The architecture should adopt modularization for ease of understanding and
reuse. To do this, one should visit the modularization defined for the reference
ontology in order to use it as a basis for the modularization of the operational
ontology and apply adjustments for its operationalization. The architecture
must consider the ontologies reused in the construction of the reference ontol-
ogy in the form of vocabularies, as well as consider characteristics related to
reasoning and performance.

Activity definition:

Who: ontology engineer as responsible;

What-Input: Reference Ontology Document prepared in the activity Doc-
ument Reference Ontology (DOC-MODE);

What-Output: coding of the operational ontology.

Support activities in parallel:

Map Reference Ontology (KNO-MAP)
Knowledge Acquisition activity that aims to map the concepts and rela-
tionships from the reference ontology that will be represented as classes
and properties in the operational ontology.

For OWL, each class is mapped as member of the OWL class Thing and
instance of Class, and each property as ObjectProperty or Datatatype-
Property, inherited from the RDF class Property. Furthermore, value
and cardinality restrictions can be defined via properties.

Running Example:

In OOC-O, the concepts and relations of the reference ontology are represented
as OWL classes and properties. The URI of the individual is formed by
the pattern <module> <class> <method> <variable> in order to ensure the
unique identifier in the ontology.

45

6.4 Document Premise of Operational Ontology
(DOC-OPER)

Documentation activity that documents the assumptions of the operational on-
tology through the Operational Ontology Document, which should include the
questions defined in the Design Phase, as well as the following:

• Coding Language: identification of the coding language to be used in the
implementation of the ontology;

• Vocabularies: prefix identifying the vocabulary and its definition;

• Coding Rules: description of the rules to be applied in the coding of the
ontology;

• Architecture: description or representation of the architecture to be adopted
in the coding of the ontology.

Activity definition:

Who: ontology engineer as responsible;

What-Input: activities performed in the Design Phase;

What-Output: Operational Ontology Document with its respective as-
sumptions.

Running Example:

For OOC-O, the Operational Ontology Document with the premises estab-
lished for the operational ontology is presented in Table 6.1.

Table 6.1: Operational Ontology Document

Document: Operational Ontology Version: v.01
Ontology: OOC-O Object-Oriented Code Ontology Date: April 26, 2019

Codification Language:
OWL

Vocabularies:
Prefixo Definição
owl http://www.w3.org/2002/07/owl#
rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#
xml http://www.w3.org/XML/1998/namespace
xsd http://www.w3.org/2001/XMLSchema#
rdfs http://www.w3.org/2000/01/rdf-schema#
sco http://nemo.inf.ufes.br/projetos/oscin/sco#

46

Codification Rules:
Rule Definition
Class Name Classes are named from the reference ontology following the pattern Pas-

cal Case, initial letter of each word capitalized, without space, hyphen,
underscore or punctuation.

Property Name Properties are named from the reference ontology following the Camel
Case pattern, initial letter of the first word in lowercase and initial letter
of the remaining words in uppercase, without space, hyphen, underscore
or punctuation. Properties with the same name in the reference ontology
are named by adding the target concept to the relation name.

Individual URI Individuals are named following the pattern <module> <class> <method>
<variable> according to the type of individual.

Class Description Classes are described using the comment property of RDFS.
Specialization Rela-
tion

The specialization between classes are defined using the subClassOf prop-
erty of RDFS.

Disjunction Relation The disjunction between classes are defined using the disjointWith prop-
erty of OWL.

String Datatype Data of type string is defined as XMLSchema#string from RDFS.

Architecture:
Ontologies:
Prefix Description
ooc-o Ontology that corresponds to the OOC-O Core reference sub-ontology.
ooc-o-class Ontology that corresponds to the OOC-O Class reference sub-ontology.
ooc-o-classmember Ontology that corresponds for the reference OOC-O Class Member sub-

ontology.

Taxonomy:
- Concepts of the kind and category type are anchored in the Class class of OWL;
- Concepts of the subkind type are anchored to the respective kinds of the domain according to
the conceptual model;
- Concepts of type quality are anchored to the ObjectProperty property of owl. Except for the
concept name which is anchored in the DatypeProperty property of owl.

6.5 Control Premise of Operational Ontology (MAN-
OPER)

Configuration Management activity that controls the changes, versions and de-
liveries of the information registered in the Operational Ontology Document,
described in the activity Document Premise of Operational Ontology (DOC-
OPER).

It is suggested that the same version control mechanism adopted in activity
Control Specification (MAN-SPEC) continues to be used here.

Activity definition:

Who: ontology engineer as responsible;;

What-Input: Operational Ontology document prepared in the activity Doc-
ument Premise of Operational Ontology (DOC-OPER);

What-Output: control of the Operational Ontology Document.

47

Running Example:

For OOC-O, the header of the Operational Ontology Document is adopted to
control its versions, as presented in Table 6.1.

6.6 Evaluate Premise of Operational Ontology
(EVA-OPER)

Evaluation activity that assesses whether the information registered in the Oper-
ational Ontology Document meets the expectations of the ontology owner and is
in accordance with the ontology and quality requirements defined in the Require-
ments Phase. This should be done by validating the information recorded with
the ontology owner through technical review and returning to the beginning of
the phase whenever necessary.

Activity definition:

Who: ontology engineer and ontology owner as responsible;

What-Input: the Ontology Specification Document and the Reference On-
tology Document prepared in the Requirements Phase and Capture Phase,
respectively;

What-Output: evaluation of the Operational Ontology Document.

Running Example:

For OOC-O, meetings are held with ontology owner and ontology engineer in
order to validate the operational ontology document, presented in Table 6.1.

48

Chapter 7

Implementation Phase

The Implementation Phase aims to implement the reference ontology produced
in the Capture Phase into an operational ontology, according to the design spec-
ifications elaborated in the Design Phase. This phase transforms the reference
ontology into a machine-interpretable ontology, making it available for use in
applications, decision support, and domain reasoning.

7.1 Code Concepts (IMP-CONC)

Implementation activity that encodes the concepts of the reference ontology as
elements of the formal operational ontology language, according to the assump-
tions defined in the Operational Ontology Document. For the OWL language,
the concepts are encoded as classes in the operational ontology.

Reuse activities from previous phases — Adopt Encoding Language (REU-
ELAN) in Define Encoding Language (DES-LANG); Adopt Base Vocabularies
(REU-BVOC) and Adopt Vocabularies from Reused Ontologies (REU-RVOC)
from Identify Vocabularies (DES-VOCA) — have an impact on this activity,
in terms of adopting the previously defined encoding language and selected
vocabularies, respectively.

Activity definition:

Who: ontology engineer as responsible;

What-Input: Operational Ontology Document prepared in activity Docu-
ment Premise of Operational Ontology (DOC-OPER);

What-Output: concepts encoded in the operational ontology.

49

Running Example:

For OOC-O, the concept Member from the reference ontology is encoded in
the operational ontology as presented in Listing 7.1.

Listing 7.1: Fragment of the concepts from OOC-O’s operational ontology.

1 <owl : Class rd f : about=”http :// ooc−o#Member”>
2 <r d f s : comment rd f : datatype=”http ://www.w3 . org /2000/01/ rdf−

schema#L i t e r a l ”>Element which makes up a c l a s s , de f ined as an
a t t r i bu t e or a method.</ rd f s : comment>

3 </owl : Class>

7.2 Code Relations (IMP-RELC)

Implementation activity that encodes the relations of the reference ontology as
properties and constraints in a formal operational ontology language, accord-
ing to the assumptions defined in the operational ontology document. For the
OWL language, the relations are encoded as properties and constraints in the
operational ontology.

Reuse activities from previous phases — Adopt Encoding Language (REU-
ELAN) in Define Encoding Language (DES-LANG); Adopt Base Vocabularies
(REU-BVOC) and Adopt Vocabularies from Reused Ontologies (REU-RVOC)
from Identify Vocabularies (DES-VOCA) — have an impact on this activity,
in terms of adopting the previously defined encoding language and selected
vocabularies, respectively.

Activity definition:

Who: ontology engineer as responsible;

What-Input: Operational Ontology Document prepared in activity Docu-
ment Premise of Operational Ontology (DOC-OPER);

What-Output: relations encoded in the operational ontology.

Running Example:

For OOC-O, the relation componentOfClass from the reference ontology is
encoded in the operational ontology as presented in Listing 7.2.

50

Listing 7.2: Fragment of the relations from OOC-O’s operational ontology.

1 <owl : ObjectProperty rd f : about=”http :// ooc−o#componentOfClass”>
2 <rd f : type rd f : r e s ou r c e=”http ://www.w3 . org /2002/07/ owl#

Funct ionalProperty”/>
3 <r d f s : domain rd f : r e s ou r c e=”http :// ooc−o#Member”/>
4 <r d f s : range rd f : r e s ou r c e=”http :// ooc−o#Class”/>
5 </owl : ObjectProperty>

7.3 Code Axioms (IMP-AXIO)

Implementation activity that encodes the axioms defined in the reference ontol-
ogy according to the operational language.

Reuse activity Adopt Encoding Language (REU-ELAN) from Define Encoding
Language (DES-LANG) has an impact on this activity, in terms of adopting the
previously defined encoding language.

Activity definition:

Who: ontology engineer as responsible;

What-Input: Operational Ontology Document prepared in activity Docu-
ment Premise of Operational Ontology (DOC-OPER);

What-Output: axioms encoded in the operational ontology.

Running Example:

For OOC-O, the axiom defining Method and Attribute as disjoint is presented
in Listing 7.3.

Listing 7.3: Fragment of the axioms from OOC-O’s operational ontology.

1 <rd f : Descr ipt ion>
2 <rd f : type rd f : r e s ou r c e=”http ://www.w3 . org /2002/07/ owl#

A l lD i s j o i n tC l a s s e s ”/>
3 <owl : members rd f : parseType=”Co l l e c t i on”>
4 <rd f : Desc r ip t i on rd f : about=”http :// ooc−o#Method”/>
5 <rd f : Desc r ip t i on rd f : about=”http :// ooc−o#Attr ibute”/>
6 </owl : members>
7 </rd f : Descr ipt ion>

7.4 Document Operational Ontology (DOC-OPER)

Documentation activity that documents the operational ontology in the coding
language defined in the activity Define Encoding Language (DES-LANG), fol-
lowing the results of the previous activities in the Implementation Phase and

51

according to the assumptions defined in the operational ontology document,
from activity Document Premise of Operational Ontology (DOC-OPER).

Activity definition:

Who: ontology engineer as responsible;

What-Input: results from previous activities from the Implementation Phase;

What-Output: operational ontology in the defined language.

Running Example:

In OOC-O, the reference ontology is encoded in the operational ontology, a
fragment of which is shown in Listing 7.4.

7.5 Control Operational Ontology (MAN-OPER)

Configuration Management activity that controls the changes, versions and de-
liveries of the information registered in the operational ontology, described in
the activity Document Operational Ontology (DOC-OPER).

For this, it is suggested to use metadata in the ontology to register the
version and its respective date, storing the history of all versions for eventual
comparisons or restorations of previous versions, using a mechanism as simple
as different files in the file system, to the use of version control systems such as,
e.g., Git.1

Activity definition:

Who: ontology engineer as responsible;

What-Input: operational ontology elaborated in the activity Document
Operational Ontology (DOC-OPER);

What-Output: control of the operational ontology.

Running Example:

For OOC-O, the operational ontology relies on the metadata rdfs:isDefinedBy
and owl:versionInfo to present the authorship of the ontology and its version.

7.6 Evaluate Operational Ontology (EVA-OPER)

Evaluation activity that assesses whether the information recorded in the oper-
ational ontology meets the expectations of the ontology owner and is in accor-

1https://git-scm.com/

52

https://git-scm.com/

Listing 7.4: Fragment of OOC-O’s operational ontology.

1 <?xml ve r s i on=”1.0”?>
2 <rd f :RDF xmlns=”http :// ooc−o#”
3 xml : base=”http :// ooc−o”
4 xmlns : sco=”http :// sco#”
5 xmlns : owl=”http ://www.w3 . org /2002/07/ owl#”
6 xmlns : rd f=”http ://www.w3 . org /1999/02/22− rdf−syntax−ns#”
7 xmlns : xml=”http ://www.w3 . org /XML/1998/ namespace”
8 xmlns : xsd=”http ://www.w3 . org /2001/XMLSchema#”
9 xmlns : r d f s=”http ://www.w3 . org /2000/01/ rdf−schema#”>

10 <owl : Ontology rd f : about=”http :// ooc−o”>
11 <r d f s : comment rd f : datatype=”http ://www.w3 . org /2000/01/ rdf−

schema#L i t e r a l ”>The Object−Oriented Code Ontology (OOC−O) aims
to i d e n t i f y and r ep r e s en t the semant ics o f the e n t i t i e s pre sent
at compile time in object−o r i en t ed (OO) code .</ rd f s : comment>

12 <r d f s : i sDef inedBy rd f : datatype=”http ://www.w3 . org /2000/01/
rdf−schema#L i t e r a l ”>https :// l i n k . s p r i ng e r . com/ chapter
/10.1007/978−3−030−33223−5 3</rd f s : isDef inedBy>

13 <r d f s : l a b e l rd f : datatype=”http ://www.w3 . org /2000/01/ rdf−
schema#L i t e r a l ”>OOC−O: Operat iona l Ontology on Object−Oriented
Code</rd f s : l abe l>

14 <owl : v e r s i o n I n f o rd f : datatype=”http ://www.w3 . org /2000/01/ rdf
−schema#L i t e r a l ”>1.0 − 31/05/2019</owl : v e r s i on In f o>

15 </owl : Ontology>
16

17 <owl : Class rd f : about=”http :// ooc−o#Class”>
18 <r d f s : subClassOf rd f : r e s ou r c e=”http :// sco#Derived Type”/>
19 <owl : d i s j o in tWith rd f : r e s ou r c e=”http :// ooc−o#Attr ibute”/>
20 <owl : d i s j o in tWith rd f : r e s ou r c e=”http :// sco#Primit ive Type”/>
21 <owl : d i s j o in tWith rd f : r e s ou r c e=”http :// ooc−o#Method”/>
22 <r d f s : comment rd f : datatype=”http ://www.w3 . org /2000/01/ rdf−

schema#L i t e r a l ”>An abstract−d e f i n i t i o n element in the OO
programming language to expre s s such d e f i n i t i o n s , that i s , c l a s s
i s an abs t ra c t data type and a mechanism f o r d e f i n i n g an

abs t ra c t data type in a program . Class d e s c r i b e s the a t t r i b u t e s
o f i t s ob j e c t s as we l l as the methods they can execute .</ rd f s :
comment>

23 </owl : Class>
24

25 <owl : Class rd f : about=”http :// ooc−o#Member”>
26 <r d f s : comment rd f : datatype=”http ://www.w3 . org /2000/01/ rdf−

schema#L i t e r a l ”>Element which makes up a c l a s s , de f ined as a
va r i ab l e or method.</ rd f s : comment>

27 </owl : Class>
28

29 <owl : ObjectProperty rd f : about=”http :// ooc−o#composedByMember”>
30 <rd f : type rd f : r e s ou r c e=”http ://www.w3 . org /2002/07/ owl#

Funct ionalProperty”/>
31 <r d f s : domain rd f : r e s ou r c e=”http :// ooc−o#Class”/>
32 <r d f s : range rd f : r e s ou r c e=”http :// ooc−o#Member”/>
33 </owl : ObjectProperty>
34

35 </rd f :RDF>

53

dance with the ontology and quality requirements defined in the Requirements
Phase.

For ontology validation, one should evaluate whether the ontology meets
real-world situations by instantiating its concepts as individuals of the ontology.

For ontology verification, one must evaluate whether the functional and
non-functional requirements raised are answered by means of queries applied
on the instantiated ontology. For this, it is suggested that the competency
questions raised in the Elicit Requirements (REQ-ELIC) activity be translated
into query language relative to the coding language. Thus, from a set of test
cases, it is possible to verify the behavior of the operational ontology according
to the executed queries and the returned instances. For ontologies built with
OWL, it is suggested to use the SPARQL query language.

The evaluation can be performed as [Fal14]:

• Subontology Test, evaluation performed individually for each encoded sub-
ontology;

• Integration Test, evaluation performed on the connections between sub-
ontologies;

• Ontology Test, evaluation performed in the context of the complete ontol-
ogy, and may include testing of stress, performance, inference, and others.

Activity definition:

Who: ontology engineer and ontology owner as responsible;

What-Input: Ontology Specification Document produced in the Require-
ments Phase and the operational ontology built in activity Document
Operational Ontology (DOC-OPER);

What-Output: evaluation of the operational ontology.

Running Example:

For OOC-O, the source code (shown in Listing 5.1, from activity Evaluate
Reference Ontology (EVA-MODE)) is instantiated in the ontology as shown in
Listing 7.5. SPARQL queries are crafted to answer the competency questions,
such as RF02 answered in Listing 7.6.

7.7 Publish Operational Ontology (PUB-OPER)

Publication activity that publishes the Operational Ontology produced in activ-
ity Document Operational Ontology (DOC-OPER).

54

Listing 7.5: Fragment of the ontology instances representing a Java code.

1 <owl:NamedIndividual rd f : about=” ht tp : //ooc−o#pro j ec t Po lygon ”>
2 <r d f : t yp e r d f : r e s o u r c e=” ht tp : //ooc−o#Module”/>
3 <v i s i b l eBy r d f : r e s o u r c e=” ht tp : //ooc−o#v i s i b i l i t y p u b l i c ”/>
4 </ owl:NamedIndividual>
5 <owl:NamedIndividual rd f : about=” ht tp : //ooc−o#

pro j e c t Po lygon pe r imet e r ”>
6 <r d f : t yp e r d f : r e s o u r c e=” ht tp : //ooc−o#Concrete Method”/>
7 <componentOfClass r d f : r e s o u r c e=” ht tp : //ooc−o#pro j ec t Po lygon ”/>
8 <v i s i b l eBy r d f : r e s o u r c e=” ht tp : //ooc−o#v i s i b i l i t y p u b l i c ”/>
9 <returnedBy r d f : r e s o u r c e=” ht tp : //ooc−o#type vo id ”/>

10 </ owl:NamedIndividual>
11 <owl:NamedIndividual rd f : about=” ht tp : //ooc−o#pro j e c t Po l ygon s i d e ”>
12 <r d f : t yp e r d f : r e s o u r c e=” ht tp : //ooc−o#Ins tance Var i ab l e ”/>
13 <componentOfClass r d f : r e s o u r c e=” ht tp : //ooc−o#pro j ec t Po lygon ”/>
14 <v i s i b l eBy r d f : r e s o u r c e=” ht tp : //ooc−o#v i s i b i l i t y p r i v a t e ”/>
15 <valuedBy r d f : r e s o u r c e=” ht tp : //ooc−o#type i n t ”/>
16 </ owl:NamedIndividual>

Listing 7.6: SPARQL query that answers RF02.

1 SELECT ? c l a s s
2 WHERE {? c l a s s rd f : type ooc−o : Class . }

Activity definition:

Who: ontology engineer as responsible;

What-Input: Operational Ontology prepared in activity Document Oper-
ational Ontology (DOC-OPER);

What-Output: operational ontology made available.

Running Example:

For OOC-O, the operational ontology was published on the project website
and is accessible at https://nemo.inf.ufes.br/projetos/sfwon/.

55

https://nemo.inf.ufes.br/projetos/sfwon/

Glossary

Phases and Activities

Phase Activity Page

Requirements
Phase

Define Purpose (REQ-PURP) 9
Capture Ontology Purpose (KNO-PURP) 10
Identify and Size Domain (REQ-DOMN) 10
Understanding Ontology Domain (KNO-DOMU) 11
Size Ontology Domain (KNO-DOMS) 11
Elicit Requirements (REQ-ELIC) 11
Capture Ontology Requirements (KNO-REQI) 12
Negotiate Ontology Requirements (KNO-REQN) 12
Identify Subdomains (REQ-SUBD) 13
Document Specification (DOC-SPEC) 14
Control Specification (MAN-SPEC) 16
Evaluate Specification (EVA-SPEC) 16

Setup Phase Define Modeling Language (SET-LANG) 18
Adopt Modeling Language (REU-LANG) 19
Define Foundational Ontology (SET-FOUN) 19
Adopt Foundational Ontology (REU-FOUN) 20
Adopt Ontology Patterns (REU-PATT) 20
Define Concept Criteria (SET-CRIT) 20
Define Ontologies to Reuse (SET-REUS) 21
Adopt Reused Ontology (REU-ONTO) 21
Document Premise of Reference Ontology (DOC-
REFE)

23

Control Premise of Reference Ontology (MAN-REFE) 24
Evaluate Premise of Reference Ontology (EVA-
REFE)

24

Capture Phase Identify Concepts (CAP-CONC) 27
Catalog Concepts (CAP-CATA) 27

56

Phase Activity Page

Capture Phase Capture Concepts (KNO-CONC) 27
Reuse Data Source (REU-DATA) 28
Extract Ontology View (CAP-VIEW) 29
Capture View Concepts (KNO-VIEW) 30
Identify Axioms (CAP-AXIM) 30
Model Ontology (CAP-MODE) 31
Concepts Consensus (KNO-CONS) 32
Concepts Terminology (KNO-TERM) 32
Integrate Ontology (CAP-INTE) 33
Modularize Ontology (CAP-MODU) 34
Adopt Modularization Strategy (REU-MODU) 35
Document Reference Ontology (DOC-MODE) 36
Control Reference Ontology (MAN-MODE) 39
Evaluate Reference Ontology (EVA-MODE) 39
Publish Reference Ontology (PUB-REFE) 40

Design Phase Define Encoding Language (DES-LANG) 42
Adopt Encoding Language (REU-ELAN) 43
Identify Vocabularies (DES-VOCA) 43
Understand Vocabulary (KNO-VOCA) 43
Adopt Base Vocabularies (REU-BVOC) 43
Adopt Vocabularies from Reused Ontologies (REU-
RVOC)

44

Define Ontology Encoding (DES-CODE) 44
Map Reference Ontology (KNO-MAP) 45
Document Premise of Operational Ontology (DOC-
OPER)

46

Control Premise of Operational Ontology (MAN-
OPER)

47

Evaluate Premise of Operational Ontology (EVA-
OPER)

48

Implementation
Phase

Code Concepts (IMP-CONC) 49
Code Relations (IMP-RELC) 50
Code Axioms (IMP-AXIO) 51
Document Operational Ontology (DOC-OPER) 51
Control Operational Ontology (MAN-OPER) 52
Evaluate Operational Ontology (EVA-OPER) 52
Publish Operational Ontology (PUB-OPER) 54

57

Bibliography

[AFS19] Camila Zacché de Aguiar, Ricardo de Almeida Falbo, and Vı́tor
E. S. Souza. OOC-O: A Reference Ontology on Object-Oriented
Code. In Proc. of the 38th International Conference on Concep-
tual Modeling (ER 2019), pages 13–27, Salvador, BA, Brazil, 2019.
Springer.

[Agu21] Camila Zacche de Aguiar. Interoperabilidade Semântica entre
Códigos-Fonte baseada em Ontologia. Phd thesis, Federal Univer-
sity of Esṕırito Santo, Brazil, 2021.

[d’A12] Mathieu d’Aquin. Modularizing ontologies, pages 213–233.
Springer, 2012.

[DSHS07] Mathieu D’Aquin, Anne Schlicht, Stuckenschmidt Heiner, and
Marta Sabou. Ontology Modularization for Knowledge Selection:
Experiments and Evaluations. In Proc. of the 18th International
Conference on Database and Expert Systems Applications, pages
874–883, 2007.

[Eif06] ECMA Eiffel. Analysis, design and programming language. Tech-
nical report, ECMA Standard ECMA-367, ECMA, 2006.

[Fal14] Ricardo A. Falbo. SABiO: Systematic Approach for Building
Ontologies. In Giancarlo Guizzardi, Oscar Pastor, Yair Wand,
Sergio de Cesare, Frederik Gailly, Mark Lycett, and Chris Par-
tridge, editors, Proc. of the Proceedings of the 1st Joint Workshop
ONTO.COM / ODISE on Ontologies in Conceptual Modeling and
Information Systems Engineering. CEUR, 2014.

[FGGP13] Ricardo A. Falbo, Giancarlo Guizzardi, Aldo Gangemi, and
Valentina Presutti. Ontology patterns: Clarifying concepts and
terminology. In Proc. of the 4th International Conference on On-
tology and Semantic Web Patterns (WOP’13), volume 1188, pages
14–26. CEUR, 2013.

[FLGP02] Mariano Fernández-López and Asunción Gómez-Pérez. Overview
and analysis of methodologies for building ontologies. Knowledge
Engineering Review, 17(2):129–156, 2002.

58

[GBBF+22] Giancarlo Guizzardi, Alessander Botti Benevides, Claudenir M.
Fonseca, Daniele Porello, João Paulo A. Almeida, and Tiago
Prince Sales. UFO: Unified Foundational Ontology. Applied On-
tology, 17(1):167–210, 2022.

[GDD06] Dragan Gasevic, Dragan Djuric, and Vladan Devedzic. Model
Driven Architecture and Ontology Development. Springer, 2006.

[GF95] Michael Grüninger and Mark S. Fox. Methodology for the De-
sign and Evaluation of Ontologies. In Proc. of the Workshop on
Basic Ontological Issues in Knowledge Sharing at the 1995 Inter-
national Joint Conference on Artificial Inteligence (IJCAI), pages
1–10, 1995.

[GFB+18] Giancarlo Guizzardi, Claudenir M. Fonseca, Alessander B. Benev-
ides, João Paulo A. Almeida, Daniele Porello, and Tiago P. Sales.
Endurant Types in Ontology-Driven Conceptual Modeling: To-
wards OntoUML 2.0. In Proc. of the 37th International Conference
on Conceptual Modeling (ER 2018), pages 136–150. Springer, 2018.

[GJS+18] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley,
and Daniel Smith. The Java language specification: Java SE 10
edition, February 20, 2018. Technical report, Oracle, 2018.

[GPRA99] Asunción Gómez-Pérez and Mª Dolores Rojas-Amaya. Ontological
reengineering for reuse. In Proc. of the 11th International Con-
ference on Knowledge Engineering and Knowledge Management
(EKAW, pages 139–156, 1999.

[Gui07] Giancarlo Guizzardi. On ontology, ontologies, conceptualizations,
modeling languages, and (meta)models. In Databases and Infor-
mation Systems IV – Selected Papers from the 7th International
Baltic Conference, DB&IS 2006, pages 18–39, 2007.

[Hun12] John Hunt. Smalltalk and object orientation: an introduction.
Springer Science & Business Media, 2012.

[Laf97] Robert Lafore. Object-oriented programming in C++. Pearson
Education, 1997.

[MH04] Deborah L. McGuiness and Frank Van Harmelen. OWL Web On-
tology Language Overview. Technical report, W3C recommenda-
tion, 2004.

[MW04] Prasenjit Mitra and Gio Wiederhold. An Ontology-Composition
Algebra, pages 93–113. Springer, 2004.

[NM16] Antonio Nicola and Michele Missikoff. A lightweight methodol-
ogy for rapid ontology engineering. Communications of the ACM,
59(3):79–86, 2016.

59

[Phi10] Dusty Phillips. Python 3 object oriented programming. Packt Pub-
lishing Ltd, 2010.

[SFGP12] Mari Carmen Suárez-Figueroa and Asunción Gómez-Pérez. Ontol-
ogy requirements specification, pages 93–106. Springer, 2012.

[Sli15] Thabet Slimani. A Study Investigating Knowledge-based Engineer-
ing Methodologies Analysis. International Journal of Computer
Applications, 128(10):6–14, 2015.

[SS20] Ken Schwaber and Jeff Sutherland. The Scrum Guide.
ScrumGuides.org, 2020.

[UK95] Mike Uschold and Martin King. Towards a Methodology for Build-
ing Ontologies. In Prof. of the 1995 Workshop on Basic Ontological
Issues in Knowledge Sharing, 1995.

60

	Introduction
	Overview
	Ontology Life Cycle
	Phase Life Cycles
	Agile Processes and Roles
	Running Example

	Requirements Phase
	Define Purpose (REQ-PURP)
	Identify and Size Domain (REQ-DOMN)
	Elicit Requirements (REQ-ELIC)
	Identify Subdomains (REQ-SUBD)
	Document Specification (DOC-SPEC)
	Control Specification (MAN-SPEC)
	Evaluate Specification (EVA-SPEC)

	Setup Phase
	Define Modeling Language (SET-LANG)
	Define Foundational Ontology (SET-FOUN)
	Define Concept Criteria (SET-CRIT)
	Define Ontologies to Reuse (SET-REUS)
	Document Premise of Reference Ontology (DOC-REFE)
	Control Premise of Reference Ontology (MAN-REFE)
	Evaluate Premise of Reference Ontology (EVA-REFE)

	Capture Phase
	Identify Concepts (CAP-CONC)
	Catalog Concepts (CAP-CATA)
	Extract Ontology View (CAP-VIEW)

	Identify Axioms (CAP-AXIM)
	Model Ontology (CAP-MODE)
	Integrate Ontology (CAP-INTE)
	Modularize Ontology (CAP-MODU)
	Document Reference Ontology (DOC-MODE)
	Control Reference Ontology (MAN-MODE)
	Evaluate Reference Ontology (EVA-MODE)
	Publish Reference Ontology (PUB-REFE)

	Design Phase
	Define Encoding Language (DES-LANG)
	Identify Vocabularies (DES-VOCA)
	Define Ontology Encoding (DES-CODE)
	Document Premise of Operational Ontology (DOC-OPER)
	Control Premise of Operational Ontology (MAN-OPER)
	Evaluate Premise of Operational Ontology (EVA-OPER)

	Implementation Phase
	Code Concepts (IMP-CONC)
	Code Relations (IMP-RELC)
	Code Axioms (IMP-AXIO)
	Document Operational Ontology (DOC-OPER)
	Control Operational Ontology (MAN-OPER)
	Evaluate Operational Ontology (EVA-OPER)
	Publish Operational Ontology (PUB-OPER)

