
Towards a Well-Founded Theory for
Multi-Level Conceptual Modelling

Victorio A. de Carvalho1,2 and João Paulo A. Almeida1

1Ontology & Conceptual Modeling Research Group (NEMO)
Federal University of Espírito Santo (UFES), Vitória, ES, Brazil

2Research Group in Applied Informatics, Informatics Department,
Federal Institute of Espírito Santo (IFES), Colatina, ES, Brazil

victorio@ifes.edu.br; jpalmeida@ieee.org

Abstract. Multi-level conceptual modelling addresses the representation of subject domains dealing
explicitly with multiple classification levels. Despite the recent advances in multi-level modelling
techniques, we believe that many challenges in multi-level conceptual modelling still stem from the
lack of theory that: (i) formally characterizes the nature of classification levels, and (ii) precisely
defines the structural relations that may occur between elements of different classification levels. This
work aims to fill this gap by proposing an axiomatic theory that can be considered a reference top-
level ontology for types in multi-level conceptual modelling. The theory provides the modeller with
basic concepts and patterns to articulate domains that require multiple levels of classification as well
as to inform the development of well-founded languages for multi-level conceptual modelling. The
theory includes intra-level structural relations that are used to define expressive multi-level models
and cross-level relations that allow us to account for and incorporate the different notions of power
type in the literature. Since all the relations in the theory are ultimately explained in terms of instan-
tiation between entities of adjacent levels, it is capable to harmonize power type and clabject-based
approaches.

Keywords: Multi-level modelling, conceptual modelling, power types, clabjects, ontology

1 Introduction

Conceptual modelling is the activity of formally describing some aspects of the physical and

social world around us for the purposes of understanding and communication [19]. It is

generally considered a fundamental activity in information systems engineering [24], in which a

given subject domain is described independently of specific implementation choices [14]. The

main artefact of this activity is a conceptual model, i.e., a specification aiming at representing a

conceptualization of the subject domain of interest. Conceptual models are often used as a basis

for the construction and evolution of information systems, which justifies the interest in the

activity of conceptual modelling from the perspective of information systems engineering [24].

Given the scope and purpose of conceptual modelling, suitable techniques for this endeavour

should be based on abstractions with consideration for human cognition and common sense [14,

13]. With this respect, there is ample psychological evidence to support the hypothesis that

humans conceive of the physical and social world using some notion of “categories” and use

categorization or classification strategies since a pre-language age of 3-4 months (see [14], pp.

114-118). Thus, it is no surprise that a vast majority of conceptual modelling techniques are

based on notions such as “class” and “type”, and that subject matter experts often refer to

“kinds”, “categories” and “sorts” in their accounts of a subject domain.

This paper is unpublished, and currently submitted.

In several subject domains, the categorization scheme itself is part of the subject matter, and

thus experts make use of categories of categories in their accounts. For instance, considering the

software development domain [11], project managers often need to plan according to the types

of tasks to be executed during the software development project (e.g. “requirements specifica-

tion”, “coding”). They may also need to classify those types of tasks giving rise to types of types

of tasks. In this case, “requirements specification” and “coding” could be considered as

examples of “technical task types”, as opposed to “management task types”. Finally, during

project development, they need to track the execution of individual tasks (e.g. specifying the

requirements of the system X). Thus, to describe the conceptualization underlying the software

development domain, one needs to represent entities of different (but nonetheless related)

classification levels, such as tasks (specific individual occurrences), types of tasks, and types of

types of tasks. Other examples of multiple classification levels come from domains such as that

of organizational roles (or professional positions) [26], biological taxonomy [18] and artefact

types (e.g., product types) [21].

The need to support the representation of subject domains dealing with multiple classification

levels has given rise to what has been referred to as multi-level modelling [4, 21]. Techniques

for multi-level conceptual modelling must provide modelling concepts to deal with types in

various classification levels and the relations that may occur between those types.

The power type pattern [6, 23] is an example of an early approach for multi-level modelling

and is used to model situations in which the instances of a type (the power type) are specializa-

tions of a lower-level type (the base type). While some prominent approaches for multi-level

modelling are based on the notion of power type, there is no consensus about the exact

definition of a power type1 and most approaches based on the notion lack a formal account for

it. Further, most of the power type based approaches represent the relation between a power

type and a base type as a regular association with no specialized semantics.

Other prominent approaches for multi-level modelling (such as [3]) propose to treat the

instantiation between arbitrary adjacent levels uniformly [1], i.e., they defend that the

instantiation relations between specific individuals and their types should also be applied to the

instantiation relation occurring between types of adjacent classification levels. To meet this

challenge it is necessary to admit the existence of entities, which are, simultaneously, type

(class) and instance (object). The authors have coined the term “clabject” to emphasize this dual

facet of classes in a generalized multi-level scheme.

Despite the recent advances in multi-level modelling techniques, we believe that the literature

would benefit from a theory that: (i) formally characterizes the nature of classification levels,

and (ii) precisely defines the relations that may occur between elements of different classifica-

tion levels. Such a theory should be useful to guide the development of well-founded languages

1 An issue that shall be discussed in this paper in section 4.

for multi-level conceptual modelling and to provide the modeller with basic concepts and

patterns to conceptualize domains that require multiple levels of classification.

This work aims to fill this gap by proposing a well-founded theory for multi-level conceptual

modelling. The theory is built up from a basic instantiation relation and characterizes the

concepts of individuals and types, with types organized in levels related by instantiation. The

theory accounts for the notion of power type with two contributions: (i) it clarifies and positions

conflicting definitions of power type, and (ii) defines new structural relations for variants of the

power type pattern enriching the expressivity of multi-level modelling primitives. The basic

entities in the theory and all proposed relations between entities are formally defined through

axiomatization in first-order logic.

The resulting theory can be considered a reference top-level ontology for types in multi-level

conceptual modelling. Although we do not propose a language for multi-level conceptual

modelling, we explore patterns that emerge from the application of the theory as well as

modelling constraints to ensure that multi-level models respect the theory axioms. Since our

focus is on conceptual modelling (and not language engineering or language metamodelling) we

focus our account on what is called “ontological instantiation” in [2] and we are thus

unconcerned with “linguistic instantiation”.

This paper is further organized as follows. Section 2 presents the basic entities in the theory.

Section 3 discusses intra-level relations including specialization and a novel relation we call

subordination. Section 4 discusses cross-level relations which are the basis to incorporate the

notion of power type and its variations. Section 5 illustrates the application of the theory to the

domain of biological taxonomy. Section 6 discusses related work and section 7 presents

conclusions and future steps.

2 Theory Foundations: Basic Types and the Instantiation Relation

The notions of type and individual are central for our multi-level modelling theory. Types are

predicative entities that can possibly be applied to a multitude of entities (including types

themselves). Particular entities, which are not types, are considered individuals.

Each type is characterized by a principle of application with which we judge whether the

type applies to an entity (e.g., whether something is a Person, a Dog, a Chair) (following [14]).

If the principle of application of a type t applies to an entity e then it is said that e is an instance

of t. Thus, the instance of relation (or instantiation relation2)) maps a type to the entities that fall

under the type. The set of instances of a type is called the extension of the type [15].

Our multi-level modelling theory is formalized in first-order logic, quantifying over all

possible individuals and types. The instantiation relation is formally represented by a binary

2 We are aware that certain approaches such as RM-ODP distinguish the terms instantiation and instance, but this

distinction is not required here, and hence we use the terms interchangeably.

predicate iof(e,t) that holds if an entity e is instance of an entity t (denoting a type). For instance,

the proposition iof(Vitória,City) denotes the fact that “Vitória” is an instance of the type “City”.

Further, we consider that there are no relevant types with a trivially false principle of application

(hence, the principle of application will always apply to some possible instance).

We build up the theory defining the conditions for entities to be considered individuals, with

the constant “Individual” in axiom A1. An entity is an instance of “Individual” iff it is not

possibly related to another entity through instantiation.

∀x iof(x, Individual) ↔ ∄y iof(y, x) (A1)

As a multi-level modelling theory, we deal with types that have individuals as instances as

well as with types whose extension is composed by other types. In order to accommodate these

varieties of types, the notion of type order is used. This notion is based on the ramified

hierarchy introduced by Russel to deal with the apparent circularity of impredicative definitions

[8]. Types whose instances are individuals are called first-order types. Types whose instances

are first-order types are called second-order types. Those types whose extensions are composed

by second-order types are called third-order types, and so on. We use the term higher-order

type to refer to types with order higher than one.

Axiom A2 characterizes “First-Order-Type” (or shortly “1stOT”), defining a first-order type

as an entity whose instances are instances of “Individual”. Analogously, A3 and A4 characterize

“Second-Order Type” (or “2ndOT”) and “Third-Order Type” (“3rdOT”). A3 defines that an

entity t is a second-order type iff all its instances are first-order types (i.e., instances of

“1stOT”), and A4 defines that an entity t is a third-order type iff all its instances are second-

order types (i.e., instances of “2ndOT”).3

∀t iof(t, 1stOT) ↔ (∀x iof(x, t) → iof(x, Individual)) (A2)

∀t iof(t, 2ndOT) ↔ (∀t′ iof(t′, t) → iof(t′, 1stOT)) (A3)

∀t iof(t, 3rdOT) ↔ (∀t′ iof(t′, t) → iof(t′, 2ndOT)) (A4)

Substituting t by Individual in axiom A2, one can see that “Individual” is an instance of

“1stOT” (theorem T1). Analogously, using axioms A3 and A4 we can show that “1stOT” is

instance of “2ndOT” and “2ndOT” is instance of “3rdOT” (see theorems T2 and T3).

iof(Individual, 1stOT) (T1)

iof(1stOT, 2ndOT) (T2)

iof(2ndOT, 3rdOT) (T3)

3 This scheme can be extended to consider as many orders as necessary. Since we have not found real-world

examples of types in conceptual modelling with order higher than three, we present our theory here considering
only first-order, second-order and third-order types. Later we discuss how this scheme could be modified to
consider an infinite number of orders. However, this modification is not required in our approach.

Axiom A5 states that each entity in our domain of enquiry is necessarily an instance of

“Individual”, “1stOT”, “2ndOT” or “3rdOT” (except “3rdOT” whose type is outside the scope

of the formalization). Further, axiom A6 defines that “Individual”, “1stOT”, “2ndOT” and

“3rdOT” have no instances in common (i.e., their extensions are disjoint). This makes the set of

extensions of “Individual”, “1stOT”, “2ndOT” and “3rdOT” a partition of the set of entities

considered in the theory (and their union the domain of quantification).

∀x (iof(x, Individual) ∨ iof(x, 1stOT) ∨ iof(x, 2ndOT) ∨ iof(x, 3rdOT)) ∨ (x = 3rdOT) (A5)

∄x (iof(x, Individual) ∧ iof(x, 1stOT)) ∨ (iof(x, Individual) ∧ iof(x, 2ndOT)) ∨
(iof(x, Individual) ∧ iof(x, 3rdOT)) ∨ (iof(x, 1stOT) ∧ iof(x, 2ndOT)) ∨ (iof(x, 1stOT) ∧ iof(x, 3rdOT)) ∨

(iof(x, 2ndOT) ∧ iof(x, 3rdOT)) (A6)

Axiom A7 defines that two types are equal iff the set of all their possible instances is the

same4. (Note that this definition of equality only applies to elements which are not individuals,

hence the ‘guard’ conditions on the left-hand side of the implication.)

∀t1, t2 (¬iof(t1, Individual) ∧ ¬iof(t2, Individual)) →

((t1 = t2) ↔ (∀e iof(e, t1) ↔ iof(e, t2))) (A7)

Since the instantiation relation denotes that an element is a member of the extension of a

type, it must be irreflexive, asymmetric and intransitive [15, 17]. Further, instantiation relations

hold between two elements such that the last is one order higher than the former. In our theory,

all these properties are guaranteed by axioms A1 – A7.

Fig. 1 illustrates the elements that form the basis for our multi-level modelling theory, using a

notation that is largely inspired in UML. We use the UML class notation to represent the basic

types of the theory (“Individual”, “1stOT”, “2ndOT” and “3rdOT”). We use associations as

usual to represent relations between instances of the related types. The multiplicity of the

associations reflect the constraints in the formalization. For example, each instance of

“Individual” is instance of at least one instance of “1stOT”, and, on the inverse direction, each

instance of “1stOT” has at least one instance of “Individual” in its extension. Since UML does

not allow for the representation of links between classes, we use dashed arrows to represent

relations that hold between the types, with labels to denote the names of the predicates that

apply. For instance, a dashed arrow labelled iof between “Individual” and “1stOT” represents

that the former is an instance of the latter (i.e., that iof(Individual,1sOT) holds). In Fig. 1 the

dashed arrows are justified by theorems T1-T3. The notation used to elaborate Fig. 1 is used in

all further diagrams in this paper.

4 Note that this is only true for types that apply necessarily to their instances (the so-called rigid types in [12]), so,

dynamic classification is not considered in the present theory.

Fig. 1. Basic foundations of our multi-level modelling theory: basic types and instance of relations.

3 Intra-level structural relations

In this section, we discuss the relations that occur between types of the same order (the intra-

level structural relations). All definitions are based on the instantiation relation.

We start with the ordinary specialization between types. Axiom A8 defines that t1 specializes

t2 iff all instances of t1 are also instances of t2. Since instances of “Individual” do not have

instances (A1), A8 states that specialization only applies to elements that are not individuals. As

discussed in [15, 17] specialization is a partial order relation (i.e., a reflexive, transitive and

antisymmetric relation), which is guaranteed in this theory.

∀t1, t2 specializes(t1, t2) ↔ (¬iof(t1, Individual) ∧ ¬iof(t2, Individual) ∧ (∀e iof(e, t1) → iof(e, t2))) (A8)

According to axiom A8, every type specializes itself. Since this may be undesired in some

contexts, we define the proper specialization relation (we used the qualifier ‘proper’ as in

‘proper subset’ considering that the extension of the specialized type is a proper subset of the

extension of the general type [15]). Axiom A9 thus defines that t1 proper specializes t2 iff t1

specializes t2 and is different from it.

∀ t1, t2 properSpecializes(t1, t2) ↔ (specializes(t1, t2) ∧ t1 ≠ t2) (A9)

Insofar as the instances of a type are defined by their principle of application, the proper

specialization relation reflects the fact that the principle of application of the specializing type

keeps the constraints stated by the principle of application of the specialized type and adds

some other constraint(s) to it.

Fig. 2 augments Fig. 1 by including the representation of specialization and proper specializa-

tion relations. Note that the axioms presented thus far guarantee that these relations may only

hold between types of the same order, which is reflected in the diagram.

Fig. 2. Intra- level structural relations: specializations and proper specializations.

An important consequence of the axioms presented so far is that any instance of a higher-

order type (any instance of “1stOT”, “2ndOT”, and “3rdOT”) specializes the basic type at an

order immediately lower order. Thus, every instance of “1stOT” specializes “Individual”

(theorem T4, following from A8 and A2), every instance of “2ndOT” specializes “1stOT”

(theorem T5, following from A8 and A3), and so on.

∀t iof(t, 1stOT) ↔ specializes(t, Individual) (T4)

∀t iof(t, 2ndOT) ↔ specializes(t, 1stOT) (T5)

∀t iof(t, 3rdOT) ↔ specializes(t, 2ndOT) (T6)

This leads to a basic pattern in the theory: every type that is not a basic type (e.g., a domain

type) is an instance of one of the basic higher-order types (“1stOT”, “2ndOT”, and “3rdOT”),

and, at the same time specializes the basic type at the immediately lower level (respectively,

“Individual”, “1stOT”, “2ndOT”). For example, consider the enterprise domain, in which we

may need a type to capture the concept of “Employee”. The type “Employee” classifies

individuals (e.g. John or Mary), i.e., every instance of “Employee” is also instance of

“Individual”. Thus, by axiom A3, we have that “Employee” is instance of “1stOT” and,

considering T4, “Employee” specializes “Individual”. In fact, since “Employee” and

“Individual” are different types, we can say that “Employee” proper specializes “Individual”.

This basic pattern is illustrated in Fig. 3. In order to preserve the intuition in the representation,

we used the traditional UML notation to represent specializations (in this case to represent the

fact that the proposition properSpecializes(Employee, Individual) holds). We have used the

instance specification notation to represent an individual (John), while keeping the use of

dashed arrows to show instantiation. The theory basic types are shaded to differentiate them

from domain elements.

Fig. 3. Using the theory to model a domain.

Our theory supports also specializations and instantiations occurring between domain

elements. For instance, supposing we need to classify the employees according to their highest

academic degrees we can consider types such as “PhDEmployee” and “BachelorEmployee” to

classify respectively employees having Ph.D. and bachelor degrees. These types are proper

specializations of “Employee” since their instances are also instances of “Employee”. Thus, by

the transitivity of specialization, they also specialize “Individual” and, considering theorem T4,

they are instances of “1stOT”.

Futher, we may consider a second-order type called “EmployeeAcademicDegreeType” that

have as instances the types that specialize “Employee” according to the academic degree (e.g

“PhDEmployee” and “BachelorEmployee”). Again applying the basic pattern, “EmployeeA-

cademicDegreeType” is instance of “2ndOT” (since its instances are instances of “1stOT”) and

specializes “1stOT” (see A4 and T5).

Fig. 4 augments Fig. 3 adding the discussed entities and relations. In order to increase the

readability of the diagram, we use dashed rectangles to group elements that have a common link

to other element and draw only one arrow between the border of the rectangle and the other

element. For example, instead of representing two iof links between “EmployeeA-

cademicDegreeType” and its instances, we group its instances in a dashed rectangle and draw

one iof link between such rectangle and “EmployeeAcademicDegreeType”. Moreover, we

omitted the representation of some relations that are implied by the represented relations. For

example, although we do not represent that “PhDEmployee” proper specializes “Individual” it

can be inferred by the fact that it proper specializes “Employee” which, in turn, proper

specializes “Individual”.

Fig. 4. Instantiations and specializations between domain elements.

Consider now an extension of the example in Fig. 4 in which we introduced a second second-

order type called “EmployeeRoleType” beside “EmployeeAcademicDegreeType”. The

instances of “EmployeeRoleType” are specializations of “Employee” according to the role they

play (e.g. “Programmer” and “ResearchManager”). Consider further that, in order to reflect

required qualifications in the domain, all instances of “EmployeeRoleType” must specialize

instances of “EmployeeAcademicDegreeType”. In the example, we consider that “Programmer”

specializes “BachelorEmployee” and “ResearchManager” specializes “PhDEmployee”. We can

note that, a relation emerges between the “EmployeeRoleType” and “EmployeeA-

cademicDegreeType” higher-order types. We call this relation subordination.

A10 defines that t1 is subordinate to t2 iff every instance of t1 specializes an instance of t2.

To avoid entities that have no instances to be trivially considered subordinated to other entities,

A10 states that subordination does not apply to instances of “Individual”.

∀t1, t2 isSubordinateTo (t1, t2) ↔
(¬iof(t1, Individual) ∧ (∀t3 iof(t3, t1) → (∃t4 iof(t4, t2) ∧ properSpecializes(t3, t4)))) (A10)

Since subordination implies specializations between the instances of the involved types at

one order lower, and specializations can only be established between types at the same order,

subordination can only hold between higher-order types of equal order (see Fig. 5).

Fig. 5. Intra-level structural relations: subordination.

Fig. 6 illustrates the augmented example, showing that “EmployeeRoleType” is subordinate

to “EmployeeAcademicDegreeType”. Note that subordination between two higher-order types

implies specialization between their instances but should be clearly distinguished from a

specialization between the higher-order types (in the example, “EmployeeRoleType” does not

specialize “EmployeeAcademicDegreeType”).

Fig. 6. An example of subordination relation.

Table 1 summarizes the characteristics of the defined intra-level structural relations.

Table 1. Intra-level structural relations characteristics

Name Meaning Domain and
Range Properties

Specialization
specializes(t1,t2)

The principle of application of t1 adds some
classification criteria to the one of t2 or both types
have the same principle of application (t2=t1), i.e.
every instance of t1 is also an instance of t2.

Types of the same
order (instances of
1stOT, 2ndOT or
3rdOT)

Reflexive,
antisymmet-
ric and
transitive.

Proper Specialization
properSpecializes(t1,t2)

The principle of application of t1 adds some
classification criteria to the one of t2 i.e. every
instance of t1 is also an instance of t2 and there at
least one instance of t2 that is not instance of t1.

Irreflexive,
asymmetric
and transitive

Subordination
isSubordinateTo(t1,t2)

The principle of application of each instance of t1
adds some classification criteria to the principle of
application of some instance of t2 i.e. every instance
of t1 proper specializes some instance of t2.

Higher-order types
of the same order
(instances of
2ndOT or 3rdOT)

4 Cross-level Structural Relations

This section defines the relations that occur between types of adjacent levels (the so-called

cross-level structural relations). These relations support our analysis of the notions of power

type in the literature, as well as their full incorporation in the theory.

The use of power types is one of the most common techniques for multi-level modelling. A

seminal theory for the notion of power type was proposed by Cardelli [6]. According to [6], the

same way specializations are intuitively analogous to subsets, power types can be intuitively

understood as powersets. The powerset of a set A, is the set whose elements are all possible

subsets of A including the empty set and A itself. Thus, “if A is a type, then Power(A) is the

type whose elements are all the subtypes of A” (including A) [6]. Following Cardelli’s

definition, axiom A11 defines that iff a type t1 is power type of a type t2 all instances of t1 are

specializations of t2 and all possible specializations of t2 are instances of t1. In this case, t2 is

said the base type of t1. Further, A11 guarantees that entities without instances (individuals) are

not considered power types of other entities.

∀t1, t2 isPowertypeOf(t1, t2) ↔ (¬iof(t1, Individual) ∧ (∀t3 iof(t3, t1) ↔ specializes(t3, t2))) (A11)

Recall that “Individual” is an instance of “1stOT” (theorem T1) and that all the types that

specialize “Individual” are also instances of “1stOT” (theorem T4). Thus, it follows from the

definition of powertype (A11) that “1stOT” is powertype of “Individual” (theorem T7).

Analogously, “2ndOT” is powertype of “1stOT” (theorem T8), and “3rdOT” is powertype of

“2ndOT” (theorem T9).

isPowertypeOf(1stOT, Individual) (T7)

isPowertypeOf(2ndOT, 1stOT) (T8)

isPowertypeOf(2ndOT, 3rdOT) (T9)

It is interesting to note that, to be a power type, a type must have a principle of application

that defines that all its instances are specializations of the base type and, conversely, all

specializations of the base type are instances of the power type (see A11). Thus, it is possible to

conclude that each type has at most one power type (theorem T10) and that each type is power

type of, at most, one other type (theorem T11). This suggests a concrete syntactic constraint for

a multi-level model: only one power type can be linked to a base type through the is power type

of relation.

∀p, t isPowertypeOf(p, t) → ∄p′ (p ≠ p′)⋀isPowertypeOf(p′, t) (T10)

∀p, t isPowertypeOf(p, t) → ∄t′ (t ≠ t′)⋀isPowertypeOf(p, t′) (T11)

Theorem T10 can be proved as follows: (i) supposing two higher order types, p and p’, are

power type of t, according to A11, both p and p’ should have as only instances all the

specializations of t; (ii) thus, applying axiom A7, we conclude that p is equal to p’ (p=p’).

Analogously, theorem T11 can be proved as follows: (i) supposing p is power type of t,

according to A11, p should have as only instances all the specializations of t; (ii) if we also

consider a type t’ such that p is power type of t’ then p should have as only instances all the

specializations of t’; thus, t = t’.

In his accounts for the notion of power type [6], Cardelli proved that if a type t2 specializes a

type t1 then the power type of t2 specializes the power type of t1. Since our definition for

isPowertypeOf relation follows Cardelli’s definition, we verified that this property is entailed by

our theory. Theorem T12 formalizes this property. This theorem suggests a clear pattern for a

multi-level model: the base type specialization hierarchy is isomorphic to the hierarchy of the

power types. This may be used to check the syntax of power type hierarchies, and also to

generate the power type hierarchy corresponding to the base type hierarchy.

∀t1, t2, t3, t4(specializes(t2, t1) ∧ isPowertypeOf(t4, t2) ∧ isPowertypeOf(t3, t1)) → specializes(t4, t3) (T12)

T12 can be proved as follows: (i) considering that t3 is powertype of t1 by axiom A11 we

conclude that t1 and all its specializations are instance of t3; (ii) considering the transitivity of

specialization and that t2 specializes t1, we have that all specializations of t2 also specialize t1,

and thus, all specializations of t2 are instance of t3; (iii) considering that t4 is powertype of t2 by

axiom A11 we conclude that all instances of t4 are specializations of t2; (iv) thus, by (ii) and

(iii) we conclude that all instances of t4 are also instances of t3, i.e., t4 specializes t3.

Given the power type definition (A11), if p1 is power type of t1 we conclude that p1 is one

order higher then t1, i.e., if p1 is a first-order type (iof(p1,1stOT)) then t1 is a second-order type

(iof(t1,2ndOT)), if p1 is a second-order type (iof(p1,2ndOT)) t1 is a third-order type

(iof(t1,3rdOT)), and so on. Furthermore, since instances of “Individual” are not types, they

cannot participate in isPowertypeOf relations as power type nor as base type. Fig. 7 augments

Fig. 1 by including the representation of isPowertypeOf relations.

Fig. 7. Cross-level relations: isPowertypeOf.

Since the power type of a base type is a type whose principle of application defines that its

instances classify instances of the base type, for each first-order type f it is always possible to

define a second-order type s such that s is power type of f and for each second-order type s it is

possible to define a third-order type t such that t is powertype of s. While the theory necessitates

the existence of the power type of any type (except the power types of third-order types, which

are outside the scope of the theory), the decision on whether to represent the power type of a

particular type is a modelling decision. When the power type is not relevant for the domain

being modelled it is often omitted from the model.

To illustrate the use the is powertype of relation, we augment the example of Fig. 6 in Fig. 8

introducing “EmployeeType”, which is powertype of “Employee”. Consequently, all types that

specialize “Employee” are instances of “EmployeeType”. Since the instances of “Employ-

eeType” are first-order types, “EmployeeType” is an instance of “2ndOT” and specializes

“1stOT”. Further, since all instances of “EmployeeRoleType” are also instances of “Employ-

eeType”, it follows that “EmployeeRoleType” specializes “EmployeeType”. Analogously,

“EmployeeAcademicDegreeType” specializes “EmployeeType”.

Fig. 8. An example of isPowertypeOf relation.

Although the definition of power type we adopted here is compliant with the one proposed by

Cardelli [6], there are other definitions to this term in software engineering literature which have

had great influence in practice, for example those definitions in [23,15].

In [23], Odell stated that a power type is a type whose instances are subtypes of another type.

It is important to notice that Odell’s definition is less strict than Cardelli’s [6] definition.

Cardelli follows the power set concept stating that all the specializations of the base type are

instances of the power type. Odell’s definition, in turn, does not comply with that restriction.

Thus, as pointed out by [15], the relation defined by Odell is misnamed power type since, in

fact, it denotes a subset of the power set.

Inspired on Odell’s definition [23] we defined the characterization relation (Axiom A12): a

type t1 characterizes a type t2 iff all instances of t1 are properSpecializations of t2. Further,

A12 guarantees that characterization relations only apply to elements that are not individuals.

∀t1, t2 characterizes (t1, t2) ↔ (¬iof(t1, Individual) ∧ (∀t3 iof(t3, t1) → properSpecializes(t3, t2))) (A12)

The characterization relation occurs between a higher order type t1 and a base type t2 when

the principle of application of t1 defines that their instances specialize t2 according to a specific

classification criteria. Thus, the instances of t1 specialize t2 but t2 is not an instance of t1 and

there may be other types that specializes t2 according to other classification criteria and, thus,

are not instances of t1. Characterization relations only occur between types of adjacent levels

(see Fig. 9).

Fig. 9. Cross-Level relations: characterizes.

In our previous example, the instances of “EmployeeRoleType” specialize “Employee”

according to roles the employee was hired to play (the classification criteria) whereas

“EmployeeAcademicDegreeType” use the employees’ academic degree as a criteria to classify

employees. Thus, both “EmployeeRoleType” and “EmployeeAcademicDegreeType”

characterize “Employee”.

Considering the definitions of power type (axiom A11), characterization (axiom A12) and

proper specialization (axiom A9) we conclude that if a type t2 is power type of a type t1 and a

type t3 characterizes the same base type t1 then all instances of t3 are also instances of the

power type t2 and, thus, t3 proper specializes t2. This idea is formalized in theorem T13. This

theorem can be used to check the completeness of models: a model would be incomplete if it

omits the specialization between a type that characterizes a base type and this base type’s power

type.

∀t1, t2, t3 (isPowertypeOf(t2, t1) ∧ characterizes(t3, t1)) → properSpecializes(t3, t2) (T13)

Thus, both “EmployeeAcademicDegree” and “EmployeeRoleType” characterize “Employ-

ee” and proper specialize “EmployeeType”.

In some cases, one needs more expressiveness in the description of the relation between

higher-order type and characterized type. For instance, suppose that our company considers that

each employee must play at least one role, i.e., in addition to the fact that “EmployeeRoleType”

characterizes “Employee” the instances of “EmployeeRoleType” must completely classify the

instances of “Employee”. In order to accommodate this expressiveness we define a variation of

characterization relation called completeCharacterization (see axiom A13). Thus, we are able

to state that “EmployeeRoleType” completely characterizes “Employee”.

∀t1, t2 completelyCharacterizes(t1, t2) ↔ (characterizes(t1, t2) ∧ (∀e iof(e, t2) → ∃t3 (iof(e, t3) ∧ iof(t3, t1))))
 (A13)

We also define a variation of characterization relation, called disjointCharacterization, to

accommodate the cases in which each instance of the base type is instance of at most one

instance of the characterizing type. Thus, according to A14, a type t1 disjointlyCharacterizes t2

iff t1 characterizes t2 and every instance of t2 is instance of, at most, an instance of t1.

∀t1, t2 disjointlyCharacterizes (t1, t2) ↔
(characterizes(t1, t2) ∧ ∀e, t3, t4 ((iof(t3, t1) ∧ iof(t4, t1) ∧ iof(e, t3) ∧ iof(e, t4)) → t3 = t4))) (A14)

In our example, we could consider that each employee falls under one classification accord-

ing to his higher academic degree. Thus, “EmployeeAcademicDegreeType” simultaneously

disjointlyCharacterizes and completelyCharacterizes “Employee”, i.e. each instance of

“Employee” is instance of one and only one instance of “EmployeeExperienceType”. In this

case we say that “EmployeeAcademicDegreeType” partitions “Employee” (see Fig. 10). Axiom

A15 formally defines the partition relation.

∀t1, t2 partitions(t1, t2) ↔ (completelyCharacterizes(t1, t2) ∧ disjointlyCharacterizes(t1, t2)) (A15)

The principle of application of a higher order type which partitions a base type defines that

its instances must apply to instances of the base type and also define a classification criteria

such that each instance of the base types is classified by one and only one instance of the higher

order type.

Although the definition that Odell gave to the notion of power type is aligned with the

relation we call characterizes, all examples of use provided in [23] exhibits relations that should

be classified as partitions according to our theory. Henderson-Sellers [15], following those

examples of use, provided a set theoretic formalization for the notion we call here partition.

Since all power type based relations (powertype of, characterization, complete characteriza-

tion, disjoint characterization and partition) define that the instances of their domains are

specializations/proper specializations of their ranges, both their domains and their ranges are

types. Further, their domains must be a type in one order higher than their range. Thus, only

higher-order types may play the role of domain of those power type based relations. Since

completely characterizes, disjointly characterizes and partition relations all subsume

characterizes relations, only the last one is represented in Fig. 10 for simplicity.

Fig. 10. An example of domain modelling applying characterization and subordination relations.

A consequence of the partitions definition is that, if two types t1 and t2 both partitions the

same type t3 then it is not possible for t1 to specialize t2. This is captured in theorem T14.

Again, this theorem suggests a clear syntactic constraint for a multi-level modelling language in

the presence of more than one partition of the same base type.

∀ t1, t2, t3 (partitions(t1, t3) ∧ partitions(t2, t3)) → ¬properSpecializes(t1, t2) (T14)

T14 can be proved as follows: (i) Using the definition of partitions (A15), we conclude that

the instances of t1 form a disjoint and complete partition of t3. (ii) Supposing t1 proper

specializes t2, using the definition of proper specialization (A9) we conclude that all instances

of t1 must also be instances of t2 and t2 must have at least one additional instance that is not an

instance of p1. (iii) Consider that t4 is the type that is instance of t2 and is not an instance of t1.

Since t2 also partitions t3, then t4 must specialize t3. (iv) However, the instances of t2 that are

also instances of t1 already completely and disjoint classifies the instances of t3. Thus, t4 does

not have possible instances, and thus is not a valid type according to our theory. Therefore, there

is no hypothesis in which t1 partitions t3, t2 partitions t3 and t1 specializes t2.

Table 2 summarizes some information about the cross-level relations. All these relations are

irreflexive, asymmetric and intransitive.

Table 2. Cross-level structural relations characteristics

Name Meaning Domain and Range
Instantiation
iof(e,t) The principle of application of the t applies to e. Elements of adjacent

levels.

Powertype
isPowertypeOf(t1,t2)

The principle of application of t1 defines that its instances
applies to instances of t2 but does not define a
classification criteria. Thus, the extension of t1 is
composed by all specializations of t2, including t2 itself.

Types of adjacent
levels (2ndOT→1stOT
or 3rdOT→2ndOT)

Characterization
characterizes(t1,t2)

The principle of application of t1 defines that its instances
applies to instances of t2 according a specific
classification criteria. Thus, the extension of t1 is
composed by the proper specializations of t2 that follows
the specified classification criteria.

Complete Characterization
completelyCharacterizes(t1,t2)

A variation of characterization in which the classification
criteria defined by the principle of application of t1
guarantees that each instance of t2 is instance of at least
one instance of t1.

Disjoint Characterization
disjointlyCharacterizes(t1,t2)

A variation of characterization in which the classification
criteria defined by the principle of application of t1
guarantees that each instance of t2 is instance of at most
one instance of t1.

Partition
partitions(t1,t2)

A variation of characterization in which the classification
criteria defined by the principle of application of t1
guarantees that each instance of t2 is instance of exactly
one instance of t1.

5 Applying the theory to Taxonomical Structures

The previous section presented general implications of our theory for multi-level modelling. In

this section we consider a representative application scenario in order to illustrate the theory

expressiveness. We consider the biological taxonomy for living beings [18], which is one of the

most mature examples of taxonomical hierarchies. The biological taxonomy for living beings

classifies living beings according to biological taxa in seven or more ranks, e.g., kingdom,

phylum, class, order, genus, species, and breed.

According to our theory every domain type is an instance of one of the basic higher-order

types (“1stOT”, “2ndOT”, and “3rdOT”), and specializes the basic type at the immediately

lower level (respectively, “Individual”, “1stOT”, “2ndOT”). Applying this pattern, we identify

that (i) “LivingBeing” is an instance of “1stOT” and specializes “Individual” (since its instances

are particular living beings), (ii) “BiologicalTaxon” and its specializations are instances of

“2ndOT” and specializes “1stOT” (its instances are the first-order types which classify living

beings, such as, e.g., the “Animalia” kingdom and the “Homo Sapiens” species5), and (iii)

“BiologicalRank” specializes “2ndOT” and instantiates “3rdOT” (its instances are second-order

5 Note that in biology there is a long and involved debate on the ontological status of taxa such as species [9]. One of

the interpretations is that biological taxa (e.g., the “Homo Sapiens” species, the “Canis Lupus Familiaris” species)
represents a group of animals rather than a kind or type of animal. We stay clear of this debate and represent
species (and other taxa) as the type that is instantiated by all members of that group (and only by them) (e.g.,
“Human” and “Dog”).

types which classify taxa, such as, e.g., the “Species” taxon). Fig. 11 shows a model for this

domain using the basic pattern.

Fig. 11. Applying our theory basic pattern to the biological taxonomy for living beings.

Each “LivingBeing” is instance of one instance of each “Biological Rank”, i.e., each living

being is instance of one kingdom, one phylum, and so one. Therefore, we conclude that each

one of the seven instances of “BiologicalRank” partitions “LivingBeing”. Further, the instances

of “Biological Rank” (specializations of “Biological Taxon”) obey a subordination chain such

that every instance of “Phylum” proper specializes one instance of “Kingdom”, every instance

of “Class” proper specializes one instance of “Phylum”, and so on. Thus, according to our

theory, each instance of “Biological Rank” is subordinate to another instance of “Biological

Rank”, forming a chain of subordination (except “Kingdom” which is the top of the chain).

Since all instances of “Biological Rank” specialize “BiologicalTaxon” and each instance of

“BiologicalTaxon” is instance of exactly one instance of “Biological Rank” (e.g., “Animal” is

instance of “Kingdom”, Collie is instance of Breed, etc.) according to our theory, “Biological

Rank” partitions “BiologicalTaxon”. Fig. 12 illustrates how the notions in the theory can be

employed; one instance of each represented biological rank is shown.

This example of application shows the expressiveness of our theory. We have explored the

entities and relations to fully describe the structural arrangement of the biological taxonomy for

living beings.

The pattern to classify domain types as instantiations and specializations of the theory basic

types permitted us to identify the level of each involved concept. Using the notion of partition

relation we were able to (i) express how the instances of biological rank apply to living beings

and (ii) to understand the relation between biological rank and biological taxon. The notion of

subordination relation was central for understanding how the instances of biological rank are

related to each other.

Finally, it allowed us to notice that the shape of tree that the biological taxonomy for living

beings exhibits is explained by the combination of two characteristics, namely, (i) the partitions

relations that all instances of “BiologicalRank” have with “LivingBeing”, and (ii) the chain of

subordination that the instances of “BiologicalRank” forms.

Fig. 12. Using our theory to describe the structural relations that exist in biological taxonomy (relations between the
notions of biological rank, biological taxon and living being).

6 Related Work

6.1 Power type-based approaches

Two early attempts to address multi-level modelling, namely power types [6, 23] and

materialization [27], raised from the identification of patterns to represent the relationship

between a class of categories and a class of more concrete entities. The notion of power types

was adopted in the object-oriented model community (largely influenced by [23]) and

materialization has been developed in the database community. Despite the different origins,

power type and materialization are based on similar conceptualizations [3] and addressing the

same concerns [11]. Both approaches establish a relationship between two types such that the

instances of one are specializations (subtypes) of another.

Odell [23] defined the concept of power type informally using regular associations between a

class representing the power type and a base class. This differs from our approach because

cross-layer relations between types (is power type of, characterizes and partitions) have

specialized semantics. This allows us to prescribe rules for the domain models that use these

relations following the axioms in the theory.

Similarly to Odell [23], Gonzalez-Perez and Henderson-Sellers [11] use an association

labelled “partitions” between a power type and a base type (called a “partitioned type” in their

terminology). The authors illustrate their technique with a diagram in which “partitions” is

modelled as a one-to-many association between “Task” and “TaskKind”, meaning that every

instance of the partitioned type (“Task”) is linked to exactly one instance of the powertype

(“TaskKind”). In the sequel, they discuss that the “partitions association possesses instantiation

semantics”, and that, because of this, “Task” is a special instance of “TaskKind” (the most

generic kind of task). However, if “Task” itself is an instance of “TaskKind”, then the

“partitions” association cannot be a one-to-many association between “Task” and “TaskKind”.

This is because all instances of subtypes of “Task” are also instances of “Task”, and thus

instances of at least two “TaskKinds” (one which is “Task” itself). The source of the difficulty

seems to lie in that their “partitions” association is semantically overloaded, conflating two

underlying notions: (i) the fact that “TaskKind” partitions “Task”, and (ii) the implied

consequence that instances of “Task” are instances of instances of “TaskKind” (which in our

theory is reflected in the instance of relation between “Task” as specialization of “Individual”

and “TaskKind” as a specialization of “First-Order Type”). The modeller is free to determine

whether “Task” itself is an instance of “TaskKind” (in which case he/she would replace (i) with

the fact that “TaskKind” is a powertype of “Task”). Note that the elements of our theory help us

to identify the semantic overload, provide an explanation for the conceptual issue in this power

type based approach, and offer alternatives to express the modeller’s intended conceptualiza-

tion.

The UML 2.4.1 specification [25] attempts to cover the needs of multi-level modelling by

including a powertype association that relates a classifier (power type) to a generalization set

composed by the generalizations that occur between the base classifier and the instances of the

powertype. Because of its dependence on the generalization set construct, the pattern can only

be applied when specializations of the base type are explicitly modelled (otherwise there would

be no generalization set). We consider this undesirable as it would rule out simple models that

are possible in our approach, e.g., one defining “employee type” as a powertype of “employee”,

without forcing the modeller to define specific instances for “employee type”. While our theory

necessitates the existence of entities for any type, and hence necessitates the existence of

instances for “employee type”, it does not require these instances to be modelled explicitly,

which is the case of the UML because of its choice to base the power type pattern in a structure

that uses generalization sets.

Further, while the completelyCharacterizes relation is similar to the isCovering attribute of

GeneralizationSets of the UML metamodel, there is an important distinction. The attribute

isCovering refers to whether all instances of the general classifier are instances of at least one of

the specific classifiers that are explicitly modelled in the GeneralizationSet. In contrast,

completelyCharacterizes is a semantic notion that is independent of what is represented

explicitly in a model; when a higher-order type is related to a base type through this relation, all

instances of the base type will be instances of at least one of the types that properly specialize

the base type. This makes isCovering restricted to those domains that can afford an explicit

enumeration of the instances of the higher-order type.

A semantic mapping of UML’s isCovering attribute in terms of our theory is simple when

isCovering is true, in which case the higher-order type p completely characterizes the base type

t. However, when isCovering is false, the semantic mapping is more involved, and the model

can have two alternative interpretations: (i) p characterizes t and there are instances of p not

represented in the model (it is not possible to determine whether p completely characterizes t);

or (ii) p characterizes t and all instances of p are represented, but some instances of t do not

instantiate any of the instances of p (thus, we conclude that p does not completely characterize

t). The lack of expressiveness of UML to distinguish these interpretations seems to stem from

the fact that UML conflates what we mean to capture with the characterizes relation with

whether the model enumerates all instances of a characterizing higher-order type (i.e., the

“power type” in UML’s terminology).6

The notion of power type introduced by Odell [23] in the object oriented community differs

from the concept coined earlier by Cardelli [6] since the latter is derived directly from the

mathematical notion of power set while the former may be used more loosely as we discussed in

section 4. The theory presented here is able to account for both definitions formally, revealing

their differences. It covers the expressiveness of both approaches through formally-defined

structural cross-level relations (is power type of, characterizes and partitions). Further, it allows

us to show that a higher-order type that is related to a base type through the characterizes

relation is necessarily a specialization of the power type of that base type. Thus, the power type

of a base type is the most abstract higher-order type related to a base type.

6.2 Clabject-based approaches and deep instantiation

In [1], Atkinson and Kühne argue that a multi-level modelling framework should adhere to

two fundamental principles: strict metamodelling and support for the clabject notion.

Strict metamodelling [5] assumes that each element of a level must be an instance of an

element of the level above. Although our theory is not focused on metamodelling, we follow

6 For the sake of simplicity we have assume here that the classes are not abstract. The semantic mapping becomes

even more involved in the presence of abstract classes.

this principle, and every entity in our domain of enquiry is instance of exactly one of the basic

types and every entity can only be instance of entities at one order higher (all entities that have

no instances are instances of “Individual”; “Individual” and all its specializations are instances

of “First-Order Type”, and so on.) They also discuss that “some kind of ‘trick’ is needed at the

top level”. The ‘trick’ we used in our theory is that the highest order foundational type is not

instance of anything, since entities with higher order are not considered (see axioms A5 and

A6). Alternatively, an infinite number of types may be considered, and a ‘trick’ is not needed.

Besides adhering to the principle of strict metamodelling, the notion of clabject [1] is also

valuable for our theory. This notion is founded on the observation that every instantiable entity

has both a type (or class) facet and an instance (or object) facet. The basic types of our theory,

except the higher order one, may be considered clabjects. For example, “Individual” is instance

of “First-Order Type” (its instance facet) and a type for all entities that are not types (its type

facet).

Atkinson and Kühne have also proposed a deep instantiation based approach [4, 3] as a

means to provide for multiple levels of classification whereby an element at some level can

describe features of elements at each level beneath that level. It is based on the idea of assigning

to clabjects and fields (attributes and slots) a potency which defines how deep the instantiation

chain produced by that clabject or field may become. When a clabject is instantiated from

another clabject the potencies of the created clabject and of its fields are given by the original

clabject and fields potencies decremented by one. Objects have potency equal to zero indicating

they cannot be instantiated. If the potency of a field becomes zero then a value can be assigned

to that field. For example, we could define a clabject mobile phone model with an attribute IMEI

assigning a potency of 2 to both the type and the attribute. Therefore, instances of mobile phone

model would be clabjects in which IMEI attribute would have potency of 1. Instances of

instances of mobile phone model have a value assigned to IMEI, since its potency would reach

zero.

The authors consider that the main benefit of deep instantiation based approach is to reduce

“accidental complexity” in domain models since it supports multi-level modelling without the

need of introducing types to the models only “because of the idiosyncrasies of a particular

solution to deep characterization” [3]. They argue that power type based solutions force the

modellers to add unneeded types to the model. For instance, considering the cited example of

mobile phone model, using power types the modeller would be forced to represent the concept

of mobile phone. Using deep instantiation, the modeller could define the mobile phone

properties (e.g. IMEI) as properties of mobile phone type having potency of 2, being free to not

represent the concept of mobile phone.

While the deep instantiation approach can reduce the number of entities represented in a

model, this strategy should be used with parsimony. This is because whenever properties with

potency higher than one are used to omit a base type, the clabjects which instantiate the higher-

order type “inherit” the properties with potency higher than one from the higher-order type. In

this case, the instantiation relation is overloaded with an implicit specialization relation, and

semantic clarity is traded for reduction of model size. Further, as discussed in [14], conceptual

models should always include types that define the principle of identity of individuals (in the

example this type is mobile phone). If types are omitted (and incorporated into higher-order

types by using the notion of potency), the source of principle of identity becomes hidden.

Another important consequence of omitting a base type is that we become unable to express

whether the instances of a higher-order type are disjoint types (i.e., we are unable to distinguish

which form of characterization would apply.)

Another multi-level modelling approach proposes the concepts of m-objects and m-

relationships [21]. The focus of this approach is also on reducing “unnecessary complexity”,

improve readability and simplify maintenance and extension. M-objects encapsulate different

levels of abstraction that relate to a single domain concept. Analogously, m-relationships

describe “relationships between m-objects at multiple level of abstraction”. An m-object can

concretize another m-object. The concretize relationship comprises classification, generalization

and aggregation relationships between the levels of an m-object [21]. We observe that this is a

semantic overload between three relationships of quite different ontological nature, which could

affect the understandability and usability of the approach.

In [2] the authors point out the need of considering two different kinds of instantiation: the

linguistic instantiation and the ontological instantiation. Whereas linguistic instantiation is used

to define the relations between domain entities and linguistic constructs, ontological instantia-

tions relate domain entities to other domain entities. For example, considering the UML class

diagram having a class called Collie and an object called Lassie, we can identify two linguistic

instantiations, namely, Collie is an (linguistic) instance of class and Lassie is an (linguistic)

instance of object. We may also consider an ontological instantiation since Lassie is an

(ontological) instance of Collie [2]. The distinction is very important to determine the scope of

our theory: we are concerned solely with ontological instantiation as it is applied across multiple

levels. For example, the instantiation relation that holds between individual and first-order type

as well as the one that holds between computer and first-order type are both ontological since

both are concerned with the nature of the involved concepts and none of them is related to

linguistic issues. Aspects referring to the relation between ontological and linguistic issues are

out of the scope of this work.

7 Final Considerations

In this paper we have presented a well-founded theory for conceptual multi-level modelling.

The theory is formally defined using first-order logic and its consistency is verified using a

lightweight formal method. Both the basic types and the structural relations defined in the

theory are founded on the basic notion of (ontological) instantiation, which is applied regularly

across levels, following the principle of strict (meta-)modelling. We have shown how the

elements of the theory can be used as foundations for a domain theory: domain types instantiate

and specialize the basic types of the theory.

To verify the consistency of our theory we have used Alloy [16]. The axioms of our theory

were represented as facts and the theorems were defined as assertions in an Alloy module. It

allowed us to verify the satisfiability of our theory, to conduct some model simulations and to

verify the theorems whose informal proofs have been discussed in the paper.7

Using the structural cross-level relations defined in the theory (is powertype of, characterizes,

partitions), we are able to account for the different notions of power type in the literature, as

well as to contrast and relate them. Since these relations are ultimately explained in terms of

instantiation between entities of adjacent levels, the consequence of our account of power types

is that we formally harmonize power type and clabject-based approaches.

With respect to intra-level relations, we define the “ordinary” specialization relation and a

subordination relation between higher-order types of the same order. Subordination allows for

the creation of expressive multi-level models; subordination between higher-order types implies

specialization between instances of the types related by subordination. An example of the

usefulness of the subordination relation is shown in the biological taxonomy domain, in which

taxonomic ranks (instances of “Second-Order Type”) are related by subordination in a sequence

(with lower ranks subordinated to higher ranks). This ensures the taxonomy at the first-order

level has an adequate structure (a taxonomic tree).

We have opted to supress two direct extensions of the theory in order to facilitate its presenta-

tion in this paper: (i) the support for non-rigid types, and (ii) the generalization of the notion of

order to support an infinite number of classification levels. With respect to (i) this extension can

be performed by including a third parameter in the iof predicate representing a possible world or

state of the world. This would allow instantiation to be contingent, thereby enabling dynamic

classification, which is an important feature for conceptual modelling [14]. With respect to (ii),

axioms A3 and A4 would give way to an inductive definition for a basic type Ti+1 based on the

definition of the basic type at an immediately lower order Ti. The “disjointness” and “complete-

ness” axioms (A5 and A6) would be modified accordingly.

7 The full specification of the theory in Alloy can be found in https://github.com/jpalmeida/mlt-ontology

https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fjpalmeida%2Fmlt-ontology&sa=D&sntz=1&usg=AFQjCNE8ybXMXdh-lLgKiZKk3_Kl2HE6WQ

It is important to stress that it is not our intention in this paper to propose a multi-level

conceptual modelling language. Instead, we focus on the concepts that would constitute an

adequate semantic domain for such a language. The theory we propose can be considered a

reference top-level ontology for types, with the main purpose of clarifying key concepts and

relations for multi-level conceptualizations.

As discussed in [14], a reference ontology can be used to inform the revision and redesign of

a modelling language, first through the identification of semantic overload, construct deficit,

construct excess and construct redundancy, but also through the definition of modelling patterns

and semantically-motivated syntactic constraints [7]. This has been fruitful in the past in the

revision of the UML, resulting in the OntoUML profile for conceptual modelling [14]. Thus, a

natural application for this work is to inform the (re-)design of a well-founded multi-level

conceptual modelling language. Some earlier results to that extent are presented in section 4,

showing: (i) how theorems of the theory reveal useful syntactic constraints for multi-level

domain models; and (ii) how patterns of domain entities that are admissible by the theory can be

reflected in modelling patterns. We have also been able to spot a deficiency in the UML given

its reliance on the construct of generalization set to represent the power type pattern. Further, we

have been able to identify cases of semantic overload in the power-type based technique

presented in [11], in the deep instantiation technique [4] and in the m-objects approach [21].

Recently, Recker et al. [28] reported results from a study with 528 modellers demonstrating that

“users of conceptual modelling grammars perceive ontological deficiencies to exist and that

these deficiency perceptions are negatively associated with usefulness and ease of use of these

grammars”. This highlights the potential practical implications of our theory.

We are currently working on an extension of the Unified Foundation Ontology (UFO) [14] to

fully incorporate the theory presented in this paper. The current version of UFO only counts

with an informal notion of higher-order universal, with no associated formalization. The theory

would serve as the top-most layer of UFO, and the typology of universals of UFO would be

incorporated as specializations of “First-Order Type”, including RigidUniversal, Anti-

RigidUniversal, Category, Kind, Role, Phase, etc. Further, “Individual” would be specialized

into Endurant, Moment, Event, Action, etc., leveraging important conceptual distinctions of

UFO. The revision of UFO to incorporate this theory will give us a sound basis to improve the

formalization of ontologies based on UFO (e.g., the core ontology for services called UFO-S

[20] and the organizational ontology called O3 [26]) since their conceptualizations span

multiple levels of classifications.

References

1. Atkinson, C., Kühne, T.: Meta-level Independent Modeling. International Workshop “Model Engineering” (in
conjunction with ECOOP’2000), Cannes, France (2000)

2. Atkinson, C., Kühne, T.: Model-driven development: a metamodeling foundation. IEEE Software. 20(5), 36–41
(2003)

3. Atkinson, C., Kühne, T.: Reducing accidental complexity in domain models. Software & Systems. Modelling,
7(3), pp 345-359. Springer-Verlag (2008)

4. Atkinson, C., Kühne, T.: The Essence of Multilevel Modeling. In: Proc. Of the 4th International Conference on the
Unified Modeling Language. Toronto, Canada (2001)

5. Atkinson, C.: Metamodelling for Distributed Object Environments. First International Enterprise Distributed
Object Computing Workshop (EDOC’97). Brisbane, Australia (1997)

6. Cardelli, L.: Structural Subtyping and the Notion of Power Type. In Proc. Of the 15th ACM Symposium of
Principles of Programming Languages, pp. 70-79 (1988)

7. Carvalho, V. A., Almeida, J.P.A., Guizzardi, G.: Using Reference Domain Ontologies to Define the Real-World
Semantics of Domain-Specific Languages. In: Proc. 26th International CAiSE Conference (CAiSE 2014),
Heidelberg: Springer, 2014. pp. 488-502 (2014)

8. Coquand, T.: Type Theory, The Stanford Encyclopedia of Philosophy (Fall 2014 Edition), Edward N. Zalta (ed.),
URL = http://plato.stanford.edu/archives/fall2014/entries/type-theory/ (2014)

9. Ereshefsky, M., Species, The Stanford Encyclopedia of Philosophy (Spring 2010 Edition), Edward N. Zalta (ed.),
URL = http://plato.stanford.edu/archives/spr2010/entries/species/ (2010)

10. Eriksson. O., Henderson-Sellers, B., Ågerfalk, P. J.: Ontological and linguistic metamodeling revisited: A
language use approach. Information and Software Technology, 55(12), pp. 2099-2124. Elsevier (2013)

11. Gonzalez-Perez, C., Henderson-Sellers, B.: A powertype-based metamodelling framework. Software & Systems.
Modelling, 5(1), 72-90. Springer-Verlag (2006)

12. Guarino, N., Welty, C.: Evaluating Ontological Decisions with OntoClean. In Communications of the ACM,
45(2), pp.61-65. (2002)

13. Guarino, N.: The Ontological Level. In: R. Casati, B. Smith and G. White (eds.), Philosophy and the Cognitive
Science, pp. 443-456. Holder-Pivhler-Tempsky, Vienna (1994)

14. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. University of Twente, Enschede, The
Netherlands (2005)

15. Henderson-Sellers, B.: On the Mathematics of Modeling, Metamodelling, Ontologies and Modelling Languages.
Springer (2012)

16. Jackson, D.: Software Abstractions: Logic, Language and Analysis. The MIT Press, (2006)
17. Kühne, T.: Contrasting Classification with Generalisation. In: Proc. of the 6th Asia-Pacific Conference on

Conceptual Modeling. Wellington, New Zealand (2009)
18. Mayr, E., The Growth of Biological Thought: Diversity, Evolution, and Inheritancehe Belknap Press, 1982.
19. Mylopoulos, J.: Conceptual Modeling and Telos. In: Loucopoulos, P., Zicari, R. (Eds.), Conceptual modeling,

databases and CASE, pp. 49-68, Wiley(1992)
20. Nardi, J.C., Falbo, R., Almeida, J.P.A., Guizzardi, G., Ferreira Pires, L., van Sinderen, M., Guarino, N.: Towards a

Commitment-Based Reference Ontology for Services. In: Proc. 17th IEEE International Enterprise Distributed
Object Computing Conference (EDOC 2013), IEEE Computer Society Press, pp. 175-10 (2013).

21. Neumayr, B., Grün, K., Schrefl, M.: Multi-level domain modeling with m-objects and m-relationships. In: Proc. of
the 6th Asia-Pacific Conference on Conceptual Modeling. Wellington, New Zealand (2009)

22. Neumayr, B., Schrefl, M., Thalhiem, B.: Modeling Techniques for Multi-Level Abstraction. In: Kaschek, R.,
Delcambre, L. (eds.). LNCS, vol. 6520, pp 68-92. Springer, Heidelberg(2011)

23. Odell, J.: Power types. In: Journal of Object-Oriented Programing, 7(2), pp. 8-12.(1994)
24. Olivé, A.: Conceptual Modeling of Information Systems. Springer (2007)
25. OMG : UML Superstructure Specification – Version 2.4.1 (2011)
26. Pereira, D., Almeida, J.P.A.: Representing Organizational Structures in an Enterprise Architecture Language. In:

Proceedings of the 6th Workshop on Formal Ontologies meet Industry (FOMI 2014), Rio de Janeiro (2014).
27. Pirotte, A., Zimanyi, E., Massart, D., Yakusheva, T.: Materialization: a powerful and ubiquitous abstraction

pattern. In: Bocca, J.,Jarke, M., Zaniolo, C. (eds.) Procs. 20th Int. Conf. Very Large DataBases (VLDB ’94) pp.
630–641 (1994)

28. Recker, J., Rosemann, M., Green, P., Indulska, M.: Do Ontological Deficiencies in Modeling Grammars Matter?.
In MIS Quarterly, 35 (1): pp. 1–9. (2011)

http://plato.stanford.edu/archives/fall2014/entries/type-theory/
http://plato.stanford.edu/archives/spr2010/entries/species/
http://www.sciencedirect.com/science/article/pii/S0950584913001547

