
An Ontology Pattern Language for Service Modeling
Ricardo A. Falbo1, Glaice K. Quirino1, Julio C. Nardi2, Monalessa P. Barcellos1, Giancarlo

Guizzardi1, Nicola Guarino3, Antonella Longo4 and Barbara Livieri4.

1
Federal University of Espírito Santo, Vitória, Brazil,

2
Federal Institute of Espírito Santo, Campus Colatina, Colatina, ES, Brazil,

3
ISTC-CNR Laboratory for Applied Ontology, Trento, Italy

4
University of Salento, Lecce, Italy

{ falbo, gksquirino, monalessa, gguizzardi}@inf.ufes.br; julionardi@ifes.edu.br; nicola.guarino@loa.istc.cnr.it;
{antonella.longo, barbara.livieri}@unisalento.com

ABSTRACT

The notion of service spans several domains, such as healthcare,
education, and information and communication technology (ICT).
In this context, service ontologies are very useful for establishing
a common understanding of the main concepts and relations
involved, as well as for serving as basis for modeling services in
different domains. In this paper, we present an Ontology Pattern
Language, called S-OPL, providing a network of interconnected
ontology modeling patterns covering the core conceptualization of
services. S-OPL builds on UFO-S, a commitment-based core
ontology for services. S-OPL patterns support modeling types of
customers and providers, as well as the main service life-cycle
phases, namely: service offering, service negotiation/agreement,
and service delivery. The use of S-OPL is demonstrated in a real
case in the ICT service domain.

CCS Concepts

• Computing methodologies • Software and its engineering

Keywords

Service, ontology, ontology pattern, ontology pattern language.

1. INTRODUCTION
The service sector is one of the largest economic sectors
nowadays. Several enterprises (e.g., companies and government
agencies) use service-based business models. To interoperate
(internally and externally) such enterprises need to represent and
share knowledge about their service models. Ontologies are a
useful instrument for knowledge representation and sharing. In the
service field, there are several ontologies describing the service
phenomena, such as [8] and [7]. Despite their importance in
improving the understanding about “service”, and in acting as
reference models to support enterprises build their own service
models, they do not provide guidelines for reuse, in particular for
reusing specific proper parts of the ontologies.

Due to pragmatic reasons, ontology engineers might want to focus
only on some parts of the service phenomena. For instance,
someone might want to develop an ontology focusing on service
agreement aspects (e.g., contracts and obligations), whereas others
might want to focus on service offering aspects (e.g., profile of the
target customer community). However, it can be hard to reuse
fragments of a service ontology without consistent guidelines on
how to select parts of the ontology that are suitable for a set of
requirements at hands.

Pattern-oriented ontology engineering approaches have been
acknowledged as promising for properly dealing with reuse in
ontology development [9]. An ontology pattern (OP) describes a
particular recurring modeling problem that arises in specific
ontology development contexts and presents a well-proven
solution for that problem [4]. However, organizing OPs in
catalogues is not enough, since they do not address the strong
sense of connection among the patterns. This problem is
particularly salient in the case of the so-called Domain-Related
OPs (DROPs), since these patterns are very inter-related, being
very difficult (if not impossible) to apply them in isolation [2].

Differently from catalogues of patterns, an Ontology Pattern

Language (OPL) [2] favors reuse by providing a network of
interconnected DROPs that provides holistic support for ontology
development in a given field. An OPL provides a set of
interrelated patterns, plus a process model (a procedure, a script)
guiding on how to use and combine them in a specific order, and
suggesting patterns for solving some modeling problems.

In this paper, we present the new version of S-OPL (Service
OPL). S-OPL is a general service OPL that can be used to support
the development of service ontologies for specific domains, such
as ICT and Healthcare services. S-OPL comprises patterns
covering four main groups: (i) Service Offering, which includes
patterns to model a service offering to a target community; (ii)
Service Provider and Customer, which deals with defining types
of service providers and customers; (iii) Service Negotiation/

Agreement, which concerns the negotiation between provider and
customers in order to get an agreement; and (iv) Service Delivery,
which models aspects related to the actions performed for
fulfilling a service agreement.

S-OPL was built by extracting patterns from UFO-S [7], a
commitment-based core ontology for services, by following the
approach described in [11]. Since the extracted DROPs are very
interrelated, and since they tend to be applied in combination to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SAC 2016, April 04-08, 2016, Pisa, Italy.

© 2016 ACM. ISBN 978-1-4503-3739-7/16/04 $15.00

DOI: http://dx.doi.org/10.1145/2851613.2851840

develop a service domain ontology, we organized them in an
OPL. An initial version of S-OPL was partially published in [10].
This initial version was applied in a real case and, based on the
feedback given by the users, it has been improved in the version
reported here. In the current version of S-OPL, new patterns have
been introduced. However, the main improvement has been in the
process guiding users through the use of the patterns.

The remainder of this paper is organized as follows. Section 2
presents the background and related works. Section 3 presents the
new version of S-OPL and discusses how its DROPs have been
extracted from UFO-S. Section 4 discusses the application of S-
OPL in a real case study in the ICT domain. Finally, Section 5
presents our final considerations.

2. BACKGROUND AND RELATED WORK
There are different types of ontology patterns [4]. In this paper,
we are interested in Conceptual Ontology Patterns (COPs). COPs
are fragments of either foundational ontologies (Foundational OPs
- FOPs) or core reference ontologies (Domain-related OPs -
DROPs). They are meant to be used during the ontology
conceptual modeling phase and focus only on conceptual aspects,
without any concern with the technology or language to be used
for implementing the ontology [4].

Ruy et al. [11] discuss how FOPs and DROPs can be extracted
from Foundational Ontologies and Core Ontologies, respectively.
According to them, DROPs should capture the core knowledge
related to a domain, and thus they can be seen as fragments of a
core ontology of that domain. DROP complexity can vary greatly
depending on the domain portion being represented. Sometimes a
DROP contains only two related concepts; in other situations, they
can contain a complex combination of concepts and relations. It is
important to highlight that the same domain portion can give rise
to two (or more) variant patterns. Moreover, sometimes a DROP
is structurally open in order to be completed by another DROP.

When extracting DROPs from core ontologies, domain aspects
come first. The main rule for a DROP is to represent a model
fragment that represents recurrent structures in the domain,
regardless of its foundational structure. Thus, while FOPs tend to
be generally applied, DROPs for a specific field are very
interrelated. For this reason, it is usual to apply DROPs in
combination for engineering domain ontologies. Thus, instead of
recording DROPs in catalogue of patterns, Ontology Pattern
Languages (OPLs) [2] can be used to organize them in a
systematic guided application process. The notion of OPL
provides a stronger sense of connection between DROPs,
expressing several types of relationships among them [2]. Thus,
an OPL provides explicit guidance on how to reuse and integrate
related patterns into a concrete ontology conceptual model. In this
sense, an OPL is more than a catalogue of patterns. It includes,
besides the patterns themselves, a process guiding the order to
apply them according to the problems to be modeled [2].

For developing S-OPL, we employed UFO-S [7]. UFO-S is a core
reference ontology on services, which is grounded on the Unified
Foundational Ontology (UFO)[5,6]. UFO-S characterizes the
service phenomena by considering service commitments and
claims established between service participants (service provider
and service customer) along the service life-cycle. UFO-S takes
the three basic phases of the service life-cycle into account:
service offer, service negotiation/agreement and service delivery.
As a core ontology, UFO-S presents general concepts that span

across several applications domains in such a way that its
conceptualization can be broadly reused. As discussed in [2], a
core ontology such as UFO-S is a good choice for being the
source of DROPs for a service OPL. By providing a network of
patterns and a guide to combine them, S-OPL improves the
potential for reuse of UFO-S, by enabling the selective use of
parts of UFO-S in a flexible way. This is very important due to
pragmatic reasons, since ontology engineers developing service
ontologies for specific domains might want to focus on selected
aspects of the service phenomena.

The use of OPLs is a recent initiative. Thus, there are still only
few works proposing OPLs (such as [1], [2] and [3], respectively
for the Measurement, Software Process and Enterprise
domains). At the best of our knowledge, there is no similar
initiative in the service field. In the next section, we present the
current version of S-OPL and discuss how S-OPL was designed.

3. SERVICE OPL
As previously mentioned, S-OPL comprises a set of ontology
patterns plus a process describing how to combine them to build a
service domain ontology (i.e., an ontology about services in a
specific application domain). The S-OPL patterns are represented
in OntoUML [6], a UML profile that enables making finer-
grained modeling ontological distinctions based on UFO. The S-
OPL process, in turn, is represented by means of a UML activity
diagram, adapted for representing OPLs. In Figure 1, patterns are
represented by action nodes (the labeled rounded rectangles).
Patterns groups are delimited by blue rounded rectangles. Initial
nodes (solid circles) are used to represent entry points in the OPL,
i.e., patterns in the language that can be used first, independently
of other patterns. Fork nodes (line segments with multiple output
flows) are used to represent parallel paths, i.e., if the ontology
engineer decides to follow the fork node input path, then she can
follow any path leaving them. Join nodes (line segments with
multiple input flows) are used to represent multiple dependency,
i.e., to follow the join node output path, the ontology engineer
must have already traveled all the join node input paths. Decision
nodes (represented by diamonds) are used to represent alternative
paths. Thus, if the ontology engineer decides to follow the
decision node input path, then she has to select exactly one of the
decision node output paths. Sub-groups of patterns shown in
dotted rounded rectangles aggregate variant patterns, i.e., a set of
patterns that solve the same problem but in different ways. Thus,
from this set of patterns, only one of them can be selected.
Finally, control flows (arrowed lines) represent the admissible
sequences of paths that the ontology engineer can follow in the
OPL. By default, a control flow is optional, i.e., the ontology
engineer can decide to follow it or not, depending on the scope of
the ontology being developed. Thus, the ontology engineer can
select a certain pattern and decide not to use any other after that,
even if there are control flows connecting that pattern to other
patterns. However, when a control flow is stereotyped with
<<mandatory>>, this means that the path must be mandatorily
followed. Patterns in grey are the ones used in the case discussed
in Section 4.

In the following subsections, we present the S-OPL process, and
some of its patterns. Due to space limitations, we restrict our
presentation to the patterns of the Service Negotiation and

Agreement group, and some patterns of the Service Provider and

Customer group. The complete specification of S-OPL is
available at http://nemo.inf.ufes.br/projects/opl/s-opl/.

 Figure 1 – The S-OPL Process

3.1 The S-OPL Process
As Figure 1 shows, patterns in S-OPL are organized in four
groups: Service Offering, Service Negotiation and Agreement,
Service Delivery, and Service Provider and Customer. These
groups were defined mainly based on the modularization of UFO-
S, which is decomposed in three sub-ontologies, namely [7]:
Service Offer, Service Negotiation, and Service Delivery. A
fourth group was introduced here to deal with distinctions among
types of providers and customers. UFO-S establishes that
providers and customers are roles played by agents of different
kinds (persons, organizations and organizational units). This last
group makes the possible combinations of types of providers and
customers explicit.

S-OPL has two entry points: EP1 and EP2. The ontology engineer
should choose one of them, depending on the scope of the specific
domain service ontology being developed. When the requirements
for her ontology include describing the service offering, then the
starting point is EP1. Otherwise, the starting point is EP2.

In case EP1 is chosen, the ontology engineer should use first the
SOffering pattern for modeling the service offering itself. Next,
she must follow the mandatory path: the one that leads to the
Service Provider and Customer group, which addresses the issue
of modeling which types of providers and target customers are
involved in the offering. Providers and target customers can be
people, organizations or organizational units. Therefore, the
ontology engineer must select one of the patterns of the Provider
sub-group, and one of the patterns of the Target Customer sub-
group. Besides mandatorily modeling the types of providers and
target customers, the ontology engineer can follow the several

paths coming out of the fork node. Thus, she can use the patterns
SOClaims and SOCommitments, in the cases in which she is
interested in modeling offering claims and commitments,
respectively. In addition, she can also chose the SODescription

pattern, in case she is interested in describing the offering by
means of a service offering description.

Once the service offering is modeled, the ontology engineer is
able to address problems related to service negotiation and
agreement. We should highlight, however, that service offering
may be out of the scope of the ontology. In this case, EP2 should
be the entry point in the S-OPL process.

If the ontology engineer has already modeled the service offering,
she must decide first if she needs to represent service negotiation
and/or service agreement. If she wants to model only the service
negotiation, without modeling the agreement that could result
from it (agreement is out of scope), she should use the
SNegotiation pattern. If she needs to model both the negotiation
and the agreement, then she should use the SNegAgree pattern.
Finally, if negotiation is out of the ontology scope, then she
should use the SOfferAgree pattern, which represents an
agreement in conformance to an offering.

If EP2 is the entry point in the process, the first pattern to be used
is SAgreement. In the sequel, the ontology engineer must select
one of the patterns of the Hired Provider sub-group and one of the
patterns of the Service Customer sub-group, in order to model the
possible types of hired provider and service customer,
respectively. The patterns in the Hired Provider and Service

Provider sub-groups are analogous to the ones in the Provider and
Target Customer sub-groups respectively. Note that defining the

types of hired providers and service customers is necessary only if
the chosen entry point is EP2, since in cases in which the entry
point in the process is EP1, the types of providers and target
customers would already have been modeled.

Once the agreement is modeled, the following patterns can be
optionally used: HPCommitments and HPClaims, depending
whether the ontology engineer is interested in modeling the hired
provider commitments and claims, respectively; SCCommitments

and SCClaims, depending on whether she is interested in
modeling service customer commitments and claims, respectively;
SADescription, in case she is interested in describing the service
agreement by means of a description.

After modeling the agreement, the ontology engineer can model
the service delivery. In this group, the first pattern to be used is
SDelivery. In the sequel, if she wants to model the actions
involved in a delivery, the following patterns must be applied:
HPActions, for modeling actions performed by the hired provider;
SCActions, for modeling actions performed by the service
customer; and Interactions, for modeling actions performed by
both, in conjunction. After that, she can model the relationships
between the actions and the commitments that motivate them, by
using the following patterns: HPActionMotivation,
SCActionMotivation and InteractionMotivation. Since these
patterns establish links between commitments and actions, they
require the patterns related to the former to be used prior to the
patterns related to the latter.

3.2 The S-OPL Patterns
S-OPL patterns were defined according to the approach suggested
in [11]. Following this approach, we extracted the patterns from
UFO-S by identifying a number of candidate model fragments
meaningful for the service domain and framed them as patterns.

The first group of patterns discussed in this paper is the Service

Negotiation and Agreement group, which consists of nine
patterns. This group concerns modeling problems related to the
negotiation between target customer and service provider, and the
possible agreements between them. Figure 2 shows part of UFO-S
Service Negotiation sub-ontology, and how it was decomposed
into patterns.

 Figure 2: Main Patterns of Negotiation and Agreement group.

The SNegotiation pattern captures the main concepts and relations
related to service negotiation. The elements constituting this
pattern are circumscribed by the top-most ellipses in Figure 2, and
include the following concepts: Service Negotiation, Service
Provider, Target Customer and Service Offering. Service

Negotiation occurs between a Service Provider and a set of Target

Customers, taking as basis a Service Offering.

The SAgreement pattern captures the main concepts and relations
related to service agreement (without representing the negotiation
from which it results, neither the offering related to it). The
elements constituting this pattern are circumscribed by the
bottom-most ellipsis in Figure 2, and include the following
concepts: Service Agreement, Hired Service Provider, and Service
Customer. This pattern represents the Service Agreement between
the Hired Service Provider and a set of Service Customers.

The SOfferAgree pattern aims at modeling a service agreement in
conformance with a service offering (without representing the
service negotiation). The elements constituting this pattern are
circumscribed by the second ellipsis (from top to bottom) in
Figure 2. Besides modeling the agreement itself, it models also the
relationship between Service Agreement and Service Offering
(conforms to). When a service agreement is established, the
service provider plays the role of Hired Service Provider, while
the target customer plays the role of Service Customer. Moreover,
the Service Agreement must conform to what was previously
established in the corresponding Service Offering.

The whole fragment depicted in Figure 2 corresponds to the
SNegAgree pattern, which models both the negotiation and the
agreement, including the relationship between Service Agreement
and Service Negotiation (results in).

A Service Agreement is composed of commitments and claims
(Hired Provider Commitment, Hired Provider Claim, Service

Customer Commitment, Service Customer Claim) established
between the hired service provider and the service customers.
Figure 3 shows the patterns describing commitments
(HPCommitments) and claims (HPClaims) of the hired service
provider. The SCCommitments and SCClaims patterns (not shown
here) are analogous to these two, respectively, however, modeling
commitments and claims of the service customers.

Figure 3: Other Patterns of Negotiation and Agreement group.

According to UFO-S [7], Service Provider and Target Customer
are roles played by agents involved in a Service Offering (and thus
in a Service Negotiation), while Hired Service Provider and
Service Customer are roles played by agents involved in a Service

Agreement. These roles can be instantiated by agents of different
kinds (Person, Organization, and Organizational Unit), which
may obey different principles of identity. Thus, as the stereotypes
in Figure 2 shows, Service Provider and Target Customer (and
their respective subtypes Hired Service Provider and Service

Customer) are defined in UFO-S as rolemixins. According to
UFO [6], a rolemixin represents an anti-rigid and externally
dependent non-sortal, i.e., a dispersive universal that aggregates
properties that are common to different roles.

Organizations, Organizational Units, and Persons can play the
roles of service provider and customer. However, depending on
the nature of the service being modeled, only certain types of
customers and providers are admissible. For instance, the passport

issuing service is offered only to people. The car rental service, in
turn, is offered to people, organizational units, and organizations.
Thus, each pattern in the Service Provider and Customer group
offers a different option for the ontology engineer to precisely
decide what kinds of entities can play the roles of provider and
customer in the service domain being modeled.

In fact, these patterns are derived by the application of two
foundational patterns (FOPs): the Rolemixin FOP [11] and the
Role FOP [11]. When more than one kind of agent can play a role,
the Rolemixin FOP applies; when only one kind type of agent can
play a role, the Role FOP applies. For instance, in the Target

Customer sub-group of variant patterns, P-TCustomer should be
used when exclusively persons can play this role. O-TCustomer
should be used when exclusively organizations can play this role.
OU-TCustomer should be used when exclusively organizational
units can play this role. O-OU-TCustomer should be used when
both organizations and organizational units can play this role. P-

O-TCustomer should be used when both persons and
organizations can play this role. P-OU-TCustomer should be used
when both persons and organizational units can play this role.
Finally, P-O-OU-TCustomer should be used when any of these
kinds of entities can play this role. Figure 4 shows two of these
patterns. The first is O-OU-TCustomer, which is an example of
application of the Rolemixin FOP. In this pattern, Target

Customer is a role that can be played by both Organizations and
Organizational Units. Thus, two roles are defined as subtypes of
Target Customer: Organization Target Customer, which is also a
subtype of Organization; and Organizational Unit Target

Customer, which is a subtype of Organizational Unit. The second
pattern shown in Figure 4 is P-TCustomer, which is an example of
application of the Role FOP. In this pattern, since only people can
play the role of target customer, Target Customer is substituted in
the model by Person Target Customer, which is a subtype of
Person.

Figure 4: Two Patterns of the Target Customer sub-group.

4. APPLYING S-OPL IN A REAL CASE
We have employed S-OPL in a real case study to model an email
service in a big Italian company. The IT Department is
responsible for this service and decided to hire two underpinning
ICT services provided by two different organizations: the
Emailbox service and the Networking service. With the goal of
establishing a common understanding among the stakeholders, the
Chief Information Officer asked for a conceptual model
addressing the main aspects involved in the email service. S-OPL

was used to develop this model, named here the Email Service

Ontology (ESO). For building ESO, the patterns in grey in Figure
1 were used. It is worth saying that ESO was developed by
ontology engineers not involved in the S-OPL development.

In this case, EP1 was the entry point chosen, and thus SOffering
was the first pattern applied. In the sequel, following the
mandatory path leaving SOffering, the patterns O-Provider and O-

OU-TCustomer were selected. Since the ICT services were
provided by organizations, the O-Provider pattern was selected.
For modeling target customers, the O-OU-TCustomer pattern was
selected. This was because the target customers in this application
domain include both Organizations and Organizational Units.

Once service offerings were modeled, patterns from the Service

Negotiation and Agreement group were selected. The first pattern
applied was SOfferAgree, for modeling service agreements and
their relationship with the corresponding service offerings. Next,
the patterns HPCommitments and SCCommitments were applied
to capture the commitments involved in the agreement. Finally,
the SADescription pattern was used to model the contract
describing the agreement. In the remainder of this section, we
discuss in more details how we have built the ESO fragment
related to Service Agreement (Figure 5).

After modeling the service offering, the SOfferAgree pattern was
used. According to this pattern, a service agreement involves both
the hired service provider and the customer celebrating the
agreement. In our case, a Business Customer Organizational Unit

celebrates ICT Service Agreements with the Hired Emailbox

Service Provider Organization and the Hired Network Email

Service Provider Organization. Such service agreements are in
conformance to the corresponding service offerings.

For modeling the terms and conditions of the agreement, two
patterns were used: HPCommitments and SCCommitments. Thus,
both commitments of the Hired ICT Provider Organizations and
of the Business Customer Organizational Unit can be specified.

Finally, the SADescription pattern was applied. From that, the ICT

Service Contract was defined for describing the corresponding
service agreements.

5. FINAL CONSIDERATIONS
Currently, reuse is recognized as an important practice for
Ontology Engineering. Ontology patterns are considered a
promising approach that favors reuse of encoded experiences and
good practices in Ontology Engineering [9]. Moreover, core
ontologies organized as Ontology Pattern Languages (OPLs) have
potential to amplify the benefits of ontology patterns [2]. In line
with these beliefs, we have been developing S-OPL, a Service
OPL. In this paper we presented the current version of S-OPL,
discussing how its patterns were derived by following the
approach described in [11].

During the development of the real case study discussed in
Section 4, we perceived some benefits to the development of the
Email Service Ontology. Firstly, the resulting ontology tends to
contain less inconsistence problems, since many of the potentially
recurring source of inconsistencies in the service domain tend to
be solved by the basic patterns of the core ontology. Secondly, the
accomplishment of the ontology development process tends to be
faster by the massive reuse of modeling fragments with their
respective axiomatization and modeling decisions embedded in
the patterns. Finally, S-OPL guides pattern selection, facilitating
their combination.

Fig. 5. Service Agreement Sub-Ontology.

We should also highlight that, since the patterns constituting S-
OPL are described in OntoUML, they carry out the ontological
and formal semantics embedded in the micro-theories (e.g., about
role mixins, roles, relators, etc.) comprising the Unified
Foundational Ontology (UFO) [6]. As a consequence, many of
them are systematically constructed via the manifestation of UFO
foundational patterns. Moreover, the structures constituting these
patterns are carried out and, hence, are also manifested in the
ontologies created using S-OPL.

Although we have perceived these benefits, experiments with
subjects have to be conducted to truly confirm them. In particular,
we envision two interesting experiments: one comparing the
construction of domain service ontologies by directly extending
UFO-S with by using S-OPL; the other comparing the use of S-
OPL with the use of the catalogue of patterns comprising S-OPL
without the S-OPL process. The first experiment could allow us to
evaluate whether the pattern approach truly improves the ontology
development process. The second aims at evaluating the real
benefits of providing a guide for using the patterns.

6. ACKNOWLEDGMENT
This research is funded by the Brazilian Research Funding
Agency CNPq (Processes 485368/2013-7 and 461777/2014-2) as
well as the “Science Without Borders” project on “Ontological
Foundations of Service Systems” funded by CAPES/CNPq.

7. REFERENCES
[1] Barcellos, M.P., Falbo, R.A., and Frauches, V.G. Towards a

Measurement Ontology Pattern Language. First Joint
Workshop Onto.Com/ODISE on Ontologies in Conceptual
Modeling and Information Systems Engineering, (2014).

[2] Falbo, R.A., Barcellos, M.P., Nardi, J.C., and Guizzardi, G.
Organizing Ontology Design Patterns as Ontology Pattern
Languages. Proceedings of the 10th Extended Semantic Web
Conference - ESWC 2013, (2013).

[3] Falbo, R.A., Ruy, F.B., Guizzardi, G., Barcellos, M.P., and
Almeida, J.P.A. Towards an Enterprise Ontology Pattern
Language. Proceedings of the 29th Annual ACM Symposium
on Applied Computing, ACM (2014), 323–330.

[4] Falbo, R.A., Guizzardi, G., Gangemi, A., and Presutti, V.
Ontology Patterns: Clarifying Concepts and Terminology.
Proceedings of the 4th Workshop on Ontology and Semantic
Web Patterns, (2013).

[5] Guizzardi, G., Falbo, R.A., and Guizzardi, R.S.S. Grounding
Software Domain Ontologies in the Unified Foundational
Ontology (UFO): the Case of the ODE Software Process
Ontology. Proceedings of the XI Iberoamerican Workshop
on Requirements Engineering and Software Environments,
(2008), 244–251.

[6] Guizzardi, G. Ontological Foundations for Structural
Conceptual Models, Universal Press. 2005.

[7] Nardi, J.C., Falbo, R.A., Almeida, J.P.A., et al. A
commitment-based reference ontology for services.
Information Systems 54 (2015), 263–288.

[8] Oberle, D., Bhatti, N., Brockmans, S., and Janiesch, C.
Countering service information challenges in the internet of
services. Journal of Business & Information System
Engineering (BISE) 5, (2009).

[9] Presutti, V., Daga, E., Gangemi, A., and Blomqvist, E.
eXtreme Design with Content Ontology Design Patterns.
Proc. Workshop on Ontology Patterns, (2009).

[10] Quirino, G.K., Nardi, J.C., Barcellos, M.P., et al. Towards a
Service Ontology Pattern Language. Proceedings of the 34th
International Conference on Conceptual Modeling (ER2015),
Springer (2015), 187 - 195.

[11] Ruy, F.B., Reginato, C.C., Santos, V.A., Falbo, R.A., and
Guizzardi, G. Ontology Engineering by Combining Ontology
Patterns. 34th International Conference on Conceptual
Modeling (ER’2015), Springer (2015), 173–186.

