

Dynamic Reconfiguration of
Object-Middleware-based
Distributed Systems

João Paulo Andrade Almeida

Thesis for a Master of Science degree in
Telematics from the University of Twente,
Enschede, The Netherlands

Graduation Committee:

prof. dr. ir. L. J. M. Nieuwenhuis

drs. M. Wegdam

Dr. L. Ferreira Pires

dr. ir. M. J. van Sinderen

Enschede, The Netherlands

June, 2001

Abstract

Distributed systems with high availability requirements have to support
some form of dynamic reconfiguration. This means that they must provide
the ability to be maintained or upgraded without being taken off-line.

This thesis addresses the dynamic reconfiguration of distributed applications
that run on top of an object-middleware infrastructure. In this context, a
system configuration is defined as a structure of software entities at
application-level. Dynamic reconfiguration entails operations for the
replacement, migration, creation and removal of these entities at run-time.

This thesis proposes an approach to dynamic reconfiguration for
applications built using object-middleware and realizes this approach with
an architecture and design of middleware support for reconfiguring
CORBA-based distributed systems at run-time.

i

Table of contents

1 INTRODUCTION...1
1.1 MOTIVATION 1
1.2 OBJECTIVES 2
1.3 STRUCTURE 3

2 OBJECT MIDDLEWARE ...4
2.1 THE ROLE OF OBJECT MIDDLEWARE 4
2.2 OMG’S SPECIFICATIONS 5
2.3 THE OBJECT MODEL 5
2.4 THE OBJECT MANAGEMENT ARCHITECTURE 6

3 DYNAMIC RECONFIGURATION..9
3.1 PROCESS OVERVIEW 9
3.2 RECONFIGURATION DESIGN ACTIVITIES 10
3.3 CHANGE MANAGEMENT 11

3.3.1 Structural integrity 11
3.3.2 Mutually consistent states 12
3.3.3 Application-state invariants 13
3.3.4 Impact on Execution 15

3.4 CURRENT RECONFIGURATION APPROACHES 16
3.4.1 Kramer and Magee 16
3.4.2 Moazami-Goudarzi 20
3.4.3 Bidan et al. 22
3.4.4 Wermelinger 22
3.4.5 Observations 23

4 A DYNAMIC RECONFIGURATION APPROACH ..24
4.1 MOTIVATION 24
4.2 REQUIREMENTS 25
4.3 SUPPORTED RECONFIGURATION 25

4.3.1 Object Creation 25
4.3.2 Object Replacement 26
4.3.3 Object Migration 27
4.3.4 Object Removal 27
4.3.5 Reconfiguration Steps 28

4.4 CHANGE MANAGEMENT 29
4.4.1 Structural integrity 29
4.4.2 Mutually consistent states 30
4.4.3 Application-state invariants 33
4.4.4 Impact on Execution 33

4.5 LIMITATIONS 34
4.6 COMPARISON WITH STUDIED APPROACHES 34

4.6.1 Application-description Models 34
4.6.2 Reconfiguration Scenarios and Computing Model 35
4.6.3 Impact on Execution 36
4.6.4 Transparencies 36

ii

5 DYNAMIC RECONFIGURATION SERVICE ...37
5.1 OVERVIEW 37
5.2 CHANGE DESIGNER’S VIEW 38

5.2.1 Creation and Removal 39
5.2.2 Factory Management 40
5.2.3 Reconfiguration Steps 41
5.2.4 State Translation 43

5.3 APPLICATION DEVELOPER’S VIEW 44
5.3.1 Reconfigurable Objects 44
5.3.2 Reconfigurable-Object Factories 47
5.3.3 Clients View 49

6 DESIGN AND IMPLEMENTATION...51
6.1 LOCATION-INDEPENDENT OBJECT REFERENCES 51

6.1.1 Location Agent implementation 52
6.2 SELECTIVE REQUEST QUEUING 54

6.2.1 Selector and Queue Objects 54
6.2.2 Allocation of Selector and Queue Objects 55
6.2.3 ORB Instrumentation 56
6.2.4 Solution based on Portable Interceptors 56

6.3 PERFORMING RECONFIGURATION STEPS 58
6.3.1 Object Creation 58
6.3.2 Object Replacement 59
6.3.3 Object Migration 60
6.3.4 Object Removal 60
6.3.5 Composite Reconfiguration Steps 60

6.4 PORTABILITY AND INTEROPERABILITY CONSIDERATIONS 61
6.5 EVALUATION 61

6.5.1 Overhead during normal operation 62
6.5.2 Impact on execution during reconfiguration 63

7 USAGE EXAMPLES..65
7.1 RECONFIGURATION OF A BANKING APPLICATION 65

7.1.1 Initial Configuration 65
7.1.2 Multiple Replacements 69
7.1.3 Multiple Replacements and Creation 71
7.1.4 Multiple Replacements with Sub-Typing 72
7.1.5 Conclusions 74

7.2 LOAD-BALANCING MANAGER BASED ON MIGRATION 75
7.2.1 Implementation of the Load Agent 76
7.2.2 Implementation of the Load Manager 76
7.2.3 Implementation of Example Application Objects 77
7.2.4 Tests 78
7.2.5 Conclusions 80

8 CONCLUSIONS..81
8.1 MAIN CONTRIBUTIONS 81
8.2 GENERAL CONCLUSIONS 82
8.3 FUTURE WORK 83

REFERENCES ...85

APPENDIX A IDL INTERFACES..87

iii

Preface

This thesis describes the results of a Master of Science assignment at Lucent
Technologies. This assignment has been carried out from September 2000 to
June 2001 at the Bell Labs Advanced Technologies location in Twente, in
co-operation with the Telematics Systems & Services (TSS) Group of the
Centre for Telematics and Information Technology (CTIT) of the University
of Twente.

Parts of the work presented in this thesis have been described in two
scientific papers [1, 2] and in Lucent Technologies' response [32] to a
Request For Information (RFI) on Online Upgrades issued by the Object
Management Group (OMG).

I would like to thank my supervisors Maarten Wegdam (Lucent
Technologies), Luís Ferreira Pires, Marten van Sinderen and Bart
Nieuwenhuis (University of Twente). They have given most useful support
for the development of this thesis and have co-authored the two papers that
have been written in the development of this work.

I would also like to thank the colleagues at Lucent and at the university for
the pleasant working environment, and the many friends that have made this
two-year stay in Enschede so gezellig.

Enschede, 5th June 2001.

João Paulo Andrade Almeida.

iv

1 Introduction

This chapter presents the motivation, the objectives, and the structure of this
thesis. It identifies the relevance of dynamic reconfiguration in current distributed
computing systems and draws attention to the support of dynamic reconfiguration
in object-middleware.

This chapter is further structured as follows: Section 1.1 gives motivation for
dynamic reconfiguration of object-middleware-based systems, Section 1.2 states
the objectives of this thesis and Section 1.3 outlines the structure of this thesis by
presenting an overview of the chapters.

1.1 Motivation

Distributed computing systems have been in widespread use for several years in
commercial, industrial and research environments. These systems are currently
deployed in mission-critical and long-running applications, such as
telecommunication switches and e-commerce solutions.

The reliance on distributed computing systems imposes restrictions on the
possibility of restarting them or taking them off-line. It is usually not acceptable,
e.g., for economical or safety reasons, to cause major interruptions in the service
these systems provide. These systems have high availability, adaptability and
maintainability requirements, and, in order to remain useful, they have to cope
with advances in technology, modifications of their operating environment and
ever-changing human needs [13].

The aim of dynamic reconfiguration [3, 4, 5, 7, 9, 10, 13, 15, 27, 34] is to allow a
system to evolve incrementally from a configuration to another at run-time [9], as
opposed to design-time, while introducing little (or ideally no) impact on the
system’s execution. In this way, systems do not have to be taken off-line, rebooted
or restarted to accommodate changes.

New generation distributed applications often consist of co-operating objects that
run on a variety of hardware and operating systems and make use of object-
middleware technology, such as CORBA [16], Java RMI [29] and DCOM [12].

1

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

Object-middleware facilitates the development of distributed applications by
providing distribution transparencies to the application developers, and shielding
the developer from the heterogeneity of operating systems and communications
systems.

Object-middleware offers a widely accepted approach for the provision of
flexible, distributed computing environments. As such, there are many systems
that would profit from dynamic reconfiguration facilities for object-middleware.
The development of these systems would be facilitated through the inclusion of
(transparent) reconfiguration support in the middleware platform. Embedding
reconfiguration functionality in a middleware platform is a promising way to
leverage this functionality with maximum transparency to the application
developer.

1.2 Objectives

The problem of reconfiguration may involve all levels (from hardware to the
application) and all phases of software development (requirements to
implementation) [34].

This thesis addresses the reconfiguration of distributed applications that run on
top of an object-middleware infrastructure. In this context, a system configuration
is defined as a structure of software entities at application-level. Dynamic
reconfiguration entails operations for the replacement, migration, creation and
removal of these entities at run-time.

More specifically, this thesis focuses on the support of dynamic reconfiguration in
middleware. Its main objectives are (1) to propose an approach to dynamic
reconfiguration for applications built using object-middleware and (2) to realize
this approach with an architecture and design of middleware support for
reconfiguring CORBA-based distributed systems at run-time. Dynamic
reconfiguration of the middleware infrastructure itself is outside the scope of this
thesis.

The dynamic reconfiguration approach should be applicable to a broad class of
applications and should support a broad range of reconfiguration operations. It
should address relevant consistency issues that may arise during reconfiguration
and minimize the impact of reconfiguration on application execution. The
requirements imposed on the development process should be minimized.

The support for dynamic reconfiguration should be integrated in the middleware
infrastructure, and it should be perceived by the users of the infrastructure as a
service that provides reconfiguration transparency. The dynamic reconfiguration
service should minimize the requirements on the application layer and maximize
the transparency for the involved CORBA objects.

This thesis does not focus on the design activities that are undertaken to obtain a
new version of a system or of its constituting parts. Neither does it intend to
provide tools to support the description, testing and validation of reconfiguration.
It rather aims at the activities to be undertaken in order to apply a set of well-
defined reconfiguration operations to a running application.

2

1.3 Structure

The sequence of the chapters in this thesis reflects the order in which these issues
have been dealt with throughout the research process. This thesis is structured as
follows:

� Chapter 2 provides a brief introduction to the distributed-software model
adopted in this thesis, and describes the particular middleware technology
chosen for the architecture, design and implementation of our dynamic
reconfiguration service.

� Chapter 3 is the result of a literature study in the area of dynamic
reconfiguration of distributed systems, and introduces some important
terminology, definitions and concepts used to discuss about dynamic
reconfiguration. Furthermore, it presents some of the current approaches to
dynamic reconfiguration and compares these approaches.

� Chapter 4 proposes a new dynamic reconfiguration approach that exploits
particularities of object-middleware distributed systems. This approach has
been used in the definition of our dynamic reconfiguration service.

� Chapter 5 describes the architecture of the proposed dynamic reconfiguration
service, presenting both the application developer’s view and the change
designer’s view.

� Chapter 6 describes the design and implementation of the dynamic
reconfiguration service realized in a prototype. Performance measurements
obtained with the prototype are also presented in the chapter.

� Chapter 7 illustrates the usage of the dynamic reconfiguration service through
different validation scenarios.

� Finally, Chapter 8 presents important conclusions and future directions.

3

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

2 Object Middleware

This chapter introduces the object model adopted in this thesis, and presents a
particular object-middleware architecture that uses this model. The dynamic
reconfiguration approach proposed in this thesis assumes this model, and the
dynamic reconfiguration service populates the described middleware architecture.

This chapter is further structured as follows: Section 2.1 introduces object-
middleware and its relevance to supporting distributed applications, Section 2.2
presents the role of the Object Management Group (OMG) in object middleware,
Section 2.3 describes OMG’s object model and Section 2.4 describes OMG’s
Object Management Architecture (OMA) and the components that populate it.
This chapter provides a brief introduction to OMG’s object model and the OMA.
For a more detailed description, refer to OMG’s standards [16, 22].

2.1 The Role of Object Middleware

Object middleware is gaining wide acceptance as a generic software infrastructure
for distributed computing systems. A growing number of applications are
designed and implemented as a set of collaborating objects using object
middleware, such as CORBA [16], Java RMI [29] and DCOM [12].

Object middleware offers interaction support to application objects, which may be
deployed in different computer nodes. A middleware platform is a software
infrastructure designed to provide several transparencies for the application
designer, facilitating distributed application development. For example, a
distributed application programmer does not have to be concerned with network
types, transport mechanisms, byte ordering, server locations, object activation,
servant implementations, or target operating systems. Object middleware makes
this all transparent. It provides a uniform interaction pattern, independent of the
underlying node and network technologies.

4

2.2 OMG’s Specifications

The Object Management Group (OMG) was founded in 1989 with the objective
of providing standards in distributed object computing. Currently, the OMG has
more than 800 members, including system vendors, users and academic
institutions.

The first key specifications produced by the OMG – the Object Management
Architecture (OMA) [22] and its core, the Common Object Request Broker
Architecture specification [16] – provide an architectural framework that
accommodates a wide variety of distributed systems. These specifications supply
a set of general-purpose abstractions and concrete services needed to realize
practical solutions for the problems associated with distributed heterogeneous
computing.

The OMA provides the conceptual infrastructure upon which supporting
specifications are based. It uses an object model [16, 22] to define the entities that
comprise a distributed system, how they interoperate, and how designers can
specify their behavior. This object model is described in Section 2.3, using the
terminology introduced in [28].

The OMA is populated by concrete elements which are supplied by a different
number of vendors and comply with OMG’s specifications. Some of these
elements are described in Section 2.4.

2.3 The Object Model

According to the CORBA object model, distributed applications consist of a
collection of objects, which are possibly geographically distributed, i.e., they may
be deployed in different computer nodes.

From an abstract point of view, an object is an identifiable, encapsulated entity
that provides services to other objects through its interface. The interface of an
object shields the other objects from the internal characteristics of this object, like
its internal data representation, algorithms or executable code. An object plays the
role of a client object when it uses the service of another object, which is called a
target object.

A client object can use the service of a target object by issuing a request on the
interface of that object. An interface defines the set of operations of a target object
that a client object is allowed to invoke by issuing a request. An interface
definition provides the syntax for invoking operations on this interface, like the
parameters required by the operations and their possible results and exceptions.
Interfaces can be related by inheritance, in which case a derived interface is
constructed by incremental modification of other interfaces.

An instance of interaction between objects consists of the sequence of activities
starting when a client object issues a request for a target object and ending when a
response to the request is delivered to the client object. Since the client and the
target objects are possibly distributed, an object middleware infrastructure is used
to locate the target object, forward information on the request to this target object
and forward a response back to the client object. Furthermore, in order to interact
with a target object, a client object is only allowed to refer to the interface of the
target object. In this way the middleware infrastructure supports not only

5

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

distribution transparency, but it also enables the target object to be implemented
in many alternative programming languages.

Figure 1 shows the interaction between a client and a target object, and the role of
the middleware infrastructure in supporting this interaction.

Object-Middleware Infrastructure

Client
Target
Object1. client issues a

request

4. client receives
response

2. target object
receives request

3. target object
sends a response

Figure 1 – Example of request

A target object is implemented by a programming language construct that carries
out the computational activities necessary to process a request. In case a target
object should be capable of handling multiple requests simultaneously, it should
be implemented using a multi-threading execution model; otherwise a single-
threaded model suffices.

A target object may issue requests on other objects in order to process a pending
request. In this case, this object plays the role of a client in another instance of
interaction. A nested request is a request issued by an object and that has to be
processed in order to allow the processing of a pending request. An invocation
path is the path traversed by a sequence of nested requests. A re-entrant
invocation is a nested request issued on an object that issued a previous request of
the same invocation path. Figure 2 illustrates nested and re-entrant invocations.

re-entrant
invocation

Client Object A Object B

nested
request

Object C Object D

Figure 2 – Nested request and re-entrant invocations

In Chapter 4, we describe our dynamic reconfiguration approach, which assumes
the object model presented in this section.

2.4 The Object Management Architecture

The OMA is composed by three interface categories and an Object Request
Broker (ORB). These interface categories are:

� Application Interfaces – application-specific interfaces that fall outside of the
OMG standardization;

6

� Domain Interfaces – domain-specific interfaces for application domains such
as Finance, Healthcare, Manufacturing, Telecom, Electronic Commerce, and
Transportation;

� Object Services – domain-independent interfaces for general services which
are widely available and are likely to be useful in any distributed object
application. Examples of object services are the OMG Naming Service, the
OMG Event Service, and the OMG Trading Service.

An overview of the architecture is depicted in Figure 3.

Object Request Broker

Application Interfaces Domain Interfaces

Object Services

Finance, Healthcare,
Telecommunications, etc.

Naming, Events,
Transactions, etc.

Figure 3 – Interface categories and the ORB

The Object Request Broker (ORB) provides the basic mechanism by which
objects transparently make requests and receive responses. A client does not have
to know the mechanisms used to communicate with or activate an object, how the
object is implemented, nor where the object is located. The ORB thus forms the
foundation for building applications constructed from distributed objects and for
achieving interoperability between applications in both homogeneous and
heterogeneous environments. The Common Object Request Broker Architecture
(CORBA) [16] defines the programming interfaces to the ORB.

The ORB Core is the part of the ORB that provides the basic representation of
objects and the communication of requests. It supports the minimum functionality
to enable a client to invoke an operation on a target object. The ORB may provide
additional features via ORB Services, which in some ORB implementations are
layered as internal services over the core, or in other cases are incorporated
directly into the kernel of the ORB implementation.

ORB Services differ from Object Services in that they run below the application
and are invoked transparently and implicitly in the course of application-level
interactions. However, many ORB Services include interfaces which correspond
to conventional Object Services in that they are invoked explicitly by the
application. Security is an example of service with both ORB Service
functionality and Object Service interfaces, the ORB functionality being that
associated with transparently authenticating messages and controlling access to

7

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

objects, while the necessary administration and management functions resemble
conventional Object Services [16].

In Chapter 5, we introduce our dynamic reconfiguration service, which provides
reconfiguration transparency for CORBA applications with ORB Service
functionality and Object Service interfaces.

8

3 Dynamic Reconfiguration

This chapter introduces some important terminology, definitions and concepts
used to discuss dynamic reconfiguration, and presents and compares some of the
current approaches to dynamic reconfiguration. This chapter also presents a model
for dynamic reconfiguration, and discusses the importance of consistency
preservation. Furthermore, it considers the consequences of dynamic
reconfiguration on application execution.

This chapter is further structured as follows: Section 3.1 presents the definition of
dynamic reconfiguration and the dynamic reconfiguration model we adopted in
this work, Section 3.2 discusses the activities performed before the application of
reconfiguration, and Section 3.3 presents the main issues to be addressed by a
reconfiguration approach during reconfiguration in a running system. Finally,
Section 3.4 reviews and compares some of the current reconfiguration approaches.

3.1 Process overview

The purpose of dynamic reconfiguration is to make a system evolve incrementally
from its current configuration to another configuration. A system configuration is
defined as a structure of software entities. Dynamic reconfiguration should
introduce as little impact as possible (ideally no impact at all) on the system
execution.

Figure 4 depicts the dynamic reconfiguration model based on [9, 10], which has
been adopted in this thesis.

9

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

Running
System

(Configurationi)

Configuration
Informationi

Configuration
Informationi+1

Change
Management

Reconfig.
Design

Activities

Designi

Designi+1

Activities

Information

Change Spec.
& Constraints

Running
System

(Configurationi+1)

System

Figure 4 – Dynamic Reconfiguration model

In this model, reconfiguration design activities produce the specification of well-
defined changes and constraints to be preserved during reconfiguration. Changes
are specified in terms of entities and operations on these entities, and are applied
under the control of change management functionality, making the system evolve
from its current configuration to a resulting configuration. Change management
functionality uses configuration information, which refers to the relationship
between entities.

Change management functionality [9, 13, 15] controls the reconfiguration process
of a distributed system. This functionality must guarantee that (i) specified
changes are eventually applied to a system, (ii) a (useful) correct system is
obtained, and, (iii) reconfiguration constraints are satisfied. Reconfiguration
constraints are predicates on the reconfiguration process that restrict its execution,
such as, e.g., “the reconfiguration process must be completed within 10s”, or
“entity A should be available during the whole reconfiguration process”.

3.2 Reconfiguration design activities

Reconfiguration (or change) design activities are part of the design activities that
are executed during the lifetime of a system. These activities succeed system
deployment, in case of unforeseen changes, and precede the application of
reconfiguration to a system. They are performed by reconfiguration (or change)
designers.

Reconfiguration designers make use of the initial system configuration and the
new configuration, identifying modifications introduced, to produce a well-
defined set of changes to be applied to a system.

Changes are specified in terms of entities and operations on these entities. The
definition of entity depends on the level of granularity of reconfiguration.
Examples of entities include objects, groups of objects, components, group of
components, sub-systems, bindings and groups of bindings. Examples of
operations on entities are replacement, migration, creation, and removal.

The procedures for obtaining of a new system configuration are beyond the scope
of this work. These procedures are performed subsequently to design activities

10

and may include transformations on the initial system, re-specification, re-design
and re-implementation, re-validation, re-test of parts of the system, acquisition
and integration of new system parts, etc.

3.3 Change Management

Operating systems, distributed object platforms and programming languages do
have mechanisms to enable system evolution, by allowing modules to be located,
loaded and executed during run-time. However, these mechanisms normally do
not ensure consistency, correctness, or desired properties of run-time change.
Therefore, the sole use of these mechanisms to perform reconfiguration is error-
prone [15].

Performing reconfiguration on a running system is an intrusive process [13].
Reconfiguration may imply, for example, creation, removal, migration or
replacement of reconfigurable entities, and interference with ongoing interactions
between entities. Reconfiguration management must assure that system parts that
interact with entities under reconfiguration do not fail because of reconfiguration.

Preservation of system consistency is a major reconfiguration requirement. A
system can become useless in case the preservation of consistency is ignored. The
system under reconfiguration must be left in a “correct” state after
reconfiguration. In order to support the notion of correctness of a distributed
system, three aspects of consistency preservation requirements are identified [13].
A system is said to be correct if:

1. The system satisfies its structural integrity requirements,

2. The entities in the system are in mutually consistent states, and

3. The application state invariants hold.

A resulting running system Si+1 is said to be a correct incremental evolution of a
running system Si, if Si+1 is correct, and if the behavior of the affected entities
complies with the behavior expected by the unaffected system parts in case the
reconfiguration had not taken place. Each aspect of the correctness notion is
addressed in the remainder of this section.

3.3.1 Structural integrity

Structural integrity requirements constrain the structure of a system in terms of the
relationships between entities and the ways in which these entities might be put
together.

Reconfiguration may affect the structural integrity of the whole system, so that
corrective measures must be taken. For example, in the CORBA object model let
us consider the replacement of one object by its new version. Clients of the object
being replaced should be capable of invoking the operations of this object during
reconfiguration and after reconfiguration has taken place. This implies that two
conditions on the structural integrity of the system must hold: (i) the new version
of the object must satisfy the interface definition of the original object, providing
its service through the operations of this interface, and (ii) the clients should be
able to access the service provided by the object through the interface, i.e., in
CORBA terms the clients should obtain the object reference of the new object.

11

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

3.3.2 Mutually consistent states

Entities in a distributed system need to be in mutually consistent states if they are
to interact successfully with each other. Entities are said to be in mutually
consistent states, if each interaction between them, on completion, results in a
transition between well-defined and consistent states for the parts involved [13].
Interactions are the only means by which entities can affect each other’s state.

In order to provide an example, we can consider that object A invokes an
operation on B. Objects A and B are said to be in mutually consistent states if A
and B have the same assumptions on the result of the interactions between them.
To be more specific, either both of them perceive that an invocation has occurred
successfully, or both of them perceive that the invocation has failed. Suppose the
change manager decides to replace B by B′ after A initiated an operation
invocation on B. For the resulting system to be in a consistent state, either (i) the
invocation is aborted, A is informed and synchronization is maintained; or (ii) B
receives the request, finishes processing it and sends the response, and then is
replaced by B′; or, (iii) B is replaced by B′, and B′ has to honor the invocation, by
processing the request and sending a response to A. In case none of these
alternatives occur, A might be kept waiting forever for a response.

Reconfiguration approaches normally provide mechanisms to transform systems
with entities in mutually consistent states into resulting systems that maintain this
mutual consistency. Suppose we have capabilities for coping with the temporary
interruption of interactions for the purpose of reconfiguration and for continuing
these interactions in the resulting system. In this case the application developer
still has to develop means to restore the control state of the reconfigured entities,
allowing the interrupted interactions to continue after reconfiguration. This
control state would typically include the state of the invocation stack, program
counter or thread context information. This information would be closely tied to
specific characteristics of the implementation code, and it would be typically
platform-dependent. The mapping of the control state from one implementation to
the implementation of the new version would require deep knowledge of both
implementations and would hardly be manageable by the change designer,
preventing us from upgrading systems with arbitrary level of modification.
Therefore most approaches to reconfiguration do not consider this alternative.

When considering reconfiguration, we introduce the term affected entities to
denote those entities that are replaced, removed or migrated as a result of the
reconfiguration process. In order to guarantee that mutual consistency is preserved
after reconfiguration, most approaches prescribe that reconfiguration can only
start when the system is in the reconfiguration-safe state (or shortly safe state). If
a system is in the safe state, each of its affected entities has a self-contained and
stable state, and none of them is involved in interactions.

Figure 5 shows a classification of reconfiguration approaches according to their
choices on the preservation of mutual consistency.

12

preserve some
kind of mutual
consistency

do not preserve
mutual

consistency

driven safe state,
reconfiguration starts

with interactions in
progress

detected safe state,
reconfiguration starts
with no interactions

 in progress

non-abortabort interactions

on-going interactions
complete before
reconfiguration is
actually applied

on-going interactions
complete after

reconfiguration is
completed

Figure 5 – Reconfiguration approaches and preservation of mutual consistency

In the classification on Figure 5, approaches that preserve some form of mutual
consistency fall into two categories: the ones that reach the reconfiguration-safe
state by observing the system execution, and the ones that reach the
reconfiguration-safe state by driving the system to it. In the former case, the
reachability of the safe state depends on the behavior of the application. For
systems in which entities may interact continuously, there is no guarantee that
reconfiguration will ever take place. If interactions are always in progress,
reconfiguration is postponed indefinitely. In case the system is driven to a safe
state, it is the role of the reconfiguration algorithm to guarantee the reachability of
the safe state.

Existing approaches that work with a driven safe state fall into two major
categories [13]: those in which during reconfiguration interactions are aborted and
that rely on entities to recover from abortions, and those which avoid interactions
to be aborted. Mechanisms based on interaction abortion (e.g., [4]) require the
application developer to provide rollback mechanisms to recover from abortions
without proceeding to errors. Therefore, the range of applications to which these
mechanisms can be used is quite limited.

Mechanisms that do not abort interactions are designed to assure that interactions
in progress are eventually completed, either before reconfiguration has started or
after reconfiguration has finished.

This thesis proposes a mechanism that assures that on-going interactions complete
before reconfiguration takes place, by driving the system to a reconfiguration-safe
state. This mechanism is discussed in Chapter 4.

3.3.3 Application-state invariants

Application-state invariants are predicates involving the state of (a subset of) the
entities in a system. The preservation of safety and liveness properties of a system
depends on the satisfaction of these invariants [13].

For example, let us consider an object that generates unique identifiers. An
application-state invariant could be “all identifiers generated by the object are

13

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

unique within the lifetime of the system”. In order to preserve this invariant, the
new version of the object must be initialized in a state that prevents it from
generating identifiers that have been already used by the original version. So,
either (i) the set of all used identifiers is provided to the new version of the object,
or (ii) the last used identifier is provided to the new version of the object. The
latter alternative would require knowledge of the assignment mechanism used by
the original version.

If dynamic reconfiguration is to be useful in a broad range of scenarios, it ought to
provide mechanisms to allow the re-establishment of application invariants.

Most existing reconfiguration approaches rely on embedding the extra
functionality for dealing with invalidated invariants into reconfigurable entities
[13]. In this way, the responsibility to re-establish application invariants is solely
delegated to application entities, which must determine what course of actions is
needed to re-establish application invariants. For example, in Conic [10],
application designers are required to supply modules with embedded routines
(initialization and finalization) that are called whenever a reconfiguration
operation is executed. The complexity of these routines depends largely on the
nature of the application.

As pointed out in [13], this approach has serious drawbacks. Due to the generality
of possible changes to a system, individual entities are rarely in a position to
determine the course of actions to re-establish application invariants. This is
especially true when, as is often the case, invariants are expressed over the
combined state of a number of entities of the system.

Application entities developed to re-establish application invariants are likely to
lose their potential generality, since they embed configuration specific concerns
that prevent them from being used in other configurations. This is hardly
acceptable in flexible architectures, as it conflicts with the tendency to develop
systems based on the composition of general-purpose components.

Since embedding the necessary functionality to deal with invalidated invariants
into application entities is undesirable, the support platform should provide
mechanisms for change designers to specify how to re-establish application-state
invariants.

[13] proposes a scheme whereby invalidated invariants can be identified and re-
established by the change designer with little assistance from the application
developer. This scheme consists of requiring reconfigurable entities to provide
general-purpose state access-methods that can be invoked by a third party to query
or adjust the state of entities. These are called state-access methods, and would be
invoked by the change designer to query and alter a selected subset of an entity’s
internal state at runtime. The particular subset of the state that is exposed by these
access-methods is decided upon by the application designer. In general, entities
should provide “get” and “set” methods for state variables that control
synchronization and computational behavior of the entity. One might argue that
this scheme breaks encapsulation, once it allows external access to a component’s
internal state. Nevertheless, some form of introspection is necessary anyway for
the manipulation of run-time aspects of an entity.

The nature of the safe state discussed in Section 3.3.2 should be such that in the
safe state the invocation of state-access methods yields meaningful results. Thus,

14

a reconfigurable entity in a reconfiguration-safe state must have a consistent, self-
contained and accessible state.

3.3.4 Impact on Execution

Reconfiguration is an intrusive process, since during reconfiguration, some
system entities may become partially or totally unavailable, which can affect the
performance of the system as a whole. Determining to what extent a system is
affected during reconfiguration is relevant to assess the risks and costs in
performing dynamic reconfiguration. If the system during reconfiguration fails to
satisfy some non-functional requirements (e.g., hard response times), it may not
be feasible to reconfigure during run-time. For instance, dynamic reconfiguration
may be shown to be unacceptable due to safety reasons. This may be the case for
process control, where a failure to perform a critical activity within time can put
people’s lives in danger.

Impact on system execution can be defined as the effect of reconfiguration on the
provision of Quality of Service (QoS), i.e., on meeting a set of quality
requirements on the system’s behavior [8]. Therefore, the effects of
reconfiguration should be placed in the broad context of QoS provision.

The quantification of the impact of reconfiguration on system execution is not
trivial. Some reconfiguration approaches [9, 13] quantify the impact on system
execution as proportional to the number of system entities affected by
reconfiguration. These entities become idle or partially idle due to reconfiguration
and would otherwise execute normally. In [3] a more fine grained quantification is
proposed in which impact is said to be minimal if the reconfiguration affects the
smallest possible set of execution threads in system objects. In [34], it is argued
that more attention should be given to the period of time system entities are
affected by reconfiguration.

Application characteristics are important when determining the impact of
reconfiguration on execution. The reconfiguration algorithms chosen for an
approach cannot be evaluated if we refrain from considering, for example, the
level of coupling between system parts and the duration of the interactions
between these parts.

In order to better understand the implications of application characteristics to
system execution during reconfiguration, let us consider an application where
interactions might take up to some hours to complete. Further, let us consider the
replacement of an entity that has just initiated an interaction, using a
reconfiguration approach based on a driven safe state. If we choose for an
approach that allows on-going interactions to complete before reconfiguration, the
reconfiguration will have a large impact on system execution, as it might take
hours before the safe state is reached. During this time period, the affected system
parts may not initiate new interactions, which might prevent the rest of the system
from functioning. In contrast, if we choose an approach that aborts interactions,
the reconfiguration time can be reduced drastically.

Ultimately, the maximum acceptable level of disturbance on the provision of QoS
during reconfiguration is determined by the application.

15

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

3.4 Current Reconfiguration Approaches

This section describes some available approaches to dynamic reconfiguration
reported in the literature, extending the survey presented in [13]. The selected
approaches preserve mutual consistency without aborting interactions and strive
to minimize impact on system’s execution.

For each approach we present its overall considerations on reconfigurable
distributed systems, as well as the way it structures reconfiguration functionality,
the configuration information required to allow reconfiguration and its specific
mechanisms to guarantee correctness on the resulting system. These mechanisms
are compared throughout the section.

3.4.1 Kramer and Magee

The work of Kramer and Magee [9, 10] has been influential in the subsequent
works on dynamic reconfiguration. The definition of change management and the
reconfiguration model in Section 3.1 stem mostly from their work. Kramer and
Magee promote a strict separation between the structural description of a system
and the description of individual nodes. The first realization of their approach
could be seen in the Conic environment [9], and led to the development of the
approach called Configuration Programming and a configuration language named
Darwin [11].

In the Configuration Programming approach, a system is seen as a directed graph
whose nodes are the system nodes and whose arcs are connections between nodes.
The model assumes at most one connection between any pair of nodes. Nodes can
only affect each other states via transactions. A transaction is an instance of
information exchange between two and only two nodes, initiated by one of the
nodes, and consists of a sequence of one or more message exchanges between the
two connected nodes. The model also assumes that transactions complete in
bounded time and that the initiator of a transaction is aware of its completion.
Figure 6 shows an example of a simple system, in which nodes A1, A2 and A3 are
able to initiate transactions on a node B.

A1

A2

A3

B

Figure 6 – A simple system

In this approach, a change is described in terms of modifications to the structure
(configuration) of the application system. Changes take the form of node creation
and deletion, and connection establishment and removal, and are applied by a
Configuration Manager.

16

The set of management primitives for both specifying and modifying the structure
of systems is:

� create N:T [at L] - Create node N of type T, optionally specify a physical
location L;

� remove N - Remove node N;

� link N1 to N2 - Create a connection from node N1 to node N2;

� unlink N1 from N2 - Remove a connection between node N1 and node N2.

Reconfiguration-safe state

This approach has been the first to propose an avoidance-based mechanism to
ensure that reconfigurations do not result in mutually inconsistent node states.

Kramer and Magee’s approach uses the description of the changes and the current
system configuration:

1. to identify the set of nodes whose activities must be restricted if
reconfiguration is to proceed without leaving them in mutually inconsistent
states, and;

2. to instruct these nodes to restrict their behavior by becoming passive, so that
the safe state for reconfiguration quiescence is brought about over the affected
nodes.

In this approach, node interactions are bounded transactions which are assumed to
be the only means through which connected node can affect each other’s states.
Both parties involved in a transaction are informed of its completion. A
transaction t is said to be dependent on the consequent transactions t1, t2,… tn
(written t/t1t2..tn), if t can complete only after t1, t2,… tn complete, and independent
otherwise. This approach supports reconfiguration in systems with independent
and dependent transactions.

Reachability of the safe state

The safe state for reconfiguration is reachable in finite time. This is discussed
below for systems with only independent transactions and then generalized for
systems with dependent transactions.

For systems with independent transactions a node is said to be in the passive state
if it:

(a) continues to accept and service transactions, but

(b) does not initiate new transactions, and

(c) any transactions it has already initiated have completed.

A node reaches the passive state by refraining from starting new transactions and
waiting for all the transactions it has started to terminate. A node is said to be
passive if it is in a passive state. Passive nodes are not necessarily in a

17

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

reconfiguration safe state, since they continue to accept and service transactions.
Therefore, the notion of quiescence is relevant. A node is said to be quiescent if:

(d) it is in the passive state, and

(e) it is not currently engaged in servicing any transactions (self initiated or
otherwise), and

(f) no transactions have been or will be initiated by other nodes which require
service from this node.

The passive state can be brought about by nodes unilaterally. The quiescent state,
in contrast, can only be brought about by nodes in cooperation with other nodes in
the system. A node N becomes quiescent if and only if all nodes in its passive set
PS, denoted PS(N) are in the passive state. For independent systems, the
membership of PS(N) is as follows:

(a) the node N, and

(b) all nodes that can directly initiate transactions on N, i.e., all nodes directly
connected to N.

If all nodes in PS(N) are passive, N as well as all nodes that can initiate
transactions on N are passive. Therefore, all transactions involving N are complete
and new transactions will not be initiated, satisfying quiescence requirements a)
and b). As the approach assumes transactions to complete in bounded time, it
follows that quiescence is reachable within bounded time.

For systems with dependent transactions the situation is more complicated and
the definition of passive and PS(N) need to be amended to allow for the initiation
and service of consequent transactions. Consider the system depicted in Figure 7,
consisting of three nodes N1, N2 and N3. Suppose that N3 is in the passive state
and N1 has initiated transaction a. In this situation, a cannot complete because b
depends on a consequent transaction c which N3 cannot initiate. This means that
neither N1 nor N2 will be able to move into the passive state in bounded time if
requested.

N2N1 N3a/b

b/c

c

passive

Figure 7 – A system with dependent transactions

To ensure the reachability of the passive state and consequently the reachability of
the quiescent state, the requirements of the passive state have been modified as
follows. For a dependent system a node is said to be in the passive state if it:

(a) continues to accept and service transactions and initiate consequent
transactions, but

(b) does not initiate new (non-consequent) transactions, and

(c) any (non-consequent) transactions it has already initiated have terminated.

18

The set of passive nodes is extended to include all the nodes which are capable of
initiating transactions indirectly on N. The enlarged passive set for a node N
(EPS(N)) is defined as follows:

(a) all nodes in PS(N) are in EPS(N), and

(b) all nodes that can initiate dependent transactions that result in consequent
transactions on N are in EPS(N).

This extension guarantees that node N reaches a quiescent state in finite time.

Reconfiguration rules

So far, we have discussed how nodes can reach quiescent states. Nevertheless, we
have not discussed which set of nodes should be in the quiescent state for
reconfiguration. In Kramer and Magee’s approach, reconfiguration actions are
node deletion, node linking and unlinking, and node creation. For each of these
actions, reconfiguration rules in Table 1 apply:

Table 1 – Reconfiguration rules and justification

Rule: The node targeted for removal must be
quiescent and isolated, where isolated means
that no connections are directed to it from
other nodes or from it to other nodes.

NODE REMOVAL

Justification: An isolated node cannot affect
the system and therefore can be independently
removed.

Rule: The node N from which the connection
is directed must be in the quiescent state.

NODE LINKING AND
UNLINKING

Justification: Quiescence of the initiator node
ensures that its state is consistent and frozen
with respect to that connection, and all
transactions involving this node are complete.

Rule: The node should be quiescent. NODE CREATION

Justification: Trivially true, a newly created
node is initially isolated and can neither
respond to nor initiate transactions.

Using these rules it is possible to obtain the order in which nodes should be made
passive, removed, created, connected and disconnected. Kramer and Magee also
define an algorithm that allows multiple reconfigurations to be conducted
simultaneously.

Some criticisms to Kramer and Magee’s approach are:

� it places a heavy burden on the application programmer who must write all
nodes of the system such that they respond correctly to the command to drive
to a passive state [3, 13],

� even small reconfigurations involving a few nodes result in substantial
disruptions to the system [13, 34], and

19

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

� the re-establishment of application invariants is done through routines
embedded in nodes [13].

3.4.2 Moazami-Goudarzi

In [13], Moazami-Goudarzi proposes a framework that identifies the basic
elements of a change management subsystem and establishes a separation
between the responsibilities of the components that implement this subsystem.
Figure 8 depicts this framework, which consists of a reconfiguration manager
(RM), a reconfiguration database (CDB), the consistency manager (CM) and a
number of runtime hooks in the application.

Event Composition
Service (ECS)

Reconfiguration
Manager (RM)

Application

Consistency
Manager (CM)

C
hange M

anagem
ent

Subsystem

Configuration Database
(CDB)

update interface

query interface

events

events

condition

events

environment

Figure 8 – Moazami-Goudarzi’s Reconfiguration Framework [13]

The reconfiguration manager (RM) selects and executes reconfiguration scripts
upon the arrival of triggering messages from an Event Composition Service
(ECS). The RM coordinates the execution of the scripts with the consistency
manager (CM) and configuration database (CDB), such that reconfiguration
operations do not interfere with each other and leave components in mutually
consistent states.

The consistency manager (CM) encapsulates the safety mechanism necessary to
ensure that components are left in mutually consistent states after reconfiguration.
Thus reconfigurations only proceed after the CM has been consulted and has
signaled that they can proceed safely.

20

The configuration database (CDB) maintains and affects changes to the system
configuration. It exports an interface that can be used to query and modify the
system configuration. Interactions with the CDB are transaction-based and are
performed through an internal concurrency control module that coordinates
concurrent access to the system configuration.

The event composition service (ECS) evaluates the triggering conditions written
by the change designers and generates messages that trigger the execution of the
reconfiguration scripts. In this framework, reconfiguration scripts are written in a
reconfiguration language.

The re-establishment of the application invariants is controlled from within the
reconfiguration program, with the aid of specialized runtime hooks.

Preserving Consistency

[13] presents an alternative to Kramer and Magee’s approach to reach a
reconfiguration safe state. It assumes that components in the system do not
interleave transactions, i.e., while a transaction is in progress, a component does
not participate in any new one. In this way, it is possible to drive a component to a
quiescent state by blocking its execution when no transactions are being serviced.
As in Kramer and Magee’s approach, for a component to block within finite time
(therefore reaching quiescence), transactions are assumed to complete within
finite time.

The basic algorithm is thus to request components in the quiescent set (called
BSet, short for blocking set [13]) to block their execution. Consider that a
component Q is to be driven to the quiescent state. Since some of the nodes that
depend on Q may also have to block, Q must temporarily unblock to service some
requests. However, the mechanism must guarantee that at some point no more
such requests arrive and Q remains blocked. Therefore, a blocked node should be
selective when serving transactions. Such a component cannot process just any
incoming transaction, since the transaction might come from a component that is
not affected in any way by the reconfiguration and as such it might initiate a new
transaction any time. Thus the blocked component would have to unblock
unpredictably and the safe state needed for reconfiguration to begin would never
be reached. At least the transactions initiated by other BSet members will have to
be serviced in order for them to become blocked. However, not every request
from a non-BSet member can be ignored, since this might indirectly prevent
another component in the BSet from blocking.

The BSet grows dynamically with outgoing transactions. When a component gets
a request from a BSet member, it becomes a member too, and only requests from
BSet members are attended; all other are queued and serviced after
reconfiguration. A distinction is made between members of the original BSet and
members of the extended BSet. Members of the original BSet are affected directly
by reconfiguration. Members of the extended BSet are those that have blocked in
order to let the members of the original BSet get blocked. When all the members
of the original BSet are blocked, the components in the extended BSet can be
unblocked. The BSet thus first grows and then shrinks.

This alternative addresses some of the criticisms to Kramer and Magee’s work
mentioned before. Nevertheless, the class of distributed systems to which this
alternative can be applied is much more limited than in the case of Kramer and
Magee, since components in this approach cannot treat more than one transaction

21

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

simultaneously. In a CORBA-based system this would imply that reconfiguration
of systems with re-entrance and multi-threading would not be supported.

3.4.3 Bidan et al.

In [3], the implementation of a reconfiguration service in CORBA is considered.
A distributed system in this case consists of a number of objects that communicate
over an ORB. The reconfigurable entity is a CORBA object and the configuration
information consists of a directed graph of objects connected through links.
Objects A and B are said to be linked if A can potentially initiate a CORBA
invocation on a target object B. Links are therefore equivalent to connections in
Kramer and Magee’s approach.

This approach offers node consistency, i.e., it is primarily concerned with
preserving mutual consistent states, refraining from addressing application
consistency. More specifically, they provide RPC-integrity, which is defined as
“all RPCs initiated will be completed before the changes are effected.” By
providing node consistency they avoid addressing application state invariants and
state transfer issues.

The reconfiguration service is designed for CORBA applications with multi-
threaded objects, following the thread-per-request execution model, and extends
the LifeCycle facilities [18] to support dynamic reconfiguration of a CORBA
application. It provides the primitives create and remove to respectively create
and remove objects, and the primitives link, unlink, transferLink and transferState
to respectively create and destroy a link, transfer the requests pending on a
passivated link to another existing link, and to transfer the state from one object to
another.

Reconfigurable objects should implement functionality to passivate a link, i.e., to
block the thread that may use the specific link.

Preserving Mutual Consistent States

In [3], the algorithm to guarantee mutual consistent states works at a finer
granularity level than the approaches previously presented. This approach
considers the passivation of links instead of quiescence, passivation or blocking of
components. The advantage of this approach is that multi-threaded components
can continue functioning partially, since only threads that may use the passivated
links are required to block. Nevertheless, this implies additional burden to the
application developer, which must provide functionality to restrict individual
threads that use a specified link.

Unlike the approaches in [9, 34], this algorithm is not suitable for a system with
re-entrant transactions. Since Bidan et al.’s work has focused on CORBA-based
distributed systems, this means that the reconfiguration of systems with re-entrant
invocations is not supported. Another major limitation of this approach is that it
does not support multiple simultaneous object replacements.

3.4.4 Wermelinger

Wermelinger’s approach [34] considers link passivation, as in [3]. Nevertheless,
more fine-grained information on the reconfigurable entities is used in this
approach than in [3].

22

A refined model for a distributed system is introduced, with the notion of port
dependencies. A system is defined as a set of connected nodes, where a
connection is given by an initiator port and a recipient port. Every node has a node
interface, where port dependencies are specified. A port dependency is defined by
a recipient port and an initiator port. Port I is said to be dependent of port R, if
upon reception of a transaction in R, a transaction is initiated in connections
leaving from I. This makes it possible to relate transactions and derive transaction
dependencies, such as in [10]. Figure 9 shows an example of a simple system
using the refined model.

Recipient Port

Initiator Port

Port Dependency
Figure 9 – A simple system with port dependencies

Wermelinger claims that the approach is suitable for multi-threaded and re-entrant
nodes. The approach requires a component to be shipped with a description of a
node’s internal port dependencies, which are static and defined at design time.
This sort of specification is typically not available, especially for off-the-shelf
components.

Wermelinger’s work is presented at a theoretical level, and so far it has not been
implemented.

3.4.5 Observations

A common characteristic of the approaches we have studied is the definition of a
reconfiguration-safe state. A system is driven into this safe state by algorithms
that interfere with the execution of the system.

All the approaches studied use representations of the system, which are described
in configuration languages [9, 34] or in configuration graphs [3, 13] to identify
which activities of the system should be deferred in order to reach the safe state.
The use of these representations may have implications on the scalability of the
solutions.

The approaches studied do not assume the same computation model. For example,
in the computation model assumed by Moazami-Goudarzi, an application entity
cannot be involved in several interactions simultaneously, while in the
computation model assumed by Kramer and Magee this restriction does not apply.
The computation model assumed by an approach has direct implications on the
definition of a safe state and the algorithms to reach this safe state.

23

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

4 A Dynamic Reconfiguration Approach

This chapter proposes an approach to dynamic reconfiguration that is tailored to
object middleware. The approach assumes the object model presented in Chapter
2, and addresses each of the correctness aspects identified in Chapter 3.

This chapter is further structured as follows: Section 4.1 motivates the
development of a new approach aimed at object-middleware-based applications,
Section 4.2 states the requirements for such an approach, Section 4.3 presents the
reconfiguration possibilities supported by our approach and Section 4.4 describes
the mechanisms prescribed for change management. Finally, Section 4.5 discusses
the limitations of the approach and Section 4.6 compares it to the approaches
found in the literature.

4.1 Motivation

Most of the approaches found in the literature do not address object-middleware-
based applications specifically. As a consequence, either they consider a
computing model that is limited with respect to our object model, e.g. ruling out
multi-threading or re-entrance, or they fail to address issues that are particularly
relevant for object middleware systems, such as, e.g., interface evolution.

While some dynamic reconfiguration approaches that have not been originally
developed for middleware platforms may be used in distributed object
applications, only an object-middleware-based approach is able to profit from
particular characteristics of object middleware.

Since object middleware facilitates transparencies for the application developer, it
provides an opportunity for the provision of reconfiguration transparency.
Application developers can profit from reconfiguration functionality with the
benefits of a middleware-supported service, e.g., interoperability, application
portability, language independence, and wide support, requiring minimal expertise
in the field of dynamic reconfiguration.

24

4.2 Requirements

The following requirements have been considered in the conception of our
approach:

� Correct incremental evolution. The approach must include mechanisms to
obtain a correct incremental evolution of a system, as defined in Section 3.3.
The integrity of the object model must be preserved under normal operation,
i.e. when reconfiguration is not taking place, and during reconfiguration.

� Impact on execution. The approach should minimize impact on execution
during reconfiguration, and it should account for little overhead during normal
operation.

� General applicability. The approach should be applicable to a broad range of
applications. It should be possible to reconfigure applications built from off-
the-self components, applications with multi-threaded and single-threaded
execution models, re-entrant objects, stateless objects and stateful objects.

� Scalability. The approach should account for scalability, particularly with
respect to the number of clients. Distributed object systems often have a large
and fast-changing number of clients.

� Transparencies. Reconfiguration should be fully transparent to clients, and as
transparent as possible to the target object developer, requiring minimal
expertise from application developers. In this way, application developers can
focus on application specific functionality.

� Language independence. The approach must not require the use of specific
programming languages for application development.

� No additional formalisms. The approach must not require the use of additional
formalisms for application development.

4.3 Supported Reconfiguration

In our dynamic reconfiguration approach, entities subject to reconfiguration are
called reconfigurable objects. A reconfigurable object is an object, as defined in
the object model presented in Chapter 2, that can be manipulated through
reconfiguration operations, namely creation, replacement, migration and removal.

4.3.1 Object Creation

Object creation allows an application to create an object at run-time. From the
moment an object is created, a reference to its interface is used to communicate
with it. Object creation is a trivial case from the perspective of change
management, since applications are expected to cope with it.

Figure 10 depicts object creation from an abstract perspective.

25

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

interaction

Figure 10 – Object creation

4.3.2 Object Replacement

Object replacement allows one version of an object to be replaced by another
version, while preserving object identity. We use the term version of an object to
denote a set of implementation constructs that realizes an object. The new version
of an object may have functional properties that differ from the old version. For
example, the new version may correct faults in the original version, or introduce
improved algorithms that provide better and more precise results.

The new version may also have quality-of-service (QoS) properties that differ
from the old version. For example, the new version may provide an
implementation that performs better and uses less system resources. The change
designer is responsible for assuring that the new version of an object satisfies both
the functional and QoS requirements of the environment in which the object its
inserted. In addition, the new version of an object may run in another execution
environment supported by the object-middleware platform. For example, a
version implemented in Java may be replaced by a version implemented in C++.

The aim of the reconfiguration approach is to provide replacement transparency,
which masks the replacement of an object from objects that interact with it.

Object replacement requires special attention from the perspective of change
management, since it threatens application consistency.

Figure 11 depicts object replacement from an abstract perspective. Object A is
replaced, substituting its original version VA1 by a new version VA2.

A

interaction

AVA1 VA2

Figure 11 – Object Replacement

Replacement with Interface Changes

We define a version VA’ of an object A conforming with a version VA if the
interface of VA’ is identical to the interface of VA or derived from it, and non-
conforming otherwise.

26

Replacement of a current version by a non-conforming version is called non-
conforming replacement. Our approach only supports non-conforming
replacements in special cases that are explained later in Section 4.4.

4.3.3 Object Migration

Migration means that an object is moved from one location to another, which may
also imply that the type of execution environment has to be changed. An object
preserves its identity and state.

The aim of the reconfiguration approach is to provide migration transparency,
which masks the migration of an object from objects that interact with it.

Object migration requires special attention from the perspective of change
management, since it threatens application consistency.

Figure 12 depicts object migration from an abstract perspective. Object A migrates
from its original location X to location Y.

A

interaction

A

location X location Y location X location Y

Figure 12 – Object Migration

4.3.4 Object Removal

Object removal allows an application to remove a reconfigurable object at run-
time. From the moment an object is removed, the reference to its interface
becomes invalid. Object removal is a trivial case with respect to reconfiguration,
since applications are expected to cope with it.

Figure 13 depicts object removal from an abstract perspective.

interaction

Figure 13 – Object Removal

27

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

4.3.5 Reconfiguration Steps

A system evolves incrementally from its current configuration to a resulting
configuration in a reconfiguration step. A reconfiguration step is perceived as an
atomic action from the perspective of the application.

A reconfiguration step consists of:

(i) the execution of a reconfiguration operation in an object, in which case it
is called a simple reconfiguration step; or

(ii) the execution of reconfiguration operations in several distinct objects, in
which case it is called a composite reconfiguration step.

Composite reconfiguration steps are often required for reconfiguration of sets of
related objects. In a set of related objects, a change to one object A may require
changes to other objects that depend on A’s behavior or other characteristics [21].

Figure 14 depicts a composite reconfiguration step from an abstract perspective,
where object D is removed, objects A and B replaced, and object E is created.

A

VB

interaction

A

VA VA’

B

C C

D

B
VB’

E

Figure 14 – Composite reconfiguration step

A particular case of composite reconfiguration step is the replacement of multiple
objects. A common usage example would be to replace all objects of the same
type with a new version.

Figure 15 depicts replacement of multiple objects from an abstract perspective,
where, simultaneously, object A is replaced from version VA to VA’, and object B is
replaced from version VB to VB’.

A

VB

interaction

A
VA VA’

VB’B
B

Figure 15 – Multiple Objects Replacement

28

4.4 Change Management

This section describes the change management mechanisms in our approach by
addressing each of the correctness aspects identified in Section 3.3.

4.4.1 Structural integrity

In our object model, referential integrity and interface compatibility are the main
issues to be dealt with in order to preserve structural integrity.

Referential integrity becomes an issue whenever an object reference changes. An
object reference is defined as a value that denotes a particular object, and is used
by the middleware infrastructure to locate the object. Object references acquired
by clients prior to reconfiguration may be invalidated due to reconfiguration. For
example, in CORBA platforms, migration of an object from one host to another
invalidates the IP address contained in the IIOP profile of an IOR (Interoperable
Object Reference). If a reference points to an object that no longer exists, the
established logical binding between a client and a target object is broken. In order
to re-establish the binding after reconfiguration, we provide a logically central
point of contact to find the objects with invalidated object references. This point
of contact is called the location agent.

In the CORBA object model, interfaces satisfy the Liskov substitution principle
[16]. This means that if interface B is derived from interface A, then references to
an object that supports interface A can be used to denote an object that supports
interface B. To avoid that object replacements violate the object model, a new
object must satisfy the old interface. This can be done either by implementing the
old interface or by implementing an interface derived from it, by inheritance.

It is possible to apply non-conforming replacements that promote arbitrary
changes to the interface of a reconfigurable object if either one of the following
conditions is satisfied:

(i) all clients of the reconfigurable object are also reconfigurable objects, or

(ii) the reconfiguration designer supplies a wrapper version of the object that
is capable of translating requests to the new version.

Both cases require the use of a composite reconfiguration step. In the first case,
the reconfigurable object and its clients are replaced. This case is depicted in
Figure 16, with the non-conforming replacement of A. In the same reconfiguration
step, the current version of A is replaced by the new version, and the current
version of B is replaced by a version that is able to use A’s new interface.

29

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

A

VB1

interaction

A
VA1 VA2

VB2B
B

interfaceA1
interfaceA2

interfaceA1 is neither identical to or derived from interfaceA2
Figure 16 – Non-conforming Replacement (i)

In the second case, the new version is created and the reconfigurable object is
replaced by the wrapper version. This case is depicted in Figure 17, with the non-
conforming replacement of A. In the same reconfiguration step, the current
version of A is replaced by the wrapper version, and the new version of A is
created.

interaction

A

VA1 WA1interfaceA1
interfaceA1

interfaceA2 is neither identical to or derived from interfaceA1

VA2

interfaceA2

A

wrapper

Figure 17 – Non-conforming Replacement (ii)

4.4.2 Mutually consistent states

We propose an algorithm to drive the system to the safe state that uses
information obtained from the middleware platform at run-time and freezes
system interactions on-demand. This algorithm follows three stages:

1. Drive the system to the safe state by deferring interactions that would
prevent the system from reaching the safe state;

2. Detect that the safe state has been reached; and

3. Apply reconfiguration;

We use the term affected object to denote an object that is replaced, migrated or
removed as a consequence of reconfiguration. In this approach, the system is said
to be in the reconfiguration-safe state when each affected object (i) is not currently
involved in interactions and (ii) will not be involved in interactions until after
reconfiguration. This means that when the system is in a reconfiguration-safe state
none of the affected objects is processing requests or waiting for outgoing
requests to be processed.

30

We distinguish objects in general as active and reactive. Reactive objects are
objects that only initiate requests that are causally related to incoming requests.
Active objects may initiate requests that do not depend on incoming requests, e.g.,
they may initiate requests as a result of the elapsing of a time-out.

An active object should have capabilities for driving itself to a reactive state, in
which it refrains from initiating requests that are not causally related to an
incoming request. The implementation of the operation for forcing reactive
behavior is a responsibility of the object developer. Once the set of affected
system objects is defined, all active objects in the set are requested to exhibit
reactive behavior.

Reaching the safe state

We guarantee the reachability of the safe state by interfering with the activities of
the system. All affected objects are requested to exhibit reactive behavior, and
then pending invocations in the affected objects are allowed to complete.

In the case of a simple reconfiguration step, with the replacement or migration of
a single non re-entrant object, all requests issued to this object are queued by the
middleware platform before they reach the object. In this way, new requests are
prevented from being served before the reconfiguration, and the object gets the
chance to finish handling ongoing requests. When all ongoing requests have been
treated, the system is in the safe state. Since all requests are guaranteed to finish
within bounded time, the safe state is reachable within bounded time.

In the case of replacement or migration of a single re-entrant object, we should
not queue up re-entrant requests. A re-entrant request is not queued, since
otherwise the affected object would have a pending outgoing request that would
never complete. Consequently, the system would never reach the safe state. Figure
18 shows a re-entrant request that must be allowed to complete for reconfiguration
to proceed.

Obj A

the completion of reqB depends on
the completion of the nested reqA

reqA

reqB

Obj B

request
reply

must not be
queued

Reconfiguration with affected object A

beginning of reconfiguration

Figure 18 – Requests that must not be queued in simple reconfiguration step

In the case of composite reconfiguration steps, several affected objects have to be
driven to the safe-state. In this case, we should neither queue up requests issued
by an affected object nor the nested requests that are a consequence of requests
issued by an affected object. If one of these requests would be queued, there
would always be a pending outgoing request in the set of affected objects that

31

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

would never complete, and the system would never reach the safe state. Figure 19
shows requests that must be allowed to complete for reconfiguration to proceed.

Obj A

reqA

Obj B

Reconfiguration with
affected objects A and B

request
reply

must not be
queued

Obj A

reqA

Obj B

must not be
queued

Obj C

beginning of reconfiguration

Reconfiguration with
affected objects A and C

Figure 19 – Requests that must not be queued in composite reconfiguration steps

Therefore, in a system under reconfiguration, we can distinguish three sets of
requests:

(i) requests whose processing is necessary for the system to reach the
reconfiguration-safe state (‘laissez-passer’ set),

(ii) requests whose processing could prevent the affected objects from
reaching the reconfiguration-safe state (blocking set), and

(iii) requests that do not involve any affected system object.

In our approach, the middleware platform is responsible for selectively queuing
requests that belong to the blocking set and for allowing requests in the ‘laissez-
passer’ set to be processed. This is done transparently for the application objects.

In order to identify requests that belong to the ‘laissez-passer’ set, we use the
propagation of implicit parameters along invocation paths. For every
reconfigurable object in an invocation path the middleware infrastructure adds the
object’s identification to the request as an implicit parameter.

Given a request and the set of affected objects, it is possible to determine if a
request belongs to the ‘laissez-passer’ set by inspecting its implicit parameters. If
at least one of the affected objects has been included in the request’s implicit
parameters, the request belongs to the ‘laissez-passer’ set, and should be allowed
to complete.

Applying reconfiguration

When all affected objects are idle, reconfiguration can proceed. The affected
objects’ state can be inspected and used to derive the state of the objects being
introduced. Once new objects, new and relocated versions of objects have been
installed (which may be done before driving the system to the safe state), their
state is properly modified. After their state is modified, they are allowed to exhibit
active behavior. Queued requests and further new requests are redirected to the
new or relocated version of an object after reconfiguration.

32

4.4.3 Application-state invariants

Each reconfigurable object must provide operations to access its state. These
operations are used to inspect and modify a selected subset of the object’s internal
state. The application developer is responsible for deciding on the particular
subset of the objects’ state that is exposed by these state-access operations. In
general, an object should provide operations to inspect and modify its control and
data state. These operations are only invoked in the safe state. Since in the safe
state an object is idle, the amount of control state to be externalized is minimized.

When the system to be reconfigured is in the safe state, the state of the affected
objects can be accessed consistently through these state-access operations, and can
be used as input to a state translation function supplied by the change designer.
The state translation function determines the state of the new version of each
affected object so as to guarantee that application invariants are not violated.
Furthermore, the state translation function may have to adjust the state of an
affected object so that its behavior is compatible with the behavior expected by its
environment.

It is possible, however, that such state translation function does not exist for two
given versions, preventing reconfiguration. This situation can be illustrated in a
simple object replacement. It is possible that the new version of the object does
not have a state that corresponds to the state of the original version. For example,
let us consider an object that generates unique identifiers, with an initial version
that generates identifiers counting up from A to B. The state variable of this
implementation is the counter containing the last generated number S. Let us
suppose that the new version also produces unique identifiers, but does it counting
down from B to A. While the identifiers produced so far are known (all values
smaller or equal to S), there is no value for the internal counter in the new version
that can be derived so as to preserve the expected behavior of the generator. With
any starting state, the new version would end up producing identifiers that have
already been used in the previous version of the object, introducing inconsistency
in the application.

4.4.4 Impact on Execution

While some reconfiguration approaches [9, 13] quantify the impact on execution
as proportional to the number of affected reconfigurable entities, or proportional
to the number of blocked execution threads in application objects [3], we intend to
estimate the increase in response time experienced by clients of affected objects
during reconfiguration.

Clients of an affected object may observe an increase in the response time of
operations invoked in an affected object during reconfiguration. This increase
only applies to invocations that reach the target object after the beginning of the
reconfiguration and before the end of the reconfiguration.

The increase in response time during reconfiguration is highly dependent of the
application. Its expected value is proportional to the average duration of
interactions that involve the affected objects. Therefore, this increase is higher for
systems with long-lived interactions. The increase is limited by the duration of the
longest pending invocation in the set of affected objects at the moment the
reconfiguration starts. For active objects, the amount of time taken for the object
to exhibit reactive behavior should also be considered in the calculation of the
upper bound of the increase in response time. We expect however this increase to
be insignificant for most applications.

33

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

Considering the absolute increase in response time, the approach seems to be best
suited for applications with short-lived interactions. Ultimately, the maximum
acceptable increase in response time during reconfiguration is determined by the
environment in which the affected object is inserted.

4.5 Limitations

Our approach ignores the preservation of architectural properties of an
application, in contrast with the approaches presented in [9, 13, 15, 34]. We rather
assume reconfiguration design activities to produce changes that have been
validated a priori, and focus on the application of these changes. Reconfiguration
design activities may be supported by tools that address the preservation of
architectural properties.

Since we have opted for complete transparency for clients of reconfigurable
objects, we can only support non-conforming replacements in restricted cases, as
identified in Section 4.4.1. A less restrictive support to non-conforming
replacements would require clients of reconfigurable objects to be developed with
mechanisms to cope with arbitrary interface change.

Another limitation refers to the externalization of state. In the object model
adopted, relationships between objects may be buried in the implementation of an
object, in the form of object references. These object references cannot be easily
manipulated by external entities. This forces the externalized state of an object to
include all the object references that are still required for the object to continue
operating and that otherwise would not be recovered from the system after
reconfiguration. This problem could be solved in a component model (such as
[24]) in which an external entity can reify connections between components at
run-time and manipulate these connections.

Our approach does not exploit redundancy. Approaches that exploit redundancy
promote object replacements by temporarily processing requests in both old and
new versions of an object simultaneously. These approaches, such as the one
adopted by [14], are often limited to object replacements where the new version of
an object has the same externally visible functional properties when compared to
the old version. Although it does not exploit redundancy, our approach can, in
principle, be applied to redundant objects.

4.6 Comparison with Studied Approaches

This section presents distinctive features of our approach and compares it with the
reconfiguration approaches studied.

4.6.1 Application-description Models

Our approach does not require the use of specific description formalisms for
application development. Some of the dynamic reconfiguration approaches
studied [10, 13, 15, 34] prescribe the use of architectural or configuration models
to describe an application. These models are produced by the application designer
during the development process, and are described in Architecture Description
Languages (ADLs) or Configuration Languages (CLs).

34

These models are used by dynamic reconfiguration approaches to derive how to
apply changes to a system under reconfiguration. For example, in Kramer and
Magee’s approach [10] an application is represented as a directed graph, whose
nodes are system entities and whose arcs are connections between entities. An
entity A is connected to an entity B if A can initiate a transaction with B. For an
entity Q to be replaced, all the entities that are capable of initiating transactions
directly or indirectly on Q should exhibit passive behavior, as well as Q itself. In
this case, the configuration graph is used to identify which entities must exhibit
passive behavior for the system to reach the reconfiguration-safe state. In
Wermelinger’s approach [34], application entities must be supplied with a
description of internal port dependencies, which relate input ports and output
ports.

A drawback of prescribing an ADL or CL for application design is that the
conventional development process has to incorporate the production of a
description of the application using the specific formalism or language. Our
approach differs from these in the sense that it does not prescribe the use of an
ADL or CL. The configuration information required to apply reconfiguration is
obtained from the system at run-time. By doing this, we intend to separate the
concerns of obtaining and maintaining configuration information for the
reconfiguration design activities, and obtaining and maintaining configuration
information for the application of reconfiguration.

Figure 20 shows a refinement of the model presented in Chapter 3, obtained by
decomposing configuration information into configuration information obtained at
design-time and obtained at run-time.

Running
System

(Configurationi)

Configuration
Informationi

Configuration
Informationi+1

Change
Management

Reconfig.
Design

Activities

Designi
Designi+1

 Activities

Information

Change Spec.
& Constraints

Running
System

(Configurationi+1)

System
Obtained at
Design-time

(ADLs or CLs)

Obtained at
Run-time

(by instrumenting
the system)

Figure 20 – Dynamic Reconfiguration Model with refined configuration

information

Although we do not prescribe a specific ADL or CL, we acknowledge that ADLs
can be useful to support software design activities. Moreover, ADLs can have an
important role in reconfiguration design activities.

4.6.2 Reconfiguration Supported and Computation Model

Bidan et al. consider in [3] an approach to dynamic reconfiguration of CORBA-
based applications. Similarly to our approach, a reconfigurable entity is a CORBA

35

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

object. In this approach, the reconfiguration infrastructure maintains a
representation of the configuration of the system, through a directed graph of
objects connected through links. Objects A and B are said to be linked if A can
invoke an operation on target object B. In the approach, all client applications and
target objects must implement a passivate operation to block the initiation of
requests in a specific outgoing link. The algorithm guarantees the reachability of
an idle state by sending passivate messages to all the clients of an object and then
to the object itself.

From the approaches we have studied, this is the one that can be best compared to
ours. Unlike our approach, Bidan et al.’s approach does not support composite
reconfiguration steps. In sets of related objects, it is common that a change to one
object may require changes to other objects that depend on the object’s behavior
or other characteristics [21]. Since only simple reconfiguration steps are allowed,
the application of this approach is limited.

Furthermore, the approach does not support applications with re-entrant
invocations. Therefore, an object that has initiated an invocation cannot play the
role of server for some consequent invocation. The approach does not support re-
establishment of application invariants and state translation either.

4.6.3 Impact on Execution

Our approach proposes a mutual consistency mechanism that only interferes with
application activities that require interaction with affected objects during
reconfiguration. This is not the case in most approaches we have studied [3, 9, 13,
34], which block all potential system activities that may prevent the system from
reaching the safe state.

4.6.4 Transparencies

Our approach is completely transparent for the clients of reconfigurable objects, in
contrast with [3, 10, 13, 34] where client applications have to provide support for
reconfiguration.

Our approach facilitates the development of reconfigurable objects by
incorporating change management functionality in the middleware infrastructure.
Therefore, it requires minimal reconfiguration expertise from the object
developer. The reconfigurable object developer is responsible to provide state-
access operations and operations to drive an active object from an active state to a
reactive state and back.

36

5 Dynamic Reconfiguration Service

This chapter describes the CORBA Dynamic Reconfiguration Service (DRS) we
have developed. This chapter presents the DRS from the point of view of the users
of the service. The DRS uses the mechanisms presented in Chapter 4, realizing the
proposed approach in the CORBA platform, and supports both the application
developer and the change designer.

This chapter is further structured as follows: Section 5.1 provides an overview of
the architecture of the service, Section 5.2 describes the view of the change
designer and Section 5.3 describes the view of the application developer. In this
chapter, we use OMG Interface Description Language (IDL [16]) to specify the
DRS interfaces.

5.1 Overview

The Dynamic Reconfiguration Service consists of a Reconfiguration Manager, a
Location Agent and Reconfiguration Agents.

The Reconfiguration Manager is the central component of the Dynamic
Reconfiguration Service in that it interacts with all the other components of the
service. It coordinates reconfiguration with Reconfiguration Agents and the
Location Agent. The Reconfiguration Manager delegates object creation and
removal to Reconfigurable Object Factories, it registers, re-registers and de-
registers objects through interaction with the Location Agent and it co-ordinates
the Reconfiguration Agents to drive the system to a reconfiguration-safe state.

A Reconfiguration Agent is created for each ORB instance that mediates requests
for reconfigurable objects. Typically there will be an ORB instance per capsule,
and a capsule will be a Java Virtual Machine or process. A Reconfiguration Agent
is responsible for restricting the behavior of an affected object during
reconfiguration through filtering of requests.

The Location Agent provides a registry for the location of reconfigurable objects.
It produces location-independent object references, and is capable of translating a
location-independent object reference to an object reference with the current

37

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

location of a reconfigurable object. The Location Agent is typically co-located
with an implementation repository [6], and uses the standardized CORBA request
forwarding mechanism [16].

A Reconfigurable Object is the unit of reconfiguration. It provides state-access
operations and is able to exhibit reactive behavior upon demand.

A Reconfigurable-Object Factory implements the Factory design pattern, creating
and removing versions of Reconfigurable Objects on behalf of the
Reconfiguration Manager. Factories shield the Dynamic Reconfiguration Service
from the specific support to object deployment offered by different languages,
operating systems or virtual machines, such as, e.g., DLLs and the Java class
loader.

Figure 21 shows an overview of the architecture.

Capsule

Location
Agent

Factory

Reconfiguration
Manager

Reconfiguration
Agent

ReconfigurationManager

ReconfigurableObjectFactory

ReconfigurableObject

ReconfigurationAgent

LocationAgent

Object

Application objects

Dynamic Reconfiguration
Service

GenericFactory

Change Designer
(to request execution of
reconfiguration operations)

Application
(to request object
creation and removal) State

Translator

Application objects
(optionally) provided
by change designer

GenericStateTranslator

ReconfigurationAgentAdmin

Figure 21 – Architectural Overview

The service concerns both the change designer and the application developer. The
change designer can access the service of the Dynamic Reconfiguration Service to
request the execution of reconfiguration steps. The application developer supplies
application-specific Reconfigurable-Object Factories and Reconfigurable Objects
that comply with the interfaces defined by the service.

5.2 Change Designer’s View

The change designer interacts with the Dynamic Reconfiguration Service through
the ReconfigurationManager interface. The ReconfigurationManager interface
provides operations for creating and removing objects, managing factories and
specifying reconfiguration steps.

38

From a client’s point of view, there is no special mechanism for creating or
destroying an object. Objects are created and destroyed as an outcome of issuing
requests [16]. The same applies for reconfiguration, i.e., there is no special
mechanism for requesting execution of reconfiguration steps.

5.2.1 Creation and Removal

Operations for object creation and removal are inherited from the GenericFactory
interface defined in the Fault Tolerant CORBA specification [19].

The create_object() operation allows the application to request the creation of an
object by specifying the identifier of the object’s type and the criteria to be used in
the creation.

interface GenericFactory {

 typedef any FactoryCreationId;

 Object create_object(
 in TypeId type_id,
 in Criteria the_criteria,
 out FactoryCreationId factory_creation_id
)
 raises (
 NoFactory,
 ObjectNotCreated,
 InvalidCriteria,
 InvalidProperty,
 CannotMeetCriteria
);

 void delete_object(in FactoryCreationId factory_creation_id)
 raises (ObjectNotFound);

};

The type identifier is the same identifier used in the interface repository to denote
the most derived type of an interface. The type identifier is used in conjunction
with the criteria to determine the local factory that creates the application object.

typedef CORBA::RepositoryId TypeId;

The criteria parameter allows application to define initialization parameters, and
restrictions on how to create the object. Examples of criteria are initialization
values, the required version of an object and the preferred location of an object.
The criteria parameter is defined as a sequence of properties. A property is a
name-value pair.

typedef CosNaming::Name Name;

typedef any Value;

struct Property {
 Name nam;
 Value val;
};

typedef sequence<Property> Properties;
typedef Properties Criteria;

39

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

The following names are reserved for criteria: drs.VersionId, drs.Location, drs.IOR,
drs.Id and drs.ApplicationObjectCreation. The names drs.VersionId and
drs.Location are used respectively to specify the required version of an object
(float), and the preferred location of an object (string with the hostname or IP
address). The names drs.IOR, drs.Id and drs.ApplicationObjectCreation are reserved
for communication of the DRS with the application’s local factories. All other
criteria are implementation-specific and are interpreted only by the factory.

The factory_creation_id parameter allows the entity that invoked the factory and
the factory itself to identify the object for subsequent manipulation. The
factory_creation_id is an Any value that contains a ReconfigurableObjectId. This
ReconfigurableObjectId is used to denote a reconfigurable object.

The object reference returned by the create_object() operation is a reference to the
reconfigurable object, and is valid during the complete reconfigurable object
lifetime (this reference continues to be valid after subsequent replacements and
migrations).

5.2.2 Factory Management

The Reconfiguration Manager inherits the FactoryManager interface. This
interface provides operations for adding and removing local application factories
that are to be used by the Reconfiguration Manager.

The add_factory() operation registers a local application factory with the
Reconfiguration Manager, and associates this factory to the types it can create.
The information about the factory supplied to the Reconfiguration Manager
consists of a reference to the factory, the location of the factory and the default
criteria for object creation. The criteria include the version identifier of the objects
created by the factory.

typedef Name Location;

struct FactoryInfo {
 GenericFactory factory_;
 Location the_location;
 Criteria the_criteria;
};

interface FactoryManager
{
 typedef any FactoryId;

 FactoryId add_factory(in FactoryInfo factory_info, in TypeIds type_ids);

 void remove_factory(in FactoryId factory_id)
 raises (FactoryNotFound);

 FactoryInfo get_factory_info(in FactoryId factory_id, out TypeIds type_ids)
 raises (FactoryNotFound);

};

The get_factory_info() operation provides information on a registered factory and
the remove_factory() operation de-registers a factory.

40

5.2.3 Reconfiguration Steps

A system evolves incrementally from its current configuration to a resulting
configuration in a reconfiguration step, which is perceived as an atomic action
from the perspective of the application.

A reconfiguration step is modeled by a ReconfigurationStep object, which can be
created through the create_reconfiguratio_step() operation of the
ReconfigurationManager interface.

interface ReconfigurationManager : GenericFactory, FactoryManager
{
 ReconfigurationStep create_reconfiguration_step()
 raises (UnderReconfiguration);
};

The UnderReconfiguration exception is raised if another reconfiguration step is
being defined. An implementation of the DRS may allow multiple reconfiguration
steps to be executed in parallel, in which case this exception may not be raised.

Composing a reconfiguration step

The ReconfigurationStep interface provides means to compose a reconfiguration
step from reconfiguration operations, namely, object creation, object replacement,
object migration, and object removal. The change designer composes a
reconfiguration step and commits it, i.e., requests its execution.

The operations for object creation and removal have the same syntax as defined in
the GenericFactory interface. These operations differ from the ones defined in the
GenericFactory interface in that these operations are executed when the
reconfiguration step is committed. The object reference returned by
create_object() should only be used after the reconfiguration step has been
executed.

Object replacement can be done both on individual basis, i.e., by specifying
factory_creation_ids, or on a type basis, i.e., by specifying the type of the objects.
While replacement on individual basis provide a fine-grained control over the
version of each object in the system, its use should be avoided when all objects of
a type can be replaced simultaneously. Reconfiguration on a type basis simplifies
version management, by preventing objects of the same type from having
different versions.

The operation replace_object() requires the user to specify the object being
replaced and the criteria to be used in the creation of the new version of the object.
The criteria are used to identify a factory previously registered with the
Reconfiguration Manager.

void replace_object(
 in FactoryCreationId factory_creation_id,
 in Criteria the_criteria
)
raises (
 ObjectNotFound,
 NoFactory,
 InvalidCriteria,
 InvalidProperty,
 CannotMeetCriteria
);

41

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

The operation replace_type() requires the user to specify the type being replaced,
the new type and the criteria to be used in the creation of the new version of
objects. The new type must be identical or derived from the original type.
Requests for the creation of objects of a type being replaced are deferred until the
end of reconfiguration. After reconfiguration, the identifier of the original type
can still be used when requesting object creation, so that type replacements with
sub-typing can be transparent for the client application. Nevertheless, the new
derived type is used for the actual creation. replace_type() returns the list of
objects replaced.

FactoryCreationIds replace_type(
 in TypeId current_type_id,
 in TypeId new_type_id,
 in Criteria the_criteria
)
raises (
 NoFactory,
 InvalidCriteria,
 InvalidProperty,
 CannotMeetCriteria
);

A type can be removed using the remove_type() operation.

void remove_type(
 in TypeId type_id
);

Object migration can be done both on individual basis, i.e., by specifying
factory_creation_ids, or on a type-location basis, i.e., by specifying the type of the
objects to be migrated and their current location. Migration on individual basis
provides a fine-grained control over the location of each object in the system. The
local factory that is used to create the relocated version of an object is determined
by the criteria.

void migrate_object(
 in FactoryCreationId factory_creation_id,
 in Criteria the_criteria
)
raises (
 ObjectNotFound,
 NoFactory,
 InvalidCriteria,
 InvalidProperty,
 CannotMeetCriteria
);

FactoryCreationIds migrate_objects(
 in TypeId type_id,
 in Location origin,
 in Criteria the_criteria
)
raises (
 NoFactory,
 InvalidCriteria,
 InvalidProperty,
 CannotMeetCriteria
);

The default criteria for the creation of a type can be set by invoking
set_default_criteira(). It influences the behavior of object creations after
reconfiguration, e.g., by specifying the default location of new objects of the type.

42

void set_default_criteria(in TypeId type_id, in Criteria the_criteria);

The optional state translator for the reconfiguration step can be provided by
invoking set_state_translator().

void set_state_translator(
 in GenericStateTranslator translator
);

Requesting the execution of a reconfiguration step

A reconfiguration step can be executed in blocking mode, in which case the
operation returns when the reconfiguration is complete (by invoking commit()), or
in non-blocking mode (by invoking deferred_commit()), in which case the
operation returns immediately. In the non-blocking mode, is_completed() should
be invoked to determine whether the reconfiguration step has already been
executed. commit() and is_completed() may raise a ReconfigurationException in
case of errors during reconfiguration. The non-blocking mode is particularly
useful for self-replacement, i.e., when the object that initiates the replacement is
expected to be replaced. In this case, the blocking mode would lead to deadlock,
since the object being replaced would have a pending request (commit()) and
would never reach the idle state.

exception ReconfigurationException {};

void commit()
raises (ReconfigurationException);

void deferred_commit();

boolean is_completed()
raises (ReconfigurationException);

void dispose()
raises (UnderReconfiguration);

5.2.4 State Translation

In the replacement operations, the change designer can optionally specify a state
translator. The state translator is used by the DRS when the system has reached
the safe state. In the safe state, all the states of the affected objects are consistent
and stable. These states are used as input to the state translator, which translates
them to the state of the objects being introduced to replace the affected objects.

A state translator is supplied by the change designer. A state translator
implements the GenericStateTranslator interface. This interface defines the
structure Instance, which comprises the type identifier, the reconfigurable object
identifier, the state of a reconfigurable object instance and the reconfiguration
operation being applied to it. The operation types_supported() returns the types
supported by the state translator. In the absence of a supplied state mapping for a
particular type, the identity function is used, i.e., the state is not modified. The
operation translate() translates the states of a set of instances into derived states.

interface GenericStateTranslator {

 enum ReconfigurationOperationType {
 CREATION, REPLACEMENT, MIGRATION, DELETION
 };

43

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

 struct Instance
 {
 // and instance of an object is composed of its type, its identity and its state
 TypeId type_id; // the type
 ReconfigurableObjectId id; // the identity
 State the_state; // and the state
 ReconfigurationOperationType op_type;
 };
 typedef sequence<Instance> Instances;

 TypeIds types_supported();

 void translate(in Instances original, out Instances derived);

 };

The state of an object may include object references that are narrowed by a state
translator. If a reference to be narrowed points to an object being replaced as part
of a replace_type() with sub-typing, an unchecked narrow must be performed.
Unchecked narrows have been incorporated in the CORBA standards with the
introduction of CORBA Messaging [16]. For ORB implementations that do not
support unchecked narrows, object references should be externalized as
CORBA::Objects. These references should only be narrowed when first used by the
new version of an object.

5.3 Application Developer’s View

The application developer is expected to supply application-specific
Reconfigurable-Object Factories and Reconfigurable Objects that co-operate with
the Dynamic Reconfiguration Service.

5.3.1 Reconfigurable Objects

Reconfigurable Objects must implement the ReconfigurableObject interface,
providing the state-access operations get_state() and set_state(), which are
identical to the state-access operations in the Fault Tolerant CORBA
specification. The state is encoded as a sequence of octets. The encoding of the
state may be application-specific. Nevertheless, the application developer is
strongly recommended to specify the state as a structure in IDL in order to
guarantee interoperability and allow re-use of available CORBA functionality to
encode data structures as sequences of octets (Common Data Representation
[16]).

typedef sequence<octet> State;

interface ReconfigurableObject
{
 State get_state() raises(NoStateAvailable);

 void set_state(in State s) raises(InvalidState);
};

Active reconfigurable objects must also implement the ActiveObject interface,
providing passivate() and activate() operations in addition to state-access
operations. An active object may initiate non-nested requests, i.e., requests that
are not causally related to incoming requests. An active object should react to the
passivate() operation by refraining from initiating non-nested requests, i.e., by

44

exhibiting reactive behavior. The activate() operation is the inverse of passivate(),
i.e., it informs an object that it is allowed to exhibit active behavior.

interface ActiveObject
{
 void passivate();

 void activate();
};

DRS Context Information

The DRS maintains some context information for the thread in which a request is
being processed. This context information, called the DRS context, contains the
invocation path of the request being treated and the identifier of the object treating
the request. The DRS context is used in order to determine the invocation path
that is sent implicitly with a request. Figure 22 shows the DRS context of a thread
treating a request req1. The DRS context contains the invocation path of req1 ({O1,
… ON}) and the identifier of the object OM treating req1. The request req2, which
is a nested request of req1, contains the invocation path of req1 appended with the
identifier OM ({O1, … ON, OM}).

incoming
request r1 nested

request r2{ O1, … ON }

{ O1, … ON, OM }

thread

thread in OM

DRS context:
invocation path:
{ O1, … ON, }
object identifier:
OM

Figure 22 – The DRS context and the propagation of the invocation path

The DRS context is accessible through the ReconfigurationCurrent local object.
An instance of the ReconfigurationCurrent object can be obtained by invoking
ORB::resolve_initial_references(“ReconfigurationCurrent”).

An active reconfigurable object must register each thread that issues non-nested
requests with the DRS. This is done by using the operation register_thread() of the
ReconfigurationCurrent object. The parameters for register_thread() are the
identifier of the object adapter in which the object is located, and the object
identifier used by this object adapter. For the Portable Object Adapter (POA) [16]
these parameters are obtained through POA::id and POA::reference_to_id()
respectively.

module ReconfigurationService {

 interface Current : CORBA::Current
 {
 void register_thread(in octets adapter_id, in octets object_id);
 …

45

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

When an incoming request is treated in only one thread, as depicted in Figure 22,
the propagation of the invocation path is completely transparent for the
reconfigurable object developer. In less conventional threading strategies,
however, more support from the reconfigurable object developer is required, as
explained in the remainder of this section.

In case the completion of an incoming request served in a thread T1 depends on
the completion of a nested request issued in another thread T2, the DRS context
information in thread T1 must be transferred to thread T2. This situation is depicted
in Figure 23, where T1 blocks waiting for nested request req2 in T2 to be
processed.

incoming
request req1

nested
request req2

{ O1, … ON, OM }

thread

threads in OM

DRS context:
invocation path:
{ O1, … ON, }
object identifier:
OM

blocks until req2
processed

r2 processed

T1 T2

synchronization

c = get_control();

resume(c);

Figure 23 – Transferring DRS context information between threads

In this case, the get_control() operation of the ReconfigurationCurrent must be
invoked in thread T1 to obtain the Control structure that must be passed to the
resume() operation of the ReconfigurationCurrent in thread T2. The names
get_control(), resume() and Control are adopted in order to resemble the Indirect
Context Management with Explicit Propagation in the CORBA Transaction
Service [23].

module ReconfigurationService {

 interface Current : CORBA::Current
 {
 void register_thread(in octets adapter_id, in octets object_id);

 struct CurrentSlotInfo
 {
 ReconfigurableObjectId id;
 ReconfigurableObjectIds invocation_path;
 };

 typedef CurrentSlotInfo Control;

 Control get_control();

 void resume(in Control which);
 };
};

46

The invocation path must also be propagated through non-reconfigurable objects
that are in the invocation path between reconfigurable objects. If these non-
reconfigurable objects are implemented with the unconventional threading
strategies identified previously in this section, the object developer is responsible
for transferring DRS context information between threads in the same way as
required for reconfigurable objects with unconventional threading strategies.

5.3.2 Reconfigurable-Object Factories

Reconfigurable-Object Factories implement the ReconfigurableObjectFactory
interface, which inherits the GenericFactory interface. These factories must
provide create_object(), delete_object() and get_reconfiguration_agent() operations.
The get_reconfiguration_agent() operation returns the ReconfigurationAgent
associated to a given reconfigurable object.

interface ReconfigurableObjectFactory : GenericFactory
{
 ReconfigurationAgent get_reconfiguration_agent(in ReconfigurableObjectId id);
};

A Reconfigurable-Object Factory creates and deletes instances of objects on
behalf of the Reconfiguration Manager, and registers and de-registers these
instances with the Reconfiguration Agent.

Figure 24 depicts the participation of an object factory in the creation,
replacement and migration of an object.

Reconfigurable
Object
Factory

Reconfiguration Manager
(as result of creation,

replacement or migration)

Reconfigurable
Object

Reconfiguration
Agent

Capsule A

2. creates the
object

1. create_object()

3. register_object()

Figure 24 – Participation of Factory in Creation, Replacement and Migration

The create_object() operation is invoked by the Reconfiguration Manager (1) to
create an instance of an object. create_object() may be invoked in the course of
object creation, replacement or migration.

In the case of replacement or migration, the Reconfiguration Manager delegates
the creation, by repeating the parameters supplied by the user and adding extra
properties (name-value pairs) in the criteria parameter. These properties are the
location-independent object reference to be used by the instance of the object (a
property named IOR) and its reconfigurable object identifier (a property named Id).
This allows the object to maintain its identity across subsequent reconfigurations,
and publish the location-independent object reference as its object reference.

47

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

A reconfigurable object may retrieve its location-independent object reference and
its reconfigurable object identifier from the Reconfiguration Agent, by invoking
the get_reference() and get_reconfigurable_object_id() operations. A reference to
the Reconfiguration Agent can be obtained by invoking
ORB::resolve_initial_references("ReconfigurationAgent"). If the reconfigurable
object invokes POA methods to retrieve its object reference, the POA supplies the
conventional location-dependent object reference.

In case of an actual reconfigurable object creation, the Reconfiguration Manager
includes in the criteria the IOR and the Id properties, and an extra
ApplicationObjectCreation property. This allows the factory to distinguish, if
necessary, between an actual object creation and a creation that results from
replacement.

create_object() creates the instance of the object (2), registers it with the
Reconfiguration Agent (3) and returns the location-dependent object reference to
the Reconfiguration Manager.

interface ReconfigurationAgent
{
 typedef sequence<octet> octets;

 void register_object(
 in ReconfigurableObjectId id,
 in Object rec_obj_reference,
 in octets adapter_id, in octets object_id
);

 void deregister_object(
 in ReconfigurableObjectId id
);

 Object get_reference(
 in octets adapter_id, in octets object_id
);

 ReconfigurableObjectId get_reconfigurable_object_id(
 in octets adapter_id, in octets object_id
);

 boolean is_affected(
 in ReconfigurableObjectId id
);
};

register_object() receives as parameters the identifier of the reconfigurable object
and the location-independent object reference as sent by the reconfiguration
manager, the identifier of the object adapter in which the object is located, and the
object identifier used by this object adapter.

The delete_object() operation is invoked by the Reconfiguration Manager to delete
an instance of an object. The execution of delete_object() may be invoked in the
course of reconfigurable object removal, replacement or migration. If a factory
finds it necessary to distinguish between object removal on the one hand, and
replacement and migration on the other hand, it may invoke the operation
is_affected() of the ReconfigurationAgent with the identifier of the object as a
parameter. is_affected() returns true if the object is currently being replaced or
migrated. The use of is_affected() allows us to maintain the syntax for
delete_object() as defined in the Fault Tolerant CORBA specification.

48

Figure 25 depicts the participation of an object factory in the removal,
replacement and migration of an object.

Reconfigurable
Object
Factory

Reconfiguration Manager
(as result of removal,

replacement or migration)

Reconfigurable
Object

Reconfiguration
Agent

Capsule A
2. deletes the
object

1. delete_object()

is_affected()
(optional)

3. deregister_object()

Figure 25 – Participation of Factory in Removal, Replacement and Migration

5.3.3 Clients View

The Dynamic Reconfiguration Service is transparent for client applications, which
manipulate object references and issue requests to reconfigurable objects in the
ways prescribed in the CORBA object model. During reconfiguration, requests
may be queued by the ORB and re-directed to the target object, transparently for
the client application.

One may think that the selective queuing of requests interferes with ordering
guarantees provided by the middleware infrastructure. Nevertheless, in the
CORBA object model, the order in which a client issues requests does not imply
the order in which a target object processes the requests. This can be seen in
example (1) of Figure 26. In addition, the order in which replies reach a client
does not imply the order in which the server processed the requests. This can be
seen in example (2) of Figure 26.

Client
Target
Object Client

Target
Object

(1) Request issuing order does not imply
processing and reply arrival order

(reqA < reqB, but procB < procA and reqB < reqA)

(2) Processing order does not imply
reply arrival order

(procA< procB, but repB < repA)

reqA

reqB

repB

repA

procB

procA

procA

procBrepB

repA

reqX – request X is issued procX – processing of request X repX – reply to request X arrives

Figure 26 – CORBA ordering guarantees

49

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

Nevertheless, CORBA does guarantee that (i) the issuing of a request is
eventually followed by the processing of the request, and that (ii) the processing
of a request is eventually followed by the arrival of the reply at the client-side. A
client can assume that requests are processed sequentially if it issues a request
after the arrival of the reply of a previous request. Our DRS does not jeopardize
these guarantees.

50

6 Design and Implementation

This chapter describes the design and implementation of the Dynamic
Reconfiguration Service in CORBA. It presents the design and implementation
choices made and discusses alternative implementations.

This chapter is further structured as follows: Section 6.1 discussed the
implementation of the Location Agent to obtain location-independent object
references, Section 6.2 discusses the implementation of selective queuing, and
Section 6.3 describes how the DRS co-ordinates its components to perform
reconfiguration operations, providing extra details on the implementation of each
component. Finally, Section 6.5 presents an evaluation of the prototype
implemented.

6.1 Location-independent Object References

In order to keep an object reference valid after reconfiguration, we make use of a
Location Agent [6]. In case a request on a modified object reference is performed,
an exception at the client ORB makes it contact the Location Agent, which uses of
forward mechanism to inform a client ORB of the new location of the target
object.

An alternative solution would be to preserve forwarding proxies in the location of
the old targets. These forwarding proxies would forward requests to the new
location (or version) of an object. The problem with this solution is that the
forwarding chain grows each time an object is replaced or migrated. Therefore,
when compared to the Location Agent solution, this approach introduces more
overhead, is harder to manage and uses more system resources than necessary.
Furthermore, locations where forwarding proxies exist cannot be actually taken
off-line, e.g., in the case of a hardware upgrade.

Another solution requires the client-side ORB to be notified of the
reconfiguration, substituting the current object reference with the new modified
object reference. This solution can hardly be considered appropriate, since the
communication overhead increases with the number of clients, which is often
high. Furthermore, it would be necessary to keep trace of all clients of a

51

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

reconfigurable object. Keeping track of all clients would prevent the scalable
implementation of the reconfiguration service. Object reference distribution in
CORBA is not controlled by the ORB, since object references can be exchanged
between objects by many different means.

6.1.1 Location Agent implementation

The Location Agent must fabricate object references that point to itself instead of
pointing to the actual location of object. These object references are called
location-independent object references. The Location Agent does this by creating
an object reference that contains the location’s agent address and the
reconfigurable object identifier as the object-key.

When a request is issued by a client for the first time, the Location Agent is
invoked. The Location Agent is implemented with a servant locator, which keeps
a registry mapping a reconfigurable object identifier to the conventional location-
dependent object reference. The servant location throws a LocationForward
exception with the current location-dependent object reference that points to the
current version of the object. This exception reaches the client ORB as a
LOCATION_FORWARD GIOP (General Inter-ORB protocol [16]) message. As
prescribed in the rules of GIOP, the client ORB reissues the request with the new
object reference, until an error occurs when using this reference. Figure 27 depicts
the basic functioning of the mechanism in the establishment of the binding.

Client
ORBClient(s)

time

Target
Object V

Server
ORB

Location
Agent

Client
ORBClient(s)

Target
Object V

Server
ORB

location
forward

Figure 27 – Transparent binding establishment

When reconfiguration occurs, the reference being used by a client ORB is no
longer valid. At this moment, GIOP mandates that the client ORB switches back
to the original object reference, which in this case is the location-independent
reference. The re-establishment of the binding follows the same procedure as in
the first establishment, transparently for the client application. Figure 28 depicts
the basic functioning of the mechanism in the re-establishment of a binding
broken by reconfiguration.

52

Client
ORBClient(s)

time

Location
Agent

Target
Object V

Server
ORB

Client
ORBClient(s)

Target
Object V

Server
ORB

Client
ORBClient(s)

Target
Object V

Server
ORB

Target
Object V’

exception!

Server
ORB

location
forward Target

Object V’
Server
ORB

Client
ORBClient(s)

Target
Object V

Server
ORB

Target
Object V’

Server
ORB

Figure 28 – Transparent binding re-establishment

This mechanism is fully transparent to the client application and the overhead for
this solution is limited to the first invocation of a client on the reconfigured target
object. The forward mechanism is already implemented in implementation
repositories, although the interface between the implementation repository and the
server ORB has not been standardized.

In our implementation, the Location Agent implements the LocationAgentAdmin
interface, which allows the Reconfiguration Manager to register an object while
retrieving its location-independent object reference (register_object()), get the
location-independent object reference to an object (get_reference()), get the
location-dependent object reference to an object (get_target_object()) and remove
the current reconfigurable object identifier and location-dependent object
reference association (deregister_object()).

module LocationAgent
{
 interface LocationAgentAdmin
 {
 Object register_object (
 in Object target,
 in ReconfigurationService::ReconfigurableObjectId id
);

 Object get_reference (
 in ReconfigurationService::ReconfigurableObjectId id
);

 Object get_target_object (
 in ReconfigurationService::ReconfigurableObjectId id
);

53

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

 void deregister_object (
 in ReconfigurationService::ReconfigurableObjectId id
);
 };
};

6.2 Selective Request Queuing

In order to bring the system to the reconfiguration-safe state we have to
implement a selective queuing of requests. Requests that do not belong to the
‘laissez-passer’ set should be queued transparently for clients and target objects.
We identify two objects that realize selective queuing: a selector and a queue.
These objects can be built in different ways: they can become internal ORB
objects, CORBA objects or even request bridges.

6.2.1 Selector and Queue Objects

For each request directed to an affected object, the selector determines if the
request belongs to the ‘laissez-passer’ set. If it does, the request is forwarded to
the target object as in normal operation. Otherwise, the request is sent to the
queue. Figure 29 shows this scheme, abstracting from the location of the objects
in the middleware platform and the way they are built.

Target
Objecti

Selector

[request ∈
laissez-passer]

request flow

requests

Queue
Reconfig.
Manager

start-of-
reconfiguration
laissez-passer
criteria

reconfiguration
management
commands

Client(s)

[request ∉
laissez-passer]

Figure 29 – Selector and Queue functions, reaching the safe state

The queue is responsible for storing requests until reconfiguration is complete.
Stored requests are redirected to the new version of the target object after the
reconfiguration, as depicted in Figure 30.

Target
Objecti+1

queued
requests

Queue
Reconfig.
Manager end-of-

reconfiguration,
obj reference i+1

requests

request flow
reconfiguration
management
commands

Client(s)

Figure 30 – Redirecting requests to new version of the implementation after

reconfiguration

54

Initially we investigated the implementation of our approach as a service
exclusively on top of the ORB, in which the selector and the queue would be
combined to form a single CORBA object. Since the ORB threading strategy
determines how threads are allocated to requests, and each request being handled
by the combined selector/queue would block its thread, this solution is too
dependent of the ORB threading strategy to work. Typically there would be as
many threads as requests that have to be handled by the selector/queue object,
such that this solution is not scalable. Therefore we ignore this alternative.

Another alternative is the embedding of the selector and the queue in the
middleware infrastructure. In this alternative, a distributed application that uses
the dynamic reconfiguration service consists of Reconfigurable Objects,
Reconfigurable-Objet Factories and clients, which interact with a Reconfiguration
Manager over a DRS-enabled ORB, as depicted in Figure 31. The DRS-enabled
ORB realizes the selective queuing mechanism (introduced in Chapter 4)
transparently for the application layer.

Reconfigurable
Object

DRS-enabled Object Request Broker

Reconfiguration
Manager

Location
Agent

ORB-mediated interactions

intra-capsule interactions

Factory

application

infrastructure

Client

Figure 31 – Overview of Application with Reconfigurable Objects

6.2.2 Allocation of Selector and Queue Objects

Implementation alternatives can be generated by considering the allocation of the
selector and the queue to different parts of the middleware infrastructure, namely
the client-side ORB (client ORB) and the server-side ORB (server ORB). The
benefits and drawbacks of each alternative are the following:

� Pure client-side solution. Selector and queue are implemented as extensions
of the client ORB. Requests are selected and blocked at the client side,
imposing no overhead to the communication infrastructure. Nevertheless,
there is a serious scalability problem since all potential clients of an affected
object must be known a priori, and all these clients must be notified of the set
of affected objects. This drawback applies to all solutions that place the
selector in the client ORB. Moreover, this solution complicates management,
since the client ORB extensions have to be deployed in every potential client
of the reconfigurable objects;

� Pure server-side solution. Selector and queue are implemented as extensions
of the server ORB. This solution offers better scalability than the pure client-

55

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

side solution, as clients do not need to be known a priori and do not need to be
informed of the reconfiguration. Since the client ORB does not have to be
extended, management and deployment can be simplified;

� Hybrid solution. The selector and the queue are implemented as extensions of
the server ORB and the client ORB, respectively. Clients that attempt to issue
a request to an affected object are informed to block the request and re-issue it
when they get a notification that the reconfiguration has been completed. In
effect, the queue becomes distributed among all clients that attempt to issue a
request to an affected object during reconfiguration. This solution requires
more communication overhead than in the case of the pure server-side
solution.

6.2.3 ORB Instrumentation

The solutions discussed above imply that the ORB has to be extended somehow,
i.e., the ORB has to be instrumented. This can be realized by either making
proprietary modifications to the ORB code or by using some kind of request
reflection [33], in which we can operate on the reified request object. Request
reflection can be implemented using interceptors (or filters), which are supported
by most commercial ORBs. Interceptors make it possible to add new functionality
to an ORB without altering or accessing the source code of the ORB. Interceptors
offer standard support for extending ORB functionality. OMG is currently
finalizing the CORBA Portable Interceptors standard [20], which offers somewhat
limited but portable instrumentation capabilities for ORB implementations. The
pure client-side solution can be directly implemented using portable interceptors
in the client ORB. The implementation of the pure server-side solution with
portable interceptors has the same kind of problems with respect to threading as
the implementation as a service on top of the ORB discussed above. The hybrid
solution can be directly implemented using portable interceptors in the client ORB
and in the server ORB. In section 6.2.4, we present our implementation of the
hybrid solution.

The selector can use the service context of a request to determine a request
belongs to the ‘laissez-passer’ set. Service contexts allow implicit arguments to be
passed in a method invocation. When a reconfigurable object issues a request, it
adds its identifier to the service context. During the first stage of the
reconfiguration process, when a request arrives at the selector the request’s
service context is inspected. If the identifier of an affected object is included in the
service context, the request belongs to the ‘laissez-passer’ set and should not be
queued.

6.2.4 Solution based on Portable Interceptors

The implementation considered in this section is based on the use of portable
interceptors [20] to extend the functionality of the ORB. Portable interceptors
allow the extension of the ORB through a limited request reflection mechanism in
an ORB-independent manner. Interceptors allow a service to reify requests at
specific interception points.

Figure 32 depicts an overview of the implementation with a brief description of
the actions undertaken at the client- and server-side request interception points.

56

Reconfigurable
Object

Client

Client
Request

Interceptor

Server
Request

Interceptor

Client
Request

Interceptor

Object Request Broker Core

send_request:
- copy thread
context into
request service
context

receive_exception:
- if exception caused
because of
reconfiguration, wait
notification and
reissue request (via
LocationForward)
(distributed queue)

receive_request:
- extract ‘invocation path’
- during reconfiguration
filter requests (throw
exception to queue)
- append id of target obj
to invocation path and
copy into thread context
- increment # incoming
requests for target obj

send_reply:
send_other:
send_exception:
- decrement #
incoming requests
for target

Reconfig.
Agent

receive_exception:
- wait notification and
reissue request (via
LocationForward)

Reconfig.
Manager

Location
Agent

request flow (decomposed
ORB-mediated interaction)
reply flow (decomposed
ORB-mediated interaction)

ORB-mediated interaction

intra-capsule interaction

Factory

application

infrastructure

Figure 32 – Elements of the implementation and request reification points

Before a reconfigurable object receives a request, the request is reified in the
receive_request interception point, and the service context propagated with the
request is extracted. A service context is an implicit parameter used by CORBA
services to propagate information along with a request. For the DRS, it contains
the list of reconfigurable objects that depend on the execution of the request to
become idle. The list of reconfigurable objects is appended with the identification
of the request’s target object and the appended list is copied into the
ReconfigurationCurrent local object. The ReconfigurationCurrent object provides
access to an implicit per-thread context, and in this way the thread is associated
with the reconfigurable object.

During the first stage of the reconfiguration process, server request interceptors
inspect the propagated service context. If any of the affected objects is listed in the
service context, the request should be allowed to complete, so that all affected
objects can progress to the idle state. If no affected objects are listed, an exception
is raised. This exception is intercepted in the client-side request interceptors,
which block the thread of execution and reissues the blocked requests later by
raising a LocationForward exception.

We consider two different policies for determining the moment in which a request
is reissued: the wait-and-retry policy and the wait-for-notification policy. The
policy is determined by the Reconfiguration Manager prior to reconfiguration. In
the wait-and-retry policy, the Reconfiguration Manager sends a time interval to
the Reconfiguration Agents of the affected objects. This time interval is passed in
the reply service context of the exception that is sent to clients during
reconfiguration. The client-side request interceptor waits for the time interval
specified and reissues the request. If the reconfiguration is not over yet, the server-
side request interceptors will raise the exception again, and the client-side request
interceptor will block for the time internal again. In the wait-for-notification
policy, the Reconfiguration Manager creates a ReconfigurationManagerCallback
object before the start of a reconfiguration. The Reconfiguration Manager sends

57

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

this reference to the Reconfiguration Agents of the affected objects. This
reference to the callback object is passed in the reply service context of the
exception that is sent to clients during reconfiguration. The client-side request
interceptor invokes the block_until_ready() method of the
ReconfigurationManagerCallback object, which blocks until the end of the
reconfiguration. The client application is not at any moment aware of the
reconfiguration, potentially observing an increase in the response time of
invocations that are queued waiting for reconfiguration.

One may think that the use of the event service (or the notification service) would
be appropriate for the communication between Reconfiguration Manager and
blocked clients. In this case, the Reconfiguration Manager would send an event
with the semantics “the reconfiguration is over” to all blocked clients. In Figure
33, we show an execution in which the use of the event service would prevent the
client-side ORB from unblocking. In this execution, the client’s pull() request
reaches the event channel after the event that indicates the end of reconfiguration.
According to the specification of the event service, the event is not delivered, and
the client is left waiting for a response to pull() indefinitely.

safe-state
reached

Client
Client-side

ORB
Event

Channel
Server-side

ORB Object
Reconfig.
Manager

object is idle

request
request

wait_for_notification
(piggybacked in exception)

pull() push(reconfiguration is over)

pull() reaches the event
channel after push(),
event is not retrieved by pull()

Figure 33 – Problem using the event service for notifying clients

6.3 Performing Reconfiguration Steps

The DRS components, namely the Reconfiguration Manager, the Location Agent
and the Reconfiguration Agents, cooperate to perform a reconfiguration step. In
the sequel we detail the activities executed to perform simple and composite
reconfiguration steps.

6.3.1 Object Creation

Figure 34 shows the creation of an object. The Reconfiguration Manager
delegates the creation to a local Reconfigurable Object Factory (2), which creates
the object (3) and registers it with the Reconfiguration Agent responsible for the
capsule where the object lives (4). After that, the Reconfiguration Manager
registers the recently created object with the Location Agent (5), and returns the
object reference to the client that requested the object creation (6).

58

Location
Agent

Reconfigurable
Object
Factory

Reconfiguration
Manager

Reconfigurable
Object

Reconfiguration
Agent

Capsule A

1. create_object()

3. creates the
object

2. create_object()

4. register_object()

6. returns reference
to reconfigurable

object

5. register_object()

Figure 34 – Object Creation

No special support is required from the ORB for performing this step.

6.3.2 Object Replacement

Figure 35 shows the replacement of an active object. Initially, the Reconfiguration
Manager delegates the creation of the new version of the object to a local
Reconfigurable Object Factory (2). After that, the Reconfiguration Manager
notifies the affected reconfigurable object and its Reconfiguration Agent of the
start of the reconfiguration (5, 6). The Reconfiguration Agent restricts the
behavior of the affected object, and notifies the Reconfiguration Manager when
the object is ready for reconfiguration (7). The state-transfer is conducted (8, 9),
the object is allowed to exhibit active behavior (10), the new location of the object
is registered with the Location Agent (11), and the local factory is requested to
remove the previous version of the object (12). In Figure 35 we do not show state
translation that may take place.

Reconfigurable
Object
Factory

Reconfigurable
Object

Reconfiguration
Agent

Capsule B

Location
Agent

Reconfigurable
Object
Factory

Reconfiguration
Manager

Reconfigurable
Object

Reconfiguration
Agent

Capsule A

1. replace_object()

2. create_object()

11. register_object()

3. creates
the object

6. start_freezing()

4. register_object()

9. set_state()

13. done

12. remove_obj()

5.
passivate()

8. get_state()

7.
notify_ready_for_reconfig()

10. activate()

Figure 35 – Object Replacement

59

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

6.3.3 Object Migration

Object migration is treated as an object replacement where the factory of the new
version of the object is located in the destination capsule.

6.3.4 Object Removal

The Reconfiguration Manager delegates object removal to the Reconfigurable
Object Factory responsible for the object being removed, and de-registers the
object with the Location Agent.

6.3.5 Composite Reconfiguration Steps

The procedures for the execution of simple reconfiguration steps described in
sections 6.3.1 to 6.3.4 are special cases of the procedure to execute a composite
reconfiguration step. This procedure consists of the following activities:

1. for each object creation, migration and replacement, the Reconfiguration
Manager invokes the create_object() operation of the appropriate local object
factory (determined by type and criteria);

2. the Reconfiguration Manager invokes the passivate() operation of all active
objects in the affected set;

3. the Reconfiguration Manager invokes the start_freezing() operation of all
active objects in the affected set. The parameters of start_freezing() include the
set of affected objects and the information for the queuing policy adopted;

4. all the affected objects eventually reach the idle state and the Reconfiguration
Agents invoke the notify_ready_for_reconfig() operation on the
ReconfigurationManagerCallback object. The safe-state is reached;

5. the Reconfiguration Manager reads the states of the affected objects,
translates them with the translate() operation of the state translator, when this
is supplied, and sets the states of the new or relocated versions;

6. the Reconfiguration Manager (re-) registers the location-dependent object
reference with the location agent;

7. the Reconfiguration Manager invokes the activate() operation of the new or
relocated versions;

8. the client-side ORBs are notified that the reconfiguration is over, in case
reissuing policy is wait-for-notification; and

9. for each object removal, migration and replacement, the Reconfiguration
Manager invokes the delete_object() operation of the local object factory that
holds the version to be discarded.

60

6.4 Portability and Interoperability Considerations

In order to guarantee the portability of applications built using the DRS, an
implementation of the DRS must provide the interfaces presented in Chapter 5.
These are, namely: ReconfigurationManager, GenericFactory, FactoryManager,
ReconfigurableObjectFactory, ReconfigurableObject, ActiveObject,
ReconfigurationAgent and ReconfigurationCurrent. The implementation of the
DRS should not use proprietary ORB interfaces.

The interfaces ReconfigurationAgentAdmin, LocationAgent, and
ReconfigurationManagerCallback are internal interfaces. These interfaces are used
for the interaction between parts of the DRS and are specific to an implementation
of the DRS. In order to guarantee the interoperability between the Reconfiguration
Manager, Reconfiguration Agents, DRS-ready client ORBs and DRS-ready server
ORBs from different vendors, these internal interfaces should be standardized, as
well as the exceptions used to indicate reconfiguration, and the identifier and
structure of the DRS service context.

Figure 36 shows the interfaces that should be implemented to guarantee the
portability of applications built using the DRS, and the internal interfaces.

Location
Agent

Factory

Reconfiguration
Manager

Reconfiguration
Agent

ReconfigurationManager

ReconfigurableObjectFactory

ReconfigurableObject

ReconfigurationAgent

LocationAgent

Object

GenericFactory

State
Translator

GenericStateTranslator

ReconfigurationAgentAdmin

ReconfigurationManagerCallback

Internal interfaces
Standardized for interoperability

External interfaces
Standardized for portability

Reconfig.
Current

ReconfigurationCurrent

Figure 36 –Interfaces that should be standardized for portability and

interoperability

6.5 Evaluation

A prototype of the Dynamic Reconfiguration Service has been implemented to
validate the architecture and the mechanisms proposed. The prototype has been
developed in Java, using ORBacus 4.0.4 [26].

The prototype has been successfully tested for applications with multiple
multithreaded objects, including nested and re-entrant invocations. Furthermore,
we have conducted some performance tests on the prototype. In this section we

61

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

present the results obtained from these tests. This section gives an estimation of
the overhead introduced by the Dynamic Reconfiguration Service during normal
operation and an estimation of the impact of reconfiguration on execution.

6.5.1 Overhead during normal operation

In order to assess the overhead of the reconfiguration service during normal
operation, i.e., with no on-going reconfiguration, we have set-up a performance
test with a client and a server object, in different hosts of a local area network.
Since a large part of the overhead introduced by the dynamic reconfiguration
service is incurred by the implementation of portable interceptors, we have
considered three test cases:

1. client and server with no portable interceptors,

2. client and server with minimal portable interceptors, i.e., interceptors with
placeholders for interception points, but no code, and

3. client and server with the dynamic reconfiguration service portable
interceptors.

We measure the overhead during normal operation by measuring the response
time R observed at the client. In this estimation, we approximate R by considering
that it consists of the delay introduced by the middleware platform to mediate the
invocation ∆middleware added with the delay introduced by the execution of the
application code, ∆application. For our tests, the server object provided an operation
with no application code, thus ∆application ≅0, and we have:

middlewarenapplicatiomiddlewareR ∆=∆+∆=

For test case 1, ∆middleware is the delay introduced by the plain middleware platform
(i.e., the middleware platform without extensions), ∆plainorb:

plainorbmiddleware ∆=∆

For test case 2, ∆middleware can be seen as composed of the delay introduced by the
plain middleware platform and the delay introduced by the implementation of
portable interceptors, ∆interceptors:

rsinterceptoplainorbmiddleware ∆+∆=∆

For test case 3, ∆middleware can be seen as composed of the delay introduced by the
plain middleware platform, the delay introduced by the implementation of
portable interceptors and the delay introduced by the dynamic reconfiguration
service portable interceptors ∆drs.

drsrsinterceptoplainorbmiddleware ∆+∆+∆=∆

Four batches of 104 invocations have been executed for each of these three distinct
cases, with different sizes of parameters and result values. The results obtained are
summarized in Table 2 (values are the average of 4 x 104 invocations):

62

Table 2 – Delay introduced by the middleware platform in invocation mediation

 Minimal portable
interceptors

Dynamic reconfiguration service

Size of
arguments +
result value

∆plainorb
(ms)

∆interceptors
(ms)

Increase
from
∆plainorb

∆drs (ms) Increase
from ∆plainorb

+∆interceptors

∆interceptors +
∆drs (ms)

Increase
from
∆plainorb

0 bytes 1.0388 0.0771 7.4% 0.0518 4.6% 0.1289 12.4%

128 bytes 1.0999 0.0625 5.7% 0.0641 5.4% 0.1266 11.5%

2 Kbytes 1.5305 0.0834 5.5% 0.0555 3.4% 0.1389 9.1%

Figure 37 shows these results in a graphical representation:

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

A
ve

ra
ge

 d
el

ay
 (m

s)

0 byte 128 bytes 2048 bytes

Size of results + arguments

Delay introduced by the middleware platform in
ORB-mediated invocations

plain implementation
minimal interceptors
DRS interceptors

Figure 37 – Normal and increased response times

Summarizing, the increase in ∆middleware incurred by the introduction of the
dynamic reconfiguration service lies in the range 0.13 ± 0.01 ms. In the worst
case, with no parameters and no result value, the dynamic reconfiguration service
causes an increase of less than 12.5% in the delay introduced in normal ORB-
mediated invocations. Typically, the servant will take some time to process the
request, lowering the relative increase in invocation response time considerably.
Therefore, for most application scenarios, we expect that the overhead of the
reconfiguration service will be acceptable.

From the results obtained, we can also conclude that more than half of the delay
added by the dynamic reconfiguration service is caused by the implementation of
portable interceptors. Since the implementation of portable interceptors is ORB-
dependent, these experiments should be repeated for other ORB implementations.

6.5.2 Impact on execution during reconfiguration

In Section 4.4.4 we have stated that the increase in response time is upper-
bounded by the duration of the longest pending invocation in the set of affected
objects at the moment the reconfiguration starts. Nevertheless, we have neglected
the overhead introduced by the reconfiguration service for coordinating the
reconfiguration.

The delay introduced by the reconfiguration service forms a lower bound for the
increase in response time during reconfiguration. According to an experiment
conducted with the replacement of one single object, this delay is approximately

63

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

530 ms. From this value, 320 ms are related to marshalling and de-marshalling of
service contexts. However, these values can be reduced once we optimize some
code segments, something that we have not done yet.

The experiments should be repeated for different ORB implementations to reach
more conclusive results. Further tests should consider the effects of
reconfiguration on the performance of the new object right after the
reconfiguration. Since queued requests are all delivered to a new object right after
reconfiguration, this object may get overloaded and the performance of the overall
system can be affected.

64

7 Usage Examples

This chapter discusses the use of the dynamic reconfiguration service with two
different application scenarios. The objectives of this chapter are twofold: to
validate the use of the dynamic reconfiguration service in different application
scenarios, and to provide extended examples to reconfigurable object developers,
complementing the description of the interfaces of the service in Chapter 5.

This chapter is further structured as follows: Section 7.1 presents the
reconfiguration of a banking application and Section 7.2 presents a load-balancing
manager based on object migration.

7.1 Reconfiguration of a Banking Application

The objective of this example is to illustrate the usage of the DRS to perform a
sequence of reconfiguration steps to a simple banking application. The
reconfiguration steps considered are object creation, multiple object replacements
with change in internal implementation (both without state conversion and with
state conversion), replacements with interface sub-typing, and a composite
reconfiguration step, which consists of multiple replacements and creation.

7.1.1 Initial Configuration

Initially, the banking application consists of BankAccount reconfigurable objects
and a ReportGenerator reconfigurable object.

The bank account provides methods to consult the current balance (getBalance()),
withdraw (withdraw()), deposit (deposit()), get the history of balances
(getHistory()), get the maximum overdrawn limit allowed for the account
(getMaxOverdrawnAllowed()).

The factory for a bank account implements the BankAccountFactory interface,
which is derived of the ReconfigurableObjectFactory interface.

65

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

module Banking
{
 interface BankAccount : ReconfigurationService::ReconfigurableObject
 {
 float getBalance();
 void withdraw(in float amount);
 void deposit(in float amount);

 typedef sequence<float> floatSeq;
 floatSeq getHistory();
 float getMaxOverdrawAllowed();
 };
 interface BankAccountFactory
 : ReconfigurationService::ReconfigurableObjectFactory
 {
 };
};

The bank account is a stateful object. The state has been defined as a structure in
IDL.

module Banking
{
 typedef sequence<float> floatSeq;
 struct BankAccountState_initial
 {
 float balance;
 floatSeq history;
 };
};

The report generator implements the ReportGenerator interface, which provides an
operation to generate a report for a given account. The report generator is
stateless.

module Banking
{
 interface ReportGenerator : ReconfigurationService::ReconfigurableObject
 {
 string report(in BankAccount account);
 };
 interface ReportGeneratorFactory
 : ReconfigurationService::ReconfigurableObjectFactory
 {
 };
};

Figure 38 shows the initial configuration of the banking application.

Capsule A1

BankAccount
Factory

BankAccount Vinitial

BankAccount Vinitial

BankAccount Vinitial
Capsule R1

ReportGenerator
Factory

ReportGenerator Vinitial

Figure 38 – Initial Configuration of the Banking Application

66

The objects have been implemented in Java. We show the implementation of the
operations which are relevant to the application developer. These are
BankAccount’s get_state() and set_state() and the BankAccountFactory’s
create_object() and delete_object().

The get_state() operation returns the state of the object encoded as a sequence of
octets. In our example, we re-use CORBA’s CDR operations to encode the state
in an interoperable way. Initially, a CodecFactory is obtained. After that, The
CodecFactory is used in order to create a Codec that implements the desired CDR
encoding. The state is obtained from the application, in this case local Java calls to
this.getBalance() and this.getHistory(), and it is placed into the structure
BankAccountState_initial that defines the state in IDL. This structure is placed into
a CORBA Any, and the operation encode() of the Codec is invoked in order to
encode this Any. The implementation of get_state() is shown below. Exception
handling is omitted in this section.

public byte[] get_state()
 {

 org.omg.IOP.CodecFactory codec_factory =
 org.omg.IOP.CodecFactoryHelper.narrow(
 orb.resolve_initial_references("CodecFactory"));

 org.omg.IOP.Encoding cdr_encoding =
 new org.omg.IOP.Encoding(
 org.omg.IOP.ENCODING_CDR_ENCAPS.value, (byte)1, (byte)0);

 org.omg.IOP.Codec codec = codec_factory.create_codec(cdr_encoding);

 org.omg.CORBA.Any any = this._orb().create_any();

 BankAccountState_initial state = new BankAccountState_initial(
 this.getBalance(), this.getHistory());
 BankAccountState_initialHelper.insert(any, state);

 byte result[] = codec.encode(any);
 return result;

Any is created with
the state of the
object

Any is encoded with
the codec

IOP codec is
obtained

}

The implementation of the set_state() operation is symmetric to the
implementation of get_state(). Initially, a CodecFactory is obtained. After that, the
CodecFactory is used in order to create a Codec that implements the desired CDR
encoding. The encoded state is decoded with the operation decode() of the Codec,
which returns an Any. The structure BankAccountState_initial is extracted from
this Any, and the state can be restored to the application. The implementation of
set_state() is shown below.

public void set_state(byte s[])
{

 …

IOP codec is obtained
(see get_state()

 org.omg.CORBA.Any any = codec.decode(s);

 BankAccountState_initial state = BankAccountState_initialHelper.extract(any);

Any is decoded and
BankAccountState_impl
extract from it

67

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

 this.balance = state.balance;

 this.history.clear();
 for(int i = 0; i < state.history.length; i++)
 this.history.add(new Float(state.history[i]));

state is restored to the
object

}

The application developer must also supply an implementation of the local
factory. The create_object() operation of the local factory creates objects on behalf
of the Reconfiguration Manager. Initially, the parameters for creation are
extracted from the criteria. This includes the location-independent object
reference, the reconfigurable-object identifier and the ApplicationObjectCreation
property in case of an application object creation. After that, the servant is created,
the CORBA object is activated. The object is registered with the Reconfiguration
Agent (a reference to the Reconfiguration Agent has been obtained previously by
invoking ORB::resolve_initial_references(“ReconfigurationAgent”)), and the factory
creation identifier is returned. The implementation of create_object() is shown
below.

public org.omg.CORBA.Object
 create_object(String type_id,
 Property[] the_criteria,
 org.omg.CORBA.AnyHolder factory_creation_id)
 throws NoFactory,
 ObjectNotCreated,
 InvalidCriteria,
 InvalidProperty,
 CannotMeetCriteria
{

 // search for “Id” in the properties
 long id = extract_id_criteria (the_criteria);

 // search for “IOR” in the properties
 org.omg.CORBA.Object obj_being_created = extract_ior_criteria (the_criteria);

 // search for “ApplicationObjectCreation” in the properties
 Boolean first_version = extract_app_obj_creation_criteria (the_criteria);

 org.omg.CORBA.Object result = null;

 result = (new BankAccount_initial_impl(orb))._this_object(orb);

 byte object_id[], adapter_id[];

 object_id = _poa().reference_to_id(result);
 adapter_id = _poa().id;

 rec_agent.register_object(id, obj_being_created, adapter_id, object_id);

 registry.put(id, object_id, servant);

 factory_creation_id.value = _orb().create_any();
 factory_creation_id.value.insert_longlong(id);

 return result;

factory creation id is
returned (for later
delete_object())

factory-specific
registration

the object is registered
with the
Reconfiguration Agent

the servant is created,
and CORBA object is
activated

the parameters for
creation are extracted
from the criteria

}

68

The delete_object() operation of local factory deletes objects on behalf of the
Reconfiguration Manager. The object is de-registered with the Reconfiguration
Agent and the CORBA object is de-activated.

public void delete_object(org.omg.CORBA.Any factory_creation_id)
 throws ObjectNotFound
{
 long id = factory_creation_id.extract_longlong();

 rec_agent.deregister_object(id);

 this._poa().deactivate_object(registry.getObjectId(id)); deactivated

the object is

the object is
deregistered

}

7.1.2 Multiple Replacements

The initial implementation is defective in that the history grows indefinitely, using
up more resources that necessary. Therefore we substitute it by a version which
limits the number of balances stored. Since the set_state() operation of the new
version truncates the number of balances stored, no state translation is necessary.
Our first reconfiguration step consists of the replacement of all objects of type
BankAccount from this version Vinitial by this new version Vnew, as depicted in
Figure 39.

Capsule A1

BankAccount
Factory

BankAccount Vinitial

BankAccount Vinitial

BankAccount Vinitial

Capsule A2

BankAccount
Factory

BankAccount Vnew

BankAccount Vnew

BankAccount Vnew

Capsule R1

ReportGenerator
Factory

ReportGenerator Vinitial

All BankAccount objects are
replaced with version Vnew

Change in internal
implementation only
There is no state translation,
identity function is used

Capsule R1

ReportGenerator
Factory

ReportGenerator Vinitial

unaffected objects

affected objects

Figure 39 – Composite Reconfiguration Step: BankAccount objects are replaced

Before defining the reconfiguration step, the new factory is added with the
Reconfiguration Manager. Initially, both the location (drs.Location) and version
identifier (drs.VersionId) properties are set. The location refers to the location
where the new factory creates objects and the version identifier refers to the
version of the objects created. These properties form the criteria for object

69

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

creation using this factory. A reference to the factory is obtained and the factory is
added by invoking add_factory() on the FactoryManager interface. The code to add
the factory of objects of version Vnew is given below.

 NameComponent version_prop = new NameComponent[1];
 version_prop[0] = new NameComponent("drs.VersionId","");

 Any version_val = orb.create_any();
 version_val.insert_float(1.1);

 NameComponent location_prop = new NameComponent[1];
 location_prop[1] = new NameComponent("drs.Location","");

 Any location_val = orb.create_any();
 location_val.insert_string("");

 Property[] the_criteria = new Property[2];

 the_criteria[0] = new Property(version_prop, version_val);
 the_criteria[1] = new Property(location_prop, location_val);

 ReconfigurableObjectFactory factory =
 ReconfigurableObjectFactoryHelper.narrow(
 orb.string_to_object(readReference("BankAccount_new_implFactory.ref")));

 FactoryInfo finfo =
 new FactoryInfo(factory, location_prop, the_criteria);

 String[] type_ids = new String[1];
 type_ids[0] = BankAccountHelper.id();

 rec_mgr.add_factory(finfo, type_ids);

parameters of
add_factory() are
prepared, factory is
added

a reference to the
factory is obtained

the_criteria is created
with both properties

the location property of
the criteria is set

the version property of
the criteria is set

The reconfiguration step is created invoking the create_reconfiguration() operation
of the Reconfiguration Manager. The identifier of the new version is placed in the
criteria. replace_type() is invoked to request the replacement.

 Property[] the_criteria = new Property[1];

 NameComponent version_prop = new NameComponent[1];
 version_prop[0] = new NameComponent("drs.VersionId","");

 org.omg.CORBA.Any version_val = orb.create_any();
 version_val.insert_float(1.1);

 the_criteria[0] = new Property(version_prop, version_val);

 ReconfigurationStep step = rec_mgr.create_reconfiguration_step();
 step.replace_type(
 BankAccountHelper.id(), BankAccountHelper.id(), the_criteria);
 step.commit();

a reconfiguration step
is created an
replacement requested

d

the criteria are
prepared, with the new
version specified

70

7.1.3 Multiple Replacements and Creation

In our second reconfiguration step, all BankAccount objects are replaced, and a
CreditCentral object is created. The new version of BankAccount (Vfactored)
delegates requests to getMaxOverdrawAllowed() to the Credit Central. The Credit
Central makes a re-entrant invocation to the BankAccount object to get the history
of balances and calculates the overdrawn limit.

interface CreditCentral
{
 float getMaxOverdrawAllowed(in BankAccount account);
};

This reconfiguration step is depicted in Figure 40.

Capsule A3

BankAccount
Factory

BankAccount
Vfactored

BankAccount
Vfactored

BankAccount
Vfactored

Capsule R1

ReportGenerator
Factory

ReportGenerator Vinitial

All BankAccount objects are
replaced with version Vfactored

A CreditCentral is created.
There is no state translation
function.

Capsule R1

ReportGenerator
Factory

ReportGenerator Vinitial

Capsule A2

BankAccount
Factory

BankAccount Vnew

BankAccount Vnew

BankAccount Vnew

Capsule C1

CreditCentral
Factory

CreditCentral

CreditCentral makes re-entrant
invocations to BankAccount

unaffected objects

affected objects

Figure 40 – Composite Reconfiguration Step: BankAccount objects are replaced

and CreditCentral singleton created.

Before defining the reconfiguration step, the new factories are registered with the
Reconfiguration Manager, as exemplified in Section 7.1.3.

71

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

The code that specifies this reconfiguration step is given below. The criteria for
the replacement contain the identifier of the new version. The reconfiguration step
is created and object creation and replacement are requested.

 …

 ReconfigurationStep step =
 rec_mgr.create_reconfiguration_step();

 AnyHolder cc_creation_id = new AnyHolder();

 org.omg.CORBA.Object cc =
 step.create_object(
 CreditCentralHelper.id(),
 new Property[0],
 cc_creation_id);

 step.replace_type(
 BankAccountHelper.id(),
 BankAccountHelper.id(),
 the_criteria);

 step.commit();

n
a reconfiguration step
is created and creatio
and replacement are
requested

the version property of
the criteria is set

7.1.4 Multiple Replacements with Sub-Typing

In our third reconfiguration step, both the ReportGenerator and the BankAccount
objects are replaced. The version Vfactored of BankAccount is replaced by Veuro. Veuro
implements a sub-type of BankAccount, namely EuroBankAccount. Veuro stores the
balance and history in Euros, while Vfactored stores the balance and history in Dutch
Guilders. Therefore, state conversion is required. The new version of
ReportGenerator, Veuro uses the derived interface to print reports in Euros by
invoking the getBalanceEuro() operation. The interface of the Report Generator
remains unchanged. The report() operation narrows the BankAccount parameter to
from BankAccount to EuroBankAccount.

interface EuroBankAccount : BankAccount
{
 float getBalanceEuro();
};

interface EuroBankAccountFactory
 : ReconfigurationService::ReconfigurableObjectFactory
{
};

72

The reconfiguration step is depicted in Figure 41.

Capsule A4

EuroBankAccount
Factory

EuroBankAccount
Veuro

EuroBankAccount
Veuro

EuroBankAccount
Veuro

All BankAccount objects are replaced with version Veuro that
implements the derived interface EuroBankAccount.
The ReportGenerator is replaced to use EuroBankAccount,
printing reports in Euros.

Capsule R2

ReportGenerator
Factory

ReportGenerator Veuro

Capsule A3

BankAccount
Factory

BankAccount
Vfactored

BankAccount
Vfactored

BankAccount
Vfactored

Capsule R1

ReportGenerator
Factory

ReportGenerator Vinitial

Capsule C1

CreditCentral
Factory

CreditCentral

Capsule C1

CreditCentral
Factory

CreditCentral

unaffected objects

affected objects

Figure 41 – Composite Reconfiguration Step with Replacements with Sub-Typing

Before defining the reconfiguration step, the new factories are registered with the
Reconfiguration Manager, as exemplified in Section 7.1.3. The criteria for the
replacements are defined as exemplified in Section 7.1.2.

The code that specifies this reconfiguration step is given below. A reference to the
state translator is obtained. The state translator is used as a parameter for the
operation set_state_translator().

 GenericStateTranslator translator =
 GenericStateTranslatorHelper.narrow(
 orb.string_to_object(
 readReference("BankStateTranslator_factored_to_euro.ref")));

 ReconfigurationStep step = rec_mgr.create_reconfiguration_step();

 step.set_state_translator(translator);

a reference to the state
translator is obtained,
and the state translator
is associated to the step

 step.replace_type(
 BankAccountHelper.id(),
 EuroBankAccountHelper.id(),
 the_criteria_acc);

 step.replace_type(
 ReportGeneratorHelper.id(),

73

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

 ReportGeneratorHelper.id(),
 the_criteria_rg);

 step.commit();

The code for the state translator’s translate() function is given below. The function
decodes the state of an instance of BankAccount, converts both the current balance
and the account history from Dutch Guilders to Euros and encodes the state
appending it to the output array derived.

public void translate(Instance[] original, InstanceSeqHolder derived)
{
 derived.value = new Instance[original.length];
 for (int i = 0; i < original.length; i++) // for each instance
 {
 if (original[i].type_id.equals(BankAccountHelper.id()))
 {
 Any any = codec.decode(original[i].the_state);

 BankAccountState_factored original_state =
 BankAccountState_factoredHelper.extract(any);

 EuroBankAccountState derived_state = new EuroBankAccountState();

 derived_state.balance = original_state.balance * NLG_TO_EUR;
 derived_state.history = new float[original_state.history.length];
 for (int j = 0; j < original_state.history.length; j++)
 derived_state.history[j] = original_state.history[j] * NLG_TO_EUR;

 Any any_derived_state = this._orb().create_any();
 EuroBankAccountStateHelper.insert(any_derived_state, derived_state);
 byte encoded_derived_state[] = codec.encode(any_derived_state);

 derived.value[i] = new Instance(
 original[i].type_id, original[i].id, encoded_derived_state);
 }

state

place the derived state
in the output variable

encode the derived

actual state translation

decode the state

 else {
 derived.value[i] = original[i]; // use identity
 }
 }
}

7.1.5 Conclusions

With this example, we have shown that composite reconfiguration steps can be
supported by the DRS. We have shown (i) how simple reconfigurable objects and
reconfigurable object factories can be implemented and (ii) how to request the
execution of different composite reconfiguration steps. The example shows code
fragments which can be re-used in other reconfiguration situations.

This example is a simplified version of an example that has been implemented
and executed with the prototype of the DRS, so that it constitutes a simple proof-
of-concept.

74

7.2 Load-balancing Manager based on Migration

This section describes a load-balancing manager that uses object migration to
balance the load across a set of locations. We do not aim at proposing a load-
balancing mechanism in this section, but only showing the use of the migration
facilities of our DRS in a realistic application example.

Figure 42 shows an overview of the load-balancing architecture. This architecture
consists of one central Load Manager and several Load Agents, one for each
location available. The Load Manager regularly polls each registered Load Agent,
which estimates the load of a location and returns this estimate to the Load
Manager.

Location C

Factory

Reconfig.
Agent

Object
Load
Agent

Reconfig.
Manager

Location A

Factory

Reconfig.
Agent

Object
Load
Agent

Location B

Factory

Reconfig.
Agent

Object
Load
Agent

Load
Manager

object creation, deletion
location addition, removal

object creation,
deletion, migration

reconfiguration
coordination

Figure 42 – Load-balancing manager, and load agents

The Load Manager implements the LoadManager interface. This interface inherits
the GenericFactory interface and adds operations for location addition
(add_location()) and removal (remove_location()).

Each location has an associated Load Agent. A Load Agent implements the
LoadAgent interface, providing a load() operation, which returns the estimated
load of the location as a float.

module LoadBalancing
{
 interface LoadAgent
 {
 float load();
 };

75

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

 typedef ReconfigurationService::Location Location;

 interface LoadManager : ReconfigurationService::GenericFactory
 {
 void add_location(in Location locus, in LoadAgent agent);
 void remove_location(in Location locus);
 };

};

7.2.1 Implementation of the Load Agent

We have implemented a Load Agent in Java that obtains a simple estimate of the
load of the location where it runs. Our Load Agent has a load-measuring thread
that constantly estimates the load of the location. This thread estimates the load by
counting the number of iterations that can be made in a fixed measuring period of
2 seconds. The lower the number of iterations counted the higher the load.
Therefore we take the negative of the number of iterations as our estimate of the
load.

7.2.2 Implementation of the Load Manager

The Load Manager regularly polls the Load Agent of each Location registered to
obtain the load of the location. If the difference between the maximum load and
the minimum load is greater than a fixed threshold, a random object is migrated
from the location with the maximum load to the location with the minimum load.

while (true)
 {

 // get an update of the load of the registered agents
 location_registry.update_view();

 Location loc_max_load = location_registry.location_max_load();
 Location loc_min_load = location_registry.location_min_load();

 if ((loc_max_load.get_load() - loc_min_load.get_load()) > THRESHOLD)
 {
 org.omg.CORBA.Any creation_id = loc_max_load.random_object();

allocation decision

 if (creation_id!=null)
 {
 Property[] the_criteria = new Property[1];

 NameComponent location_prop = new NameComponent[1];
 location_prop[0] = new NameComponent("drs.Location","");

 Any destination = orb.create_any();
 destination.insert_string(loc_min_load.get_name());

 the_criteria[0] = new Property(location_prop, destination);

new location is
specified in the criteria

 try
 {
 ReconfigurationStep step = rec_mgr.create_reconfiguration_step();
 step.migrate_object(creation_id, the_criteria);
 step.commit();

migration is requested

 loc_max_load.remove_object(creation_id);
 loc_min_load.add_object(creation_id);
 }
 catch(Exception e)

76

 {
 System.out.println("Error migrating object.”);
 }
 }
 }

 try { this.sleep(PAUSE_DURATION); } catch (InterruptedException e) { }
 }

7.2.3 Implementation of Example Application Objects

We have implemented a simple reconfigurable application object to populate the
load-balancing example. ExampleObject has an operation hello() that returns a
string and an operation statistics() that returns the number of times hello() has been
invoked. The state of an ExampleObject is defined in IDL with the structure
ExampleObjectState.

module Example
{
 interface ExampleObject : ReconfigurationService::ReconfigurableObject,
 {
 string hello();
 long statistics();
 };

 interface ExampleObjectFactory :
 ReconfigurationService::ReconfigurableObjectFactory
 {
 };

 struct ExampleObjectState
 {
 long statistics;
 };
};

The implementation of the hello() operation consists of a loop with a high number
of iterations in order to simulate the application load.

77

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

7.2.4 Tests

We have started the application with one single location registered (Location 1).
12 objects were gradually created in Location 1, as well as one client for each
object. With the addition of a second location, Objects 1 to 7 were migrated to this
Location 2, while Objects 8 to 12 remained in Location 1. With the addition of
Location 3, Objects 1, 8, 2, 3, 9, 4 were migrated from Locations 1 and 2 to
Location 3. Figure 43 shows the evolution of the configuration.

Load
Agent

41 2 3

5

12

6 7 8

9 10 11
location

1
Load
Agent

12

8

9 10 11
location

1

Load
Agent

41 2 3

5 6 7location

2

Load
Agent

1210 11
location

1

Load
Agent

5 6 7location

2

Load
Agent

41 2 3

location

3
8

9

Figure 43 – Change of configuration with the addition of locations

The average response times perceived by clients for the hello() operation lie in the
range [2.0; 2.5]s for the configuration with one location, in the range [1.0; 1.5]s
for the configuration with two locations and in the range [0.5; 1.0]s for the
configuration with three locations.

78

Figure 44 shows the response times perceived by the client of Object 1. Initially,
there is an increase in response time that is a result of the creation of 11 other
objects in the same location. With the addition of Location 2, Object 1 migrates to
the new location (the addition of a location is represented as a vertical dotted line
in Figure 44). The response times drop drastically, as Object 1 has all the
resources available at Location 2. As Object 2 to 8 are also migrated to Location
2, the response times rise and stabilize, until the introduction of Location 3, which
incurs new migrations. The increase in response times due to migration can be
observed in the picture as small peeks during the migration process, immediately
to the right of a vertical dotted line. Similar results have been obtained for Objects
2 to 8.

Object 1

0

500

1000

1500

2000

2500

3000

3500

time

re
sp

on
se

 ti
m

e
(m

s)

addition of
location 2

addition of
location 3

Figure 44 – Response times perceived by client of Object 1

The response times perceived by a client of Object 10 are depicted in Figure 45.
Object 10 is not migrated during the execution. The decrease in response time is
explained by the migration of other objects that leave Location 1.

Object 10

0

500

1000

1500

2000

2500

3000

3500

time

re
sp

on
se

 ti
m

e
(m

s)

Figure 45 – Response times perceived by client of Object 10

79

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

7.2.5 Conclusions

In this example, we have shown the use of migration in a load-balancing
application. In this application, a Load Manager uses the DRS to request the
creation, removal and migration of objects.

Since the DRS provides support for migration, the Load Manager is responsible
for determining which object should be migrated and to which location the object
should be migrated. The Load Manager delegates the execution of the simple
reconfiguration step with one object migration to the Reconfiguration Manager.

Objects are migrated from a highly loaded location to a less loaded location, in
order to ultimately reduce the response times perceived by clients. In the test run
shown in Section 7.2.4, we have seen that the increase in response times due to
migration may be considered acceptable for the use of DRS as a migration
mechanism for the load-balancing scenario presented. Nevertheless, we expect the
increase in response time to be higher for applications in which objects are
involved in longer interactions.

This example also constitutes a proof-of-concept for yet another application of the
DRS.

80

8 Conclusions

This chapter presents the main contributions of this thesis, draws some relevant
conclusions of our work and identifies areas where further investigation is
necessary.

This chapter is further structured as follows: Section 8.1 presents the main
contributions of this thesis, Section 8.2 presents general conclusions, and Section
8.3 identifies some further work.

8.1 Main Contributions

The main contributions of our work can be summarized as follows:

- we have proposed a new approach to dynamic reconfiguration of distributed
applications built on top of object middleware;

- we have designed a dynamic reconfiguration service for CORBA that
supports both the application developer and the change designer. This service
can be implemented by using standardized mechanisms;

- we have implemented the dynamic reconfiguration service in a prototype and
obtained some performance measurements; and

- we have illustrated the use of the dynamic reconfiguration service in different
application scenarios, including an example banking application and a load-
balancing application.

Our dynamic reconfiguration approach:

- support object creation and removal;

- supports replacement, in which a new version of an object may have
functional and quality-of-service (QoS) properties that differ from the old
version. This new version may run in another execution-environment type
supported by the middleware platform;

81

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

- supports migration;

- supports composite reconfiguration steps, in which several objects are
reconfigured in an atomic action from the perspective of the application;

- prescribes mechanisms to obtain a correct incremental evolution of a system,
preserving the object model under normal operation and during
reconfiguration;

- is applicable to a broad range of applications, including applications built
from off-the-self components, multi-threaded applications, re-entrant objects,
and stateful objects;

- minimizes impact on execution during reconfiguration and accounts for little
overhead during normal operation;

- scales with respect to the number of clients;

- provides full reconfiguration transparency to client developers, and requires
minimal reconfiguration expertise from the reconfigurable object developer;

- does not require the use of a specific programming language for application
development;

- does not require the use of additional formalisms for application development.

The main limitation of the approach is that it ignores the preservation of
architectural properties of an application, assuming reconfiguration design
activities to produce changes that have been validated a priori.

We have submitted the approach presented in this thesis in Lucent Technologies'
response [32] to the Request For Information (RFI) on Online Upgrades issued by
the OMG in September 2000 [17], hoping that this approach becomes
incorporated in a forthcoming CORBA standard.

8.2 General Conclusions

Most of the approaches we have investigated attempt to be general to distributed
systems and hence do not exploit the particular characteristics of object-
middleware. Middleware platforms are designed to provide several transparencies
for the application designer, facilitating distributed application development.
Embedding reconfiguration functionality in a middleware platform is a promising
way to leverage this functionality with maximum transparency. In this thesis we
have proposed an approach that can be realized with minimum additional burden
on the development of the reconfigurable objects and that is fully transparent to
the developer of client objects.

The proposed approach can be used in systems with a large and changing number
of objects. We have proposed to use request reflection to instrument the
middleware platform and obtain configuration information at runtime. This avoids
requiring the application developer or integrator to provide extensive descriptions
of the system and its objects. By using request reflection, we are able to freeze
system interactions on demand. In this way, our approach only interferes directly

82

with those parts of the system that actually interact with the set of affected objects
during reconfiguration, allowing the rest of the system to execute normally.

In the approach, reconfiguration of objects that are involved in long-running
interactions may implicate high increase in response time experienced by the
clients of the affected objects. Ultimately, the maximum acceptable increase in
response time during reconfiguration is determined by the environment in which
the affected object is inserted.

The approach has been used in the design of a Dynamic Reconfiguration Service
for CORBA, which has been validated through the implementation of a prototype.
The Dynamic Reconfiguration Service performs reconfiguration steps on behalf of
the user. Some preliminary test results have been presented to assess the overhead
introduced by the DRS during normal operation. These results indicate that the
overhead is quite minimal, and is expected to be acceptable for most application
domains. We also presented preliminary measurements on the overhead
introduced by the DRS during reconfiguration. The results of these measurements
are satisfactory as well.

Adding reconfiguration transparency to a CORBA environment is not
straightforward, especially if the objective is to preserve a sufficient level of
compatibility with the CORBA standard. In our design, we account for extensions
to be done through standardized mechanisms, such as portable interceptors. The
benefits of using standardized extension mechanisms are that (i) the ORB
specification does not have to be modified, and that (ii) implementations are
portable and conform to the ORB specification.

The Dynamic Reconfiguration Service has been proven useful in different
application scenarios, including an example banking application and a load-
balancing application.

8.3 Future Work

The dynamic reconfiguration approach could be extended with the abortion of
interactions that are possibly long running and do not affect the state of an object.
This would lead to a hybrid abortion-avoidance and abortion approach that could
decrease the impact on system execution, especially for systems with long-
running interactions.

Our prototype of the dynamic reconfiguration service could be made available to a
large number of developers and it could be applied in complex realistic
applications. This would further validate the service and provide feedback that
would lead to possible improvements.

We expect the approach to be applicable directly on a component-based
middleware infrastructure (e.g. [24, 25]). The support to dynamic reconfiguration
in this case may be located in the container of a reconfigurable component. A
component could be declared to be reconfigurable in its deployment descriptor,
thus providing a strict separation between application and reconfiguration
concerns. With component-based middleware, it would be easier for the
component developer to define the state access functions, because the
relationships between components are not encapsulated in the implementation of a
component, and these relationships can be reified and manipulated at run-time by
a third-party, which, in our case, is the dynamic reconfiguration service. Since a

83

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

component is a deployment unit, it would also be possible to re-use or adapt the
deployment facilities of a middleware infrastructure in order to include dynamic
reconfiguration.

84

References

[1] J. P. A. Almeida, M. Wegdam, L. Ferreira Pires, M. van Sinderen. An
approach to dynamic reconfiguration of distributed systems based on object-
middleware, in Proceedings of the19th Brazilian Symposium on Computer
Networks (SBRC 2001), Santa Catarina, Brazil, May 2001.

[2] J. P. A. Almeida, M. Wegdam, M. van Sinderen, L. Nieuwenhuis.
Transparent Dynamic Reconfiguration for CORBA, in Proceedings of the
3rd International Symposium on Distributed Objects & Applications (DOA
2001), Rome, Italy, September 2001 (to appear).

[3] C. Bidan, V. Issarny, T. Saridakis, A. Zarras. A dynamic reconfiguration
service for CORBA, in Proc. IEEE International Conference on
Configurable Distributed Systems, May 1998.

[4] T. Bloom and M. Day. Reconfiguration and module replacement in Argus:
Theory and Practice, IEE Software Engineering Journal, vol 8, no 2, March
1993.

[5] M. Endler. A language for implementing generic dynamic reconfigurations of
distributed programs, in Proceedings of the 12th Brazilian Symposium on
Computer Networks, 1994.

[6] M. Henning. Binding, migration, and scalability in CORBA.
Communications of the ACM 41(10), October 1998.

[7] C. Hofmeister, E. White, J. Purtilo. Surgeon: a package for dynamically
reconfigurable distributed applications, in Proceedings of the IEEE
International Conference on Configurable Distributed Systems, March 1992.

[8] ITU-T / ISO. Open Distributed Processing Reference Model. Part 1 –
Overview, ITU-T X.901 | ISO/IEC 10746-1.

[9] J. Kramer and J. Magee. Dynamic configuration for distributed systems.
IEEE Transactions on Software Engineering 11(4), pp. 424-436, April 1985.

[10] J. Kramer and J. Magee. The evolving philosophers’ problem: dynamic
change management. IEEE Transactions on Software Engineering 16(11),
pp. 1293-1306, November 1990.

[11] J. Magee, N. Dulay, S. Eisenbach, J. Kramer, Specifying Distributed
Software Architectures, in Proceedings of the 5th European Software
Engineering Conference, ESEC ’95, Barcelona, 1995.

[12] Microsoft Corporation. Distributed Component Object Model (DCOM).
http://www.microsoft.com/com/tech/dcom.asp

[13] K. Moazami-Goudarzi. Consistency preserving dynamic reconfiguration of
distributed systems. Ph.D. thesis, Imperial College, London, March 1999.

[14] L. E. Moser, P. M. Melliar-Smith, P. Narasimhan, L. Tewksbury and V.
Kalogeraki. Eternal: Fault Tolerant and Live Upgrades for Distributed Object
Systems, in Proceedings of the IEEE Information Survivability Conference,
pp. 184-196, Hilton Head, SC, January 2000.

85

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

[15] P. Oreizy, N. Medvidovic, R. Taylor. Architecture-based runtime software
evolution, in Proceedings of the International Conference on Software
Engineering, April 1998.

[16] Object Management Group, The Common Object Request Broker:
Architecture and specification, Revision 2.4.1, formal/00-11-07, November
2000.

[17] Object Management Group. Online updates RFI, orbos/00-09-15, September
2000.

[18] Object Management Group. Life Cycle Service, formal/00-06-18, July 2000.

[19] Object Management Group. Fault tolerant CORBA specification, V1.0,
ptc/00-04-04, April 2000.

[20] Object Management Group. Interceptors FTF published draft of CORBA
core and services chapters, ptc/00-03-03, March 2000.

[21] Object Management Group. Online updates RFP draft, ab/00-03-06, March
2000.

[22] Object Management Group. Discussion of the Object Management
Architecture, formal/00-06-41, January 1997.

[23] Object Management Group. Transaction Service Specification, orbos/00-06-
28, May 2000.

[24] Object Management Group. Components FTF Edited Drafts of CORBA Core
Chapters, ptc/99-10-03, October 1999.

[25] Object Management Group. CORBA 3.0 New Components Chapters, ptc/99-
10-04, October 1999.

[26] Object Oriented Concepts, Inc. http://www.ooc.com.

[27] N. L. R. Rodriguez and R. Ierusamlimschy. Dynamic Reconfiguration of
CORBA-based applications, in Proceeding of the SOFSEM'99: 26th
Conference on Current Trends in Theory and Practice of Informatics, LNCS
1725, pp. 95-111, Springer-Verlag, Berlin, 1999.

[28] D.C. Schmidt and S. Vinoski. Object interconnections. Object adapters:
concepts and terminology. SIGS C++ Report, October 1997.

[29] Sun Microsystems, Inc. Java Remote Method Invocation.
http://java.sun.com/products/jdk/rmi/

[30] SunSoft, Inc. and Hewlett-Packard Company. Response to the Object
Management Group Object Services Task Force Request for Information,
1992/92-02-10. February 1992.

[31] C. Szyperski. Component software – Beyond object-oriented programming,
ACM Press, New York, 1997.

[32] M. Wegdam and J. P. A. Almeida. Lucent response to OMG ORBOS RFI on
online updates, orbos/01-01-01, January 2001.

[33] M. Wegdam, D.-J. Plas, A. van Halteren, L. Nieuwenhuis. Using message
reflection in a management architecture for CORBA, in Proceedings of the
11th IFIP/IEEE International Workshop on Distributed Systems: Operations
& Management (DSOM 2000), Austin, Texas, USA, December 2000.

[34] M. A. Wermelinger. Specification of software architecture reconfiguration.
Ph.D. thesis, Universidade Nova de Lisboa, September 1999.

86

Appendix A IDL Interfaces

This appendix lists the OMG IDL interfaces that should be standardized for
portability, as identified in Section 6.4.

A.1 The ReconfigurationService Module

Code in gray has been extracted from the Fault Tolerant CORBA specification.

// from FT CORBA
#include "OB/CosNaming.idl" // 98-10-19.idl
#include "OB/ORB.idl" // from 98-03-01.idl
// end of from FT

#ifndef DRS_IDL
#define DRS_IDL

module ReconfigurationService
{
 // from FT CORBA
 typedef CORBA::RepositoryId TypeId;

 typedef CosNaming::Name Name;

 typedef any Value;

 struct Property {
 Name nam;
 Value val;
 };

 typedef sequence<Property> Properties;

 typedef Name Location;

 typedef sequence<Location> Locations;

 typedef Properties Criteria;

 interface GenericFactory; // forward reference

 struct FactoryInfo {
 GenericFactory factory_;
 Location the_location;
 Criteria the_criteria;
 };

 exception ObjectNotCreated {};
 exception ObjectNotFound {};
 exception InvalidProperty {
 Name nam;
 Value val;
 };
 exception NoFactory {
 Location the_location;
 TypeId type_id;
 };
 exception InvalidCriteria {

87

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

 Criteria invalid_criteria;
 };
 exception CannotMeetCriteria {
 Criteria unmet_criteria;
 };

 interface GenericFactory {

 typedef any FactoryCreationId;

 Object create_object(
 in TypeId type_id,
 in Criteria the_criteria,
 out FactoryCreationId factory_creation_id
)
 raises (
 NoFactory,
 ObjectNotCreated,
 InvalidCriteria,
 InvalidProperty,
 CannotMeetCriteria
);

 void delete_object(
 in FactoryCreationId factory_creation_id
)
 raises (
 ObjectNotFound
);

 };
 // end from FT

 typedef sequence<TypeId> TypeIds;

 exception FactoryNotFound {};

 interface FactoryManager
 {
 typedef any FactoryId;

 FactoryId add_factory(
 in FactoryInfo factory_info,
 in TypeIds type_ids
);

 void remove_factory(
 in FactoryId factory_id
)
 raises (FactoryNotFound);

 FactoryInfo get_factory_info(
 in FactoryId factory_id,
 out TypeIds type_ids
)
 raises (FactoryNotFound);
 };

 typedef any FactoryCreationId;
 typedef sequence<FactoryCreationId> FactoryCreationIds;

 exception UnderReconfiguration {};

 exception ReconfigurationException {
 };

88

 interface ReconfigurationStep; // forward reference
 interface GenericStateTranslator; // forward reference

 interface ReconfigurationManager : GenericFactory, FactoryManager
 {
 ReconfigurationStep create_reconfiguration_step()
 raises (UnderReconfiguration);
 };

 interface ReconfigurationStep
 {

 Object create_object(
 in TypeId type_id,
 in Criteria the_criteria,
 out FactoryCreationId factory_creation_id
)
 raises (
 NoFactory,
 ObjectNotCreated,
 InvalidCriteria,
 InvalidProperty,
 CannotMeetCriteria
);

 void delete_object(in FactoryCreationId factory_creation_id)
 raises (ObjectNotFound);

 void replace_object(
 in FactoryCreationId factory_creation_id,
 in Criteria the_criteria
)
 raises (
 ObjectNotFound,
 NoFactory,
 InvalidCriteria,
 InvalidProperty,
 CannotMeetCriteria
);

 void migrate_object(
 in FactoryCreationId factory_creation_id,
 in Criteria the_criteria
)
 raises (
 ObjectNotFound,
 NoFactory,
 InvalidCriteria,
 InvalidProperty,
 CannotMeetCriteria
);

 FactoryCreationIds replace_type(
 in TypeId current_type_id,
 in TypeId new_type_id,
 in Criteria the_criteria
)
 raises (
 NoFactory,
 InvalidCriteria,
 InvalidProperty,
 CannotMeetCriteria
);

 FactoryCreationIds migrate_objects(

89

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

 in TypeId type_id,
 in Location origin,
 in Criteria the_criteria
)
 raises (
 NoFactory,
 InvalidCriteria,
 InvalidProperty,
 CannotMeetCriteria
);

 void set_default_criteria(in TypeId type_id, in Criteria the_criteria);

 void remove_type(
 in TypeId type_id
);

 void set_state_translator(
 in GenericStateTranslator translator
);

 void commit()
 raises (ReconfigurationException);

 void deferred_commit();

 boolean is_completed()
 raises (ReconfigurationException);

 void dispose()
 raises (UnderReconfiguration);
 };

 typedef sequence<octet> State;

 typedef long long ReconfigurableObjectId;

 typedef sequence<ReconfigurableObjectId> ReconfigurableObjectIds;

 interface ReconfigurationManagerAdmin; // forward reference

 interface ReconfigurableObject
 {
 State get_state();

 void set_state(
 in State s
);
 };

 interface ActiveObject
 {
 void passivate();
 void activate();
 };

 interface ReconfigurationAgent; // forward reference

 interface ReconfigurableObjectFactory : GenericFactory
 {
 ReconfigurationAgent get_reconfiguration_agent(
 in ReconfigurableObjectId id

90

);
 };

 interface GenericStateTranslator
 {
 enum ReconfigurationOperationType {
 CREATION, REPLACEMENT, MIGRATION, DELETION };

 struct Instance
 {
 TypeId type_id;
 ReconfigurableObjectId id;
 State the_state;
 ReconfigurationOperationType op_type;
 };

 typedef sequence<Instance> InstanceSeq;

 typedef sequence <TypeId> TypeIdSeq;

 TypeIdSeq types_supported();

 void translate(in InstanceSeq original, out InstanceSeq derived);
 };

 interface Current : CORBA::Current
 {
 typedef sequence<octet> octets;
 void register_thread(in octets adapter_id, in octets object_id);

 struct CurrentSlotInfo
 {
 ReconfigurableObjectId id;
 ReconfigurableObjectIds invocation_path;
 };

 typedef CurrentSlotInfo Control;

 Control get_control();

 void resume(in Control which);
 };

 interface ReconfigurationAgent
 {
 typedef sequence<octet> octets;

 void register_object(
 in ReconfigurableObjectId id,
 in Object rec_obj_reference,
 in octets adapter_id, in octets object_id
);

 void deregister_object(
 in ReconfigurableObjectId id
);

 Object get_reference(
 in octets adapter_id, in octets object_id
);

 ReconfigurableObjectId get_reconfigurable_object_id(
 in octets adapter_id, in octets object_id
);

91

DYNAMIC RECONFIGURATION OF OBJECT MIDDLEWARE-BASED DISTRIBUTED SYSTEMS

 boolean is_affected(
 in ReconfigurableObjectId id
);
 };

};

#endif

92

	Abstract
	Table of contents
	Preface
	Introduction
	Motivation
	Objectives
	Structure

	Object Middleware
	The Role of Object Middleware
	OMG’s Specifications
	The Object Model
	The Object Management Architecture

	Dynamic Reconfiguration
	Process overview
	Reconfiguration design activities
	Change Management
	Structural integrity
	Mutually consistent states
	Application-state invariants
	Impact on Execution

	Current Reconfiguration Approaches
	Kramer and Magee
	Reconfiguration-safe state
	Reachability of the safe state
	Reconfiguration rules

	Moazami-Goudarzi
	Preserving Consistency

	Bidan et al.
	Preserving Mutual Consistent States

	Wermelinger
	Observations

	A Dynamic Reconfiguration Approach
	Motivation
	Requirements
	Supported Reconfiguration
	Object Creation
	Object Replacement
	Replacement with Interface Changes

	Object Migration
	Object Removal
	Reconfiguration Steps

	Change Management
	Structural integrity
	Mutually consistent states
	Reaching the safe state
	Applying reconfiguration

	Application-state invariants
	Impact on Execution

	Limitations
	Comparison with Studied Approaches
	Application-description Models
	Reconfiguration Supported and Computation Model
	Impact on Execution
	Transparencies

	Dynamic Reconfiguration Service
	Overview
	Change Designer’s View
	Creation and Removal
	Factory Management
	Reconfiguration Steps
	Composing a reconfiguration step
	Requesting the execution of a reconfiguration step

	State Translation

	Application Developer’s View
	Reconfigurable Objects
	DRS Context Information

	Reconfigurable-Object Factories
	Clients View

	Design and Implementation
	Location-independent Object References
	Location Agent implementation

	Selective Request Queuing
	Selector and Queue Objects
	Allocation of Selector and Queue Objects
	ORB Instrumentation
	Solution based on Portable Interceptors

	Performing Reconfiguration Steps
	Object Creation
	Object Replacement
	Object Migration
	Object Removal
	Composite Reconfiguration Steps

	Portability and Interoperability Considerations
	Evaluation
	Overhead during normal operation
	Impact on execution during reconfiguration

	Usage Examples
	Reconfiguration of a Banking Application
	Initial Configuration
	Multiple Replacements
	Multiple Replacements and Creation
	Multiple Replacements with Sub-Typing
	Conclusions

	Load-balancing Manager based on Migration
	Implementation of the Load Agent
	Implementation of the Load Manager
	Implementation of Example Application Objects
	Tests
	Conclusions

	Conclusions
	Main Contributions
	General Conclusions
	Future Work

