
Web Services and Seamless Interoperability1 

João Paulo A. Almeida, Luís Ferreira Pires, Marten J. van Sinderen 

almeida@cs.utwente.nl, pires@cs.utwente.nl, sinderen@ctit.utwente.nl  

Centre for Telematics and Information Technology,  
University of Twente, The Netherlands  

 

Abstract: Web Services technologies are often proposed as a means to integrate applications 
that are developed in different middleware platforms and implementation environments. 
Ideally, application developers and integrators should be shielded from the existence of 
different middleware platforms and programming language abstractions. This characterizes 
seamless interoperability, in which a set of consistent constructs is manipulated to integrate 
both the applications or services that are located both in the same and in different technology 
domains. In this paper, we argue that Web Services are not sufficient to facilitate seamless 
interoperability. We also outline some developments that may be used in a systematic 
approach to seamless interoperability within the context of the Model-Driven Architecture. 

Keywords: web services, interoperability, platforms, Model-Driven Architecture (MDA) 

1 Introduction 
The generalized term Web Services does not currently describe a coherent or necessarily 
consistent set of technologies, architectures, or even visions [17]. It is often used loosely to 
denote a collection of related technologies, which include: SOAP [16], Web Services 
Description Language (WSDL) [20] and Universal Description, Discovery and Integration 
(UDDI) [15]. 

Web Services technologies are built upon widely supported Internet standards, including 
XML standards, HTTP, SMTP, FTP, etc. and stem from the Internet community. These 
technologies have gained strong industry momentum and are supported by a large number of 
organizations, such as IBM, Microsoft and Sun Microsystems. 

Web Services technologies are based on concepts that include strict separation between 
interface and implementation and adequate level of coupling (often loose coupling for 
application integration). With respect to these concepts, Web Services do not introduce 
significant novelties or enhancements. These concepts are derived from and largely identical 
to the ones adopted in more mature middleware or integration technologies, such as CORBA, 
Java RMI, DCOM and Enterprise Application Integration in general [10]. 

Nevertheless, with respect to standardization, Web Services only require agreement with 
respect to the protocols used to realize interactions between application parts. This leads to a 
significant difference between Web Services and traditional middleware, such as, e.g., 
CORBA/CCM and EJB, in which interfaces to access the run-time infrastructure are also 
standardized. In the case of Web Services, these interfaces are, in general, proprietary or 
defined within the scope of a particular technology domain, i.e., implementation environment 
and/or middleware platforms such as, e.g., J2EE [11], .NET [1] or CORBA/CCM [3]. 

In this paper, we do not intend to criticize Web Services standards or consider specific 
technical issues related to Web Services implementation support. We rather aim at 
questioning Web Services in its merits as an architecture to support seamless interoperability 
of applications developed in different technology domains. Ideally, an application developer 
should manipulate a set of consistent constructs to integrate both the applications that are 
located within the same technology domain and applications or services that are implemented 

                                                      
1 Position paper for 1st European Workshop on Object-Oriented Web Services at ECOOP 2003 



in other technology domains. We outline some developments that may be used in a systematic 
approach to seamless interoperability within the context of the Model-Driven Architecture 
(MDA) [6]. 

2 Web Services Abstractions 
There is no consensus yet on a precise vocabulary and conceptual model for Web Services 
[17]. Both a “Web Services Reference Architecture” and a new version WSDL (WSDL 1.2) 
([17, 21]) are work-in-progress within the context of the World Wide Web Consortium 
(W3C). Therefore, we provide some concepts and definitions for the purpose of precision and 
clarity within the scope of this paper. 

A web service provider is a software entity that offers web services. A web service is a set of 
endpoints that operate on SOAP messages conveyed by Internet protocols, such as HTTP, 
FTP and SMTP. Each endpoint is identified by a Uniform Resource Identifier (URI). A web 
service and its endpoints may be described in WSDL. WSDL allows one to define the 
message types and message exchange patterns manipulated by web service endpoints, as well 
as the concrete means to interact with the web service endpoints, entailing concrete protocols 
for message exchange and the URIs that identify the web service endpoints. While WSDL 
descriptions are recommended for interoperability of web services descriptions, WSDL is not 
the only means to describe a web service. Descriptions in WSDL may be augmented with 
descriptions in other languages, such as Web Service Choreography Interface (WSCI) [18] 
and Business Process Execution Language for Web Services (BPEL4WS) [13]. 

Figure 1 shows a service requester and a web service provider that interact through the 
exchange of SOAP messages. A web service provider may also assume the role of service 
requester with respect to another web service provider. 

  

Service 
Requester 

SOAP messages Web Service 
Provider 

endpoints 
described in 
WSDL  

 
Figure 1 A service requester and a web service provider interact through SOAP messages 

In order to interact with a web service provider, a service requester must be able to find 
descriptions of the web service that define the concrete means to interact with the web service 
endpoints. A web service description does not prescribe a particular means to find the web 
service.  A web service description may be found through a local file system, an FTP site, a 
standardized service registry such as UDDI registries [15], etc. 

3 Middleware Platforms and Implementation Environments 
Web services are not implemented in a green-field situation. This means developers of web 
services requesters and providers have to cope with the re-use of legacy applications and 
infrastructures that have been deployed and that are still being deployed successfully. 
Examples of these (legacy) implementation infrastructures on top of which web services 
requesters and providers are implemented are: middleware platforms, such as DCOM, 
CORBA, Java RMI and JMS; and programming languages such as Java, COBOL, Visual 
Basic and the .NET languages. Figure 2 shows the resulting structure of the integration of 
applications implemented in different technology domains with web services technologies.  

Legacy implementation infrastructures are specified and implemented with abstractions that 
differ from the abstractions manipulated for the specification and implementation of web 
services. Examples of divergences can be seen in the definition of data types (Java datatypes 
versus XML Schema Data Types [12]), the failure semantics of RPC invocations, the 
abstractions for object references, etc. Therefore, there must be some support to accommodate 



 

.NET

EJB

EAI

CCM 

WSDL 

SOAP 

Utilities 
(UDDI) 

Intra-domain 
abstractions

Inter-domain 
abstractions  

Figure 2 Web services for inter-domain interoperation 

the differences in the abstractions manipulated, in order to (i) provide abstractions that are 
suitable and intuitive for application developers that develop and maintain applications in 
different technology domains, and in order to (ii) re-use a larger number of specifications and 
components defined in terms of the abstractions of particular technology domains.  

4 Seamless Interoperability 
In order to enable the cooperation of distributed applications, Web Services must 
accommodate the heterogeneity of middleware platforms, programming languages and other 
technologies in which these applications are realized. Not only interoperability may be 
hindered by the heterogeneity of platforms, but also application portability and the provision 
of transparency for the application developer. Ideally, application developers should be 
shielded from the existence of different middleware platforms and programming language 
abstractions, manipulating a set of consistent higher-level constructs to access both the 
services that are located within the same technology domain and services that are 
implemented in other technology domains. 

In this sense, Web Services technologies can only offer a solution if they are adopted for all 
future intra-domain development. This would mean that the abstractions manipulated in Web 
Services languages and protocols should be used as a starting point for development of 
applications at the first place. Given the proposed use of Web Services as a technology for the 
integration of applications and services implemented on top of different middleware 
platforms, it is unlikely that Web Services will replace existing middleware platforms. This is 
corroborated with the fact that some of these platforms are flourishing now and have strong 
Web Services support such as the J2EE and .NET platforms. If Web Services are confined to 
inter-domain interoperation, abstractions manipulated by intra-domain middleware platforms 
will indeed diverge from abstractions manipulated across technology domains, and there will 
always be a “seam” between the abstractions manipulated in a technology domain and 
abstractions used in inter-domain interoperation. As a consequence, a large effort in the 
development of web services is concentrated on the (manual) coding of wrappers to existing 
applications. 

The lack of seamless interoperation can be observed in different attempts to provide mappings 
between Web Services abstractions and abstractions supported by different middleware 
platforms, such as, e.g., the mappings from and to Java in the JAX-RPC specification [12], 
the mappings from and to .NET’s Common Type System [2] and the upcoming mappings 
from and to CORBA IDL [4, 5]. These mappings are not sufficient to overcome the intrinsic 



conceptual differences of the abstractions adopted. For example, a Java developer that is used 
to passing remote object references as a parameter in J2EE is not able to do so if an object is 
to be exposed as a web service endpoint [12]. This is because the concept of remote object 
references is not directly supported in a standardized way in SOAP and WSDL, and hence 
this abstraction has no direct counterpart. Several other examples of mismatch can be 
identified when considering these mappings, in terms of fault semantics, type mappings, etc. 
This is a recurring pattern that we have seen earlier in the development of mappings to and 
from OMG Interface Definition Language (IDL) to Java, C, C++, Ada, Smalltalk, etc. [3].  

Abstractions of particular domains are not the only obstacles for seamless interoperation. For 
applications to achieve meaningful interaction, they must agree on the application protocols 
they use. These protocols have been called application choreographies [10] in the context of 
web services, and refer to the behavioural or dynamic aspects of an application or application 
parts that cooperate. Behaviour complements static aspects of a system, such as interface 
signatures, data structures and deployment descriptors.  

Divergences in the behaviour of components of different technology domains offer challenges 
to transparent inter-domain interoperability. For example, the use of the Naming Service in a 
CORBA platform to retrieve object references requires clients to be able to locate the Root 
Naming Context and request the resolution of the names that refer to the objects they are 
interested in. Even if the mapping from SOAP/IIOP were transparent, web services requesters 
would be directly exposed to the use of the Naming Service, and would not be able to locate a 
service if they were not able to use the Naming Service properly. The rule of thumb often 
considered in this case is to avoid exposing such internal aspects of a technology domain in a 
web services definition.  

This approach, however, is severely limited for non-trivial web services, since it is based on 
the assumption that the interface of a service can be simplified regardless of intrinsic 
complexities of service requester - service provider interactions. An example of potentially 
harmful simplification is the replacing of callback invocations to request/response polling 
invocations, such as in the Parlay Web Services standardization activities [14], implying in 
limitations to the scalability of the service. 

5  Outlook 
We expect that a more systematic approach to accommodate the divergences in abstractions 
may be defined in a model-driven approach to application development, such as proposed in 
the context of the Model-Driven Architecture by the Object Management Group (OMG) [6]. 
In such an approach, mappings between Web Services abstractions and abstractions of other 
implementation infrastructures would be facilitated through the use of platform-independent 
models, meta-modelling techniques and model transformation tools.  

There is on-going standardization activity in mapping platform-independent models to Web 
Services artefacts: an OMG Request For Proposal (RFP) has been issued [8] to request for a 
mapping from the EDOC-Component Collaboration Architecture UML Profile to XML-
Schema, WSDL 1.1 and SOAP. An initial submission [9] is available, and a revised 
submission is expected in August 2003. These efforts, however, should be revisited with the 
adoption of the upcoming UML 2.0 standard [7]. 

With respect to the application choreographies, the behavioural aspects of a web service may 
be specified in Web Services specific languages, such as e.g., WSCI [18] and BPEL4WS 
[13]. These languages are being considered in the W3C Web Services Choreography Working 
Group [19] as an input for a W3C recommendation for a Web Services specific behaviour 
modelling language.  We will work on the incorporation of these Web Services behavioural 
descriptions into a systematic model-driven approach, by defining transformations from 
behavioural descriptions in UML (or specialized UML profiles) to these languages and vice-
versa. This would allow seamless interoperability to be considered at platform-independent 
level through platform-independent models that include the behavioural aspects of a system 



and its components. These platform-independent models are ultimately reflected at platform-
specific level through model transformations.  

Acknowledgements 
We are currently working on these issues in the context of the MODA-TEL IST project 
(http://www.modatel.org), supported by the European Commission, and the WASP project 
(http://www.freeband.nl/projecten/wasp/ENindex.html), supported by the ‘Telematica 
Instituut’ in the Dutch Freeband Programme. 

References 
[1] Microsoft Corporation. .NET Development. Available at 

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/netdevanchor.asp 
[2] Microsoft Corporation. Data Types Supported by XML Web Services Created Using ASP.NET. 

Available at http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpguide/html/cpcondatatypessupportedbywebservices.asp 

[3] Object Management Group. Catalog of OMG IDL / Language Mappings Specifications.. 
Available at http://www.omg.org/technology/documents/idl2x_spec_catalog.htm 

[3] Object Management Group. Common Object Request Broker Architecture: Core Specification, 
Version 3.0, formal/02-12-06, Dec. 2002. Available at http://www.omg.org/cgi-
bin/doc?formal/02-12-06 

[4]  Object Management Group. CORBA-WSDL/SOAP final adopted specification, ptc/03-01-14, Jan. 
2003. Available at http://www.omg.org/cgi-bin/doc?ptc/03-01-14 

[5]  Object Management Group. Joint Revised Submisison to the WSDL-SOAP to CORBA 
Interworking RFP, mars/03-03-03, March 2003. Available at http://www.omg.org/cgi-
bin/doc?mars/03-03-03 

[6]  Object Management Group, Model Driven Architecture (MDA), ormsc/01-07-01, July 2001. 
Available at http://www.omg.org/cgi-bin/doc?ormsc/01-07-01 

[7] Object Management Group. UML 2.0 Superstructure RFP (ad/00-09-02), Sept. 2000. Available at 
http://www.omg.org/cgi-bin/doc?ad/00-09-02 

[8]  Object Management Group. Web Services for Enterprise Collaboration (WSEC) RFP, mars/2002-
06-06, June 2002. Available at http://www.omg.org/cgi-bin/doc?mars/02-06-06 

[9]  Object Management Group. Web Services for Enterprise Collaboration (WSEC), October 2002. 
Available at http://www.omg.org/cgi-bin/doc?mars/02-10-11 

[10]  Schmidt, D. and Vinoski, S. “Object Interconnections: CORBA and XML – Part 3: SOAP and 
Web Services”, C/C++ Users Journal C++ Experts Forum, Sept 2001. Available at 
http://www.cuj.com/experts/1910/vinoski.htm 

[11] Sun Microsystems, Java 2 Platform Enterprise Edition Specification, v1.4, Proposed Final Draft 3 
April 15, 2003. Available at http://java.sun.com/j2ee/1.4/download.html#platformspec 

[12] Sun Microsystems, Java API for XML-Based RPC (JAX-RPC) Specification 1.0, JSR-101. 
Available at http://java.sun.com/xml/downloads/jaxrpc.html#jaxrpcspec1  

[13]  Thatte, S (ed.). Business Process Execution Language for Web Services, Version 1.0, July 2002. 
Available at http://www.ibm.com/developerworks/library/ws-bpel/ 

[14]  The Parlay Group. Parlay Web Services Architecture Comparison, October 2002. Available at 
http://www.parlay.org/specs/ParlayWebServices-ArchitectureComparison1_0.pdf 

[15]  Universal Description, Discovery and Integration (UDDI) project. UDDI: Specifications. 
Available at http://www.uddi.org/specification.html 

[16]  World Wide Web Consortium. SOAP Version 1.2, Dec. 2002. Available at 
http://www.w3.org/TR/soap12-part1/ 

[17]  World Wide Web Consortium. Web Services Architecture Working Draft, Nov. 2002. Available at  
http://www.w3.org/TR/ws-arch/ 

[18]  World Wide Web Consortium. Web Service Choreography Interface 1.0, August 2002. Available 
at http://www.w3.org/TR/wsci/ 

[19]  World Wide Web Consortium. Web Services Choreography Working Group Charter. Available at 
http://www.w3.org/2003/01/wscwg-charter 

[20]  World Wide Web Consortium. Web Services Description Language (WSDL) 1.1, March 2001. 
Available at http://www.w3.org/TR/wsdl 

[21]  World Wide Web Consortium. Web Services Description Language (WSDL) 1.2 Working Draft, 
March 2003. Available at http://www.w3.org/TR/wsdl12/ 

http://www.modatel.org/
http://www.freeband.nl/projecten/wasp/ENindex.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/netdevanchor.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpcondatatypessupportedbywebservices.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpcondatatypessupportedbywebservices.asp
http://www.omg.org/technology/documents/idl2x_spec_catalog.htm
http://www.omg.org/cgi-bin/doc?formal/02-12-06
http://www.omg.org/cgi-bin/doc?formal/02-12-06
http://www.omg.org/cgi-bin/doc?ptc/03-01-14
http://www.omg.org/cgi-bin/doc?mars/03-03-03
http://www.omg.org/cgi-bin/doc?mars/03-03-03
http://www.omg.org/cgi-bin/doc?ormsc/01-07-01
http://www.omg.org/cgi-bin/doc?ad/00-09-02
http://www.omg.org/cgi-bin/doc?mars/02-06-06
http://www.omg.org/cgi-bin/doc?mars/02-10-11
http://www.cuj.com/experts/1910/vinoski.htm
http://java.sun.com/j2ee/1.4/download.html
http://java.sun.com/xml/downloads/jaxrpc.html
http://www.ibm.com/developerworks/library/ws-bpel/
http://www.parlay.org/specs/ParlayWebServices-ArchitectureComparison1_0.pdf
http://www.uddi.org/specification.html
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/wsci/
http://www.w3.org/2003/01/wscwg-charter
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl12/

	Web Services and Seamless Interoperability
	Introduction
	Web Services Abstractions
	Middleware Platforms and Implementation Environments
	Seamless Interoperability
	Outlook
	Acknowledgements
	References

