
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/327651292

Visual notations for software pattern languages: a mapping study

Conference Paper · September 2018

DOI: 10.1145/3266237.3266266

CITATIONS

0
READS

65

3 authors, including:

Some of the authors of this publication are also working on these related projects:

Creating a method to support defining and monitoring indicators and strategies to IT Services View project

INTEROPERABILIDADE SEMÂNTICA DE INFORMAÇÕES EM SEGURANÇA PÚBLICA View project

Monalessa Perini Barcellos

Universidade Federal do Espírito Santo

76 PUBLICATIONS 295 CITATIONS

SEE PROFILE

Ricardo de Almeida Falbo

Universidade Federal do Espírito Santo

179 PUBLICATIONS 1,818 CITATIONS

SEE PROFILE

All content following this page was uploaded by Monalessa Perini Barcellos on 30 November 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/327651292_Visual_notations_for_software_pattern_languages_a_mapping_study?enrichId=rgreq-13e813e4bcd384dd5c9f67ae5e179577-XXX&enrichSource=Y292ZXJQYWdlOzMyNzY1MTI5MjtBUzo2OTg2MjQ4MDc4MTcyMTdAMTU0MzU3NjU0MjMzNQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/327651292_Visual_notations_for_software_pattern_languages_a_mapping_study?enrichId=rgreq-13e813e4bcd384dd5c9f67ae5e179577-XXX&enrichSource=Y292ZXJQYWdlOzMyNzY1MTI5MjtBUzo2OTg2MjQ4MDc4MTcyMTdAMTU0MzU3NjU0MjMzNQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Creating-a-method-to-support-defining-and-monitoring-indicators-and-strategies-to-IT-Services?enrichId=rgreq-13e813e4bcd384dd5c9f67ae5e179577-XXX&enrichSource=Y292ZXJQYWdlOzMyNzY1MTI5MjtBUzo2OTg2MjQ4MDc4MTcyMTdAMTU0MzU3NjU0MjMzNQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/INTEROPERABILIDADE-SEMANTICA-DE-INFORMACOES-EM-SEGURANCA-PUBLICA?enrichId=rgreq-13e813e4bcd384dd5c9f67ae5e179577-XXX&enrichSource=Y292ZXJQYWdlOzMyNzY1MTI5MjtBUzo2OTg2MjQ4MDc4MTcyMTdAMTU0MzU3NjU0MjMzNQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-13e813e4bcd384dd5c9f67ae5e179577-XXX&enrichSource=Y292ZXJQYWdlOzMyNzY1MTI5MjtBUzo2OTg2MjQ4MDc4MTcyMTdAMTU0MzU3NjU0MjMzNQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Monalessa_Barcellos?enrichId=rgreq-13e813e4bcd384dd5c9f67ae5e179577-XXX&enrichSource=Y292ZXJQYWdlOzMyNzY1MTI5MjtBUzo2OTg2MjQ4MDc4MTcyMTdAMTU0MzU3NjU0MjMzNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Monalessa_Barcellos?enrichId=rgreq-13e813e4bcd384dd5c9f67ae5e179577-XXX&enrichSource=Y292ZXJQYWdlOzMyNzY1MTI5MjtBUzo2OTg2MjQ4MDc4MTcyMTdAMTU0MzU3NjU0MjMzNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidade_Federal_do_Espirito_Santo?enrichId=rgreq-13e813e4bcd384dd5c9f67ae5e179577-XXX&enrichSource=Y292ZXJQYWdlOzMyNzY1MTI5MjtBUzo2OTg2MjQ4MDc4MTcyMTdAMTU0MzU3NjU0MjMzNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Monalessa_Barcellos?enrichId=rgreq-13e813e4bcd384dd5c9f67ae5e179577-XXX&enrichSource=Y292ZXJQYWdlOzMyNzY1MTI5MjtBUzo2OTg2MjQ4MDc4MTcyMTdAMTU0MzU3NjU0MjMzNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ricardo_Falbo?enrichId=rgreq-13e813e4bcd384dd5c9f67ae5e179577-XXX&enrichSource=Y292ZXJQYWdlOzMyNzY1MTI5MjtBUzo2OTg2MjQ4MDc4MTcyMTdAMTU0MzU3NjU0MjMzNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ricardo_Falbo?enrichId=rgreq-13e813e4bcd384dd5c9f67ae5e179577-XXX&enrichSource=Y292ZXJQYWdlOzMyNzY1MTI5MjtBUzo2OTg2MjQ4MDc4MTcyMTdAMTU0MzU3NjU0MjMzNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidade_Federal_do_Espirito_Santo?enrichId=rgreq-13e813e4bcd384dd5c9f67ae5e179577-XXX&enrichSource=Y292ZXJQYWdlOzMyNzY1MTI5MjtBUzo2OTg2MjQ4MDc4MTcyMTdAMTU0MzU3NjU0MjMzNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ricardo_Falbo?enrichId=rgreq-13e813e4bcd384dd5c9f67ae5e179577-XXX&enrichSource=Y292ZXJQYWdlOzMyNzY1MTI5MjtBUzo2OTg2MjQ4MDc4MTcyMTdAMTU0MzU3NjU0MjMzNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Monalessa_Barcellos?enrichId=rgreq-13e813e4bcd384dd5c9f67ae5e179577-XXX&enrichSource=Y292ZXJQYWdlOzMyNzY1MTI5MjtBUzo2OTg2MjQ4MDc4MTcyMTdAMTU0MzU3NjU0MjMzNQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Visual Notations for Software Pattern Languages: a Mapping
Study

Glaice Kelly da Silva Quirino
Mechanical Technician Department
Federal Institute of Espírito Santo

Aracruz, ES, Brazil
glaice.monfardini@ifes.edu.br

Monalessa Perini Barcellos
Ontology and Conceptual Modeling

Research Group (NEMO) -
Computer Science Department

Federal University of Espírito Santo
Vitória, ES, Brazil

monalessa@inf.ufes.br

Ricardo de Almeida Falbo
Ontology and Conceptual Modeling

Research Group (NEMO) -
Computer Science Department

Federal University of Espírito Santo
Vitória, ES, Brazil
falbo@inf.ufes.br

ABSTRACT
Reuse has been recognized as an important practice in software
engineering. The use of patterns makes it easier to reuse successful
solutions, speeds up the development process, and promotes the
application of good practices. Related patterns can be organized in
a Pattern Language (PL), which represents the patterns and their
relations, and provides guidance on how to select, reuse and inte-
grate them. Visual notations are often used to provide a graphical
representation to PLs. Aiming to investigate how PLs related to soft-
ware have been visually represented, we carried out a systematic
mapping. We identified and analyzed 64 PLs. As a result, we noticed
a lack of consensus on the elements that should be represented in
a PL and the symbols used to represent them. Moreover, most PLs
have ambiguous or inexpressive visual representations.

CCS CONCEPTS
• Software and its engineering→Reusability; Design patterns;

KEYWORDS
Pattern Language, Visual Notation, Mapping Study
ACM Reference Format:
Glaice Kelly da Silva Quirino, Monalessa Perini Barcellos, and Ricardo de
Almeida Falbo. 2018. Visual Notations for Software Pattern Languages: a
Mapping Study. In XXXII BRAZILIAN SYMPOSIUM ON SOFTWARE ENGI-
NEERING (SBES 2018), September 17–21, 2018, Sao Carlos, Brazil. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3266237.3266266

1 INTRODUCTION
Patterns are vehicles for encapsulating knowledge. They are con-
sidered one of the most effective means for naming, organizing,
and reasoning about design knowledge. According to Buschmann
et al. [11], a pattern describes a particular recurring design problem
that arises in a specific design context and presents a well-proven
solution for a problem. The solution is specified by describing the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SBES 2018, September 17–21, 2018, Sao Carlos, Brazil
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6503-1/18/09. . . $15.00
https://doi.org/10.1145/3266237.3266266

roles of its constituent participants, their responsibilities and rela-
tionships, and the ways in which they collaborate.

Software patterns are attempts to describe successful solutions to
common software problems [48]. They reflect common structures
of these solutions, and can be applied over and over again, when
developing software applications in particular contexts. There are
several types of software patterns, such as analysis patterns, ar-
chitectural patterns, design patterns, programming patterns (or
idioms) and process patterns [14].

A pattern is a well-succeeded solution for a specific problem.
However, in general, a single pattern is not enough to provide the
solution to a larger problem. In such case, it is necessary to combine
several patterns [19]. In this context, a Pattern Language (PL) is an
alternative to provide guidelines that show how patterns can be
used together to form solutions to larger problems. PLs contribute
to the use of patterns and, consequently, to reuse [19].

Although patterns have been successfully documented for over
two decades, building pattern languages has proved to be a more
difficult task [24]. Using visual notations, i.e., those using graphical
symbols, is helpful, since they allow representing graphically the
patterns and their relations, providing a whole view of the PL
and contributing to its understanding. Visual notations play an
important role in communication because of their effectiveness
in transmitting information [40]. According to Ware [52], people
acquire more information through vision than through all other
senses combined. In addition, diagrams can convey information
more concisely and accurately than natural language [39].

Given the benefits of using PLs and the importance of a quality
visual notation for representing them, we carried out a mapping
study to investigate how software PLs have been visually repre-
sented. Before performing our study, we searched for secondary
studies addressing visual notations of software PLs. Since we did
not find any, we decided carried out the study addressed in this
paper. A mapping study is a secondary study designed to give an
overview of a research area through classification and counting
contributions in relation to the categories of that classification. It
makes a broad study in a topic of a specific theme and aims to
identify available evidence about that topic [32, 44]. Moreover, the
panorama provided by a mapping study allows identifying issues
in the researched topic that should be addressed in future research.
In our study, we analyzed the visual notation of 64 software PLs.
As a result, we noticed a lack of consensus on what should be rep-
resented in a PL and how to represent the PL elements. More than

https://doi.org/10.1145/3266237.3266266
https://doi.org/10.1145/3266237.3266266

SBES 2018, September 17–21, 2018, Sao Carlos, BrazilGlaice Kelly da SilvaQuirino, Monalessa Perini Barcellos, and Ricardo de Almeida Falbo

that, we noticed that most of the visual representations have expres-
sivity problems, such as symbol overload or deficit. The findings
point out to the need to improve the quality of the visual notations,
in order to make the use of software PLs easier and more efficient,
potentializing reuse.

This paper is organized as follows. Section 2 introduces the theo-
retical foundations on pattern languages and visual notations. Sec-
tion 3 presents the followed research method and the research pro-
tocol used in the study. Results are presented in Section 4. Section
5 discusses the results, their implications, and limitations. Section
6 addresses the study limitations, and, finally, Section 7 concludes
the paper and presents directions for future work.

2 PATTERN LANGUAGE AND VISUAL
NOTATION

Apattern is a recurring solution to a standard problem [48]. Patterns
exist in several phases of software development, and for several
purposes. Analysis patterns are reusable models resulting from con-
ceptual modeling activities and apply to common business problems.
Architectural patterns are concerned with the overall structure of a
software (sub)system, and represent selected types of components
and connectors, together with a control structure that governs the
overall functioning of the (sub)system. Design patterns abstract
and identify the key aspects of common design structures. They
are low-level abstractions in the sense that they are concerned with
classes, their instances, and relationships. Programming patterns
(or idioms) are specific to a programming language, representing
commonly accepted programming styles, including how to imple-
ment particular behavior or structures in code using the features of
the given language. Organizational and process patterns apply to
software development processes and organizational pragmatics, i.e.,
to software developers and users, relationships between them, and
relationships between people and software. These are the types of
software patterns most commonly found in the literature. However,
there are also other types of software patterns [14].

Patterns are often defined and applied separately. However, no
pattern is an island. Contrariwise, patterns are fond of company:
sometimes with one pattern as an alternative to another, sometimes
with one pattern as an adjunct to another, sometimes with a number
of patterns bound together as a tightly-knit group. The manifold
relationships that can exist among patterns help to strengthen and
extend the power of an individual pattern beyond its specific focus.
Therefore, a broader context is needed to describe how patterns
can be used together to solve larger problems and how to solve new
problems that can arise when patterns are used in combination.
This context is provided by a Pattern Language (PL) [11].

A PL is a set of patterns and relationships among them that can
be used to systematically solve coarse-grained problems [13]. A PL
defines a process that aims to provide holistic support for using
the patterns to address problems related to a technical domain or
application. This holistic view should provide explicit guidance on
problems that may arise, inform the possible means of solving them
and suggest one or more patterns to solve each specific problem
[11].

PLs reflect the fact that patterns tend to be strongly coupled and
it is difficult or even impossible to use them in isolation [17]. While

Figure 1: The multimedia dataflow pattern language.

single patterns aim at solving separate problems, a PL is considered
as a constructive guide to combine patterns together to resolvemore
complex problems, enabling developers to use patterns together to
meet their needs [38].

For a software PL to be effective in its goal of guiding developers
in the application of the patterns and adequately handling the
combined application of several patterns, it is necessary that the
relationships among the patterns are clearly defined and explained
in the PL.

Alexander et al. [2] propose the use of diagrams to represent
the relationship among patterns. Therefore, visual notations can be
used to graphically represent PLs. The purpose of adopting visual
notations is to give an overview of patterns and their relationships
to provide holistic understanding of the PL and assist in patterns
selection. Figure 1 presents an example of graphical representation
of PL. The PL shown in the figure contains patterns to aid in the
development of multimedia processing systems [3].

Visual notations encode information using spatial arrangements
of graphical elements. They are used in several areas for creating
graphical representations that serve as abstractions capable of help-
ing understand the information that one wishes to communicate.
According to Moody [39], visual notations are effective because
they are processed in parallel by the human visual system. About a
quarter of the human brain is dedicated to vision, which is more
than all other senses combined.

Visual Notations for Software Pattern Languages: a Mapping Study SBES 2018, September 17–21, 2018, Sao Carlos, Brazil

In his work entitled The Physics of Notation (PoN) [39], Moody
defines a set of principles for designing cognitively effective visual
notations. PoN considers information visualization and pragmatic
theories to improve the cognitive effectiveness of visual notations.
PoN identifies nine principles for designing cognitively effective
visual notations, namely: (i) Semiotic Clarity: "There should be a
1:1 correspondence between a meta-model construct and a graph-
ical symbol"; (ii) Semantic Transparency: "Use symbols whose ap-
pearance suggests their meaning"; (iii) Perceptual Discriminability:
"Symbols should be clearly distinguishable from one another"; (iv)
Complexity Management: "Include explicit mechanisms for deal-
ing with complexity"; (v) Cognitive Integration: "Include explicit
mechanisms to support integration of information from different
diagrams"; (vi) Visual Expressiveness: "Use the full range and ca-
pacities of visual variables"; (vii) Graphic Economy: "The number
of different graphical symbols should be cognitively manageable";
(viii) Dual Coding: "Use text to complement graphics"; (ix) Cognitive
Fit: "Use different visual dialects for different tasks and audiences"
[39].

Over the years, several PLs have been created and visually rep-
resented. As a consequence, a number of different visual notations
have emerged. Aiming to investigate the visual notations that have
been used to represent software PLs, we performed the mapping
study presented in this paper.

3 THE RESEARCH PROTOCOL
The studywas performed following the approach defined byKitchen-
ham and Charters [32]. According to this approach, a systematic
mapping involves: planning, when the research protocol is de-
fined; conducting, when the protocol is executed and data are ex-
tracted, analyzed, and recorded; and reporting, when the results
are recorded and made available to potential interested parties. In
this section we present the main parts of the research protocol used
in the study.

The study goal is to investigate visual notations adopted to
represent software PLs. For achieving this goal, we defined nine
research questions that are shown in Table 1.

The search string adopted in the study is composed of terms
related to PL and software. The following search string was used:
("pattern language" OR "patterns language") AND ("software").

For establishing this search string, we performed some tests us-
ing different terms, logical connectors, and combinations among
them. More restrictive strings excluded some important publica-
tions identified during the informal literature review that preceded
the mapping study. These publications were used as control publi-
cations, meaning that the search string should be able to retrieve
them. We decided to use a comprehensive string that provided
better results in terms of number and relevance of the selected
publications, even thought it had returned many publications that
had to be eliminated in subsequent steps.

The search was performed in the following six sources, selected
based on other systematic reviews in the Software Engineering
area: IEEE Xplore, ACM Digital Library, Scopus, Science Direct, En-
gineering Village and Web of Science. For searching these sources,
the search string went through syntactic adaptations according to
particularities of each digital library engine.

Publications selection was performed in four steps. In Prelim-
inary Selection and Cataloging (S1), the search string was applied in
the search mechanism of each digital library (we limited the search
scope to title, abstract and keywords metadata fields). After that,
in Duplications Removal (S2), publications indexed in more than
one digital library were identified and duplications were removed.
In Selection of Relevant Publications - 1st filter (S3), the abstracts of
the selected publications were analyzed considering the following
inclusion (IC) and exclusion (EC) criteria: (IC1) The study proposes
or apply a software PL; (EC1) the publication does not have an
abstract; (EC2) the study was published only as an abstract; (EC3)
the publication is not written in English; (EC4) the publication is
a secondary study, a tertiary study, a summary, an editorial or a
tutorial. In Selection of Relevant Publications - 2nd filter (S4), the
full texts of the publications selected in S2 were read and analyzed
considering the cited inclusion and exclusion criteria. In this step,
aiming to focus on publications addressing software PLs with a
visual representation, we applied the following additional inclusion
criterion: (IC2) the PL described in the publication has a visual (i.e.,
a graphical) representation. Moreover, to avoid study repetition,
we considered another exclusion criterion: (EC5) the publication
is a copy or an older version of an already selected publication.
Publications whose full text was not available were also excluded
(EC6).

The publications returned in the publication selection steps were
cataloged and stored in spreadsheets. We defined an id for each
publication and recorded the publication title, authors, year, and
vehicle of publication. Data from the publications returned in S4
were extracted and organized into a data extraction form oriented
to the research questions. The spreadsheets and form produced
during the study can be found in [4].

The first author performed publication selection and data ex-
traction. The second and third authors reviewed both. Once data
has been validated, the first author carried out data interpretation
and analysis, and again the second and third authors reviewed
the results. Discordances were discussed and resolved in meetings.
Quantitative data were tabulated and used in graphs and statistical
analysis. Finally, the three authors performed qualitative analysis
considering the findings, their relation to the research questions
and the systematic mapping purpose.

4 DATA EXTRACTION AND SYNTHESIS
The mapping study considered papers published until December
2017. Searches were conducted for the last time in March 2018. Fig-
ure 2 illustrates the followed process and the number of publications
selected in each step.

In the 1st step, as a result of searching the selected sources, a total
of 1,194 publicationswas returned. In the 2nd step, we eliminated du-
plications, achieving 546 publications (reduction of approximately
47%). In the 3rd step, we applied the selection criteria (inclusion
and exclusion criteria) over title, abstract and keywords, resulting
in 258 papers (reduction of approximately 47%). It is important to
emphasize that, at this step, we only excluded publications that
were clearly unrelated to the subject of interest, as suggested by
Kitchenham and Charters [32]. In case of doubt, the paper was taken
to the next step. In the 4rd step, the selection criteria were applied

SBES 2018, September 17–21, 2018, Sao Carlos, BrazilGlaice Kelly da SilvaQuirino, Monalessa Perini Barcellos, and Ricardo de Almeida Falbo

Table 1: Research questions and their rationales.

ID Research Question Rationale
RQ1 When and in which type of vehicle have

the studies been published?
Aims at giving an understanding onwhen andwhere (journal/conference/symposium
/workshop) publications about software PLs with visual representation have been
published.

RQ2 Which types of research have been done? Investigates which type of research is reported in each selected publication. We
consider the classification defined by Wieringa et al. [54], which includes the fol-
lowing categories: Evaluation Research; Proposal of Solution; Validation Research;
Philosophical Paper; Opinion Paper; and Personal Experience Paper. This question is
useful to evaluate the maturity stage of the research topic.

RQ3 Are the software PLs of general or specific
purpose?

Investigates whether PLs have been defined for use in specific application domains
(e.g., financial, health, etc.), classes of systems (e.g., web system, agent-based system,
etc.) or if they can be used for any domain or class of system.

RQ4 What types of patterns are found in the
software PLs?

Identifies the types of patterns (e.g., analysis patterns, design patterns, process
patterns, etc.) represented in the PLs and verifies if there has been predominance of
certain types.

RQ5 What elements are addressed in the soft-
ware PLs and what symbols have been
used to represent them?

Identifies the elements represented in the PLs (e.g., patterns, relations, patterns
groups) and the adopted symbols. This question allows analyzing if there is consensus
on the elements being represented and the symbols used to represent them.

RQ6 Do the software PLs define the types of
relationship? If so, what types of relation-
ship are defined?

Identifies whether PLs explicitly define the types of relationships between patterns
and which types are defined (e.g., dependency, variant of, etc.). This question allows
analyzing if PLs have been clear about the relationships between patterns and if
there has been predominance of certain types of relationship.

RQ7 How are patterns grouped in software PLs
and how are groupings represented?

Investigates whether there is some sort of grouping of patterns in the PLs, which
criteria for grouping are used, and how the groups are represented. This question is
useful to evaluate if visual notations have been concerned with managing complexity.

RQ8 In addition to the visual representation,
what mechanism is provided to guide pat-
terns selection?

Investigates whether software PLs provide some additional mechanism to guide
patterns selection (e.g., some sort of description). This question helps verify if there
is a concern with providing clear guidance for users to select patterns.

RQ9 Which are the types of models provided
by software PLs?

Identifies whether PLs provide structural models (which represent the elements
of the PLs and the relationships between them), process models (which represent
flows that indicate the possible paths for selecting patterns) or both. This question
allows verifying whether PLs have been visually represented considering different
and complementary perspectives.

considering the full text, resulting in 64 publications (reduction of
approximately 75%). Due to space limitation, these publications are
not listed in this paper. Along this and the next section we refer
to some of the selected publications. The complete list, including a
summary about each publication, can be found in [4].

Publication year and vehicle (RQ1): Figure 3 shows the dis-
tribution of the 64 selected publications over the year, providing a
general view of the efforts in the area of software PLs with visual
representation. As shown in this figure, the first publication of a
software PL with visual representation occurred in 1998. Figure 3
also shows the distribution of publications considering the vehicle
of publication. Papers have been published in three types of vehi-
cles: Journals, Conferences and Workshops. Conferences have been
the main forum, encompassing 62.5% of the publications (40 out of
64), followed by journals, publishing 32.8% of the papers (21 out
of 64), and workshops, with only three publications (4.7%). Taking
the period of publications into account, we can notice a long-term
effort regarding the development of software PLs, since this topic
has been the target of researchers for almost 20 years. However, the

Figure 2: Publication Selection Process

results have been mostly published in conferences (62.5%). The low
percentage of journal publications, which generally require more
mature works, can be seen as a sign that the research on this topic
is not mature enough yet.

Visual Notations for Software Pattern Languages: a Mapping Study SBES 2018, September 17–21, 2018, Sao Carlos, Brazil

Figure 3: Publications over the years

Figure 4: Types of Research

ResearchType (RQ2): 61 out 64 publications propose a solution
for a problem and argue for its relevance. Thus, they were classified
as Proposal of Solution. 26 of these publications also report some
kind of evaluation, being 20 (31.3%) Validation Research (investigates
the characteristics of a proposed solution not yet implemented in
practice) and six (9.4%) Evaluation Research (discusses the imple-
mentation and evaluation of a proposed solution in an industrial
setting). The [21, 34, 45] are some of the works that validated the
proposed PL. [18, 20, 51], in turn, are examples of works that pro-
pose a software PL and evaluate its application in a case study in
the industry. Only one publication, [49], (1.5%) refers exclusively
to Evaluation Research, while two, [41, 56], (3.1%) refer exclusively
to Validation Research. These results show that only around 46%
of the efforts presented in the publications were concerned with
some sort of evaluation, and just in few cases the proposal reached
the industry. This reinforces the results from RQ1 that research on
this topic is not mature enough yet. Figure 4 shows the types of
research identified in the study.

PLs Purpose (RQ3): Among the PLs selected in the study, 26
(41%) have general purpose, and can be used independently of the
application domain or class of system. However, most PLs, 38 (59%),
were conceived with specific purpose, i.e., to a specific application
domain or class of system. The PL presented in [12] is an example of
a general purpose PL. Its patterns can be applied to produce secure
software regardless the application domain or class of system. On
the other hand, the PL presented in [18], which deals with aspects
related to accessibility in web systems, has a specific purpose, since
although it is domain-independent, it is restrict to a specific class
of system (web systems). The PL presented in [49] to assist in the
development of banking systems is also an example of PL with

Figure 5: Types of patterns contained in PLs

<<name>>

<<name>> <<name>>

<<name>>

<<name>>

<<name>>

<<name>>

<<name>>

Figure 6: Different symbols for Pattern

specific purpose. It is independent of class of system, but it is for a
specific domain (banking).

Type of Patterns (RQ4): Several types of patterns were ad-
dressed by the analyzed PLs, including: Design Patterns (addressed
in 35 of the 64 publications - 54.7%), Process Patterns (13 publications
- 20.3%), Architectural Patterns (12 publications - 18.8%), Analysis
Patterns (4 publications - 6.2%) andOntology Patterns (4 publications
- 6.2%). Other types of patterns, such as Access Patterns, Instructional
Patterns, Interaction Patterns, among others, were addressed by only
one PL. These patterns were grouped under the category Other (11
publications - 17.2%). Some PLs addressed more than one type of
pattern, and therefore the sum of the percentages exceeds 100%.
Figure 5 shows the types of patterns found in the study.

Types of Element and their Symbols (RQ5): All the selected
publications contain some visual representation for the PL. In some
cases, the elements of the visual notation are explicitly defined.
For example, in [7], a legend presents the symbols of the elements
used in the visual representation and their meaning. In other cases,
such as in [22], only the visual representation is shown, without
explicit information about the respective elements. In such cases,
we analyzed the publication text to obtain information about the
elements of the visual representation.

The visual representation of some PLs contains several elements
(e.g., [16]), while others (e.g., [9, 28, 31, 53]) contain only Pattern
and Flow, which are the most basic elements for representing a PL.
Moreover, although several visual representations have the same
element (e.g., all visual representations analyzed have the Pattern
element), different symbols are used to represent it. For example,
we identified 9 different symbols used to represent Pattern (see Fig-
ure 6). Despite the variety of symbols, in the visual representations,
there is a predominance of geometric symbols. Figure 7 shows the
elements identified in the visual representations analyzed in the
study and the number of different symbols we found representing
each element.

Types of relationship (RQ6): The elements of a PL can relate
to each other in different manners and it is important to under-
stand how they relate. Concerning how the types of relationship
are defined, in 40 (62.5%) of the analyzed publications, the authors

SBES 2018, September 17–21, 2018, Sao Carlos, BrazilGlaice Kelly da SilvaQuirino, Monalessa Perini Barcellos, and Ricardo de Almeida Falbo

Figure 7: Elements and symbols of the PLs

Figure 8: Types of relationship

explicitly define the types of relationship (e.g., dependency, use,
variance), such as in [12, 15]. Nineteen (29.7%) of the publications
(e.g., [31, 42, 49]) do not define the types of relationship and only
connect elements (for example, using an arrow that connects one
pattern to another) to indicate that they are related in some way .
Five (7.8%) of the publications partially define the types of relation-
ship, since only some of the types of relationship used in the visual
representation are defined (e.g., [27, 59]).

Regarding the types of relationship, considering those explic-
itly defined in the publications, the main types identified are: Flow
(indicates the admissible sequences in which patterns can be ap-
plied); Depends on (indicates a structural dependency between the
patterns); Uses (indicates that one pattern uses another pattern
when the second pattern solves a problem probably raised by the
application of the first); Specialization (indicates that one pattern
can be a specialization of the solution provided by another pattern);
Alternative to (indicates patterns that can be used alternatively);
and Variant of (indicates mutually exclusive patterns that solve the
same problem but in different ways). Other types appear less fre-
quently, such as Implements and Conflicts, and were categorized as
Others. Flow is the predominant type of relationship in the analyzed
PLs. Some PLs (e.g., [8, 35, 51]) have only this type of relationship,
while others also contain other types (e.g., [24, 35]). Figure 8 shows
the types of relationship identified in the analyzed PLs.

It is possible to notice that some elements identified in RQ5
are related to types of relationship. For example, the Structural
Relations element identified in RQ5 (see Figure 7) encompasses

Figure 9: Criteria for grouping patterns

several types of relationship identified in RQ6, such as Depends
on, Uses and Specialization. However, in RQ5, we considered all
the elements included in the visual representations of the PLs,
while in RQ6 we considered only the types of relationship explicitly
defined in the PLs. Thus, there is difference between the number of
publications related to the same element in RQ5 and RQ6. Flow, for
example, was found in 36 publications (see Figure 7), but only 24 of
them (see Figure 8) explicitly defined this type of relation.

Pattern Grouping (RQ7): Groupings were found in 35 of the
analyzed PLs. In most of them, 29, patterns are grouped accord-
ing to aspects of the domain. This can be observed, for example,
in [7], which presents an ontology pattern language for software
measurement. In this work, patterns are grouped into six groups:
Measurable Entities, Measures, Measurement Units & Scales, Mea-
surement Procedures, Measurement Planning, and Measurement
& Analysis. In four PLs ([5, 18, 29, 50]), the patterns are grouped
considering levels of abstraction. Another aspect considered for
grouping patterns is the nature of the problem. This can be observed
in two PLs, presented in [8] and [34]. The last groups patterns
into: Architecture, Configuration, Reliability, Memory, Notification,
Topology, and Networks. There are also PLs containing groups ac-
cording to categories ([23]), purpose ([10]) and fragments [43]. These
types of groupings were found in only one PL. Figure 9 shows the
criteria for grouping patterns adopted in the analyzed PLs. A same
PL can adopt more than one criterion for grouping patterns, as
occurs in [18, 29, 50], which group patterns according to domain
aspects and abstraction levels. Thus, the sum of the occurrences in
Figure 9 is greater than 35 which is the number of PLs with pattern
groups.

Groups are represented in different ways in the analyzed PLs.
Rectangle is the most common symbol used to represent groups.
PLs presented in [22, 37, 47] are examples of PLs that use this
representation. Other PLs (e.g., [26, 27, 42, 49]) use a rectangle
with rounded corners. Some PLs have represented groupings with
other symbols: colors/textures ([1, 5, 29, 50]), UML package symbol
([6, 42]), irregular region ([34, 36]), partition wrenches ([10, 18]),
division lines ([18, 56]), and ellipse ([8]). Figure 10 shows the different
symbols used to represent patterns groups in the analyzed PLs. Six
publications ([23, 28, 35, 43, 51, 59]) report they group patterns,
but groups were not presented in the visual notation provided in
the publication. For this reason, these studies were disregarded in
Figure 10.

Mechanism for Pattern Selection (RQ8): The main purpose
of a PL is to provide guidance for patterns selection. Among the
PLs analyzed, 50 publications (78%) do not provide any additional
mechanism to support patterns selection beyond the visual repre-
sentation. Fifteen publications (22%) provide a process description to

Visual Notations for Software Pattern Languages: a Mapping Study SBES 2018, September 17–21, 2018, Sao Carlos, Brazil

Figure 10: Symbols used to represent groups in PLs

guide patterns selection. For example, the PL presented in [46] has
a description of the visual representation that guides pattern selec-
tion according to the problems to be addressed. This description
enhances the understanding on how patterns should be selected and
applied, increasing the effectiveness of PL. One of the 15 publica-
tions ([57]) provides, in addition to a process description, a Feature
Model to assist in choosing the sequence of patterns to be applied.
From the 15 publications that provide additional mechanism for
pattern selection, only a few offer descriptions clear and detailed
enough to guide pattern selection. [7, 16, 46, 56, 58] are examples of
works that provide detailed descriptions containing guidelines that
consider the possible situations to apply the patterns and indicates
the pattern(s) to be selected.

Type ofModels (RQ9): Fifty per cent (32 out 64) of the analyzed
PLs provide process models that indicate the possible flows to be
followed for pattern selection (e.g., [9, 24, 51]). Forty-four (28 out
64) present structural models, which shows structural relationships
(e.g., dependency) between the PL elements (e.g., [25, 47, 53]). The
remaining 6% of PLs (four publications) present both models. In
two of these publications, [41, 43], the visual representation of the
PLs is a hybrid model, that is, a single diagram is used to represent
both process and structural models. In the other two, [22, 57], two
models are used, one to guide the process for selecting and applying
patterns, and other to show the structural relationships between
the patterns.

5 DISCUSSION
In this section, we provide additional information about the ana-
lyzed PLs and make a discussion about the obtained results.

Considering types of patterns contained in the analyzed PLs, de-
sign patterns are predominant. This means that this type of pattern
has been more explored in PLs, which can be understood as a sign
that research involving design patterns in software PLs with visual
representation are more mature when compared to research involv-
ing other types of patterns. For example, we identified only three
works addressing ontology patterns [7, 16, 46]. All these works are
recent and developed by the same research group.

With respect to the elements addressed in the PLs, the results
show that they are diverse. Pattern and Flow are the elements
addressed in most of the analyzed PLs. Structural relations are also
frequently represented. In fact, this was expected, because those are
the basic elements to visually represent a PL. Patterns and flows are
used to indicate paths to pattern selection, providing a behavioral
representation of the PL, while patterns and structural relations

are used to provide a structural representation of the PL, showing
the structural relations (e.g., dependency) that must be considered
to apply the patterns. Although these elements are addressed in
several PLs, there are others that appear in only a few of them.
This indicates that although there is some agreement on the main
elements to be addressed in a PL, there is not consensus on other
elements that should be addressed in a PL.

Concerning the symbols used to represent the elements, there is a
predominance of geometric forms. Although Moody [39] advocates
that geometric symbols do not directly demonstrate the element
meaning (i.e., they are semantically opaque), they are traditional
symbols used in software engineering models and abstractions.
Thus, they are familiar to software PLs users and can be represen-
tative enough in this context. However, there is no consensus on
the symbol to be used to represent each element.

There is also variety in the number of elements addressed in the
PLs. In [7], for example, seven elements are considered: entry point,
pattern, flow, alternative flow, parallel output, parallel input and
patterns group. On the other hand, in [58], the PL contains only
two elements: pattern and dependency (structural relation). The
variation in the number of elements addressed in the PLs may indi-
cate that: (a) PLs treat different problems and some cases need more
elements than others; or (b) some PLs use less elements than neces-
sary to provide a clear understanding of the PL. In this case, there
is overload in the meaning of the used symbols that represent the
elements, which leads to unclear and cognitively poor PLs. During
the study, due to the lack of clarity of the PLs visual representation,
we faced many difficulties to understand some PLs. This experience
leads us to believe that LPs visual representations have been not
expressive enough to propitiate proper understanding.

Regarding the types of relationship, we notice that most PLs do
not always explicitly define the different relationships between the
elements. This hinders understanding the relationships between
patterns and, consequently, selecting and applying the patterns.
In the publications that define types of relationships, there is a
predominance of dependency, followed by use and specialization.
In fact, a predominance of the dependency relationship in PLs is
not surprising, since it can encompass other types of relationship
and eliminate (or mask) the need to define them. For example, if a
pattern A uses a pattern B, there is a relation of use from A to B
(A uses B) or, more generally, it can be understood that there is a
dependency relation between A and B (A depends on B). However,
if a PL does not specify that the relationship between A and B is
uses, it is not possible for users to identify precisely the relation
between the patterns. For example, A depends on B because A can
only be applied after B, since A requires the solution given by B,
or A depends on B because B is part of the solution proposed in A?
In both cases, we can say that A depends on B, but in the second
case, the dependency is specifically a relation of use. Some types of
relationship, such as complement and implementation, appear only
in a few PLs. Some of these types can be defined from others. For
example, we can consider that the complement relation could be
defined from the use relation. If a pattern A complements a pattern
B, we can conclude that B uses A.

As for pattern grouping, the results show that this practice has
been used in more than 50% of the analyzed PLs. On the one hand,
there is a predominance in the criteria used to group patterns (83%

SBES 2018, September 17–21, 2018, Sao Carlos, BrazilGlaice Kelly da SilvaQuirino, Monalessa Perini Barcellos, and Ricardo de Almeida Falbo

use domain aspects). On the other hand, there is a variety of sym-
bols used to represent groups. A common characteristic to the
representations is the use of symbols that delimit a region in which
patterns are grouped. Grouping is particularly important in large
and complex PLs. Grouping patterns can be a strategy to manage
PL complexity. Groups may be represented in a transparent manner
(i.e., patterns of the group are visible in the PL) or as black boxes
(i.e., the PL only shows the symbol representing the group, without
presenting the patterns inside it). In this way, different visions of
the PL are provided with different levels of details, contributing to
understand the PL. Among the analyzed PLs, only the one presented
in [24] represents pattern groups both as black boxes and in the
transparent way. Thus, the PL has two possible views: a detailed
view presenting patterns and relations between them, and a more
general view, showing groups as black boxes.

Concerning the mechanisms to support pattern selection, most of
the analyzed PLs do not provide any additional mechanism apart
from the PL visual representation. The lack of clear guidance on
pattern selection compromises PL use. Although visual notations
are effective in transmitting information [40], using text as a com-
plementary communication strategy helps better understanding
the visual representation [39].

Finally, with respect to types of model used to represent the PLs,
we observed that in 94% of the publications only one type of model
is used, presenting only the behavioral (process) or the structural
perspective of the LP. Only four publications represent the LP from
different perspectives. Two of them use the same diagram to show
both perspectives. This approach tends to hinder the understanding
about the model and the perception of the different visions. Using a
model to represent the possible paths for pattern selection and ap-
plication and another to show the structural relationships between
the PLs elements can contribute to better understand and use the
PL.

Making a general analysis of the visual notations investigated
in the study, we observed that they do not satisfy some principles
suggested byMoody [39]. Some PLs have overloaded symbols, while
others present deficit of symbols. In both cases, the semiotic clarity
principle is not satisfied, because there is not a 1:1 correspondence
between the PL elements and the adopted symbols. In addition,
the small visual distance between the symbols in most PLs, and
the small number of visual variables explored in the notations
compromise perceptual discriminability (sometimes it is difficult to
distinguish a symbol from another) and visual expressiveness (some
symbols should use additional variables, such as color or texture,
to improve expressiveness).

Despite the lack of compliance with some PoN principles, others
are satisfied. In general, the PLs present a cognitively manage-
able number of different symbols (graphical economy) and some
of the PLs use text to complement graphics (double coding). Be-
sides, although the visual distance between the symbols is small, it
is predominant the use of geometric forms, symbolism very com-
mon in Software Engineering, which enhances PLs’ learning and
contributes to meet the semantic transparency principle.

Some PLs adopt grouping as a mechanism for dealing with com-
plexity (complexity management). However, none of them includes
explicit mechanisms to support integration of information from
different models (cognitive integration). We did not evaluate the

cognitive fit principle because each PL was developed to only one
audience, being unnecessary the use of different visual dialects.

Based on the panorama provided by the study results, we can
highlight the following issues: (i) lack of a standard visual notation
to represent software PLs (we notice inconsistencies even between
visual notations used in works developed by the same research
group (e.g., [7, 16, 46])); (ii) visual notations used to represent soft-
ware PLs are cognitively poor; (iii) lack of concern with additional
mechanisms to guide pattern selection; and (iv) lack of a complete
view of the PL, showing aspects related to the PL process and struc-
ture.

6 LIMITATIONS OF THE STUDY
Although the ambition of a mapping study is to summarize all
relevant research in an area, different sets of publications can be
obtained given a number of decisions taken. Researchers conducting
secondary studies in general have to make a lot of decisions and
exercise a lot of judgment. The decisions taken by researchers and
the judgments influence the outcome both in terms of which papers
are selected andwhat the researchers conclude from their secondary
studies [55]. Thus, as any study, the study presented in this paper
has some limitations.

Some challenges can reach the researchers during a mapping
study, such as how to select a comprehensive and relevant source
of publications, how to consistently apply the inclusion/exclusion
criteria, how to classify data and how to interpret them. In this
study we experienced these challenges and carried out some actions
aiming at minimalizing their influence on the results.

Publication selection and data extractionwere initially performed
by only one of the authors, and thus some subjectivity could be em-
bedded. To reduce this subjectivity, the other two authors performed
these same steps over 47% of the sample containing non-duplicated
publications, so that 257 out 546 publications were analyzed by
at least two researchers. Discordances and possible biases were
discussed in meetings.

An analysis of degree of concordance was performed to mea-
sure the level of agreement between the results obtained from the
researchers in the selection process. For this, we calculated the
kappa coefficient [33]. Kappa is a statistical measure of inter-rater
agreement for qualitative (categorical) items. It is considered to
be a more robust measure than simple percent agreement calcula-
tion, since it takes into account the agreement occurring by chance.
Kappa maximum value is 1, representing total agreement. Values
close to and below 0 indicate no agreement. Considering the set of
publications analyzed by all the reviewers (i.e., 257 publications),
the obtained kappa coefficient is 0.77, which, according to Landis
and Koch [33], means substantial agreement.

Terminological problems in the search strings may have led to
miss some publications. To minimize this possibility, we performed
previous simulations in the selected digital libraries and used con-
trol publications to establish the string.

Applying the search string to digital libraries engine can also
interfere in the returned publications. First, because it is necessary
to adapt the string syntax. The adaptation may result in a different
search string. The string used in the study is very simple, so we
eliminated the risk of making mistakes when adapting it to each

Visual Notations for Software Pattern Languages: a Mapping Study SBES 2018, September 17–21, 2018, Sao Carlos, Brazil

engine. Second, because of problems or changes in the engines.
During the study, occurred changes in the engine of one of the used
digital libraries. We ran some tests that showed us that the engine
interface had changed, but the engine seemed to work as before.

The study considered six digital libraries as sources. They were
selected based on other secondary studies in the Software Engi-
neering area. Although this set of digital libraries represents a com-
prehensive source of publications, the exclusion of other sources
and the fact that we did not performe snowballing may have left
some valuable publications out of our analysis.

During publication selection, we had to decide if the publica-
tions meet our selection criteria. We objectively defined the criteria,
however there was still subjectivity when applying them to publi-
cations. Aiming to keep consistency in publications selection and
avoid misinterpretations about what we should consider as PL, we
adopted the argument of Buschmann et al. [11], which says that in
pattern catalogs there is a lack of a strong sense of connection be-
tween patterns, while in PLs this connection is strongly perceived,
and it should be followed when applying the patterns. Based on
that, publications presenting pattern catalogs (even when they were
incorrectly called PLs) were eliminated.

Another limitation is related to the classifications we made for
categorizing data. For each research question we defined a clas-
sification schema. Some categories were based on classifications
previously proposed in the literature (e.g., type of research [54]).
Others were established during data extraction, based on data pro-
vided by the analyzed publications (e.g., types of relationship and
types of pattern). Determining the categories and how publications
fit them involves a lot of judgment. Thus, different results could be
obtained by other researchers.

7 CONCLUSIONS
In the 70s, Christopher Alexander [2] presented a pattern language
(PL) for towns, buildings and construction. Inspired by Alexander’s
work, software practitioners and researchers have been organized
well-known solutions related to software as software patterns since
1990s. The PLs structure primarily aims at making knowledge easily
applicable [30].

Considering the effectiveness of visual notations to transmit
information and the consolidated use of models as abstractions in
Software Engineering, PLs have been visually represented. In this
paper, we presented the main results of a mapping study that inves-
tigated software PLs. A total of 1194 publications were considered
and the visual representation of 64 software PLs was analyzed.

According to Kitchenham et al. [32] and Wieringa et al. [54], the
results of a mapping study help identify gaps that suggest future
research. The study results reveal a lack of consensus on what
should be represented in a software PL and how to represent the
PLs elements. Moreover, most of visual notations used to represent
software PLs are cognitively poor and have expressivity problems,
such as symbol overload or deficit. There is also lack of concern on
providing clear mechanisms to assist in patterns selection, and lack
of a complete representation of the PLs, considering behavioral
(process) and structural perspectives.

A PL is not merely a set of patterns that solve problems. More
than that, a PL should establish a dialog with users guiding them

on addressing problems through the reuse of well-proven solutions.
The dialog established by PLs is deeper and more comprehensive
than the dialog with individual patterns or pattern catalogs[13].

Visual notations are very important tools to establish the dialog
between a PL and its users. However, the study results indicate that
the visual representations of PLs have not been expressive enough.
The findings point out to the need to improve the quality of the
visual notations to make the use of PLs easier and more efficient,
potentializing reuse.

The lack of a standard to visually represent PLs suggests the need
to a visual modeling language to represent software PLs. This mod-
eling language should take aspects of visual communication (e.g.,
the PoN principles) into account and provide support to represent
PL elements in models considering the behavioral and structural
perspectives. We did not find any work in this direction in Software
Engineering.

As future work, we plan to use the knowledge obtained from
the mapping study in the development of a visual modeling lan-
guage to represent software PLs. We intend to use this language to
represent some of the PLs identified in the study and evaluate the
new representation against the previous one. We also intend to use
the proposed language to represent new software PLs and evalu-
ate the quality of the visual notations produced. We believe that a
visual modeling language to represent software PLs is a relevant
contribution to the area.

We did not find any work similar to ours. Before performing
our study, we searched for secondary studies addressing visual
notations of software PLs. We used the following search string:
"("pattern language") AND ("systematic literature review" OR "sys-
tematic review" OR "systematic mapping" OR "mapping study" OR
"systematic literature mapping")". The search string was applied
to three metadata fields (title, abstract and keywords) and in the
same digital libraries used in our study. The search returned 7 pub-
lications. However, none of them referred to a secondary study
addressing our topic of interest.

ACKNOWLEDGMENTS
This research is funded by the Brazilian Research Funding Agency
CNPq (407235/2017-5 and 461777/2014-2), CAPES (23038.028816/2016-
41), and FAPES (69382549/2014).

REFERENCES
[1] Ademar Aguiar and Gabriel David. 2006. Patterns for Documenting Frameworks-

Part II.. In EuroPLoP. Citeseer, 393–406.
[2] Christopher Alexander, Sara Ishikawa, Murray Silverstein, Max Jacobson, Ingrid

Fiksdahl-King, and Shlomo Angel. 1977. A pattern language. (1977).
[3] Xavier Amatriain and Pau Arumi. 2011. Frameworks generate domain-specific

languages: A case study in the multimedia domain. Software Engineering, IEEE
Transactions 37, 4 (2011), 544–558.

[4] Authors. 2018. Mapping Study about Visual Notations for Software Pattern
Languages. Retrieved April 26, 2018 from https://www.dropbox.com/sh/
cfz58ln02ms0fwv/AACWfuhjNiKuqziOQmrDpubka?dl=0

[5] Paris Avgeriou and Peter Tandler. 2006. Architectural patterns for collaborative
applications. International journal of computer applications in technology 25, 2-3
(2006), 86–101.

[6] Paris Avgeriou and Uwe Zdun. 2005. Architectural patterns revisited-a pattern
language. (2005).

[7] Monalessa Perini Barcellos, Ricardo de Almeida Falbo, and Vinícius Frauches.
2014. Towards a Measurement Ontology Pattern Language.. In ONTO.
COM/ODISE@ FOIS.

[8] D Bellebia and Jean-Michel Douin. 2006. Applying patterns to build a lightweight
middleware for embedded systems. In Proceedings of the 2006 conference on Pattern

https://www.dropbox.com/sh/cfz58ln02ms0fwv/AACWfuhjNiKuqziOQmrDpubka?dl=0
https://www.dropbox.com/sh/cfz58ln02ms0fwv/AACWfuhjNiKuqziOQmrDpubka?dl=0

SBES 2018, September 17–21, 2018, Sao Carlos, BrazilGlaice Kelly da SilvaQuirino, Monalessa Perini Barcellos, and Ricardo de Almeida Falbo

languages of programs. ACM, 29.
[9] Mirla RR Braga, Carla IM Bezerra, José Maria S Monteiro, and Rossana Andrade.

2012. A pattern language for agile software estimation. In Proceedings of the 9th
Latin-American Conference on Pattern Languages of Programming. ACM, 5.

[10] Rosana TV Braga and Paulo Cesar Masiero. 2004. Finding frameworks hot spots
in pattern languages. Journal of Object Technology 3, 1 (2004), 123–142.

[11] Frank Buschmann, Kelvin Henney, and Douglas Schimdt. 2007. Pattern-oriented
Software Architecture: on patterns and pattern language. Vol. 5. John wiley & sons.

[12] Nelly Delessy, Eduardo B Fernandez, and Maria M Larrondo-Petrie. 2007. A
pattern language for identitymanagement. InComputing in the Global Information
Technology, 2007. ICCGI 2007. International Multi-Conference on. IEEE, 7.

[13] Peter Deutsch. 2004. Models and Patterns. In Software Factories: Assembling
Applications with Patterns, Models, Frameworks, and Tools. John Wiley & Sons.

[14] Vladan Devedzic. 2002. Software Patterns. In Handbook of Software Engineering
and Knowledge Engineering: Volume II: Emerging Technologies. World Scientific,
645–671.

[15] Veli-Pekka Eloranta and Marko Leppänen. 2012. Human machine interface
patterns for distributed machine control systems. In Proceedings of the 17th
European Conference on Pattern Languages of Programs. ACM, 3.

[16] Ricardo de Almeida Falbo, Monalessa Perini Barcellos, Julio Cesar Nardi, and
Giancarlo Guizzardi. 2013. Organizing ontology design patterns as ontology
pattern languages. In Extended Semantic Web Conference. Springer, 61–75.

[17] Ricardo de A Falbo, Giancarlo Guizzardi, Aldo Gangemi, and Valentina Presutti.
2013. Ontology patterns: clarifying concepts and terminology. In Proceedings of
the 4th Workshop on Ontology and Semantic Web Patterns.

[18] Daniela Fogli, Loredana Parasiliti Provenza, and Cristian Bernareggi. 2014. A
universal design resource for rich Internet applications based on design patterns.
Universal access in the information society 13, 2 (2014), 205–226.

[19] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design
patterns: Elements of reusable object-oriented software. Reading: Addison-Wesley
49, 120 (1995), 11.

[20] Michael Goedicke, Carsten Köllmann, and Uwe Zdun. 2004. Designing runtime
variation points in product line architectures: three cases. Science of Computer
Programming 53, 3 (2004), 353–380.

[21] Dominik Grolimund and Peter Müller. 2006. A Pattern Language for Overlay
Networks in Peer-to-Peer Systems.. In EuroPLoP. Citeseer, 95–140.

[22] Eduardo Guerra, Felipe Alves, Uirá Kulesza, and Clovis Fernandes. 2013. A
reference architecture for organizing the internal structure of metadata-based
frameworks. Journal of Systems and Software 86, 5 (2013), 1239–1256.

[23] Lilia Gzara, Dominique Rieu, and Michel Tollenaere. 2003. Product informa-
tion systems engineering: an approach for building product models by reuse of
patterns. Robotics and Computer-Integrated Manufacturing 19, 3 (2003), 239–261.

[24] Munawar Hafiz, Paul Adamczyk, and Ralph E Johnson. 2012. Growing a pattern
language (for security). In Proceedings of the ACM international symposium on
New ideas, new paradigms, and reflections on programming and software. ACM,
139–158.

[25] Christoph Hannebauer, Vincent Wolff-Marting, and Volker Gruhn. 2010. Towards
a pattern language for floss development. In Proceedings of the 17th Conference
on Pattern Languages of Programs. ACM, 15.

[26] Carsten Hentrich. 2009. Synchronization patterns for process-driven and service-
oriented architectures. In Transactions on Pattern Languages of Programming I.
Springer, 103–135.

[27] Carsten Hentrich, Uwe Zdun, Vlatka Hlupic, and Fefie Dotsika. 2015. An approach
for pattern mining through grounded theory techniques and its applications to
process-driven SOA patterns. In Proceedings of the 18th European Conference on
Pattern Languages of Program. ACM, 9.

[28] Chin-Yun Hsieh, Yu Chin Cheng, and Chien-Tsun Chen. 2011. Emerging patterns
of continuous integration for cross-platform software development. In Proceedings
of the 2nd Asian Conference on Pattern Languages of Programs. ACM, 9.

[29] Saurabh Hukerikar and Christian Engelmann. 2017. A Pattern Language for
High-Performance Computing Resilience. In Proceedings of the 22nd European
Conference on Pattern Languages of Programs. ACM, 12.

[30] Feldhusen Jörg and Bungert Frederik. 2007. Pattern Languages: An approach to
manage archetypal engineering knowledge. Guidelines for a Decision Support
Method Adapted to NPD Processes (2007).

[31] Douglas Kirk, Marc Roper, and Murray Wood. 2007. Identifying and addressing
problems in object-oriented framework reuse. Empirical Software Engineering 12,
3 (2007), 243–274.

[32] Barbara Ann Kitchenham and Stuart Charters. 2007. Guidelines for performing
Systematic Literature Reviews in software engineering. Technical Report Version
2.3. EBSE-2007-01.

[33] J Richard Landis and Gary G Koch. 1977. The measurement of observer agreement
for categorical data. biometrics (1977), 159–174.

[34] Stephan Lukosch and Till Schümmer. 2006. Groupware development support
with technology patterns. International Journal of Human-Computer Studies 64, 7
(2006), 599–610.

[35] Ioanna Lytra, Stefan Sobernig, and Uwe Zdun. 2012. Architectural decision mak-
ing for service-based platform integration: A qualitative multi-method study. In

Software Architecture (WICSA) and European Conference on Software Architecture
(ECSA), 2012 Joint Working IEEE/IFIP Conference on. IEEE, 111–120.

[36] Michael Mahemoff, Andrew Hussey, and Lorraine Johnston. 2001. Pattern-based
reuse of successful designs: usability of safety-critical systems. In Software Engi-
neering Conference, 2001. Proceedings. 2001 Australian. IEEE, 31–39.

[37] Jürgen Meister, Ralf Reussner, and Martin Rohde. 2004. Managing product line
variability by patterns. In Net. ObjectDays: International Conference on Object-
Oriented and Internet-Based Technologies, Concepts, and Applications for a Net-
worked World. Springer, 153–168.

[38] Xiang-xi Meng, Ya-sha Wang, Lei Shi, and Feng-jian Wang. 2007. A process
pattern language for agile methods. In Software Engineering Conference, 2007.
APSEC 2007. 14th Asia-Pacific. IEEE, 374–381.

[39] Daniel Moody. 2009. The "physics" of notations: toward a scientific basis for
constructing visual notations in software engineering. IEEE Transactions on
Software Engineering 35, 6 (2009), 756–779.

[40] Daniel L Moody, Patrick Heymans, and Raimundas Matulevičius. 2010. Visual
syntax does matter: improving the cognitive effectiveness of the i* visual notation.
Requirements Engineering 15, 2 (2010), 141–175.

[41] Haralambos Mouratidis, Michael Weiss, and Paolo Giorgini. 2005. Security
patterns meet agent oriented software engineering: a complementary solution for
developing secure information systems. In International Conference on Conceptual
Modeling. Springer, 225–240.

[42] Jan de Muijnck-Hughes and Ishbel Duncan. 2012. Thinking towards a pattern
language for predicate based encryption crypto-systems. In Software Security
and Reliability Companion (SERE-C), 2012 IEEE Sixth International Conference on.
IEEE, 27–32.

[43] James Noble. 1998. Towards a pattern language for object oriented design. In
Technology of Object-Oriented Languages, 1998. TOOLS 28. Proceedings. IEEE,
2–13.

[44] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. 2015. Guidelines for
conducting systematic mapping studies in software engineering: An update.
Information and Software Technology 64 (2015), 1–18.

[45] Ron Porter and Paul Calder. 2003. A pattern-based problem-solving process
for novice programmers. In Proceedings of the fifth Australasian conference on
Computing education-Volume 20. Australian Computer Society, Inc., 231–238.

[46] Fabiano B Ruy, Ricardo A Falbo, Monalessa P Barcellos, Giancarlo Guizzardi,
and Glaice KS Quirino. 2015. An ISO-based software process ontology pattern
language and its application for harmonizing standards. ACM SIGAPP Applied
Computing Review 15, 2 (2015), 27–40.

[47] Dina Salah and Amir Zeid. 2009. PLITS: A Pattern Language for Intelligent
Tutoring Systems.. In 14th European Conference on Pattern Languages of Programs.

[48] Douglas C Schmidt, Mohamed Fayad, and Ralph E Johnson. 1996. Software
patterns. Commun. ACM 39, 10 (1996), 37–39.

[49] Lubor Sesera. 2010. Applying fundamental banking patterns: stories and pattern
sequences. In Proceedings of the 15th European Conference on Pattern Languages
of Programs. ACM, 1.

[50] Ilya Shmorgun, David Lamas, and Eduardo Mercer. 2016. Towards a pattern
language for distributed user interfaces. In Proceedings of the 2016 CHI Conference
Extended Abstracts on Human Factors in Computing Systems. ACM, 2712–2718.

[51] Ye Wang, Liping Zhao, Xinyu Wang, Xiaohu Yang, and Sam Supakkul. 2013.
PLANT: A pattern language for transforming scenarios into requirements models.
International Journal of Human-Computer Studies 71, 11 (2013), 1026–1043.

[52] Colin Ware. 2004. Information Visualization: Perception for Design. Vol. 2. Morgan
Kaufmann.

[53] Danny Weyns. 2009. A pattern language for multi-agent systems. In Software
Architecture, 2009 & European Conference on Software Architecture. WICSA/ECSA
2009. Joint Working IEEE/IFIP Conference on. IEEE, 191–200.

[54] Roel Wieringa, Neil Maiden, Nancy Mead, and Colette Rolland. 2006. Require-
ments engineering paper classification and evaluation criteria: a proposal and a
discussion. Requirements Engineering 11, 1 (2006), 102–107.

[55] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in software engineering. Springer Science
& Business Media.

[56] Bahman Zamani, Greg Butler, and Sahar Kayhani. 2009. Tool support for pattern
selection and use. Electronic Notes in Theoretical Computer Science 233 (2009),
127–142.

[57] Uwe Zdun. 2004. Pattern language for the design of aspect languages and aspect
composition frameworks. IEE Proceedings-Software 151, 2 (2004), 67–83.

[58] Uwe Zdun. 2004. Supporting incremental and experimental software evolution
by runtime method transformations. Science of Computer Programming 52, 1-3
(2004), 131–163.

[59] Uwe Zdun, Michael Kircher, and Markus Volter. 2004. Remoting patterns: design
reuse of distributed object middleware solutions. IEEE Internet Computing 8, 6
(2004), 60–68.

View publication statsView publication stats

https://www.researchgate.net/publication/327651292

	Abstract
	1 Introduction
	2 PATTERN LANGUAGE AND VISUAL NOTATION
	3 THE RESEARCH PROTOCOL
	4 DATA EXTRACTION AND SYNTHESIS
	5 Discussion
	6 LIMITATIONS OF THE STUDY
	7 CONCLUSIONS
	Acknowledgments
	References

