

Verifying the Correctness of Component-Based Applications that Support
Business Processes

Remco M. Dijkman João Paulo Andrade Almeida Dick A.C. Quartel
CTIT, University of Twente

{dijkman|almeida|quartel}@cs.utwente.nl

Abstract

Developing applications that properly support the enterprise
is a difficult task. Failing to perform this task results in
applications that are not accepted by the end-users and that
frustrate daily conduct of business. In this paper we introduce a
formal yet practical method that helps to design component-
based applications that properly support the enterprise. The
method can be used to verify whether the behavior of an
application conforms to the behavior of the enterprise, where
the behavior of the enterprise is specified in the form of business
processes. The method helps to avoid applications being
designed that support the enterprise in an incorrect manner.

1. Introduction

Applications should properly support the enterprise in which
they are used. We claim that this is achieved if the joint behavior
of applications and their users is equivalent to the intended
behavior of the enterprise. This form of equivalence is called
conformance. In this paper we show a formal yet practical
method that helps to achieve conformance.

The method assumes that the intended behavior of the
enterprise is described in the form of business processes.
Business processes describe the tasks and the conditions under
which tasks must be performed in order to achieve certain goals.

The method also assumes that the applications that support
the enterprise are constructed by assembling components. The
components we use typically correspond to concepts that have
direct meaning in the enterprise, such as ‘client’ or ‘account’ .
We call these components enterprise components. In order to
guarantee that a business process is supported correctly by an
assembly of enterprise components, the behavior of that
assembly should be verified against this business processes.
Since a business process defines constraints on the execution of
business tasks, typical questions about component assemblies
that can be answered by verifying them against a business
process, are related to the enforcement of business constraints.
Examples of such constraints are that the client receives a
requested item within 14 days after he/she ordered it and that if
an item is received by the client, payment always follows.

The method we propose uses a generic modeling technique
that can be used to design both business processes and
components [5,13]. This modeling technique has a precise
formal semantics [11] that we can use to define an algorithm for
verifying conformance.

The rest of this paper is organized as follows. Section 2
presents an outline of the method and some requirements on the
design trajectory. Section 3 describes the theoretical
underpinnings of the method and the procedure for conformance
verification. Section 4 illustrates the application of the method
with an example and section 5 presents some conclusions and
future work.

2. Outline of the method

Our method assumes that applications are designed using
stepwise refinement. Stepwise refinement starts out with a
design that represents a rough outline of the structure of the
system in terms of its parts (sometimes already called
components at this level), the way in which these parts are
interconnected and the behavior of the parts. Subsequently each
of the parts is designed in more detail (refined) by splitting it up
into multiple interconnected parts and/or by detailing its
behavior. We call a design before a refinement step an abstract
design, and a design after a refinement step a concrete design. In
stepwise refinement, refinement of system parts can be applied
repeatedly. Hence, a concrete design of one refinement step may
be the abstract design in another refinement step. Refinement is
repeated until a level of detail is reached that the designer
considers suitable to start implementing onto component
technology. A process of stepwise refinement is shown in figure
1. A design approach that uses stepwise refinement is, for
example, Catalysis [4].

Part2bPart2a

Part2cPart3a

Part3b

Part1

Part

Part1 Part2

Part3

Figure 1. Stepwise refinement.

If we use business processes as a starting point for stepwise

refinement, we may consider the entire enterprise including the
application that supports the enterprise as a singular system
(part). The behavior of this system is defined by the business
processes and, consequently, business tasks correspond to
activities that are performed by this singular system. The system

that represents the entire enterprise is refined by splitting it up
into a part that represents the application under development
and parts that form the environment of the application, such as,
e.g., users of the application.

ActivityActivity

ActivityActivityActivity

(c)

Activity

(b)

Activity

Activity

(a)

Figure 2. The refinement operators.

The behavior of a system may be refined by the following

refinement operators:
1. An activity may be detailed by identifying individual

contributions of system parts that perform the activity in
cooperation (see figure 2a). The information that was
produced, removed or updated by the original activity is
now produced, removed or updated jointly by the
contributing parts. As an example consider the activity
‘ record client data’ that may be performed jointly by the
system and a user who enters the information;

2. An activity may be detailed by any number of (related) sub-
activities performed by the same system parts that
performed the original activity (see figure 2b). The
information that was produced, removed or updated by the
original activity is now produced, removed or updated by
the sub-activities together. As an example consider the
activity ‘ record client data’ that may be detailed by the sub-
activities ‘ record client name’ and ‘ record client address’ ;

3. An activity has to be added if communication is required
between two system parts to enforce the relation between
two system parts (see figure 2c). As an example consider
that the activity ‘enter client data’ and ‘verify client data’
are performed by different parts. Then a shared activity is
necessary to carry the client data from one part to another.

Having identified the ways in which an abstract design may
be refined into a concrete design, we distinguish two approaches
to ensure that a component assembly correctly supports the
original business processes: (i) by ensuring that designers only
use the aforementioned refinement operations, in which case the
refinement may be considered conformant by construction, and;
(ii) by checking after a design step whether the concrete design
can be reached by applying the refinement operations. Since a
designer may experience the refinement rules as overly
restrictive, in particular because refinement is a creative activity,
we opt for the latter approach (ii).

However, it is not feasible to verify conformance of a
concrete design to an abstract design by trying to get from the
abstract design to the concrete design by applying the
refinement operators. The reason for this is that the refinement
operators may be applied in any way and in any combination. In
contrast, we will show that there is only one way to reach an

abstract design from a concrete design by applying inverted
refinement operators.

Therefore, in this paper we will show the outline of an
algorithm to verify the conformance of a component assembly to
a business process by applying the inverted refinement operators
to a component assembly. The inverted refinement operators are:
1. Remove the boundaries between the parts. Consequently,

each concrete sub-activity that is performed jointly by two
or more parts is now performed by a single part;

2. Integrate the concrete sub-activities that belong to the same
abstract activity into one activity, and integrate the
information produced, removed or updated by these sub-
activities; and

3. Remove the concrete activities that are added because
communication between two parts was required.

After we applied these inverted refinement operations we are
left to check whether each of the resulting activities are related
in the same way as the original activities, and whether the
information produced, removed or updated by these activities is
the same as that of the original activities.

3. Theory

In this paper, we use the Interaction Systems Description
Language (ISDL) to verify the conformance of a component
assembly to a business process. The reason for using ISDL is
that it provides a rigorous formal semantics and algorithms to
perform conformance verification. We realize that it is not
realistic to assume that in each concrete situation an ISDL
design of the business process and of the component assembly
exists. Therefore, in future work, we will provide mappings from
commonly used modeling techniques to ISDL an vice versa,
such that these modeling techniques can benefit from ISDL’s
semantics and algorithms. In this section we explain ISDL and
an algorithm for conformance verification.

3.1. The Interaction Systems Description
Language

The ISDL consists of three basic concepts: action, interaction
and causality condition.

An action represents the successful completion of some unit
of activity performed by a single system part. An interaction
represents the successful completion of a common activity
performed by two (or more) system parts. An interaction
contribution represents the participation of an individual system
part in the interaction. An action is graphically represented as a
circle. An interaction is graphically represented as a segmented
circle, where each segment of the circle represents an interaction
contribution.

The information, time and location attributes of an
(inter)action represent the result established in the activity, the
point in time at which this result is available and the location
where the result is available, respectively. The information (i),
time (t) and location (l) attributes are graphically represented
within a text-box attached to the (inter)action. The result that is
established in one (inter)action can be referred to by all
subsequent (inter)actions. i(name) refers to the result established
in the (inter)action with the corresponding name. An
(inter)action is atomic at the level at which it is considered in the

sense that if an (inter)action occurs, the same result is
established and made available at the same time moment and at
the same location for all system parts involved in the activity.
Otherwise, no result is established and no system part can refer
to any intermediate results of the activity. Constraints can be
defined on the possible outcomes of the values of i, t and l. In
case of an interaction, each interaction contribution defines the
constraints of the corresponding system part, such that the
values of i, t and l must satisfy the constraints of all involved
system parts, otherwise the interaction cannot happen.

User System

request item
i: <i: Item, a:Account>
t: Time
l : Loc | l = IP Address

verify account
i: <m: Amount, a: Account> |
 balance(a) > m

Figure 3. An example of an action and an interaction.

Figure 3 shows an example of an action and an interaction.

The interaction represents the successful completion of a joint
activity of a system and its user to request an item to buy. Two
results are obtained in this activity: the item that the user wants
to buy and the account from which the item can be paid. The
completion of the activity occurs at some time moment t, on a
location l that is constrained to be a certain IP address. The
action represents the successful completion of an activity of the
system to verify the user’s account. The figure also shows how
we can delimit the behavior of a system (part) by means of a
behavior block.

A causality condition is associated with each action, or
interaction contribution, describing the condition for this action
or interaction contribution to happen, in terms of the occurrence
of other (inter)actions. We distinguish between four basic
causality conditions for the occurrence of some action or
interaction contribution a:
• (inter)action b must happen before a. This is graphically

represented as: ;
• (inter)action b must not happen before, nor simultaneously

with a. This is graphically represented as: > ;
• (inter)action a happens simultaneously with b (due to space

limitations, we do not consider synchronization in this
paper any further);

• (inter)action a is always enabled. This is graphically
represented as: .

And- and or-operators can be used to define more complex
causality conditions. The and- and or-operator are graphically
expressed by the symbols and , respectively. Using the and
operator we could, for example, express the causality condition:
a must happen before b and c must not happen before, nor
simultaneously with b. The causality condition for an interaction
is implicitly defined by the and of the causality conditions of all
its interaction contributions.

Figure 4 shows an example of a set of actions with causality
conditions. The figure shows that a is always enabled, that b and
c are enabled if a has happened and that b and c exclude each
other, that d is enabled after b has happened and e is enabled
after c has happened.

a

b

c

d

e

Figure 4. An example of a behavior design.

Due to space limitations our introduction of ISDL is rather
short. For an explanation of more complex concepts, such as
repetitive behavior and probability, and for a formal syntax and
semantics we refer to [11].

3.2. Conformance Verification

In section 2 we explained the inverted refinement operators
that are used for conformance verification. In this section we
explain these operations for designs that have a semantics in
ISDL.

aa

b c b c

apart 1 part 2
Figure 5. Removing boundaries between parts.

3.2.1. Remove Boundaries between Parts. The first step in
conformance verification is to remove the boundaries between
system parts that were introduced during a refinement step.
When we remove the boundaries between parts, each interaction
that happens between these parts can be substituted by an action.
The causality condition of this action is formed by a causality
condition that is the and of the causality conditions of each of
the original interaction contributions. For example, interaction a
between part 1 and part 2 in figure 5 is substituted by an action
a with a causality condition that corresponds to the and of the
causality condition of the contribution of part 1 to a and the
causality condition of the contribution of part 2 to a.

After substituting an interaction by an action, we may have
to simplify the causality condition of the resulting actions.
Commonly needed simplification rules are: x and always = x, x
and x = x, x or x = x.

a1

a2

a3

a4

a5

a
b

c

concrete
behavior

abstract
behavior

*

* x

y

z

x
y

z

is short for

Figure 6. An example of refinement.

3.2.2. Integrate Concrete Actions. The second step in
conformance verification is to integrate the concrete actions that
were split up during a refinement step. To do this we assume
that the relation between an abstract (inter)action and the
concrete actions that refine it is known, either because the user
performed the refinement step in a tool that stores this relation,
or because the designer indicated the relation as part of the
conformance verification. We show this relation by drawing a
gray behavior block around the concrete actions that refine the
same abstract (inter)action as shown in figure 6. A triangle
pointing into the block (called entry) represents a condition that
influences the occurrence of the abstract (inter)action. A triangle
pointing out of the block (called exit) represents the influence of
the abstract (inter)action on the causality condition of another
abstract (inter)action. In figure 6 the entry represents the

b a

b a

a

causality condition of abstract action a. The exits represent the
influence of a on the causality conditions of b and c.

We distinguish between two types of concrete actions in the
blocks: final actions and inserted actions. Final actions are
actions that represent the completion of an entire block, and
therefore represent the completion of the abstract (inter)action.
Final actions can be identified, because they contribute to the
causality conditions of the exits. In figure 6 we marked the final
actions with an asterisk. Inserted actions are actions that are not
final actions. They are actions that are inserted with respect to
the abstract (inter)action. We integrate concrete actions by
removing inserted actions and replacing final actions by a single
action.

Removing Inserted Actions. When we remove an inserted
action z, the indirect causality conditions that run via z have to
be preserved. For example, if we remove inserted action a2 from
figure 6, the indirect enabling condition from a1 via a2 to a4
would have to be preserved. So after removing a2 there should
be an enabling condition from a1 to a4. Table 1 shows how to
preserve indirect causality conditions that run via inserted action
z. It says that if z and x depend on each other as shown in row i
and z and y depend on each other as shown in column j, then,
after removing z, x and y depend on each other as shown in cell
(i, j). If the dependency between x, y, and z is not shown in table
1, then there will be no relation between x and y after removing
z.

Table 1. Removing indirect causality relations.

zx

zx

zx

yz yz yz

yx

yx

yx

yx

yx

yx

yx

yx

yx

zx represents both zx

zxand

If multiple indirect causality conditions run via z (and neither
of these contains an or) then we: (i) identify each combination x,
y that z relates, (ii) remove z from each of these combinations
according to table 1, and (iii) integrate the resulting
combinations. An example of this is shown in figure 7, where
we: (i) identify the combinations that a2 relates, (ii) remove a2
from each of these combinations, and (iii) integrate the
combinations again.

a1

a2

a3

a4
a1 a2 a3

a3 a2 a4

a1 a2 a4

a1 a3

a3 a4

a1 a4 a1

a4

a3

(i) (ii) (iii)

Figure 7. Removing multiple indirect causality
relations.

If any of the indirect causality conditions that run via z

contains an or, then we: (i) split up the design into the
alternative cases, (ii) remove z from each of these cases
according to table 1, and (iii) integrate the alternative cases as
alternative causality conditions again. An example of this is
shown in figure 8, where the indirect relations that run via c

contain an or. In the figure we: (i) split up the design in the
alternative cases ‘a enables c, c enables d’ and ‘b enables c, c
enables d’ , (ii) remove c from both of these cases, and (iii)
integrate the cases as alternatives.

Hence, removing inserted actions transforms figure 9a into
figure 9b. Removing a2 and a3 happens according to figure 7,
and removing a1 directly relates a4 and a5 to the entry
according to cell (1,1) in table 1.

a

b

c d

a c d

b c d

a d

b d

a

b

d

(i) (ii) (iii)

Figure 8. Removing indirect causality relations that
contain an or.

a4

a5

(a)

a1

a2

a3

a4

a5

*

*

(b)
Figure 9. Removing inserted actions.

Replacing Final Actions. While final actions correspond to the
completion of the original abstract action, we do not yet know
the combination in which they correspond to the completion.
For example, the completion of a final action may correspond to
the completion of the abstract action, or the completion of all
final actions may correspond to the completion of the abstract
action.

We call the combination in which final actions correspond to
the completion of the corresponding abstract action: the
completion condition. Without proof, we claim that the
completion condition of an abstract action is equal to the
causality condition of an exit that corresponds to the enabling of
another abstract action. For example, in figure 6 the completion
condition of a is a4 or a5, because this is the condition of the
exit that corresponds to the enabling of b.

When we replace final actions by a single action, the
causality condition of this single action must be the completion
condition of the corresponding abstract action. Each final action
that appears in the completion condition is replaced by the
causality condition of this final action. Finally, the causality
conditions of exits that represent abstract enabling conditions
are replaced by enabling conditions from the integrated action to
the exit. The causality conditions of exits that represent abstract
disabling conditions are replaced by disabling conditions from
the integrated action to the exit (provided they are the inverse of
causality conditions of exits that represent abstract enabling
conditions. The inverse in calculated by changing enabling
relations to disabling relations and ands to ors and vice versa).

Hence, replacing final actions by a single action, transforms
figure 10a into figure 10b. The transformation is achieved by
replacing final actions a4 and a5 by a. The completion
condition is the causality condition of the topmost exit (a4 or
a5) where a4 is replaced by its causality condition (entry) and
similarly a5 is replaced by entry. Hence, the causality condition
of a is entry or entry. The causality condition of the topmost exit
becomes the enabling of a, and the causality condition of the
bottom exit becomes the disabling of a.

After integrating the concrete actions, we may again need to
simplify the design. After simplification figure 10b is
transformed into figure 10c.

a

a4

a5

(a) (b)

a

(c)
Figure 10. Integrating final actions.

3.2.3. Remove Interactions Used for Communication. The
third step in conformance verification is to remove the
interactions that were inserted to make different parts
communicate. We do this by integrating these interactions into
actions according to 3.2.1, and removing them in the same way
as we remove inserted actions according to

3.2.4. Verify Conformance. After these steps are performed, the
resulting actions and their relations should correspond in a one-
to-one fashion to the original design. A one-to-one
correspondence between abstract and concrete design is called
strong conformance. Alternatively, we may use weak
conformance verification approaches [11] to allow more
freedom in the implementation.

System

select

logon

create
account

pay receive

Process Component
select

payment
method

request
send bill

verify
account
debit

account

receive
payment

Billing Component

Bank Component

Figure 11. An example of refinement in an

application.

4. Example

A simple example of the application of the method described
above is shown in figure 11.

Figure 11 shows a business process that a user experiences
when he/she buys something online. The business process has
already been split-up in a user part and an application part. The
figure shows the application part. The business process shows
that the user can always logon using an existing account, select
items to buy, or create a new account. The user can also logon
after he or she has created a new account. Payment is only
enabled after the user has both selected an item to buy and has
logged on. Reception of goods happens after the user has paid.

Figure 11 also shows a refinement of the payment
interaction. The gray behavior block represents the original

interaction ‘pay’ and the entry and exit of the block represent
the enabling of ‘pay’ by ‘select’ and ‘ logon’ and the influence
of the payment interaction on the enabling of ‘ receive’
respectively.

As the figure shows, the original payment interaction is
refined by five interactions. Initially, the user will be allowed to
select a method of payment. Depending on the selected method
of payment (this dependency is not shown, because in this paper
we do not discuss conditions that are based on data) a ‘send bill
request’ is issued to the billing component or we verify whether
the user has enough money in the bank on the bank component.
If the user does not have enough money in the bank, then he or
she also receives a bill. Hence, ‘ request bill’ is enabled by either
‘verify account’ or directly by ‘select payment method’ . If the
user has enough money the account will be debited. Either
debiting the users account directly or receiving a notification
that the payment has happened from the billing component
concludes the abstract ‘pay’ interaction.

verify

account
debit

account

request
send bill

1

2

3 5

4

select
payment
method

receive
payment

Figure 12. An integrated concrete design.

To verify whether the refinement conforms to the original

design, we first remove the boundaries between the components.
Removing the boundaries between components yields figure 12.
From figure 12 we can conclude that 4 (‘debit account’) and 5
(‘ receive payment’) are final actions and hence 1 (‘select
payment method’), 2 (‘verify account’), and 3 (‘ request send
bill’) are inserted actions. Figure 13 shows how to remove
inserted action 3. First we identify the indirect causality
conditions that run via 3. Then we split up the design into two
alternative cases. Each of these cases can be split up into three
indirect causality conditions. These causality conditions can be
removed according to table 1. Now the design can be integrated
again, first into the two alternative cases and then into the
structure with 3 removed. Further removing 1 and 2 yields
figure 14.

2
1

3

4

5

1
3

4

5

2

3

4

5

431

531

34 5

432

532

34 5

41

51

54

42

52

54

1
5

4

2
5

4

2
1

5

4

Figure 13. Removing inserted action 3.

After integrating the final actions from figure 14 (in the same

way as figure 10) and simplifying the design, we can conclude
that the refinement of interaction ‘pay’ is indeed correct.

debit
account

receive
payment

Figure 14. A design with only final actions.

5. Related work

There are various other methods that aim at constructing
component assemblies in such a way that these component
assemblies conform to the business processes from which they
have been derived. We distinguish between two classes of
methods.

The first is the class of methods related to the Model Driven
Architecture [10]. These methods use algorithms to
automatically derive component assemblies from business
processes. With these methods, component assemblies
automatically conform to the business processes if the algorithm
is proven to be correct. The Convergent Architecture [6] uses
such a method and provides a tool, named ArcStyler, that
supports this method.

The second class of methods, of which our method is one,
uses a formal semantics to prove that an assembly of
components conforms to the business process of which it is
derived. Bowman et al. provide means to check the consistency
of enterprise specifications and component assembly
specifications in [2]. They use the viewpoints of the Reference
Model for Open Distributed Processing (RM-ODP) [7] and their
formal semantics as a starting point. However, their work is
meant to provide a framework rather than a practical method.
The Systemic Enterprise Architecture Methodology (SEAM)
[15] also provides a semantics for RM-ODP [9] that can be used
to relate business processes to component assemblies. Finally
there is the work on modeling the Networked Enterprise by
Steen et al. [14]. They use a dialect of ISDL to design business
processes and component assemblies. However, to the best of
our knowledge, neither SEAM nor the work by Steen et al.
defines rigorous refinement techniques.

The language that we use, ISDL, is strongly related to
Formal Description Techniques (FDT) a recent survey of FDTs
in the area of communication protocols can be found in [1]. The
most well-known FDTs that define refinement are LOTOS and
Z. In addition to refinement in FDTs, [8] defines refinement for
UML models (based on a formal semantics of UML models). [3]
and [12] apply refinement to component and business process
design, respectively. Our work differs from theirs because we
aim at bridging the gap between business process and
component designs.

6. Concluding remarks

In this paper we have shown a method that helps to develop
component-based applications that properly support the business
processes in which they will be used.

The method works by introducing an algorithm for
conformance verification. This algorithm can be used to verify if
an assembly of components conforms to the requirements that
are set for it. For the algorithm to work, the requirements have
to be expressed in the form of business processes and the
assembly of components and the requirements have to be
modeled in ISDL. We say that a component assembly properly
supports a business process if it conforms to the business
process according to the algorithm.

In this paper we have shown the method to work for a simple
example. In [11] we proved the correctness of the method with
respect to the formal semantics of ISDL.

We are currently working on the practical applicability of the
method by developing tool support. A preliminary tool,
including a graphical editor and a simulator, for ISDL is
available from the homepage of the first author. We are working
on tool support for the refinement method described here.
Another way in which we are improving the practical
applicability of our method is by developing mappings from
UML diagrams to ISDL and vice versa, such that the semantics
of ISDL and the refinement method described here can be used
in UML. We believe that this may help in the construction and
verification of model transformations for the Model Driven
Architecture.

7. References

[1] Babich, F., Deotto, L. Formal Methods for Specification and
Analysis of Communication Protocols. In: IEEE
Communications Surveys and Tutorials 4(1), 2002.
[2] Bowman, H., Boiten, E., Derrick, J., and Steen, M.
Viewpoint Consistency in ODP, a General Interpretation. In:
Proc. of FMOODS, Paris, France, March ‘96, 189-204, 1996.
[3] Broy, M. Towards a Mathematical Concept of Component
and its Use. In: Proc. of CUC, Munich, Germany, July ‘96,
1996.
[4] D’Souza, D., and Cameron-Wills, A. Objects, Components,
and Frameworks with UML – The Catalysis Approach.
Addison-Wesley, Reading, MA, USA, 1999.
[5] Eertink, H., Janssen, W., Oude Luttighuis, P., Teeuw, W.,
and Vissers, C. A business process design language. In: Proc. of
the World Congress on Formal Methods in the Development of
Computing Systems, Lecture Notes in Computer Science 1708,
Springer, 76-95, 1999.
[6] Hubert, R. Convergent Architecture, Wiley, New-York,
USA, 2002.
[7] ITU-T / ISO. Open Distributed Processing Reference Model.
Part 1-4. ITU-T Specification ITU-T 90x, and ISO/IEC
Specification ISO/IEC 10746-x, where x = 1..4, 1995.
[8] Jürjens, J. Formal Semantics for Interacting UML
Subsystems. In: Proc. of FMOODS 02, Enschede, The
Netherlands, March ‘02, 2002.
[9] Naumenko, A. Triune Continuum Paradigm: a Paradigm
for General System Modeling and its Application for UML and
RM-ODP. Ph.D. Thesis, Swiss Federal Institute of Technology,
2002.
[10] OMG. Model Driven Architecture. OMG Specification
ormsc/02-07-01, 2001.
[11] Quartel, B. Action Relations – Basic Design Concepts for
Behaviour Modelling and Refinement. Ph.D. Thesis, University
of Twente, Enschede, The Netherlands, 1998.
[12] Rumpe, B., and Thurner, V. Refining Business Processes.
In: Proc. of OOPSLA Workshop on Behavioral Semantics,
Vancouver, BC, Canada, October ‘98, 205-220, 1998.
[13] van Sinderen, M., Ferreira Pires, L., Vissers, C., and
Katoen, J.-P. A design model for open distributed processing
systems. Computer Networks and ISDN Systems 27, 1995.
[14] Steen, M., Lankhorst, M., and van de Wetering, R.
Modelling Networked Enterprises. In: Proc. of EDOC,
Lausanne, Switzerland, September ‘02, 109-119, 2002.
[15] Wegmann, A. The Systemic Enterprise Architecture
Methodology (SEAM). Technical Report EPFL/I&C/200265.
Swiss Federal Institute of Technology, 2002.

