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Abstract 
 

Developing applications that properly support the enterprise 
is a difficult task. Failing to perform this task results in 
applications that are not accepted by the end-users and that 
frustrate daily conduct of business. In this paper we introduce a 
formal yet practical method that helps to design component-
based applications that properly support the enterprise. The 
method can be used to verify whether the behavior of an 
application conforms to the behavior of the enterprise, where 
the behavior of the enterprise is specified in the form of business 
processes. The method helps to avoid applications being 
designed that support the enterprise in an incorrect manner. 
 

1. Introduction 
 

Applications should properly support the enterprise in which 
they are used. We claim that this is achieved if the joint behavior 
of applications and their users is equivalent to the intended 
behavior of the enterprise. This form of equivalence is called 
conformance. In this paper we show a formal yet practical 
method that helps to achieve conformance. 

The method assumes that the intended behavior of the 
enterprise is described in the form of business processes. 
Business processes describe the tasks and the conditions under 
which tasks must be performed in order to achieve certain goals. 

The method also assumes that the applications that support 
the enterprise are constructed by assembling components. The 
components we use typically correspond to concepts that have 
direct meaning in the enterprise, such as ‘client’  or ‘account’ . 
We call these components enterprise components. In order to 
guarantee that a business process is supported correctly by an 
assembly of enterprise components, the behavior of that 
assembly should be verified against this business processes. 
Since a business process defines constraints on the execution of 
business tasks, typical questions about component assemblies 
that can be answered by verifying them against a business 
process, are related to the enforcement of business constraints. 
Examples of such constraints are that the client receives a 
requested item within 14 days after he/she ordered it and that if 
an item is received by the client, payment always follows. 

The method we propose uses a generic modeling technique 
that can be used to design both business processes and 
components [5,13]. This modeling technique has a precise 
formal semantics [11] that we can use to define an algorithm for 
verifying conformance. 

The rest of this paper is organized as follows. Section 2 
presents an outline of the method and some requirements on the 
design trajectory. Section 3 describes the theoretical 
underpinnings of the method and the procedure for conformance 
verification. Section 4 illustrates the application of the method 
with an example and section 5 presents some conclusions and 
future work. 
 

2. Outline of the method 
 

Our method assumes that applications are designed using 
stepwise refinement. Stepwise refinement starts out with a 
design that represents a rough outline of the structure of the 
system in terms of its parts (sometimes already called 
components at this level), the way in which these parts are 
interconnected and the behavior of the parts. Subsequently each 
of the parts is designed in more detail (refined) by splitting it up 
into multiple interconnected parts and/or by detailing its 
behavior. We call a design before a refinement step an abstract 
design, and a design after a refinement step a concrete design. In 
stepwise refinement, refinement of system parts can be applied 
repeatedly. Hence, a concrete design of one refinement step may 
be the abstract design in another refinement step. Refinement is 
repeated until a level of detail is reached that the designer 
considers suitable to start implementing onto component 
technology. A process of stepwise refinement is shown in figure 
1. A design approach that uses stepwise refinement  is, for 
example, Catalysis [4]. 
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Figure 1. Stepwise refinement. 

 
If we use business processes as a starting point for stepwise 

refinement, we may consider the entire enterprise including the 
application that supports the enterprise as a singular system 
(part). The behavior of this system is defined by the business 
processes and, consequently, business tasks correspond to 
activities that are performed by this singular system. The system 



that represents the entire enterprise is refined by splitting it up 
into a part that represents the application under development 
and parts that form the environment of the application, such as, 
e.g., users of the application.  
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Figure 2. The refinement operators. 

 
The behavior of a system may be refined by the following 

refinement operators: 
1. An activity may be detailed by identifying individual 

contributions of system parts that perform the activity in 
cooperation (see figure 2a). The information that was 
produced, removed or updated by the original activity is 
now produced, removed or updated jointly by the 
contributing parts. As an example consider the activity 
‘ record client data’  that may be performed jointly by the 
system and a user who enters the information; 

2. An activity may be detailed by any number of (related) sub-
activities performed by the same system parts that 
performed the original activity (see figure 2b). The 
information that was produced, removed or updated by the 
original activity is now produced, removed or updated by 
the sub-activities together. As an example consider the 
activity ‘ record client data’  that may be detailed by the sub-
activities ‘ record client name’  and ‘ record client address’ ; 

3. An activity has to be added if communication is required 
between two system parts to enforce the relation between 
two system parts (see figure 2c). As an example consider 
that the activity ‘enter client data’  and ‘verify client data’  
are performed by different parts. Then a shared activity is 
necessary to carry the client data from one part to another. 

Having identified the ways in which an abstract design may 
be refined into a concrete design, we distinguish two approaches 
to ensure that a component assembly correctly supports the 
original business processes: (i) by ensuring that designers only 
use the aforementioned refinement operations, in which case the 
refinement may be considered conformant by construction, and; 
(ii) by checking after a design step whether the concrete design 
can be reached by applying the refinement operations. Since a 
designer may experience the refinement rules as overly 
restrictive, in particular because refinement is a creative activity, 
we opt for the latter approach (ii). 

However, it is not feasible to verify conformance of a 
concrete design to an abstract design by trying to get from the 
abstract design to the concrete design by applying the 
refinement operators. The reason for this is that the refinement 
operators may be applied in any way and in any combination. In 
contrast, we will show that there is only one way to reach an 

abstract design from a concrete design by applying inverted 
refinement operators. 

Therefore, in this paper we will show the outline of an 
algorithm to verify the conformance of a component assembly to 
a business process by applying the inverted refinement operators 
to a component assembly. The inverted refinement operators are: 
1. Remove the boundaries between the parts. Consequently, 

each concrete sub-activity that is performed jointly by two 
or more parts is now performed by a single part; 

2. Integrate the concrete sub-activities that belong to the same 
abstract activity into one activity, and integrate the 
information produced, removed or updated by these sub-
activities; and 

3. Remove the concrete activities that are added because 
communication between two parts was required. 

After we applied these inverted refinement operations we are 
left to check whether each of the resulting activities are related 
in the same way as the original activities, and whether the 
information produced, removed or updated by these activities is 
the same as that of the original activities. 

 

3. Theory 
 

In this paper, we use the Interaction Systems Description 
Language (ISDL) to verify the conformance of a component 
assembly to a business process. The reason for using ISDL is 
that it provides a rigorous formal semantics and algorithms to 
perform conformance verification. We realize that it is not 
realistic to assume that in each concrete situation an ISDL 
design of the business process and of the component assembly 
exists. Therefore, in future work, we will provide mappings from 
commonly used modeling techniques to ISDL an vice versa, 
such that these modeling techniques can benefit from ISDL’s 
semantics and algorithms. In this section we explain ISDL and 
an algorithm for conformance verification. 
 

3.1. The Interaction Systems Description 
Language 
 

The ISDL consists of three basic concepts: action, interaction 
and causality condition.  

An action represents the successful completion of some unit 
of activity performed by a single system part. An interaction 
represents the successful completion of a common activity 
performed by two (or more) system parts. An interaction 
contribution represents the participation of an individual system 
part in the interaction. An action is graphically represented as a 
circle. An interaction is graphically represented as a segmented 
circle, where each segment of the circle represents an interaction 
contribution. 

The information, time and location attributes of an 
(inter)action represent the result established in the activity, the 
point in time at which this result is available and the location 
where the result is available, respectively. The information (i), 
time (t) and location (l) attributes are graphically represented 
within a text-box attached to the (inter)action. The result that is 
established in one (inter)action can be referred to by all 
subsequent (inter)actions. i(name) refers to the result established 
in the (inter)action with the corresponding name. An 
(inter)action is atomic at the level at which it is considered in the 



sense that if an (inter)action occurs, the same result is 
established and made available at the same time moment and at 
the same location for all system parts involved in the activity. 
Otherwise, no result is established and no system part can refer 
to any intermediate results of the activity. Constraints can be 
defined on the possible outcomes of the values of i, t and l. In 
case of an interaction, each interaction contribution defines the 
constraints of the corresponding system part, such that the 
values of i, t and l must satisfy the constraints of all involved 
system parts, otherwise the interaction cannot happen. 
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Figure 3. An example of an action and an interaction. 
 
Figure 3 shows an example of an action and an interaction. 

The interaction represents the successful completion of a joint 
activity of a system and its user to request an item to buy. Two 
results are obtained in this activity: the item that the user wants 
to buy and the account from which the item can be paid. The 
completion of the activity occurs at some time moment t, on a 
location l that is constrained to be a certain IP address. The 
action represents the successful completion of an activity of the 
system to verify the user’s account. The figure also shows how 
we can delimit the behavior of a system (part) by means of a 
behavior block. 

A causality condition is associated with each action, or 
interaction contribution, describing the condition for this action 
or interaction contribution to happen, in terms of the occurrence 
of other (inter)actions. We distinguish between four basic 
causality conditions for the occurrence of some action or 
interaction contribution a: 
• (inter)action b must happen before a. This is graphically 

represented as:             ; 
• (inter)action b must not happen before, nor simultaneously 

with a. This is graphically represented as: >          ; 
• (inter)action a happens simultaneously with b (due to space 

limitations, we do not consider synchronization in this 
paper any further); 

• (inter)action a is always enabled. This is graphically 
represented as:         . 

And- and or-operators can be used to define more complex 
causality conditions. The and- and or-operator are graphically 
expressed by the symbols    and    , respectively. Using the and 
operator we could, for example, express the causality condition: 
a must happen before b and c must not happen before, nor 
simultaneously with b. The causality condition for an interaction 
is implicitly defined by the and of the causality conditions of all 
its interaction contributions. 

Figure 4 shows an example of a set of actions with causality 
conditions. The figure shows that a is always enabled, that b and 
c are enabled if a has happened and that b and c exclude each 
other, that d is enabled after b has happened and e is enabled 
after c has happened. 
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Figure 4. An example of a behavior design. 

Due to space limitations our introduction of ISDL is rather 
short. For an explanation of more complex concepts, such as 
repetitive behavior and probability, and for a formal syntax and 
semantics we refer to [11]. 
 

3.2. Conformance Verification 
 

In section 2 we explained the inverted refinement operators 
that are used for conformance verification. In this section we 
explain these operations for designs that have a semantics in 
ISDL. 
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Figure 5. Removing boundaries between parts. 

 
3.2.1. Remove Boundaries between Parts. The first step in 
conformance verification is to remove the boundaries between 
system parts that were introduced during a refinement step. 
When we remove the boundaries between parts, each interaction 
that happens between these parts can be substituted by an action. 
The causality condition of this action is formed by a causality 
condition that is the and of the causality conditions of each of 
the original interaction contributions. For example, interaction a 
between part 1 and part 2 in figure 5 is substituted by an action 
a with a causality condition that corresponds to the and of the 
causality condition of the contribution of part 1 to a and the 
causality condition of the contribution of part 2 to a. 

After substituting an interaction by an action, we may have 
to simplify the causality condition of the resulting actions. 
Commonly needed simplification rules are: x and always = x, x 
and x = x, x or x = x. 
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Figure 6. An example of refinement. 

 
3.2.2. Integrate Concrete Actions. The second step in 
conformance verification is to integrate the concrete actions that 
were split up during a refinement step. To do this we assume 
that the relation between an abstract (inter)action and the 
concrete actions that refine it is known, either because the user 
performed the refinement step in a tool that stores this relation, 
or because the designer indicated the relation as part of the 
conformance verification. We show this relation by drawing a 
gray behavior block around the concrete actions that refine the 
same abstract (inter)action as shown in figure 6. A triangle 
pointing into the block (called entry) represents a condition that 
influences the occurrence of the abstract (inter)action. A triangle 
pointing out of the block (called exit) represents the influence of 
the abstract (inter)action on the causality condition of another 
abstract (inter)action. In figure 6 the entry represents the 

b a
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causality condition of abstract action a. The exits represent the 
influence of a on the causality conditions of b and c.  

We distinguish between two types of concrete actions in the 
blocks: final actions and inserted actions. Final actions are 
actions that represent the completion of an entire block, and 
therefore represent the completion of the abstract (inter)action. 
Final actions can be identified, because they contribute to the 
causality conditions of the exits. In figure 6 we marked the final 
actions with an asterisk. Inserted actions are actions that are not 
final actions. They are actions that are inserted with respect to 
the abstract (inter)action. We integrate concrete actions by 
removing inserted actions and replacing final actions by a single 
action.  

 
Removing Inserted Actions. When we remove an inserted 
action z, the indirect causality conditions that run via z have to 
be preserved. For example, if we remove inserted action a2 from 
figure 6, the indirect enabling condition from a1 via a2 to a4 
would have to be preserved. So after removing a2 there should 
be an enabling condition from a1 to a4. Table 1 shows how to 
preserve indirect causality conditions that run via inserted action 
z. It says that if z and x depend on each other as shown in row i 
and z and y depend on each other as shown in column j, then, 
after removing z, x and y depend on each other as shown in cell 
(i, j). If the dependency between x, y, and z is not shown in table 
1, then there will be no relation between x and y after removing 
z. 

Table 1. Removing indirect causality relations. 
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If multiple indirect causality conditions run via z (and neither 
of these contains an or) then we: (i) identify each combination x, 
y that z relates, (ii) remove z from each of these combinations 
according to table 1, and (iii) integrate the resulting 
combinations. An example of this is shown in figure 7, where 
we: (i) identify the combinations that a2 relates, (ii) remove a2 
from each of these combinations, and (iii) integrate the 
combinations again.  
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Figure 7. Removing multiple indirect causality 
relations. 

 
If any of the indirect causality conditions that run via z 

contains an or, then we: (i) split up the design into the 
alternative cases, (ii) remove z from each of these cases 
according to table 1, and (iii) integrate the alternative cases as 
alternative causality conditions again. An example of this is 
shown in figure 8, where the indirect relations that run via c 

contain an or. In the figure we: (i) split up the design in the 
alternative cases ‘a enables c, c enables d’  and ‘b enables c, c 
enables d’ , (ii) remove c from both of these cases, and (iii) 
integrate the cases as alternatives. 

Hence, removing inserted actions transforms figure 9a into 
figure 9b. Removing a2 and a3 happens according to figure 7, 
and removing a1 directly relates a4 and a5 to the entry 
according to cell (1,1) in table 1. 
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Figure 8. Removing indirect causality relations that 
contain an or. 
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Figure 9. Removing inserted actions. 

 
Replacing Final Actions. While final actions correspond to the 
completion of the original abstract action, we do not yet know 
the combination in which they correspond to the completion. 
For example, the completion of a final action may correspond to 
the completion of the abstract action, or the completion of all 
final actions may correspond to the completion of the abstract 
action.  

We call the combination in which final actions correspond to 
the completion of the corresponding abstract action: the 
completion condition. Without proof, we claim that the 
completion condition of an abstract action is equal to the 
causality condition of an exit that corresponds to the enabling of 
another abstract action. For example, in figure 6 the completion 
condition of a is a4 or a5, because this is the condition of the 
exit that corresponds to the enabling of b.  

When we replace final actions by a single action, the 
causality condition of this single action must be the completion 
condition of the corresponding abstract action. Each final action 
that appears in the completion condition is replaced by the 
causality condition of this final action. Finally, the causality 
conditions of exits that represent abstract enabling conditions 
are replaced by enabling conditions from the integrated action to 
the exit. The causality conditions of exits that represent abstract 
disabling conditions are replaced by disabling conditions from 
the integrated action to the exit (provided they are the inverse of 
causality conditions of exits that represent abstract enabling 
conditions. The inverse in calculated by changing enabling 
relations to disabling relations and ands to ors and vice versa). 

Hence, replacing final actions by a single action, transforms 
figure 10a into figure 10b. The transformation is achieved by  
replacing final actions a4 and a5 by a. The completion 
condition is the causality condition of the topmost exit (a4 or 
a5) where a4 is replaced by its causality condition (entry) and 
similarly a5 is replaced by entry. Hence, the causality condition 
of a is entry or entry. The causality condition of the topmost exit 
becomes the enabling of a, and the causality condition of the 
bottom exit becomes the disabling of a. 



After integrating the concrete actions, we may again need to 
simplify the design. After simplification figure 10b is 
transformed into figure 10c. 
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Figure 10. Integrating final actions. 

 
3.2.3. Remove Interactions Used  for Communication. The 
third step in conformance verification is to remove the 
interactions that were inserted to make different parts 
communicate. We do this by integrating these interactions into 
actions according to 3.2.1, and removing them in the same way 
as we remove inserted actions according to  
 
3.2.4. Verify Conformance. After these steps are performed, the 
resulting actions and their relations should correspond in a one-
to-one fashion to the original design. A one-to-one 
correspondence between abstract and concrete design is called 
strong conformance. Alternatively, we may use weak 
conformance verification approaches [11] to allow more 
freedom in the implementation. 
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Figure 11. An example of refinement in an 

application. 
 

4. Example 
 

A simple example of the application of the method described 
above is shown in figure 11. 

Figure 11 shows a business process that a user experiences 
when he/she buys something online. The business process has 
already been split-up in a user part and an application part. The 
figure shows the application part. The business process shows 
that the user can always logon using an existing account, select 
items to buy, or create a new account. The user can also logon 
after he or she has created a new account. Payment is only 
enabled after the user has both selected an item to buy and has 
logged on. Reception of goods happens after the user has paid. 

Figure 11 also shows a refinement of the payment 
interaction. The gray behavior block represents the original 

interaction ‘pay’  and the entry and exit of the block represent 
the enabling of ‘pay’  by  ‘select’  and ‘ logon’  and the influence 
of the payment interaction on the enabling of ‘ receive’  
respectively.  

As the figure shows, the original payment interaction is 
refined by five interactions. Initially, the user will be allowed to 
select a method of payment. Depending on the selected method 
of payment (this dependency is not shown, because in this paper 
we do not discuss conditions that are based on data) a ‘send bill 
request’  is issued to the billing component or we verify whether 
the user has enough money in the bank on the bank component. 
If the user does not have enough money in the bank, then he or 
she also receives a bill. Hence, ‘ request bill’  is enabled by either 
‘verify account’  or directly by ‘select payment method’ . If the 
user has enough money the account will be debited. Either 
debiting the users account directly or receiving a notification 
that the payment has happened from the billing component 
concludes the abstract ‘pay’  interaction.  
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Figure 12. An integrated concrete design. 

 
To verify whether the refinement conforms to the original 

design, we first remove the boundaries between the components. 
Removing the boundaries between components yields figure 12. 
From figure 12 we can conclude that 4 (‘debit account’ ) and 5 
(‘ receive payment’ ) are final actions and hence 1 (‘select 
payment method’ ), 2 (‘verify account’ ), and 3 (‘ request send 
bill’ ) are inserted actions. Figure 13 shows how to remove 
inserted action 3. First we identify the indirect causality 
conditions that run via 3. Then we split up the design into two 
alternative cases. Each of these cases can be split up into three 
indirect causality conditions. These causality conditions can be 
removed according to table 1. Now the design can be integrated 
again, first into the two alternative cases and then into the 
structure with 3 removed. Further removing 1 and 2 yields 
figure 14. 
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Figure 13. Removing inserted action 3. 
 
After integrating the final actions from figure 14 (in the same 

way as figure 10) and simplifying the design, we can conclude 
that the refinement of interaction ‘pay’  is indeed correct. 
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Figure 14. A design with only final actions. 



5. Related work 
 

There are various other methods that aim at constructing 
component assemblies in such a way that these component 
assemblies conform to the business processes from which they 
have been derived. We distinguish between two classes of 
methods. 

The first is the class of methods related to the Model Driven 
Architecture [10]. These methods use algorithms to 
automatically derive component assemblies from business 
processes. With these methods, component assemblies 
automatically conform to the business processes if the algorithm 
is proven to be correct. The Convergent Architecture [6] uses 
such a method and provides a tool, named ArcStyler, that 
supports this method.  

The second class of methods, of which our method is one, 
uses a formal semantics to prove that an assembly of 
components conforms to the business process of which it is 
derived. Bowman et al. provide means to check the consistency 
of enterprise specifications and component assembly 
specifications in [2]. They use the viewpoints of the Reference 
Model for Open Distributed Processing (RM-ODP) [7] and their 
formal semantics as a starting point. However, their work is 
meant to provide a framework rather than a practical method. 
The Systemic Enterprise Architecture Methodology (SEAM) 
[15] also provides a semantics for RM-ODP [9] that can be used 
to relate business processes to component assemblies. Finally 
there is the work on modeling the Networked Enterprise by 
Steen et al. [14]. They use a dialect of ISDL to design business 
processes and component assemblies. However, to the best of 
our knowledge, neither SEAM nor the work by Steen et al. 
defines rigorous refinement techniques.  

The language that we use, ISDL, is strongly related to 
Formal Description Techniques (FDT) a recent survey of FDTs 
in the area of communication protocols can be found in [1]. The 
most well-known FDTs that define refinement are LOTOS and 
Z. In addition to refinement in FDTs, [8] defines refinement for 
UML models (based on a formal semantics of UML models). [3] 
and [12] apply refinement to component and business process 
design, respectively. Our work differs from theirs because we 
aim at bridging the gap between business process and 
component designs. 
 

6. Concluding remarks 
 

In this paper we have shown a method that helps to develop 
component-based applications that properly support the business 
processes in which they will be used. 

The method works by introducing an algorithm for 
conformance verification. This algorithm can be used to verify if 
an assembly of components conforms to the requirements that 
are set for it. For the algorithm to work, the requirements have 
to be expressed in the form of business processes and the 
assembly of components and the requirements have to be 
modeled in ISDL. We say that a component assembly properly 
supports a business process if it conforms to the business 
process according to the algorithm. 

In this paper we have shown the method to work for a simple 
example. In [11] we proved the correctness of the method with 
respect to the formal semantics of ISDL. 

We are currently working on the practical applicability of the 
method by developing tool support. A preliminary tool, 
including a graphical editor and a simulator, for ISDL is 
available from the homepage of the first author. We are working 
on tool support for the refinement method described here. 
Another way in which we are improving the practical 
applicability of our method is by developing mappings from 
UML diagrams to ISDL and vice versa, such that the semantics 
of ISDL and the refinement method described here can be used 
in UML. We believe that this may help in the construction and 
verification of model transformations for the Model Driven 
Architecture. 
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