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Abstract: Assessing the quality of conceptual models is key to ensure that conceptual
models can be used effectively as a basis for understanding, agreement and construction
of information systems. This paper proposes an approach to assess conceptual models
defined in OntoUML by transforming these models into specifications in the logic-based
language Alloy. These Alloy specifications include the modal axioms of the theory
underlying OntoUML, allowing us to validate the modal meta-properties representing
ontological commitments of the OntoUML types and relations.
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1 Introduction

John Mylopoulos [Mylopoulos, 1992] defines conceptual modeling as “the activity
of formally describing some aspects of the physical and social world around us for
purposes of understanding and communication”. In this view, a conceptual model
is a means to represent what modelers (or stakeholders represented by modelers)
perceive in some portion of the physical and social world, i.e., a means to express
their conceptualization [Guizzardi, 2005] of a certain universe of discourse.

If conceptual models are to be used effectively as a basis for understand-
ing, agreement, and, perhaps, construction of an information system, conceptual
models should express as accurately as possible a modeler’s intended conceptu-
alization. More specifically, the model should ideally describe all states of affairs
that are deemed admissible and rule out those deemed inadmissible according
to the conceptualization [Guizzardi, 2005].



In pace with Degen et al. [Degen et al., 2001], we argue that “every domain-
specific ontology must use as framework some upper-level ontology”. This claim
for an upper-level (or foundational) ontology underlying a domain-specific ontol-
ogy is based on the need for fundamental ontological structures, such as theory of
parts, theory of wholes, types and instantiation, identity, dependence, unity, etc.,
in order to properly represent reality. From an ontology representation language
perspective, this principle advocates that, in order for a modeling language to
meet the requirements of expressiveness, clarity and truthfulness in representing
the subject domain at hand, it must be an ontologically well-founded language in
a strong ontological sense, i.e., it must be a language whose modeling primitives
are derived from a proper foundational ontology [Guarino and Guizzardi, 2006;
Guizzardi, 2006].

An example of a general conceptual modeling and ontology representation
language that has been designed following these principles is the version of UML
proposed in [Guizzardi, 2005]. This language (later termed OntoUML) has been
constructed in a manner that its metamodel reflects the ontological distinctions
prescribed by the Unified Foundation Ontology (UFO). UFO is a foundational
ontology designed specially for conceptual modeling languages. The ontological
categories comprising UFO are motivated by a number of theories in formal
ontology, philosophical logics, cognitive science and linguistics. Moreover, for-
mal constraints have been incorporated in OntoUML’s metamodel in order to
incorporate the formal axiomatization in UFO. Therefore a UML model that
is ontologically misconceived taking UFO into account is syntactically invalid
when written in OntoUML.

The OntoUML language has been able to provide mechanisms for addressing
a number of classical conceptual modeling problems [Guizzardi et al., 2004], and
the language has been successfully employed in application domains [Goncalves
et al., 2007], [Oliveira et al., 2007]. However, one would certainly be naive to
assume that modelers make no mistakes while constructing the models and that
they fully understand the theory that supports the language. These cases could
lead to ill-defined conceptual models, which may be: (i) syntactically incorrect;
(ii) syntactically correct, but unsatisfiable; (iii) syntactically correct, satisfiable,
but invalid according to the intended conceptualization.

Previous efforts in addressing the assessment of OntoUML models have fo-
cussed on syntactic correctness (the type (i) of ill-defined conceptual models)
and led to the specification of OntoUML’s syntactical constraints as OCL ex-
pressions on the language’s metamodel and the building of a graphical editor
[Benevides and Guizzardi, 2009] that is capable of automatic syntax verifica-
tion. In this paper, we go beyond syntax verification and aim at addressing the
validity of OntoUML models by simulation (type (iii)).

We believe that, in general, performing validation of OntoUML models is



not an easy task. Many of the ontological meta-properties incorporated into On-
toUML are modal in nature and it may be difficult for human beings to reason
upon the several possible changes in the instances in a set of worlds. In our pre-
vious workshop paper [Benevides et al., 2009], we have discussed an approach
based on the generation and presentation of instances of OntoUML models in
order to provide visualizations of the possible changes in the instances in distinct
worlds. Indeed, we believe that by confronting the results of his/her specifica-
tions with the expected ones, the modeler can improve his/her confidence in
the validity of the model. Here, we extend the previous version of the paper
by clarifying the technical contributions of our research and by introducing a
discussion on temporal interpretation, which were not accessible in [Benevides
et al., 2009]. We also further elaborate on the presentation of the OntoUML
language, namely, we have added a deeper discussion on relational dependence
and on the treatment of part-whole relations. Moreover, we extend the approach
presented there to include rigid mixin universals (categories). Here, we explain
the constructs of Alloy that are used in the OntoUML to Alloy transformation.
Finally, we also improve the coverage of related work.

More specifically, we discuss an approach based on formal specifications in the
logic-based language Alloy [Jackson, 2006] to generate instances of an OntoUML
model. In our approach, the Alloy specification is fed into the Alloy Analyzer to
generate an instance’ composed of a set of objects (atoms) representing instances
of the classifiers taken from the OntoUML model and a world structure that
reveals the possible dynamics of object creation, classification, association and
destruction. Each world in this structure represents a snapshot of the objects
and relations that exist in that world. A world structure is necessary since the
meta-properties characterizing most of the ontological distinctions in UFO are
modal in nature. Therefore, we believe that the sequence of possible snapshots
in this world structure will improve our confidence on claims of validity.

Although there are other works concerning type (iii) models (for example
[UML2Alloy, 2009; Gogolla et al., 2007]), none of them deals with ontologically
well-founded conceptual modeling languages.

This article is further structured as follows. Section 2 briefly comments on
the system of modal logics employed in this article. Section 3 presents a running
example that is used to introduce concepts from OntoUML and Alloy languages,
and also to define a transformation from OntoUML models to Alloy specifica-
tions. Section 4 presents an illustration of a validation for the running example.
Section 4 also discusses the temporal world structure and the customization of
visualization themes in the Alloy Analyzer to provide visualization mechanisms
to the generated instances which we believe to be more amenable to human

! In order to avoid the many overloadings of the term “model”, the Alloy developers
call them instances instead [Jackson, 2002, p. 267].



users. Section 5 discusses related work. Finally, section 6 presents our final con-
siderations.

2 A note on the quantified system of modal logics

Before we begin discussing the ontological distinctions behind the OntoUML
system, a brief note on the modal logics employed in this article is needed.
We make use here of a language L of quantified modal logics with identity. The
alphabet of L contains the traditional operators of A (conjunction), = (negation),
— (conditional), < (biconditional), ¥V (universal quantification), 3 (existential
quantification), with the addition of the equality operator = and the modal
operators O (necessity) and ¢ (possibility). The following holds for these two
latter operators: (1) QAZ—-[-A; (2) JAZ-O—A. Additionally, we add that the
models assumed here are the so-called normal models [Fitting and Mendelsohn,
1999], i.e., the equality operator is defined between individuals in the domain
of quantification in each world, and equality if it holds, it holds necessarily. In
other words, the formula Vz,y((z = y) — O(z = y)) is valid.

A model-theoretic semantics for this language can be given by defining an
interpretation function § that assigns values to the non-logical constants of the
language and a world structure S. In this language, S has a structure (W,R,D)
where %/ is a non-empty set of worlds, R represent an accessibility relation be-
tween worlds such that (w,2') € R iff @' is accessible from w, and D is a function
mapping worlds to non-empty domains of objects. Therefore, we are assuming
here a varying domain of quantification of an Actualist modal logics, hence, we
have that in each world w, the domain of quantification D(w) contains only the
individuals which are assumed to exist in that world. Here, unless explicitly
mentioned, we take worlds to represent maximal states of affairs which can be
factual or counterfactual. Informally, we can state that the truth of formulas
involving the modal operators can be defined such that the semantic value of
formula CJA is true in world w iff A is true in every world #' accessible from w.
Likewise, the semantic value of formula QA is true in world w iff A is true in at
least one world @' accessible from w.

Finally, in section 3, following the original formal characterization of the On-
toUML language [Guizzardi, 2005], we assume all worlds to be equally accessible
and, as a result, we have the language of quantified modal logic QS5 with varying
domain frames.

3 A whirlwind tour

In this section, we briefly introduce Alloy language and some concepts of UFO
ontology. Then we introduce the running example and deepen the explanation



of UFO and Alloy syntax by means of the running example, its corresponding
OntoUML model and Alloy transformation. For a complete presentation and
formal characterization of OntoUML and Alloy, one should refer to [Guizzardi,
2005] and [Jackson, 2006], respectively.

3.1 The logic-based language Alloy

Alloy offers a set-based formula syntax by which one can express constraints that
are amenable to a fully automatic semantic analysis [Jackson, 2002, pp. 256,257].
Moreover, there is a tool, named Alloy Analyzer [Alloy Community, 2009], that
supports simulation of models, in which the consistency of an invariant or oper-
ation is demonstrated by generating an instance. If an Alloy model has at least
one instance, it is said to be consistent [Jackson, 2002, pp. 260,267][Jackson,
2006, p. 3]. This approach is sometimes called “lightweight formal methods”,
because it tries to obtain the benefits of traditional formal methods, such as
theorem proving techniques, at lower cost [Jackson, 2006, p. XIII].

The search for instances is conducted in a space whose dimensions are spec-
ified by the user in a “scope”, which assigns a bound to the number of objects
of each type [Jackson, 2006, p. 3]. A model is within a scope of k if it assigns
to each type a set consisting of no more than k£ atoms. If the analysis succeeds
in finding a model to a formula, consistency is demonstrated. Failure to find
a model within a given scope, however, does not prove that the formula is in-
consistent, because, since the kernel in which Alloy is based is undecidable, it
is impossible to determine automatically whether an Alloy model is consistent
[Jackson, 2002, p. 267][Jackson, 2006, p. 259]. In other words, the inexistence of
an instance that fits in a scope k does not imply that there is no scope larger
than £ in which an instance exists.

Furthermore, by constraining the search to a finite scope, the analysis of
Alloy specifications is decidable, and as a SAT problem, it is NP-complete. From
version four, the Alloy Analyzer translates constraints to be solved from Alloy
into boolean constraints, which are fed to the SAT-based model finder Kodkod
[Kodkod, 2010]. From [Jackson, 2006, p. XIIJ:

“As solvers get faster, so Alloy’s analysis gets faster and scales to
larger problems. Using the best solvers of today, the analyzer can exam-
ine spaces that are several hundred bits wide (that is, of 1050 cases or
more).” [Jackson, 2006, p. XII]

Moreover, when translating Alloy specifications into boolean formulse, Al-
loy Analyzer applies a variety of optimizations, where the most important is
symmetry breaking. Every Alloy model has an intrinsic symmetry given by the
possibility to permute the atoms in any instance of a command, without ceasing



to satisfy the Alloy specification. So, the space of assignments (possible solu-
tions) can be divided into equivalence classes, and the solver has to search for
only one assignment at each equivalence class [Jackson, 2006, p. 151].

In pace with Daniel Jackson [Jackson, 2002, p. 260], we believe that “simu-
lation helps catch errors of overconstraint, by reporting, contrary to the user’s
intent, that no instance exists within the finite bounds of a given “scope””,
or errors of underconstraint, “by showing instances that are acceptable to the
specification but which violate an intended property.”.

As the specification of the running example in Alloy must take into account
some modal distinctions taken from UFO, then we will progressively present
the Alloy syntax, by means of partial specifications of the running example, as
we present some of the UFO’s modal distinctions. Moreover, by showing how
an OntoUML model can be specified in Alloy, we will progressively define the
transformation patterns from OntoUML to Alloy.

3.2 The ontologically well-founded modeling language OntoUML

The OntoUML language is an ontologically well-founded version of the class di-
agram part of UML 2.0, proposed in [Guizzardi, 2005], so that its metamodel
reflects the ontological distinctions prescribed by UFO. Moreover, these distinc-
tions are motivated by a number of formal meta-properties, some of which will
be discussed in the sequel. Due to space limitations, we concentrate here on a
fragment of the UFO ontology, with a specific focus on those distinctions that are
spawned by variations in meta-properties of a modal nature. These categories
are depicted in Fig. 1 and are briefly discussed in the remainder of this section
by using a running example, whose OntoUML rendering is depicted in Fig. 2.
Since OntoUML is a modelling language whose metamodel is designed to be iso-
morphic to the UFO ontology, these leaf ontological distinctions for Universals
in Fig. 1 appear as modelling primitives in the language (see stereotyped classes
and relationships in Fig. 2).

3.3 OntoUML, Alloy and the transformation

Our example basically consists of a domain about persons, their phases in life,
their biological organs, namely brains and hearts, organizations and relationships
between organizations and persons. More specifically, a person must be born
either a man or a woman, and must be either living or deceased. While living,
a person can be said to be in a phase of child, teenager or adult. Furthermore
persons can play the role of students while enrolled to organizations, which in
turn will play the role of a school. As we explain OntoUML concepts, we will
further constrain this example in order to illustrate some ontological choices
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Figure 1: UFO taxonomy excerpt [Guizzardi, 2005]
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Figure 2: Running example

made. This choices are reflected in Fig. 2 by names of stereotypes decorating
classes and relationships, which represents the leaf concepts shown in Fig. 1.
The UFO categorization starts with a general catch-all notion of Entity. En-
tity can be distinguished in Universal and Individual, where Individuals are enti-
ties that exist in reality possessing a unique identity, and Universals, conversely,
are space-time independent pattern of features, which can be realized in a num-
ber of different Individuals. In our example, an individual person, such as John,



would be an Individual, while the concept of Person would be an Universal. In
Alloy, Individuals are represented as atoms and the instantiation of Universals
by Individuals is represented as inclusion in a set that, in turn, represents the
Universal’s extension.

Universals can be distinguished in Monadic Universal and Relation (entities
which glue together other entities). Within the category of Monadic Universal, in
order to show the differences between Substance Universal and Relator Universal,
we need to explicate what are Substances and Moments.

3.3.1 Substances and Moments

The distinction between Substances and Moments? is based on the formal notion
of existential dependence, a modal notion which can be briefly defined as follows:
Definition 1 (existential dependence): Let the predicate £ denote exis-

tence®. We have that an Individual z is existentially dependent on another In-
dividual y (symbolized as ed(z,y)) iff, as a matter of necessity, y must exist
whenever z exists, or in other words, that in every world w in which z exists,
then y must also exist in . Formally, we have that: ed(z,y) = O(e(z) — £(y)). B

Substances are existentially Independent individuals, i.e., there is no Entity y
disjoint from z that must exist whenever a Substance z exists. Let < represent
the (improper) part-of relation. This constraint can be formalized as follows:
disjoint(z,y) = =3z((z < £)A(z < y)) and Yz, y((Substance(z ) ASubstance(y) A
disjoint(x,y)) — (—ed(z,y) A —ed(y, x))).

Examples of Substances include ordinary mesoscopic objects such as an indi-
vidual person and an organization. Conversely, a Moment is an Individual which
is existentially dependent on other Individuals. A moment can be existentially
dependent on one single Individual (e.g., a color) or on multiple Individuals
(e.g., an enrollment), in which case they are named Relational Moments or sim-
ply Relators. The particular sort of existential dependence Relation connecting
a Relator to the Individuals on which it is dependent is the Formal Relation
of mediation (m). This relation can be formally characterized as follows: (i)
Ve, y(m(z,y) — (Relator(z) A Substance(y))), (ii) Vz,y(m(z,y) — ed(x,y)) and
(iii) Va(Relator(z) — Jy, z2(—=(y = 2) Am(z,y) Am(z,2))).

So, a Substance Universal is a Universal whose instances are Substances (e.g.,
the Universal Person), while a Relator Universal is a Universal whose instances
are Individual Relational Moments (e.g., the particular enrollment connecting
John and a certain University).

2 The notion of moment comes originally from the writtings of E. Husserl to denote an
existentially dependent entity (sometimes named Accident, Trope or Particularized

Property). Thus, this notion as used here bears no relation to the common-sense use
of the term as a temporal intant.

3 Notice that in an actualist system, the existence operator ¢ can then be explicitly
defined such that e(z) = Jy(y = x).



3.3.2 Substance Universals

Substance Universals can be Sortal Universals or Mixin Universals. Sortal Uni-
versals are Universals that provides a principle of individuation and identity to
its instances (e.g., the Universal Brain), while Mixin Universals are abstractions
of properties of instances of Sortal Universals (e.g., Biological Organ). We need
to define some modal notions to be able to make further distinctions within these
categories.

Definition 2 (Rigidity): A Universal U is rigid if for every instance z of
U, z is necessarily (in the modal sense) an instance of U. In other words, if z
instantiates U in a given world w, then z must instantiate U in every possible
world #' in which x exists. This can be formally expressed by the following
formula schema: R(U) = O(Vz(U(z) — O(e(x) — U(x)))). |

Substance Universals which are rigid are named Kinds and subKinds. Due
to the transitivity of instantiation over the subtyping relation, if z instantiates
a subKind SK then z instantiates every Universal of which SK is a subtype of.
At the root of this rigid specialization chain we have a Kind, i.e., a Kind is the
unique ultimate Rigid Sortal that the Individual z instantiates. For instance, in
Fig. 2, Person is a Kind which is partitioned in the subKinds Man and Woman.

In Alloy, we model Kinds and subKinds as signatures. A signature is a dec-

laration of a set that may contain only atoms. Alloy allows the definition of
subsignatures (subsets) by the keywords “in”, which collapses the € and C set-
theoretic operators, and “extends”, which is used to declare disjoint subsignatures
of a signature (line 2 of Listing 1). The keyword “abstract” (line 1 of Listing 1)
indicates that when an “abstract” signature “S” is extended by other subsigna-
tures “S17,...,“Sn”, then all the atoms of “S” must be atoms of at least one of
the “S1”,...,“Sn” signatures. Moreover, all top-level signatures (i.e., signatures
that are subsignatures of no signature) are pairwise disjoint.

Listing 1: Alloy signatures

1 abstract sig Person {}
2 sig Man, Woman extends Person {}
3 sig Heart, Brain, Organization {}

By modeling Kinds as top-level signatures in Alloy (lines 1, 3 of Listing 1),
(i) the instances of these signatures are automatically pairwise disjoint, which
is suitable because these instances are meant to be distinct objects carrying
distinct identities; and (ii) an instance of a signature never ceases to instantiate
this signature, which reifies the notion of rigidity (Definition 2).

Returning to subKinds, a subKind must be a refinement of a Kind, and we
represent it in Alloy by making subKinds as subsignatures, and using the Alloy
keyword “in” followed by the signature representing its supertype. If there is a
GeneralizationSet constraining some subKinds to be disjoint, we declare them



”

with the keyword “extends” instead of “in” (see line 2 of Listing 1); and if there
is a GeneralizationSet constraining them to be complete, we declare a signature
fact within the signature of the supertype constraining the set of instances of
the supertype to be equal to the union of the sets of its subtypes’ instances.
Facts are logical statements about signatures and relations that are always true
for the whole model. When created within signatures, facts are called signature
facts and are implicitly universally quantified over all the atoms of the signature.
Finally, if there is a GeneralizationSet constraining the subtypes to partition the
supertype, then we can substitute the signature fact by the keyword “abstract”
before the supertype signature (as shown in line 1 of Listing 1).

Besides rigidity, UFO defines the concept of anti-rigidity, which allows dy-
namic classification of Individuals. Object Migration has been an important issue
in the literature of conceptual modeling at least since the late seventies [Bachman
and Daya, 1977] and its role in capturing subtle semantics aspects of software sys-
tems can be summarized by the following quote from [Papazoglou and Krémer,
1997]: “To effectively model complex applications in which constantly changing
situations can be represented, a systems must be able to support the evolution
... of individual objects. The strict uniformity of objects contained in a class is
unreasonable ... An object that evolves by changing its type dynamically is able
to represent changing situations as it can be an instance of different types from
moment to moment.”.

Definition 3 (Anti-rigidity): A Universal U is anti-rigid if for every in-

stance z of U, z is possibly (in the modal sense) not an instance of U. In other
words, if z instantiates U in a given world w, then there must be a possible world
@' in which z exists and in which z does not instantiate U. Formally, we have
that: AR(U) = O(Vz(U(z) — Oe(x) A =U(z)))). [

Within the category of anti-rigid Substance Universals, we have a further dis-
tinction between Phases and Roles. Both Phases and Roles are specializations of
Sortal Universals. However, they are differentiated w.r.t. their specialization con-
ditions. For the case of Phases, the specialization condition is always an intrinsic
one. In our example, we could classify Persons regarding their age, creating
phase partitions such as Child, Teenager and Adult. For Roles, in contrast, their
specialization condition is a relational one: a student is a Living Person who is
enrolled in (has a study relation to) a School. Formally speaking, this distinction
is based on a meta-property named Relational Dependence:

Definition 4 (Relational Dependence): A type T is relationally depen-

dent on another type P via relation R iff for every instance z of T there is an
instance y of P such that z and y are related via R. In the following formula
schema, we have that: RD(T,P,R) = O(Vz(T(z) — Jy(P(y) AR(z,%)))). N

Finally, as discussed in [Guizzardi, 2005], Phases (contrarily to Roles) are
always defined in a partition set. For instance, in Fig. 2, the universals Child,



Teenager and Adult define a phase partition for the Kind Person. As a con-
sequence, we have that in an each world w, every Person is either a Child, a
Teenager or an Adult in w and never more than of the these. Additionally, if z
is a Child (Teenager, Adult) in w, there is always a possible world #' in which
x will not be a Child, in which case he will be either a Teenager or an Adult.

There is no built-in notion of state change in Alloy. In order to represent
object dynamics, we must reify a notion of state change by means of a world
structure which will be presented in detail in section 4. Features that are time
dependent, such as individual existence, dynamic classification and transitory
relationships must be indexed by worlds in which they occur, i.e., anti-rigid
universal instantiation is dynamic, thus we represent it as a relationship between
worlds and Individuals.

Therefore, in order to represent modality in Alloy, we create a signature
named “World”, shown in line 1 of Listing 2. As we are adopting an actual-
ist domain of quantification, then for every world w there is a relation named
“ domain_of_quantification ” (see line 2 of Listing 2) representing its domain of
quantification (D(w)), which contains some (w, ts) tuples in which ts is a top-level
signature.

In Alloy, relations are sets of tuples, which may be of any finite arity, but
containing only atoms. As shown in Listing 2, they must be declared as fields
within signatures. Line 2 depicts a relation named “ domain_of_quantification”
between the signatures “World” and the union of the signatures “Person”, “Heart

7. “Brain”, “Organization” and “Enrollment” (the signature “Enrollment” will be
explained later). The keyword “4” is the set-theoretic union operator, which can
also be used to form sets from scalars. Also, the keyword “some” is equivalent
to the cardinality “1..*” and, in line 2 of Listing 2, it is used to constrain the
cardinalities on the extremity connected to the union of the signatures “Person”,
“Heart”, “Brain”, “Organization” and “Enrollment”.

Listing 2: Alloy relations

1 abstract sig World {
2 domain_of_quantification: some (Person + Heart +
Brain + Organization 4+ Enrollment)}

As Phases and Roles are anti-rigid, then its extensions may vary from world
to world. Therefore, these classes are modeled within the “World” signature as
binary relations from worlds to Kinds that are its supertypes and that are in
the domain of quantification of that world. We model subtyping in two ways,
regarding the nature of the supertype. If the superclass is a Rigid Sortal RS, then
we use the Alloy Range Restriction operator (“:>”) to constrain the set of tuples
of the relation representing the subtype to be a subset of the set of tuples of the
relation representing the domain of quantification in which the second element



is an instance of RS. In Alloy, the expression r :> s contains the tuples of r that
end with an element in s. Examples can be seen in lines 3, 6, 7 and 8 of Listing
3. Otherwise, as Phases and Roles must be (directly or indirectly) subtypes of
Kinds, then a Phase (or a Role) that is indirectly subtype of a Kind is transitively
constrained by constraints created for its supertypes that are directly subtypes
of Kinds. Therefore, we declare the range of the Alloy relation as the signature
of the (non-rigid) supertype, as shown in lines 4, 5 and 9 of Listing 3. In these
lines, the “disj” keyword states pairwise disjointness of relations, and the “set”
keyword implies the inexistence of cardinality restrictions (“*”).

Listing 3: Modeling Phases and Roles in Alloy (extends Listing 2)
1 abstract sig World {

w

disj LivingPerson, DeceasedPerson: set Person:>
domain_of_quantification |,

disj Adult, Child, Teenager: set LivingPerson,

5 Student: set LivingPerson ,

6 disj FunctionalHeart, NonfunctionalHeart: set Heart
:>domain_of_quantification ,

7 disj FunctionalBrain, NonfunctionalBrain: set Brain
:>domain_of_quantification ,

8 disj ActiveOrganization, ExtinctOrganization: set
Organization:>domain_of_quantification ,

9 School: set ActiveOrganization}

Furthermore, in order to model GeneralizationSets of Phases and Roles, if the
subclasses are disjoint and are not part of another disjoint GeneralizationSet,
we use the keyword “disj” before their declaration (lines 3, 4, 6, 7 and 8 of
Listing 3), otherwise, for each disjoint GeneralizationSet we create “disj [...]

” facts containing the disjoint subtypes. Signature facts are created within a
second pair of braces, as shown in line 1 in Listing 4, just after the ellipsis
between the first pair of braces. If the GeneralizationSets are complete and the
superclass is not a Rigid Sortal (if it is declared as a relation), then we create a
signature fact within the signature “World” stating that the set of tuples of the
relation representing the superclass is equal to the union of set of tuples of the
relations representing the subclasses (see line 4 of Listing 4). If the subclasses are
complete and the superclass is a Rigid Sortal, then we constrain the domain of
quantification to only contain instances of the superclass that are also instances
of at least one subclass (lines 2, 6, 8 and 10 of Listing 4).

Furthermore, Phases are always defined in a partition set <Pq,...,Py> con-
straining a Sortal Universal S [Guizzardi, 2005, p. 103], and it is always possible
(in the modal sense) for an instance z of S to become an instance of each P;



(i € 1,...,n)[Guizzardi, 2005, p. 104]. Therefore, for any world w, if z is an in-
stance of S in w, then £ must be an instance of exactly one Phase of S in w and
for each Phase P; of S, there must exist a world in which z is an instance of P;.
In lines 3, 5, 7, 9 and 11 of Listing 4 we show how we model the last constraint.
In these lines, the Alloy keyword “@” is used to prevent a field name from being
expanded. In Alloy, field names are automatically expanded when used within
the signature in which they were specified. For example, just like a reference to
a field of a receiver in an object-oriented program, LivingPerson now implicitly
refers to this. LivingPerson, which is not a relation, but a set of atoms.

Observe that these two last constraints together imply anti-rigidity. There-
fore, there is no need to model anti-rigidity constraints for Phases. However, we
have to model anti-rigidity for Roles, but only for the ones that are not subtypes
of another Roles or Phases. Because, from the Definition 3, when anti-rigidity is
guaranteed for a class, then it is automatically guaranteed for all its subtypes.
In other words, we only have to model anti-rigidity for the top level Roles. As in
our running example all the Roles are subtypes of Phases, then there is no need
to explicitly model anti-rigidity for them. However, for the sake of completeness,
we show how we would model anti-rigidity in the commented lines 12 and 13 of
Listing 4.

Listing 4: Modeling Constraints of Phases and Roles in Alloy (extends Listing
3)

1 abstract sig World {...}{

2 Person:>domain_of_quantification = LivingPerson +
DeceasedPerson
3 all x: Person | some wO,wl: World | (x in

w0.Q@LivingPerson) and (x in wl.@DeceasedPerson)
4 LivingPerson = Adult + Child + Teenager

5 all x: LivingPerson | some w0,wl,w2: World | (x in
w0.@Child) and (x in wl.Q@Teenager) and (x in
w2.Q@Adult)

6 Heart:>domain_of_quantification = FunctionalHeart +
NonfunctionalHeart

7 all x: Heart | some wO,wl: World | (x in

w0.Q@FunctionalHeart) and (x in
wl.@NonfunctionalHeart)

8 Brain:>domain_of_quantification = FunctionalBrain +
NonfunctionalBrain
9 all x: Brain | some wO,wl: World | (x in

w0.@FunctionalBrain) and (x in
wl.@NonfunctionalBrain)
10 Organization:>domain_of_quantification =



ActiveOrganization + ExtinctOrganization
11 all x: Organization | some w0O,wl: World | (x in
w0.Q@ActiveOrganization) and (x in
wl.QExtinctOrganization)}
12 —all x: Student | some w: World | (x in
w.@domain_of_quantification) and (x not in
w.@Student)

13 —all x: School | some w: World | (x in
w.@domain_of_quantification) and (x not in
w.@School)

Regarding the Mixin Universals (see Fig 1), the rigid ones are named Cate-
gories. A Category classifies entities having distinct indentity criteria and sharing
some essential characteristic. As shown in Fig. 2, BiologicalOrgan is modeled as
a Category. In order to model Categories in Alloy, we use Alloy functions, which
are reusable Alloy expressions. For example, the Alloy code “fun BiologicalOrgan

(): (Heart 4+ Brain) {Heart + Brain}” shows a nullary function in which the ex-
pression “Heart 4+ Brain” represents both the type of the result and the result
itself.

As Categories are abstract, their instances are always instances of at least one
of their subtypes, and as they are rigid, their instances never cease to be instances
of them. Therefore, if a Category has subtypes, then it can be modeled as a set
that is the union of the instances of its subtypes. So, we model a Category
as a nullary function composed of a constant output that is the union of the
signatures/functions of all of its subtypes. For example, if the Category C; is
the supertype of Cs,...,C,, then the function “C1” will be the union of “C2

7....,“Cn”, as shown in line 1 of Listing 5. If there is a GeneralizationSet
stating that Cs,...,C, are disjoint, then we create a new fact stating that “C2

”

,...,“Cn” are pairwise disjoint, as shown in line 2 of Listing 5.

Listing 5: Modeling Categories

1 fun CI(): (C2 4+ ... 4+ Cn) {C2 + ... + Cn}
2 fact disjoint_categories {disj [C2,...,Cn]}

3.3.3 Relator Universals and Relations

As one can observe in Fig. 1, the Relation category in UFO is differentiated in
Formal Relation and Material Relation. Formal Relations are Relations that hold
between two or more entities directly, without any further intervening Individual.
Material Relations, conversely, in order to hold between a number of Individuals,
require that a particular Relator exists mediating them. For instance, we can
say that a particular student z studies in a particular school y iff there is an



Enrollment z that mediates z and y. This situation is illustrated in Fig. 2. In this
case, we write that the relation study is derived from the existence of the Relator
Universal Enrollment. This relation of Derivation between a Material Relation
and a Relator Universal is represented in OntoUML by the symbol ¢ —————— ,
in which the black circle is connected to the Relator Universal. In general, a
Relation R can be formally defined by the following schema:

Definition 5 (Formal and Material Relations): Let p(aq, ..., a,) denote

a condition on the individuals a1, ..., a,. A Relation R is defined for the Univer-

sals Uy,..., Uy iff Vay, ..., an(R(aq, ..., an) H((/\ignUi(ai))/\g@(al, ceyp)))-
A Relation is called material if there is a Relator Universal Ug such that the con-

dition ¢ is obtained from U as follows: p(a1, ..., a,) < F&(Ur(k)A/ \i<nm(k,
a;)). Otherwise, if such a Relator Universal Ug does not exists, R is termed a
Formal Relation. |

We have then that an n-tuple (ay,...,a,) instantiates a Material Relation
R iff there is one Relator r (instance of Ugr) which mediates (and is existentially
dependent on) every single a;.

Just as Kinds, Relator Universals also provide a principle of identity for
their instances, but this principle is dependent on the principles provided by the
Universals that they mediate. However, OntoUML makes no distinction between
the ultimate Relator Universals and the Relator Universals that are subtypes of
the former, inheriting its unique principle of identity. Therefore, we will take
top-level Relator Universals as ultimate and model them in Alloy as signatures
(line 1 of Listing 6), as we did for Kinds, and the non-top-level ones will be
modeled as subsignatures, just as subKinds. The Mediation relationships will be
explained further on.

3.3.4 Part-whole Relations

Parthood is a relation of significant importance in conceptual modeling, be-
ing present in practically all conceptual modeling languages (e.g., OML, UML,
EER). An important aspect to be addressed by any conceptual theory of part-
hood is to stipulate the different status that parts can have w.r.t. the whole they
compose. As discussed by [Guizzardi, 2007], many of the issues regarding this
point cannot be clarified without considering modality. Here, we only mention
three different types of part-whole relations which are distinguished based on
the distinction between the previously defined notion Existential Dependency
and the one of Generic Dependence.

Definition 6 (generic dependence): An Individual y instantiating a type

Ty in a world wis generically dependent on a type T iff, whenever y instantiates
Ty it is necessary that an instance of Ty exists. This can be formally character-
ized by the following formula schema: GD(y, T1, Ta) = O(T1(y)) A D(T1(y) —



Jz Ta(x)). |
A parthood Relation of Immutable Part is a Relation that implies spe-
cific dependence (Definition 7). Contrariwise, a Mandatory Parthood relation
is one that implies generic dependence. We can elaborate on our running ex-
ample to distinguish the parthood relationships between a person and his/her
heart and brain. One possible conceptualization is to define the relationship be-
tween a Living Person and his/her Brain (when functioning) as immutable. This
conveys that each person can only be living while having a functional heart
and vice-versa. A case of generic dependency could be depicted as a generic
parthood relationship between a person and a heart. These two types of Rela-
tions are exemplified in Fig. 2 by the Relations LivingPerson-FunctionalBrain
and LivingPerson-FunctionalHeart, respectively. More specifically, an Immutable
Part relation between the Universals LivingPerson and FunctionalBrain implies
that: for every z instance of LivingPerson there is a Individual y instance of
FunctionalBrain such that in every world w in which z is an instance of Living-
Person, the part-whole Relation part-of(y,x) holds (so y must be an instance of
FunctionalBrain in w). In other words, z cannot be a LivingPerson without hav-
ing that specific FunctionalBrain as part. An equivalent argumentation holds for
the Immutable Whole parthood Relation from FunctionalBrain to LivingPerson.
The Mandatory Parthood between the Universals LivingPerson and Function-
alHeart instead implies that: for every z instance of LivingPerson and in every
world w, there is an instance of FunctionalHeart in that world such that the part-
whole Relation part_of(y,x) holds there. In other words, & cannot be an instance
of LivingPerson without an instance of FunctionalHeart as part, this instance,
however, can change from world to world. The three Relations of Immutable
Part, Immutable Whole and Mandatory Part are defined in the sequel:
Definition 7 (specific dependence): An Individual z instantiating a type

Ty in a world w is specifically dependent on another individual y instantiating
a type T in a world ' iff, is necessary that whenever z instantiates Ty, then y
must exist instantiating Ta: SD(x,y, T1,T2) = O(T1(z)) AD(Ti(z) — Ta(y)).
In fact, if T and Ty are rigid, then specific dependence implies existential de-
pendence: R(T1) A R(T2) — Va,y(SD(z,y, T1,Ta) — ed(z,y)). |

Definition 8 (Immutable Part): An Individual z instantiating a type Ty

in a world wis an Immutable Part of another Individual y instantiating a type T
in a world =" iff, is necessary that whenever y instantiates Ts, then z must exist
being a part of y and instantiating Ty: TP(x,y, T1, To) = O(Ta(y)) AD(Ta(y) —
(Ti(2) A (& < 9)))- .

Definition 9 (Immutable Whole): An Individual y instantiating a type
T; in a world w is an Immutable Whole of another Individual z instantiat-
ing a type Ty in a world ' iff, is necessary that whenever z instantiates T,

then y must exist being a whole for z and instantiating Tq: IW (z,y, Ty, T2)




0 (Ta(2)) AD(T(w) — (T1(y) A @ < 9))). n

Definition 10 (Mandatory Part): An Individual z is a Mandatory Part
of another Individual y instantiating a type T; in a world w iff, whenever y
instantiates T1: (i) y is generically dependent of a type T that z instantiates in
a world #, and (ii) y has, necessarily, as a part an instance of Ty: M P (T, T2, y)
0 0(Ty(y) AD(T1(y) — Fo(Ta(@) A (2 < 9)- n

In Alloy, we model OntoUML relationships differently regarding their modal
implications. If an OntoUML relationship imply existential dependence, e.g., a
Mediation relationship, then it is modeled as an Alloy relation within the depen-
dent signature (see lines 2 and 3 of Listing 6). Additionally, we have to create

a signature fact within “World” to guarantee that if an atom a is existentially
dependent on an atom b, then for each world w, if @ € D(w), then b € D(w) (line
7 of Listing 7).

Listing 6: Modeling Relators and existential dependence relationships

1 sig Enrollment{

2 student: one Person,

3 school: one Organization

4 derived_study: student one —> one school}

Otherwise, OntoUML relationships are modeled as ternary relations within
the “World” signature, e.g., see lines 3, 4 and 5 of Listing 7. Additionally, an On-
toUML relationship R that imply specific dependency from an anti-rigid Sortal
Universal NRS to another classifier C, i.e., if it is a Meronymic relationship R
in which the meta-attributes immutable_part or immutable_whole are true, then
we have to pose an additional constraint to guarantee that if an instance rsi €
D(w) is such that rsl:NRS?* in w and rs! is related to an instance rs2 € D(w)
(such that rs2::C in w) by an instance r of R in =, then in whatever world '
in which 7s1 € D(w')and rsi:NRS, than rs2 € D(@')and rs2::C and rs! must
be related to rs2 by an instance r* of R in ' (see lines 8 and 9 of Listing 7).

Subtyping and GeneralizationSets between OntoUML relationships are mod-
eled similarly as for anti-rigid sortals. Regarding cardinalities, the Alloy language
has some keywords for the most usual cardinalities, like “set”, “lone”, “one” and
“some” meaning “0..*” “0..17, “1..1” and “1..*” respectively. In order to model
single-tuple cardinalities of relationships, we can use these keywords on the dec-
laration of a relation, as shown in lines 3, 4 and 5 of Listing 7. In the case the
relationship is declared within a signature that is its first domain (like the ones
in lines 2 and 3 of Listing 6), then we may have to include a signature fact
in order to constrain the cardinality of its first extremity, as show in lines 10
and 11 of Listing 7. In order to model general “m..n” cardinalities, we can use
the dot operator “.” to navigate to a relation’s extremity and the cardinality

4 The symbol a::A means that a is an instance of A.



operator “#” to constrain the size of the set of elements in that extremity by
writing inequalities. For example, if an OntoUML Relation R between A and B
has an “m..n” cardinality constraint on the extremity B, we would write a fact
like “all a:A | (#(a.R)>= m)and (#(a.R)<= n)”.

In order to model an n-ary Material Association M with tuples in C; x
... xC,, we model the Derivation and the Mediations within the signature of
the respective Relator R (lines 2, 3 and 4 in Listing 6), and model M within the
signature “World” (line 3 in Listing 7). As Alloy is a first order language, then it
does not allows the creation of tuples containing tuples. Therefore the Derivation
relation will not be modeled as a relation between instances of R and M. Instead,
we model it as an (n+1)-ary Relation with tuples in RxCy x ... xC,,. We also
constrain M in a way that for any world w, M is a subset of the set of Derivations
of all the instances of R that are in D(w) (line 12 of Listing 7).

Listing 7: Modeling relationships that do not imply existential dependence (ex-
tends Listing 4)

1 abstract sig World {

2 :

3 study: set Student some —> some School,

4 cl: set FunctionalBrain one —> one LivingPerson ,

5 c2: set FunctionalHeart one —> lone LivingPerson}{
6

7 all x: Enrollment:>domain_of_quantification |
x.school in School and x.student in Student
8 all x: Person, w0, wl: (@cl.x).Brain | (w0.@cl).x =

(wl.@cl).x — immutablePart.
9 all x: Brain, w0, wl: (@cl.Person).x | x.(w0.@cl) =
x.(wl.@cl) — immutableWhole.

10 all x: Student | some (student.x):>
domain_of_quantification

11 all x: School | some (school.x):>
domain_of_quantification

12 study = (Enrollment:>domain_of_quantification).
derived_study}

Finally, whenever an abstract classifier has non-abstract subtypes, we will
model it as if its subtypes form a complete GeneralizationSet. Otherwise, there
is no need to model it in Alloy, as it will not be able to have atoms.



4 Instantiation for validation

In this section, we will use the Alloy Analyzer to generate an instance for the
Alloy specification of the running example, which was being defined along the
previous sections. From now on, we will refer to the instances of the Alloy spec-
ification of the running example as instances of the running example.

Having defined UFQ’s axioms in Alloy, we have captured a notion of modality
explicitly in the generated Alloy specification. This means that this specification
reifies the notion of an actualist world structure. This is necessary to specify
UFO’s modal axioms, given no notion of modality is built-in in Alloy. While
UFO’s formalization is based on a totally accessible world structure, we believe
that the inspection of instances in which worlds can the interpreted temporally
is more suitable for validation purposes. Thus, we constrain the world structures
so that the Alloy Analyzer will only produce instances following this temporal
perspective.

In our ordinary language, we are able to talk about the current moment, the
past, the possible future, and the facts that could have happened, but acciden-
tally did not (i.e., the counterfactuals). Therefore, we want our worlds to be
interpreted as past worlds, future ones, counterfactual ones or the current one.
So, we will represent the actualist world structure for QS5 in Alloy and validate
UFO’s axioms in their QS5 form, but we will also categorize the worlds into
those four disjoint categories ordering them by a partial order relation of imme-
diate succession. By constraining the world structures in this way, we will avoid
generating instances that cannot present this temporal interpretation. Listing 8
shows the modeling of this world structure in Alloy. We model the different types
of worlds and their respective constraints regarding what types and quantities of
worlds can be accessed by their “next” relations. Also, we impose that (i) there
cannot be temporal cycles (line 4 of Listing 8); (ii) a world can be the immediate
next moment of at most one world (line 5 of Listing 8); and (iii) every world,
except the current one, must reach the current world (lines 10, 13 and 16 of
Listing 8). The Alloy keyword “*” represents transitive closure.

Listing 8: World structure in Alloy.

module world_structure [World]

some abstract sig TemporalWorld extends World{
next: set TemporalWorld}{
this not in this. (@next)
lone ((@next).this)}

one sig CurrentWorld extends TemporalWorld {} {
next in FutureWorld}

sig PastWorld extends TemporalWorld {} {
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9 next in (PastWorld + CounterfactualWorld +
CurrentWorld)

10 CurrentWorld in this. " @next}

11 sig FutureWorld extends TemporalWorld {} {

12 next in FutureWorld

13 this in CurrentWorld.  @next}

14 sig CounterfactualWorld extends TemporalWorld {} {

15 next in CounterfactualWorld

16  this in PastWorld."@next}

Since the most fundamental criteria for individuation are spatiotemporal
and constrain instances of Sortal Universals to move on spatiotemporally con-
tinuous paths [Xu and Carey, 1996], we further constrain the generation of in-
stances to produce only examples in which atoms have continuous existence. This
is specified in Alloy as “fact continuous_existence {all w: World, x: (next.w).
domain_of_quantification | (x not in w.domain_of_quantification ) => (x not in
((w."next). domain_of_quantification ))}”.

Moreover, as the accessibility relation is total in QS5, then the modal opera-
tors of possibility (¢) and necessity ((0) will take worlds in the set of all worlds
(W). Thus, in order to reduce the the computational complexity of analyzing
the Alloy specification, we will modify the definitions of these modal operators
to use W instead of the accessibility relation. For the same reasons, we will con-
strain every atom to be in the domain of quantification of some world, otherwise,
Alloy Analyzer could generate atoms that would not be shown. This fact can be
written as ¢ fact UFO_fact { all x: (Person + Heart 4+ Brain + Organization +
Enrollment)| some w:World | x in  w.domain_of_quantification }”.

Fig. 3 depicts an instance of the running example that is automatically gen-
erated by the Alloy Analyzer. Although valid from a logic point of view, these
presentations are not suitable to be inspected and reasoned upon by the human
modeler. Fortunately, the Alloy Analyzer allows the creation of visualization
themes [Rayside et al., 2007]. Here, we take advantage of this feature by provid-
ing two visualization themes, one for visualizing the temporal ordering of worlds
(e.g., Fig. 4a) and the other to visualize the atoms by showing only the ones
that are in the domain of quantification of a selected world (e.g., Figs. 4b and
4c).

As one can see, despite being a valid instance, the instance shown in Fig. 4
is of little interest, as it only shows an active organization becoming an extinct
organization in the current world. Instead of visualizing every instance generated
by the tool, in order to find representative ones for validation purposes, we can
further qualify the type of instances we want the Alloy Analyzer to generate. For
example, we will impose the generation of an instance having a person in at least
one world, two disjoint hearts, at least one world in which there is a school, one



wor\d_structure/CurrentWor\%

world_structure/PastWorl ‘““@%&l&‘ﬂ" [Organization]

Figure 3: An instance

CurrentWorld

‘next

Organization Organization
PastWorld (ActiveOrganization) (ExtinctOrganization)

(a) The tem- (b) Instance at (c¢) Instance in
poral order- the past moment the current mo-
ing of worlds ment

Figure 4: Atoms projected by worlds

of each type of worlds, and at maximum four atoms for each top-level signature.
This constraint is shown in Listing 9 and the generated instance is shown in
Figs. 5 and 6.

Listing 9: Constraining the generation of instances

1 run {(#Person = 1) and (#Heart = 2) and (#School >= 1)
and (#CounterfactualWorld = 1) and (#PastWorld =
1) and (#FutureWorld = 1)} for 4

As one can see, in the past world, the woman is deceased, but in the current
world she is an adult, in a counterfactual one she could be a teenager and in a
future one she may even become a child! As OntoUML does not comtemplate
the explicit modeling of the temporal ordering of Phases, we will introduce this
ordering directly in the Alloy specification, as show in the Listing 10.

Listing 10: Modeling the ordering of the Phases
1 fact an_ordering_for_the_phases{
2 all x:Person, w0: World, wl:wO.next | (x in
w0.DeceasedPerson) => (x not in wl.LivingPerson)

FutureWorld
next

CurrentWorld CounterfactualWorld
AN 4

next
next
PastWorld

Figure 5: The temporal ordering of worlds
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c2

Woman
(Child, LivingPerson)

3 all x:Person, w0: World, wl:w0.next | ((x in
w0.Child) = (x not in wl.Adult)) and ((x in
w0.Teenager) => (x not in wl.Child)) and ((x in
w0.Adult) = ((x not in wl.Child) and (x not in
wl.Teenager)))

4 all x:Heart, w0: World, wl:w0.next | (x in
w0.NonfunctionalHeart) => (x not in
wl.FunctionalHeart)

5 all x:Brain, w0: World, wl:wO.next | (x in




w0.NonfunctionalBrain) => (x not in
wl.FunctionalBrain)

6 all x:Organization, w0: World, wl:w0.next | (x in
w0.ExtinctOrganization) => (x not in
wl.ActiveOrganization)}

Now, the generated atoms will instantiate the Phases in the correct ordering.
An example is pictured in Fig. 7, which has the same temporal ordering of worlds
that is shown in Fig. 5. This instance exemplifies some important constraints
like the rigidity (Definition 2) of the Kinds and Categories, e.g., the woman
never ceases to be an instance of the Kind Person while she is in a domain of
quantification of a world); the anti-rigidity (Definition 3) of the Phases, e.g.,
regarding the Phases Child, Teenager and Adult, for every world w in which the
woman is in one of these Phases, there is a world #' in which she is not in that
Phase; the anti-rigidity of the Roles, e.g., the Role Student, in which for every
world w in which the woman play this Role, there is a world #' in which she
does not play this Role; the relational dependence (Definition 4) of the Roles is
illustrated, e.g., for the Role Student, in which the woman can only play this
Role while related to an instance of School by an instance of Enrollment.

Also, this instance illustrates the immutability of both part and whole (Defi-
nition 8 and 9) regarding the woman and her brain (she never changes her brain
while alive and the brain never changes its whole when functional). One can
notice that in a future world, the woman will change her heart (maybe she will
undergo a heart transplant), while her old heart will became nonfunctional. This
behaviour is acceptable, as she is generically dependent on the Kind Heart.

Finally, this instance also satisfies the constraint that impose that if an atom
instantiates a Phase in some world, then it must possibly instantiates every
Phase in that Phase partition.

5 Related Work

In [Braga et al., 2009, 2010], we have introduced an alternative approach to
the one presented here, which considers a linear time structure instead of a
branching time one. While the codification differences may be subtle, there are
many consequences for instance visualization and conceptual model validation
efforts that spawn from this variation in the time structure.

By using a branching time world structure, we are able to enforce and visual-
ize key constraints of UFO categories that could not be considered in instances of
a linear time world structure, like the anti-rigidity (Definition 3) and the (modal)
possibility of an instance z of a sortal universal S to become an instance of each
Phase that is a subtype of S [Guizzardi, 2005, p. 104, formula 11] (see page 12).
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More specifically, the branching time approach allows the visualization of
multiple possible realities at once, while the linear time one, in contrast, follows
the typical approach of behavioral model validation and allows the visualization
of sequences of states which reflect (part of) a particular possible execution of the
model, a single possible sequence of events. Thus, in the linear time approach,
we do not aim at showing an instance that “exercises modality” completely. Any
instance of the visualization in this branching time approach will lead to exam-
ples of dynamic classification making anti-rigidity and phase changes explicit. In
contrast, in the linear time approach, these examples can only appear by chance
as opposed to begin systematically generated. The approach presented in this
article allows the modeler to have visual information on how possibilities may
unfold in time branches.

Consider the example in Fig. 2. In the linear time approach, the Alloy Ana-
lyzer may generate (by chance) an example of child mortality in which a person
does not reach adulthood (technically, he/she never instantiates the “Adult”
phase). In the branching time approach, the Alloy Analyzer would always reveal
an alternative sequence of worlds in which the person reaches adulthood. This
is important as it makes explicit the modal semantics of the OntoUML model,
which may be hidden (by chance) in the linear time approach.

Moreover, while the linear time approach might be suitable for a mapping
to particular codifications that follow a linear time structure (e.g., temporal
description logics such as DLR,; [Artale et al., 2008], or a reduction of the
property change semantics to traditional OCL constraints over creation - change
- destruction operators), the branching time one is fundamental for conceptual
model validation, presenting the user with a fuller view of the model’s underlying
semantics. We emphasize that due to the discussed implications, changing from a
linear time to a branching time world structure is not merely a minor codification
issue, it affects the way humans perceive the simulation and how one may reason
with the implications of the use of different OntoUML constructs.

Furthermore, these approaches have different complexity analysis. The branch-
ing time approach requires us to instantiate one atom for every world, whether
factual (viz., the pasts worlds and the current one) or not factual (viz., the coun-
terfactuals and futures worlds), and possibly extra atoms for every individual
that only appear in some of the branches. By ignoring the branches and focusing
on a single sequence of events, the linear time approach requires a smaller scope
than the branching time one. Therefore, the linear time approach can save com-
putational effort and possibly reach further into the state space, populating the
examples with more individuals or simply improving the performance of analy-
sis. Naturally, this means that, in the linear time approach, each execution of the
Alloy Analyzer corresponds to different possible history lines, each of which cor-
responds to a “path” through the branching time structure. As a consequence,



each “path” is considered in isolation and, therefore, no intersections between
different history lines (“paths”) are revealed. Finally, as the different history
lines are considered in isolation, the linear time approach does not categorize
history lines into factual or not factual.

Regarding different authors, the work that is most related to ours is the trans-
formation shown in [Evermann, 2009] of an ontologically well-founded language,
proposed in [Evermann, 2003], to OWL. This language is a UML profile that is
based on the BWW ontology. However, to the best of our knowledge, despite
allowing the verification of some formal aspects (possibly only the non-modal
ones), this transformation proposes no support to validation in the sense we are
dealing here.

Regarding languages that are not ontologically well-founded, several ap-
proaches in literature aim at assessing whether conceptual models comply with
their intended conceptualizations. Although many approaches (e.g., [Beato et al.,
2004] and [Schinz et al., 2004]) focus on analysis of behavioural UML models,
we are primarily concerned with structural models and thus refrain from further
analysis of behavioural-focused work.

The USE (UML Specification Environment) tool proposed in [Gogolla et al.,
2007] is able to indicate whether instances of a UML class diagram respect
constraints specified in the model through OCL. Differently from our approach,
which is based on the automatic creation of example world structures, in USE the
modeler must specify sequences of snapshots in order to gain confidence on the
quality of the model (either through the user interface or by specifying sequences
of snapshots in a tool-specific language called ASSL, A Snapshot Sequence Lan-
guage). Since no modal meta-property of classifiers is present in UML, this tool
does not address modal aspects and validates constraints considering only a sole
snapshot.

Finally, the approaches of [Massoni et al., 2004] and [UML2Alloy, 2009] are
similar to ours in that they translate UML class diagrams to Alloy. However,
both of them translate all classes into Alloy signatures, which suggests that no
dynamic classification is possible in these approaches. Similarly to our approach,
[UML2Alloy, 2009] implements a model transformation using model-driven tech-
niques to automatically generate Alloy specifications, while [Massoni et al., 2004]
relies on manual translation to Alloy. Similar to USE, [Massoni et al., 2004] fo-
cuses on analysis and constraint validation on single snapshots. [UML2Alloy,
2009] introduces a notion of state transition but still does not address the modal
aspects of classes since these are not part of UML.

6 Final Considerations

A mature approach to conceptual modeling requires modelers to gain confidence
on the quality of the models they produce, assessing whether these models ex-



press as accurately as possible an intended conceptualization. This paper con-
tributes to that goal, by providing tools to support the modeler in the validation
of a conceptual model in OntoUML.

Following a model-driven approach, we have defined and automated a trans-
formation of OntoUML models into Alloy specifications. The generated Alloy
specifications are fed into the Alloy Analyzer to create temporal world struc-
tures that show the possible dynamics of object creation, classification, asso-
ciation and destruction as implied by the model. The snapshots in this world
structure confront a modeler with states-of-affairs that are deemed admissible
by the model. This enables modelers to detect unintended states-of-affairs and
take the proper measures to rectify the model. We believe that the example
world structures support a modeler in the validation process, especially since it
reveals how state-of-affairs evolve in time and how they may eventually evolve
(revealing alternative scenarios implied by the model).

If the Alloy Analyzer fails to find an example world structure, this may
indicate unsatisfiability, although no guarantee of unsatisfiability is given. This
is a consequence of Alloy’s choices to cope with tractability. For instance, Alloy
searches for example structures within a restricted context, i.e., a given finite
maximum number of elements.

As future work, we aim at performing an empirical study about the effective-
ness of this approach of validation based on simulations.

Moreover, we intend to incorporate support for domain constraints in our
approach, e.g., including OCL constraints in an OntoUML model. This will
require transforming these constraints into Alloy in order to guarantee that the
constraints are satisfied in all instances generated by the Analyzer.

Further, we intend to work on methodological support for the validation
process, proposing guidelines for modelers to select relevant world structures.
We will aim for an interactive approach in which a modeler can select which of
the alternative scenarios to consider. We believe that this may help pruning the
branches in the world structure keeping the size of this structure manageable.

Ideally, by exploring visualization techniques, we could use the instances
generated by Alloy as example scenarios to be exposed to the stakeholders of
the conceptual model (such as domain experts) in order to validate whether their
conceptualization has been captured accurately by the modeler.
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