
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/221390789

Using Semantic Annotations for Supporting Requirements Evolution.

Conference Paper · January 2011

Source: DBLP

CITATIONS

4

READS

64

3 authors, including:

Some of the authors of this publication are also working on these related projects:

Standards Harmonization View project

Knowledge Management in Software Testing View project

Lucas de Oliveira Arantes

Universidade Federal do Espírito Santo

5 PUBLICATIONS 15 CITATIONS

SEE PROFILE

Ricardo de Almeida Falbo

Universidade Federal do Espírito Santo

172 PUBLICATIONS 1,661 CITATIONS

SEE PROFILE

All content following this page was uploaded by Ricardo de Almeida Falbo on 23 December 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/221390789_Using_Semantic_Annotations_for_Supporting_Requirements_Evolution?enrichId=rgreq-68ecbf05861c7510e43f87ff1622797d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTM5MDc4OTtBUzoxNzc1MDMzODk4ODQ0MTZAMTQxOTMzMTUxNDM5OQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/221390789_Using_Semantic_Annotations_for_Supporting_Requirements_Evolution?enrichId=rgreq-68ecbf05861c7510e43f87ff1622797d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTM5MDc4OTtBUzoxNzc1MDMzODk4ODQ0MTZAMTQxOTMzMTUxNDM5OQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Standards-Harmonization?enrichId=rgreq-68ecbf05861c7510e43f87ff1622797d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTM5MDc4OTtBUzoxNzc1MDMzODk4ODQ0MTZAMTQxOTMzMTUxNDM5OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Knowledge-Management-in-Software-Testing?enrichId=rgreq-68ecbf05861c7510e43f87ff1622797d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTM5MDc4OTtBUzoxNzc1MDMzODk4ODQ0MTZAMTQxOTMzMTUxNDM5OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-68ecbf05861c7510e43f87ff1622797d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTM5MDc4OTtBUzoxNzc1MDMzODk4ODQ0MTZAMTQxOTMzMTUxNDM5OQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lucas_De_Oliveira_Arantes?enrichId=rgreq-68ecbf05861c7510e43f87ff1622797d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTM5MDc4OTtBUzoxNzc1MDMzODk4ODQ0MTZAMTQxOTMzMTUxNDM5OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lucas_De_Oliveira_Arantes?enrichId=rgreq-68ecbf05861c7510e43f87ff1622797d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTM5MDc4OTtBUzoxNzc1MDMzODk4ODQ0MTZAMTQxOTMzMTUxNDM5OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidade_Federal_do_Espirito_Santo?enrichId=rgreq-68ecbf05861c7510e43f87ff1622797d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTM5MDc4OTtBUzoxNzc1MDMzODk4ODQ0MTZAMTQxOTMzMTUxNDM5OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lucas_De_Oliveira_Arantes?enrichId=rgreq-68ecbf05861c7510e43f87ff1622797d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTM5MDc4OTtBUzoxNzc1MDMzODk4ODQ0MTZAMTQxOTMzMTUxNDM5OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ricardo_Falbo?enrichId=rgreq-68ecbf05861c7510e43f87ff1622797d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTM5MDc4OTtBUzoxNzc1MDMzODk4ODQ0MTZAMTQxOTMzMTUxNDM5OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ricardo_Falbo?enrichId=rgreq-68ecbf05861c7510e43f87ff1622797d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTM5MDc4OTtBUzoxNzc1MDMzODk4ODQ0MTZAMTQxOTMzMTUxNDM5OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidade_Federal_do_Espirito_Santo?enrichId=rgreq-68ecbf05861c7510e43f87ff1622797d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTM5MDc4OTtBUzoxNzc1MDMzODk4ODQ0MTZAMTQxOTMzMTUxNDM5OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ricardo_Falbo?enrichId=rgreq-68ecbf05861c7510e43f87ff1622797d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTM5MDc4OTtBUzoxNzc1MDMzODk4ODQ0MTZAMTQxOTMzMTUxNDM5OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ricardo_Falbo?enrichId=rgreq-68ecbf05861c7510e43f87ff1622797d-XXX&enrichSource=Y292ZXJQYWdlOzIyMTM5MDc4OTtBUzoxNzc1MDMzODk4ODQ0MTZAMTQxOTMzMTUxNDM5OQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Using Semantic Annotations for Supporting Requirements Evolution

Bruno Nandolpho Machado, Lucas de Oliveira Arantes, Ricardo de Almeida Falbo

Ontology and Conceptual Modeling Research Group (NEMO),
Computer Science Department, Federal University of Espírito Santo, Vitória, Brazil

{brunonandolpho, lucasdeoliveira}@gmail.com, falbo@inf.ufes.br

Abstract — Requirements change for a variety of reasons and

at different stages of the project development. Changes to

items in a requirements document must be propagated to other

items that depend on the changed items in order to maintain

their consistency. This paper explores the use of semantic

annotations in requirements document templates to support

requirements evolution.

Keywords – Requirements evolution; requirements

documentation; semantic documentation.

I. INTRODUCTION

The Requirements Engineering (RE) process plays a key

role to ensure that software products will fully support and

evolve with the business processes. It is the process by

which requirements are gathered, analyzed, documented,

and managed throughout the software lifecycle [1]. During

the RE process, elicited requirements need to be precisely

specified and documented. Moreover, requirements change

for a variety of reasons. Such changes may be required at

various stages of the software lifecycle, and must be

propagated through other items that depend on the changed

items. In order to maintain their mutual consistency, we

need to manage traceability links among items and to

propagate changes along such links [2].

Requirements are usually recorded in one or more

documents, which are used to communicate requirements to

different stakeholders. There are many different ways to

structure requirements documents, depending on, among

others, the type of the system being developed, the target

audience, the level of detail to be considered, and

organizational practices. To ensure that the essential

information is included in each document, organizations

should define their own standards for requirements

documents. If an organization works with different types of

requirements documents, it should define an appropriate

template for each requirements document type [3, 4].

Despite its shortcomings, structured natural languages,

augmented with graphical models, remains the most

practical way for most software organizations to document

their requirements [4]. Moreover, despite the current

advances in electronic documentation along with the boom

of collaborative text edition tools (such as wiki engines),

desktop text editors are still the most frequently solution

used by software organizations when it comes to electronic

documentation [5,6]. Whether on the use of wiki engines or

the use of desktop text editors, documents produced by

these tools are still the main vehicle for knowledge

dissemination [5,7,8]. This is the case of software

engineering in general, and RE in particular.

Requirements documents hold a considerable amount of

information that are to be mainly interpreted by human

readers, such as requirements statements, use case

descriptions, and so on. Managing requirements evolution

requires reading different versions of different documents,

in a task that is often dull and error prone. In addition,

gathering relevant information contained in different

documents spread through the organization’s repositories

demands a considerable effort and, because of that, this

activity is often skipped [5].

Requirements traceability can be more easily achieved if

the semantic content of the requirements documents could

be exposed in order to allow visibility of the data and the

relationships embedded in the document, and if the semantic

content of each document version is extracted and registered

into a version control system. In order to make these

scenarios possible, it is essential to allow semantic metadata

annotation into documents, turning requirements documents

into semantic requirements documents.

For dealing with theses problems, Arantes and Falbo [9]

developed an Infrastructure for Semantic Document

Management (ISDM) [9] that presents the following

features: semantic annotation of document templates;

traceability support; searching based on extracted semantic

content; and change notification subscription.

This paper discusses how this infrastructure is used to

support requirements evolution, and is organized as follows:

Section II talks briefly about requirements evolution, and

semantic documentation; Section III shortly presents the

ISDM and its main components; Section IV addresses the

use of ISDM in the requirements management context, and

presents some preliminary results from using ISDM in

practical situations. Section V compares our work with

some related ones. Finally, Section VI presents our

conclusions.

II. REQUIREMENTS EVOLUTION AND SEMANTIC

DOCUMENTATION

Two important activities of the RE process are

requirements documentation and evolution. The results of

requirements development should be documented for latter

agreement between customers and developers about the

software to be built, and to serve as basis for further

development and evolution.

As said before, requirements can be recorded in one or

more documents, each one devoted to different classes of

stakeholders. Pfleeger and Atlee [10], for instance, suggest

the use of two different types of documents: the

requirements definition, which is written in terms of the

customer’s vocabulary, and the requirements specification,

which is written in terms of the system’s interface.

There are many different ways to structure these

documents. Ideally software development organizations

should define templates for different types of requirements

documents, imposing a standard structure on them [2,4].

With regard to the requirements definition document, it

should specify the agreed requirements statements in a

language that supports communication with stakeholders.

The most obvious option is to document these statements

using free prose in natural language. However, this

approach is prone to several defect types, such as ambiguity.

To overcome these problems, we may adopt a disciplined

approach for documentation, using structured natural

language. In such approach, stylistic rules on how

statements should be written, and predefined statement

templates, among others, are used to discipline writing the

statements [2].

The agreed statements posed in a requirements definition

document are subject to change. In order to maintain

consistency, these changes must be propagated through

other items that depend on the changed item. Since

evolution is inevitable, we must prepare for change, and

traceability is one of the most important ingredients for this.

Consistency maintenance requires managing traceability

links among items. However, traceability management is not

an easy task. To take full advantage of its benefits, we need

to reduce the complexity and cost of establishing and

maintaining the traceability graphs [2].

A way of addressing this issue is applying a semantic

documentation approach to requirements documentation.

Allowing users to add metadata annotations to documents

can improve the understanding and accessibility of the data

contained on it. Features such as document annotation, data

extraction from metadata, and data indexing and searching,

are somehow the basis for semantic documentation [7,8,9].

III. AN INFRASTRUCTURE FOR SEMANTIC DOCUMENT

MANAGEMENT

In essence, the Infrastructure for Semantic Document

Management (ISDM) provides: (i) a way to semantically

annotate document templates; (ii) a mechanism for

controlling versions of the semantic content extracted from

semantic document versions, and therefore providing a way

for tracking the evolution of the data embedded inside a

semantic document; and (iii) data visibility to end-users,

allowing searches and data-change notification subscription,

to aid developers to get an up-to-date information about

something he/she is interested in [9].

As shown in Figure 1, the ISDM architecture is

composed by two main elements [9]: the Semantic

Document Repository (SDR), which is responsible for

storing semantic documents; and the Main Module, which is

composed by three sub-modules: (i) the Semantic

Annotation Module is responsible for allowing users to

semantically enrich a document template; (ii) the Data

Extraction and Versioning Module is responsible for

extracting the semantic content from an annotated document

whenever a new version of that document is checked into

the SDR. After extraction, the semantic content of the

version is stored in another repository, called Data

Repository, that is also part of this module; (iii) the Search

and Traceability Interface Module is responsible for

providing an API (Application Programming Interface) that

allows users and other systems to perform ontology-based

searches and data traceability towards the Data Repository.

In a nutshell, document engineers annotate document

templates using the Semantic Annotation Module. Later on,

developers and analysts may instantiate that template,

generating semantic documents. These semantic documents

are checked into the SDR. When a new version of a

semantic document is available at the SDR, the Data

Extraction and Versioning Module unwraps the semantic

content of that version and stores it into the Data

Repository, making the information of that version

available. At this point, it is possible to further enhance the

integration of information scattered throughout various

semantic documents contained in the SDR. This is done by

merging the graphs corresponding to the last versions of the

documents contained in the repository. Finally, users and

other systems may interact with the Search and Traceability

Interface Module in order to perform queries about the

evolution of a particular semantic content stored in the Data

Repository.

Figure 1. ISDM Architecture.

For annotating document templates, domain ontology-

based annotations are used. ISDM works with templates and

documents written in Open Document Format (ODF) [11],

and Open Office [12] was chosen as the document editor for

composing annotations in document templates. In order to

allow template annotation, specialized instructions for

annotating text fragments and tables were developed. These

kinds of annotations encapsulate annotations directed for

document instances, allowing document engineers to add a

set of instructions directly in these document elements

(tables and text fragments). These instructions are processed

when a document instance is analyzed by the Data

Extraction and Versioning Module that will ultimately

generate instances and relations accordingly. For more

details, see [9].

IV. SUPPORTING REQUIREMENT EVOLUTION WITH

SEMANTIC ANNOTATIONS

During the software life cycle, changes in requirements

are quite common. New requirement dependencies are

discovered, requirements statements are rewritten and

priorities change. If a change is propose in a requirement,

we need to identify how this change affects others

requirements. In this scenario, the traceability matrix is an

important artifact that is used to analyze the impact of

changing requirements. Defining a network of requirement

dependencies is the starting point for creating the

requirements traceability matrix. Moreover, the use of a

requirements management tool can support developing

traceability matrices.

To deal with this, we are currently using the ISDM for

supporting some tasks of the RE process at NEMO

(Ontology & Conceptual Modeling Research Group). In

NEMO, we use two types of documents for documenting

requirements: a Requirements Document (RD) and a

Requirements Specification (RS). The first is directed to

clients and users, and captures user requirements. It is

written in natural language, following rules defined for

writing requirements statements. The second details the user

requirements into systems requirements, and serves as basis

for further development. It is mainly composed by models

(use case diagrams, class diagrams, state diagrams, among

others), although there are also some textual parts,

especially the ones related to use case descriptions. Due to

space limitations, in this paper we only discuss how we are

using semantic annotations in RDs.

A. Annotating the Requirements Document Template

The NEMO’s RDs are composed by some preliminaries,
and four sections. For elaborating a RD, developers should
follow the RD template shown in Figure 2.

 First of all, there are two important information placed in

text fragments: the name of the project, and the names of the

responsible for the document. For capturing them, the ISDM

provides annotations for annotating text fragments.

Following we present the text fragment annotations added to

the RD template. These annotations are done based on the

requirements ontology proposed in [13].

Requirements Document

Project : <<project name>>
Responsible: <<names of the responsible analysts, separated by commas>>

1. Introduction

This document presents the user requirements of the <<system name>>.
It is organized as follows: Section 2 describes the system purpose; Section 3
presents a description of the problem domain; Section 4 presents the user
requirements elicited from clients and users.

2. System Purpose

<<one paragraph describing the system purpose>>.

3. Domain Description
<<a free text briefly giving an overview of the domain, describing the
problem to be solved and business processes to be supported>>

4. User Requirements

Functional Requirements

Id Statement Priority Depends on

FRXX <<sentence
following defined
pattern>>

<<possible
values: High,
Medium,
Low>>

<<ids of the
requirements on
which the requirement
depends>>

Business Rules

Id Statement Priority Depends on

BRXX <<idem FR>> <<idem FR>> <<idem FR>>

Non Functional Requirements

Id Statement Priority Category Depends on

NFRXX <<idem
FR>>

<<idem
FR>>

<<type of
the NFR>>

<<idem
FR>>

Figure 2. Requirements Document Template

[[completeText]];instance({content},http://localhost/ontologies/SE
/onto.owl# Project,$project);

[[break with ',’']];
instance({slice},http://localhost/ontologies/SE/onto.owl#Person,
$person);

property($person,http://localhost/ontologies/SE/
onto.owl#involvedIn,$project);

The first annotation is added in the place marked with the

<<project name>> tag; the second is added in the place
marked with the <<names of the responsible analysts,
separated by commas>> tag. The third annotation is done
based on the requirements ontology, and says that the people
informed as responsible analysts are involved in the project.
Other tags shown in text fragments, such as the one related to
the system purpose, are annotated in a similar way.

ISDM also provides annotations for annotating tables,
which were used in the RD template for annotating the
Domain Description table, the Functional Requirements (FR)
table, the Business Rules (BR) table and the Non Functional
Requirements (NFR) table. In the case of FR table, as shown
in Figure 2, the first column refers to the FR id; the second to
the FR statement, the third to its priority, and the last one to a
list of the ids of the requirements (FRs, BRs and NFRs) on
which it depends, separated by comma. Annotations in tables
allow that each column has a different set of instructions.

The following annotations were added to the FR table in the
semantic template:

[[ignorerow0]];

[[at0]];instance({content},http://localhost/ontologies/SE/onto.owl#

FunctionalRequirement,#req);

property(#req,http://localhost/ontologies/SE/

onto.owl#artifactProducedIn,#project);

[[at1]];property(#req,http://localhost/ontologies/SE/
onto.owl#description,{content});

[[at2]];property(#req,http://localhost/ontologies/SE/
onto.owl#priority,{content});

[[at 3 break with ',']];instance({slice},http://localhost/
onto.owl#Requirement,#reqline);
property(#req,http://localhost/ontologies/SE/
onto.owl#relatedWith,#reqline);

The first annotation only says to ignore the first row in

the table, since it does not contain data (it is a header). The

annotations that begin with [[at]] are used for annotating

the content from a column. The second annotation indicates

that the content of the first column is a FR and that this FR

is produced in the project informed before. The third

annotation points out that the content of the second column

is the statement of the FR captured in the first column.

Finally, the last annotation says that the current FR depends

on the requirements informed in the fourth column.

The other tables and their annotations are quite similar to

the FR table. Thus, making use of the semantically anotated

template, it is possible to the Data Extraction and

Versioning Module to extract the semantic content present

in the requirements document, as explained next..

B. Extracting and Visualizing Information from the RDs

Once the RD template is instantiated and a new version
of the RD is produced, it should be committed in the
corresponding Semantic Document Repository (SDR) (see
Figure 1), in order to the Data Extraction and Versioning
Module (DEVM) process the semantic document. DEVM
generates instances and relations accordingly to the contents
of the document in the Data Repository, in an OWL format.

Whenever a new version of a semantic document is
commited in the repository, a new version of the document
content is generated in the Data Repository, and it is possible
to use the services from the platform.

Figure 3 presents part of the tables concerning functional

requirements and business rules, produced in the context of

the Cargo Delivery Control Project. The versions of the RDs

of this project are stored in the the repository

/home/nemo/reposg7. Taking the third verson of this RD

into account, it is possible to generate the traceability matrix

shown in Figure 4. The full matrix is not presented in this

paper due to space limitation. It is worthwhile to point out

that as the data is stored in OWL format, we can make some

inferences using the JENA engine.

Functional Requirements

Id Statement Priority Depends on

FR01 The system shall control types of
cargos.

High

FR02 The system shall control
transportation rates.

High FR01, FR12,
BR03, BR05

FR03 The system shall allow the customer
to make a request to transport a
cargo from a quotation previously
made.

High FR02, BR02,
NFR02,
NFR06

… … … …

Business Rules

Id Statement Priority Depends on

BR01 Clients who have hired a service can
not be excluded.

High

BR02 The system must generate a unique
identifier for each quotation.

High

BR03 Each cargo type has a procedure to
be followed to be transported.

High

Figure 3. Part of a Requirements Document.

As the dependency relationship (the last column of the

requirements tables) is transitive, we can infer, for instance,
that if FR03 depends on FR02 and FR02 depends on FR01,
then FR03 depends on FR01. Direct dependencies are shown
in the figure with the flag "D"; inferred dependencies, on the
other hand, are marked in the table with the letter "I". Such
information is very important, since it is useful for analyzing
the impact of a change. Inferring requirements dependencies
in large projects can be difficult, laborious and error prone to
perform manually.

Req FR01 FR02 FR03 ... BR01 BR02 BR03

FR01 ...

FR02 D ... D

FR03 I D ... D I

… ...
Figure 4. Part of the Traceability Matrix.

Another service provided by ISDM is to trace the

differences between versions of a document. Using this
service, a developer may look for the changes made in a
specific document. Figure 5 shows the results from a query
for providing the differences between versions 2 and 3 of the
RD partially presented in Figure 3. This document was
modified, for instance, by changing the statement of FR03
and the requirements on which it depends. Such changes are
preceded by "(CHANGED)" in the figure. Moreover, there
were three FRs added and one removed, which are
represented in the figure by lines beginning with the words
"(ADDED)" and "(REMOVED)", respectively. Using this
service, we can follow up requirements evolution, as they are
listed when they are added, removed or modified in a new
version of the RD.

On the other hand, during the execution of the project, a
developer may want to know the history of a specific
requirement. To this end, the developer can use the service
for visualizing the evolution of a requirement, illustrated in
Figure 6. As we can see in this figure, FR04 was added in the
Revision 1. The requirements on which it depends were
changed in the Revision 2, when two related requirements

were added (BR03 and NFR01). Finally, in revision 3, FR04
was removed from the RD. With this service, a developer
can trace the evolution of a specific requirement, detailing
how it was related to other requirements and the values of its
properties along the project.

Figure 5. Results of the query regarding the differences between two

versions of a RD.

Figure 6- Search Form evolutionary tracing of an individual and results t

C. A Preliminary Evaluation

ISDM has been used to trace the requirements of projects

performed at NEMO. Up to now, 7 projects used it. In 4 of

these projects, the RDs evolved in two versions. In the other

3 projects, there were three versions. The various versions

of these documents were added to the Semantic Document

Repository (SDR), and each project had its own version

control repository. The three tables shown in Figure 7

present data regarding the evolution of the RDs of these

projects, including how many requirements were added,

changed or removed in each version of each project.

Revision 1

Project Added Changed Removed Sum

Project 1 29 - - 29

Project 2 10 - - 10

Project 3 25 - - 25

Project 4 29 - - 29

Project 5 13 - - 13

Project 6 10 - - 10

Project 7 24 - - 24

Revision 2

Project Added Changed Removed Sum

Project 1 11 16 12 24

Project 2 16 10 - 26

Project 3 3 22 3 25

Project 4 2 27 1 30

Project 5 11 12 - 24

Project 6 14 10 - 24

Project 7 9 17 5 28

Revision 3

Project Added Changed Removed Sum

Project 4 9 9 4 35

Project 6 13 15 2 35

Project 7 2 11 10 20
Figure 7. Changes of requirements in numbers.

The numbers shown in Figure 7 give an idea of how the

use of ISDM for managing requirements has proved to be

useful in NEMO. Since many requirements are added,

removed and changed, especially at the beginning of the

projects, controlling their changes and impacts in other

artifacts are essential. The use of ISDM has speeded the

impact analysis and, as a consequence, the time spent in

performing changes. Before the use of ISDM at NEMO,

those analyses were done by humans, using only the

functionalities provided by OpenOffice for comparing

documents. By showing the changes done and generating

traceability matrices, ISDM provided a very useful basis for

impact analysis.

V. RELATED WORK

 Since evolution is inevitable, there are several works that

aim at minimizing evolution efforts. Special attention has

being devoted to requirements traceability management.

Rochimah et al. [14] evaluated seven traceability

approaches focusing on their contributions to simplify

software evolution tasks. Three of them generate traceability

links in an automated way, while other three are semi-

automated, in the sense that they combine a manual and

automated way in obtaining the traceability links. Regarding

the degree of automation, our approach can be classified as

semi-automated, since templates are annotated manually and

the links between requirements are informed by the analysts

when the templates are filled in. On the other hand, the

traceability matrices are automatically generated, and the

changes done can be queried. Concerning the degree of

formality, Rochimah et al. consider that the seven evaluated

approaches are semi-formal. This is also the case of our

approach, which uses an ontology as basis for the template

annotations. Finally, regarding the change type, as the other

approaches, ours allows to identify additions, deletions, and

modifications. A distinguishing feature of our approach is

that analysts work in the same way they have always done,

i.e. filling templates in a text editor, and committing them in

the project’s repository. In this way, our approach is in line

with the “support in-place traceability” best practice,

defined by Huang et al. [15] as traceability being provided

to the artifacts residing within their native environments.

There are several requirements engineering tools, such as

TRACE [16], that provide various forms of traceability and

support to change. However, at the best of our knowledge,

none of them uses a semantic documentation approach, and

thus users have to interact with the tool, instead of writing

requirements documents in a text editor. In our work, the

idea is just to allow the analysts to continue using a desktop

text editor and, by means of semantic annotations made in

templates, extract and track requirements in a transparent

way to the user.

VI. CONCLUSIONS

In this paper we discussed the use of ontology-based

annotations in semantic Requirements Document (RD)

templates for supporting requirements managing and

evolution. Our strategy was to instantiate and to extend the

Infrastructure for Semantic Document Management (ISDM)

[9], developing functionalities that address important issues

for requirements management, such as automatic generation

of traceability matrices. The annotations are done in RD

templates, and they are based on the conceptualization

defined in the Software Requirements Ontology proposed in

[13]. It is important to highlight that, since we annotate

templates, the effort spent with annotations is very small

compared with the benefits obtained.

The resulting tool was used to support requirements

management in 7 projects. From this preliminary use, we

have already glimpsed some improvements to be done.

First, we need to develop a more user-friendly interface for

performing searches and for displaying traceability matrices.

Second, ISDM provides other features that can be explored

in the context of Requirements Management. This is the

case of the change notification subscription functionality.

This feature allows notifying users when a given individual

in a document changes. This could be useful to notify

stakeholders when a requirement that they are interested in

changes. Third, although our approach has shown to be

useful for organizations that use a desktop text editor for

documenting requirements, we know that, ideally, software

organizations should use requirements management tools

for that. Thus, we are working on integrating ISDM with the

requirements management tool of ODE (Ontology-based

Development Environment) [17], a Software Engineering

Environment developed at NEMO.

ACKNOWLEDGMENTS

This research is funded by the Brazilian Research

Funding Agencies FAPES (Process Number 45444080/09)

and CNPq (Process Numbers 481906/2009-6 and

483383/2010-4).

REFERENCES

[1] A. Aurum, C. Wohlin, Engineering and Managing Software

Requirements, Springer-Verlag, 2005.

[2] A. Lamsweerde, Requirements Engineering: From System Goals to
UML Models to Software Specifications, Wiley, 2009.

[3] G. Kotonya, I. Sommerville, Requirements engineering: processes and

techniques, John Wiley, 1998.
[4] K.E. Wiegers, Software Requirements: Practical techniques for

gathering and managing requirements throughout the product

development cycle. 2nd Edition, Microsoft Press, 2003.
[5] T. C. Lethbridge, J. Singer, A. Forward, “How Software Engineers Use

Documentation: The State of the Practice”, IEEE Software, vol. 20, no.

6, pp. 35-39, Nov./Dec. 2003.
[6] Forward, A., Lethbridge, T.C., “The relevance of software

documentation, tools and technologies: a survey”. Document

Engineering. DocEng’02, 2002.
[7] Bruggemann, B. M.; Holz K.P.; Molkenthin F., “Semantic

Documentation in Engineering”, Proceedings of the Eighth

International Conference on Computing in Civil and Building
Engineering , California, USA, August 2000.

[8] H. Eriksson, “The semantic-document approach to combining

documents and ontologies”, International Journal of Human-Computer
Studies, Volume 65 , Issue 7, 2007.

[9] L.O. Arantes, R.A. Falbo, “An Infrastructure for Managing Semantic

Documents”, Proc. 14th IEEE International Enterprise Distributed
Object Computing Conference Workshops (EDOCW), 2010.

[10] S.L. Pfleeger, J. Atlee, Software Engineering: Theory and Practice,

4th edition, Prentice Hall, 2009.
[11] OASIS Open Document Format for Office Applications. www.oasis-

open.org/committees/office/
[12] OpenOffice.org – The Free and Open Productivity Suite. Visited in

April, 30th 2010. http://www.openoffice.org/

[13] Falbo, R. A., Nardi, J., C., Evolving a Software Requirements

Ontology. In: Proceedings of the XXXIV Latin-american Conference
on Informatics - CLEI´2008, Santa Fé, Argentina, 2008. p. 300-309.

[14] S. Rochimah, W. M. N. Wan Kadir, A. H. Abdullah, “An Evaluation
of Traceability Approaches to Support Software Evolution”, The

Second International Conference on Software Engineering Advances

(ICSEA 2007), French Riviera, France, 2007.
[15] J. Cleland-Huang, R. Settimi, E. Romanova, B. Berenbach, S.

Clark, “Best Practices for Automated Traceability”, Computer, Vol.

40, Issue 6, pp. 27 – 35, June 2007.
[16] H.P.-J.Thunem, “TRACE: A Generic Tool for Dependable

Requirements Engineering”. The European Safety and Reliability 2009

Conference, Volume 1, pp. 137–142, Prague, Czech Republic, 2009.
[17] R. A. Falbo, F. B. Ruy, R. Dal Moro, “Using Ontologies to Add

Semantics to a Software Engineering Environment”, Proceedings of

the17th International Conference on Software Engineering and
Knowledge Engineering, Taipei, China , 151-156 , 2005.

View publication statsView publication stats

https://www.researchgate.net/publication/221390789

