
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/261450604

Using Ontology Patterns for Building a Reference Sofware Testing Ontology

Conference Paper · September 2013

DOI: 10.1109/EDOCW.2013.10

CITATIONS

11

READS

80

3 authors, including:

Some of the authors of this publication are also working on these related projects:

Knowledge Management in Software Testing View project

Interoperabilidade Semântica de Informações em Segurança Pública View project

Erica Ferreira de Souza

Federal Technological University of Paraná, Brazil

22 PUBLICATIONS   87 CITATIONS   

SEE PROFILE

Ricardo de Almeida Falbo

Universidade Federal do Espírito Santo

172 PUBLICATIONS   1,661 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Ricardo de Almeida Falbo on 07 April 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/261450604_Using_Ontology_Patterns_for_Building_a_Reference_Sofware_Testing_Ontology?enrichId=rgreq-2cffa2f9d3758c616bef193d2186ff1e-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQ1MDYwNDtBUzoyMTU1NDg1MTMyNjM2MTdAMTQyODQwMjE3ODQ4Nw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/261450604_Using_Ontology_Patterns_for_Building_a_Reference_Sofware_Testing_Ontology?enrichId=rgreq-2cffa2f9d3758c616bef193d2186ff1e-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQ1MDYwNDtBUzoyMTU1NDg1MTMyNjM2MTdAMTQyODQwMjE3ODQ4Nw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Knowledge-Management-in-Software-Testing?enrichId=rgreq-2cffa2f9d3758c616bef193d2186ff1e-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQ1MDYwNDtBUzoyMTU1NDg1MTMyNjM2MTdAMTQyODQwMjE3ODQ4Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Interoperabilidade-Semantica-de-Informacoes-em-Seguranca-Publica?enrichId=rgreq-2cffa2f9d3758c616bef193d2186ff1e-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQ1MDYwNDtBUzoyMTU1NDg1MTMyNjM2MTdAMTQyODQwMjE3ODQ4Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-2cffa2f9d3758c616bef193d2186ff1e-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQ1MDYwNDtBUzoyMTU1NDg1MTMyNjM2MTdAMTQyODQwMjE3ODQ4Nw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Erica_Souza?enrichId=rgreq-2cffa2f9d3758c616bef193d2186ff1e-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQ1MDYwNDtBUzoyMTU1NDg1MTMyNjM2MTdAMTQyODQwMjE3ODQ4Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Erica_Souza?enrichId=rgreq-2cffa2f9d3758c616bef193d2186ff1e-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQ1MDYwNDtBUzoyMTU1NDg1MTMyNjM2MTdAMTQyODQwMjE3ODQ4Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Erica_Souza?enrichId=rgreq-2cffa2f9d3758c616bef193d2186ff1e-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQ1MDYwNDtBUzoyMTU1NDg1MTMyNjM2MTdAMTQyODQwMjE3ODQ4Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ricardo_Falbo?enrichId=rgreq-2cffa2f9d3758c616bef193d2186ff1e-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQ1MDYwNDtBUzoyMTU1NDg1MTMyNjM2MTdAMTQyODQwMjE3ODQ4Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ricardo_Falbo?enrichId=rgreq-2cffa2f9d3758c616bef193d2186ff1e-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQ1MDYwNDtBUzoyMTU1NDg1MTMyNjM2MTdAMTQyODQwMjE3ODQ4Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidade_Federal_do_Espirito_Santo?enrichId=rgreq-2cffa2f9d3758c616bef193d2186ff1e-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQ1MDYwNDtBUzoyMTU1NDg1MTMyNjM2MTdAMTQyODQwMjE3ODQ4Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ricardo_Falbo?enrichId=rgreq-2cffa2f9d3758c616bef193d2186ff1e-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQ1MDYwNDtBUzoyMTU1NDg1MTMyNjM2MTdAMTQyODQwMjE3ODQ4Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ricardo_Falbo?enrichId=rgreq-2cffa2f9d3758c616bef193d2186ff1e-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQ1MDYwNDtBUzoyMTU1NDg1MTMyNjM2MTdAMTQyODQwMjE3ODQ4Nw%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Using Ontology Patterns for Building a Reference 

Sofware Testing Ontology 

E. F. Souza 

Applied Computing 

National Institute for Space 

Research, INPE 

São José dos Campos/SP, Brazil 

erica.souza@lac.inpe.br 

R. A. Falbo 

Department of Computer Science, 

Federal University of Espírito 

Santo, UFES 

Vitória/ES, Brazil 

falbo@inf.ufes.br 

 

N. L. Vijaykumar 

Lab. of Comp. and Applied Math. 

National Institute for Space 

Research, INPE 

São José dos Campos/SP, Brazil 

vijay@lac.inpe.br

Abstract— Software testing is a critical process for achieving 

product quality. Its importance is more and more recognized, 

and there is a growing concern in improving the accomplishment 

of this process. In this context, Knowledge Management emerges 

as an important supporting tool. However, managing relevant 

knowledge to reuse is difficult and it requires some means to 

represent and to associate semantics to a large volume of test 

information. In order to address this problem, we have developed 

a Reference Ontology on Software Testing (ROoST). ROoST is 

built reusing ontology patterns from the Software Process 

Ontology Pattern Language (SP-OPL). In this paper, we discuss 

how ROoST was developed, and present a fragment of ROoST 

that concerns with software testing process, its activities, 

artifacts, and procedures. 

Keywords— Software Testing; Ontology; Ontology Design 

Patterns; Ontology Pattern Language. 

I. INTRODUCTION  

Software testing consists of dynamic verification and 
validation of the behavior of a program on a finite set of test 
cases, against the expected behavior [1]. Testing activities are 
performed during the entire software development and 
maintenance processes, and therefore, software testing is a 
process embedded in the software development process [1, 2]. 

Software testing is a critical process for achieving quality in 
software products. Nowadays, its importance is widely 
recognized, and there is a growing concern in how to improve 
the accomplishment of this process. In this context, Knowledge 
Management (KM) emerges as an important means to manage 
software testing knowledge, and to improve the software 
testing process. There are many benefits of implementing KM 
in the software testing domain, such as [3]: (i) selection and 
application of better suited techniques; (ii) cost reduction; (iii) 
test effectiveness increase; and (iv) competitive advantages. 
However, there are also problems, such as [3]: (i) employees 
are normally reluctant to share their knowledge; (ii) knowledge 
sharing may increase the employee workload; and (iii) existing 
communication systems are not appropriate. 

With respect to KM systems, one of the main problems is 
how to represent knowledge. A KM system should support the 
integration of information from disparate sources, wherein a 
decision maker manipulates information that someone else 
conceptualized and represented. So, the KM system must 
minimize ambiguity and imprecision in interpreting shared 

information. This can be achieved by representing the shared 
information using ontologies [4]. As pointed out by Staab et al. 
[5], ontologies are particularly important for KM. They bind 
KM activities together, allowing a content-oriented view of 
KM. Ontologies define shared vocabulary to be used in the 
KM systems to facilitate communication, integration, search, 
storage and knowledge representation [6]. 

In order to develop a system for managing software testing 
knowledge, we need a software testing ontology. More 
specifically, we need a reference domain ontology, i.e. a 
domain ontology that is constructed with the main goal of 
making the best possible description of the domain as realistic 
as possible. A reference domain ontology is a special kind of 
conceptual model representing a model of consensus within a 
community. It is a solution-independent specification with the 
aim of making a clear and precise description of domain 
entities for the purposes of communication, learning and 
problem-solving [7]. A reference ontology on the software 
testing domain can be used for several KM-related purposes, 
such as for structuring knowledge repositories, for annotating 
knowledge items, and for making searching easier. 

By means of a Systematic Literature Review (SLR), we 
looked for software testing ontologies. As a result, we found 12 
ontologies. However, analyzing them, we concluded that they 
were inappropriate for our purposes, and thus we decided to 
build another one, which we called ROoST (Reference 
Ontology on Software Testing). ROoST has been developed by 
means of reusing and extending patterns of the Software 
Process Ontology Pattern Language (SP-OPL) [8].An ontology 
pattern language is a network of interrelated domain-related 
ontology patterns that provides holistic support for solving 
ontology development problems in a specific domain. SP-OPL 
is an OPL for the software process domain.  

In this paper, we partially present the first version of 
ROoST, focusing on the software testing process, its activities, 
artifacts that are used and produced by those activities, and 
testing techniques for test case design. Moreover, we discuss 
how we used SP-OPL patterns to develop ROoST.    

This paper is organized as follows. In Section II, we present 
the main concepts related to software testing, and briefly 
analyze the ontologies we found when we performed the SLR, 
discussing why we decided not to use them. Section III gives 
an overview of the Ontology Engineering approach we 

mailto:falbo@inf.ufes.br
mailto:vijay@lac.inpe.br


followed to develop ROoST. Section IV presents ROoST, and 
discusses how SP-OPL patterns were used to develop it. 
Section V discusses related works, comparing ROoST to some 
of the ontologies presented in Section II. Finally, in Section VI, 
we present our final considerations.  

II. SOFTWARE TESTING AND ONTOLOGIES 

Testing concepts, techniques, levels, artifacts and resources are 
integrated into the testing process [9]. The main activities of 
this process are: Test Planning, Test Case Design, Test Coding, 
Test Execution and Test Result Analysis [1]. Similarly to other 
aspects of a project, first, testing must be planned. Key aspects 
of planning include defining the test environment for the 
project, planning and scheduling testing activities, and 
planning for possible undesirable outcomes [1, 10]. Test 
planning results are documented in a Test Plan. Test case 
design aims at designing the test cases to be run. Test cases are 
documented, and then implemented. During test execution, test 
code is run, producing actual results, which are then analyzed 
to determine whether tests have been successful or not. 

Testing activities are performed at different levels. Unit 
testing focuses on testing the units or individual components 
that have been developed. Integration testing takes place when 
such units are integrated. Finally, system testing occurs when 
the entire system is tested [11]. 

Test case design techniques (or simply testing techniques) 
provide systematic guidelines for designing test cases. The 
principle underlying them is to be as systematic as possible in 
identifying a representative set of program behaviors [1]. 
Testing techniques can be classified, among others, as [1, 9, 10, 
11]: White-box Testing Techniques, which are based on 
information about how the software has been designed and 
coded; Black-box Testing Techniques, which generate test 
cases relying only on the input/output behavior, without the aid 
of the code that is under test; Defect-based Testing Techniques, 
which aim at revealing categories of likely or predefined faults; 
Model-based Testing Techniques, which are based on models, 
such as Statecharts, Finite State Machines and others. 

 Testing is a complex and knowledge intensive process. The 
efficiency of the testing process can be improved by reusing 
testing-related knowledge. For instance, during test case 
design, a test analyst could benefit from reusing past 
experiences related to choosing which testing technique to 
apply, or even by reusing a test case. In this context, we need a 
reference domain ontology on software testing, defining the 
shared vocabulary to be used in the KM system. Such ontology 
is very important to facilitate communication, integration, 
search, and representation of testing knowledge. 

Aiming at building a KM system for supporting testing 
processes, we performed a Systematic Literature Review 
(SLR), looking for software testing ontologies. A SLR is a 
secondary study that uses a well-defined method to identify, 
analyze and interpret the available evidence obtained from 
primary studies, in a way that is unbiased and (to a degree) 
repeatable. The goal is to integrate and synthesize evidence 
related to some research questions [12]. As a result of the SLR, 
we found the following testing ontologies: STOWS (Software 
Testing Ontology for Web Service) [13, 14], OntoTest [15, 16], 

TaaS Ontology [17, 18], and the ontologies proposed in [19], 
[20], [21], [22], [23], [24], [25], [26] and [27]. Although there 
are a large number of ontologies on software testing, we notice 
that there are still problems related to the establishment of an 
explicit common conceptualization regarding this domain. In 
being applied to KM, a software testing ontology must take 
several characteristics into account.  

In an experiment trying mainly to identify good practices in 
ontology design, D’Aquin and Gangemi [28] have identified 
some characteristics of quality ontologies. These characteristics 
were grouped in three dimensions: (i) formal structure, (ii) 
conceptual coverage and task, and (iii) pragmatic or social 
sustainability. In order to evaluate the existing testing 
ontologies for choosing one that is adequate for our purpose 
(KM), we focus on the first dimension, and in part on the 
second one, namely conceptual coverage. The characteristics 
included in these dimensions are [28]: 

 Structure: Reuses foundational ontologies; designed in a 

principled way; formally rigorous; also implements non-

taxonomic relations; strictly follows an evaluation 

methodology; is modular, or embedded in a modular 

framework. 

 Conceptual coverage: Provides important reusable 

distinctions; has a good domain coverage; implements an 

international standard; provides an organization to 

unstructured or poorly structured domains.  

Unfortunately, some of these characteristics are difficult to 

evaluate, since there isn’t much information about them in the 

papers presenting the corresponding ontologies. Thus, in our 

evaluation, we focused on the most easily discernible features, 

namely: having a good domain coverage; implementing an 

international standard; being formally rigorous; implementing 

also non-taxonomic relations; following an evaluation method; 

and reusing foundational ontologies. 

Regarding the first characteristic (having a good domain 

coverage), we notice that most ontologies have very limited 

coverage. The ontologies presented in [20] and [25] address 

only the concept of test case. The ontology presented in [22] 

models only testing artifacts and relationships between them. 

The ontology presented in [21] addresses only state machine 

based testing. The ontology presented in [24] focuses on 

scenario-based testing. The ontologies that have higher 

coverage are: STOWS, OntoTest, and TaaS.  

Some of the ontologies take international standards into 

account. OntoTest is based on 1
st
 edition of ISO/IEC 12207; 

the ontology presented in [19] was created based on the 

“Standard glossary of terms used in Software Testing” of the 

ISTQB; the ontology presented in [22] is based on the Unified 

Modeling Language (UML) 2.0 Test Profile (U2TP); and the 

ontologies presented in [24] and [26] are based on the 

SWEBOK [1]. On the other hand, there are ontologies that do 

not consider international standards (or at least do not mention 

them). This is the case of STOWS and TaaS Ontology.  

The next two characteristics (being formally rigorous and 



also implementing non-taxonomic relations) are very 

important for our purposes. We are looking for a reference 

ontology similar to the one defined by Guizzardi [7]. This 

ontology must be a heavyweight ontology, and thus it must 

comprise conceptual models that include concepts, and 

relations (of several natures), and also axioms describing 

constraints and allowing to derive information from the 

domain models. Taking this perspective into account, we can 

notice that most of the existing ontologies present problems. 

The ontology proposed in [23] is, in fact, an OWL 

implementation of a specific testing maturity model developed 

by the authors (the Ministry of National Defense-Testing 

Maturity Model (MND-TMM)), and thus it does not qualify as 

a reference ontology. This is also the case of the ontologies 

presented in [20] and [27], which are just OWL artifacts.  

The ontologies presented in [19] and [26] are, in fact, 

taxonomies, and thus, in our view, they do not qualify as 

ontologies (or at most, they are lightweight ontologies). 

STOWS [13, 14] is mainly a set of taxonomies of basic 

concepts, including some properties and few relations. There 

are taxonomies of Tester, Context, Testing Activities, Testing 

Methods, and Testing Artifacts, but there are important 

relations missing. For instance, which are the artifacts 

produced and required by a testing activity? Without relations 

between the concepts, questions such as this one cannot be 

answered. Moreover, there are two “compound concepts” in 

STOWS that are defined on the bases of the basic concepts: 

capability and task. Capability, for instance, is modeled as a 

composite entity, which parts are Activity, Method, an 

optionally Environment, Context, and Data (a subtype of 

Artifact). This model is questionable, since it puts together 

objects and events as part of Capability. Objects (or 

endurants) exist in time; while events (or perdurants) happen 

in time [29]. So what is a Capability? An object or an event? 

This shows that this ontology presents problems. 

TaaS Ontology presents very simple models.  UML class 

diagrams presented in [17] and [18] do not specify 

multiplicities of the relationships. Moreover, like STOWS, 

most relationships are modeled as aggregation relations in 

UML, what is very questionable from an ontological point of 

view. For instance, there is a core concept called Test Task, 

which is modeled as composed by TestActivity, TestType, 

TargetUnderTest, TestEnvironment, and TestSchedule. 

Analogously to the analysis on STOWS, the composite object 

Test Task aggregates endurants and perdurants. 

OntoTest [15, 16] is a modular ontology, built in layers, 

and represented in UML, and also implemented in OWL. A 

few axioms are also defined in first order logic. OntoTest is 

composed by a “Main Software Testing Ontology”, and six 

sub-ontologies [15]: Testing Process, Testing Phase, Testing 

Artifact, Testing Step, Testing Resource, and Testing 

Procedure sub-ontologies. The Main Software Testing 

Ontology is presented in [15, 16]. It is a simple model that 

includes six concepts. According to this model, a Testing 

Process is composed by Testing Steps, and it has also Testing 

Phases. A Testing Step requires Testing Resources, adopts 

Testing Procedures, consumes and generates Testing Artifacts, 

and depends on other Testing Steps. Testing Artifacts can 

depend on other Testing Artifacts, and can be composed by 

other Testing Artifacts. Finally, a Testing Procedure can be 

supported by Testing Resources, and is adequate to Testing 

Process. OntoTest’s Testing Step sub-ontology introduces the 

concept of Testing Activity, indicating that a Testing Step is 

composed by Testing Activities, while Testing Activities are 

not further decomposed, in a clear reference to ISO/IEC 12207 

standard, which is organized in three levels of events: process, 

activity and task. The remainder of this sub-ontology consists 

of two large taxonomies: taxonomies of Testing Step and 

Testing Activity. The Testing Resource sub-ontology has a 

taxonomy of types of resources. We did not find papers 

presenting the OntoTest’s Testing Process, Testing Phase, 

Testing Artifact, and Testing Procedure sub-ontologies. So, 

we think OntoTest is a work in progress. 

Although probably the most complete ontology among the 

ones we analyzed through the SLR, OntoTest is not enough 

for our purposes. First, we need the missing sub-ontologies. 

Second, OntoTest does not properly link the concepts in the 

sub-ontologies. Albeit in the Main Software Testing Ontology 

there is a relationship between Testing Step and Test 

Resource, there aren’t relationships between their subtypes. 

This is an important part of the software testing 

conceptualization that needs to be made explicit. 

Regarding ontology evaluation, none of the works we 

investigated in the SLR discusses how the ontologies they 

propose were evaluated. 

 Finally, concerning the reuse of foundational ontologies, 

none of  the ontologies analyzed in our SLR have used one. In 

our view, this is a problem. Foundational ontologies are 

domain-independent commonsense theories constructed by 

aggregating suitable contributions from areas such as 

descriptive metaphysics, philosophical logics, cognitive 

science and linguistics. A foundational ontology can help in 

making explicit the underlying ontological commitments of 

domain ontologies [7]. In the brief analysis we did (as in the 

aforementioned cases of STOWS and TaaS Ontology), we 

noticed that important distinctions made in Formal Ontologies 

were disregarded in most cases. The lack of truly ontological 

foundations made us to question the appropriateness of those 

ontologies for our purposes.  

Thus, as the main result of our SRL, we concluded that the 

software testing community has still a lot to advance towards a 

reference software testing ontology, and motivated us to build 

ROoST. It is worthwhile to say that, initially, we considered 

evolving OntoTest instead of building a new ontology from 

scratch, since it was the most complete ontology among those 

analyzed. Analyzing OntoTest, we concluded that it was based 

on the Software Process Ontology (SPO) proposed in [30], 

and then we looked at this ontology. More recently, SPO was 

partially reengineered in the light of the Unified Foundational 

Ontology (UFO) [31], and now it is described as an Ontology 



Pattern Language (SP-OPL) [8]. Since there are important 

differences between the SPO version that inspired OntoTest, 

and the most recent one, we abandoned the idea of evolving 

OntoTest, and started a new effort for developing ROoST. 

III. ONTOLOGY ENGINEERING APPROACH 

In order to develop ROoST, we adopted SABiO (Systematic 
Approach for Building Ontologies) [32]. SABiO prescribes an 
iterative process comprising the following activities: purpose 
identification and requirement specification, ontology capture, 
ontology formalization, reuse of existing ontologies, ontology 
evaluation, and ontology documentation. 

 With respect to ontology reuse, we reused patterns from 
SP-OPL [8]. SP-OPL is a core ontology on software processes. 
As a core ontology, SP-OPL provides a precise definition of 
the structural knowledge in the field of software processes that 
spans across different application domains in this field [8]. 
Moreover, SP-OPL is grounded on the Unified Foundational 
Ontology (UFO) [29, 33].  

As an ontology pattern language, SP-OPL contains a set of 
interrelated ontology patterns related to the software process 
domain, plus a map providing explicit guidance on what 
problems can arise in this universe of discourse, informing the 
order to address these problems, and suggesting one or more 
patterns to solve each specific problem [8].  

SP-OPL organizes 30 patterns and has three entry points, 
i.e. three different ways to enter in the pattern language. The 
choice of the entry point from which to enter in the SP-OPL 
depends on the focus of the ontology engineer. When the 
requirements for the domain ontology being developed include 
problems related to definition of standard software processes, 
the entry point is the Standard Process Structure (SPS) pattern, 
from which other patterns related to the definition of standard 
software processes can be achieved. The second entry point is 
the Software Process Planning (SPP) pattern, which deals with 
how a software process is planned in terms of sub-processes 
and activities. From this pattern, other patterns related to the 
definition of a software process for a project and scheduling it 
can be achieved. Finally, the third entry point in SP-OPL is the 
Process and Activity Execution (PAE) pattern, which deals 
with representing process and activity occurrences. From this 
pattern, the ontology engineer can achieve others that address 
problems related to resource participation, procedures adopted, 
and work product inputs and outputs [8].  

For developing ROoST, we chose the third entry point 
(EP3), since we are interested in representing knowledge 
involved in the execution of testing processes. Fig. 1 shows the 
SP-OPL patterns accessible from this entry point. Due to space 
limitations, in this paper we do not discuss the fragment of 
ROoST regarding the test environment, which were developed 
using the patterns RPA and HRPA, shown detached in grey.  

The Process and Activity Execution (PAE) pattern 
represents the occurrences of processes and activities in the 
context of a project. The Human Resource Participation 
(HRPA) pattern represents the participation of a human 
resource in an activity occurrence. The Resource Participation 
(RPA) pattern represents the participations of resources 
(hardware and software) in activity occurrences. The Work 

Product Participation (WPPA) pattern represents the 
participations of artifacts in activity occurrences. Finally, the 
Procedure Participation (PRPA) pattern represents the 
participation (adoption) of procedures in activity occurrences. 

 

Fig. 1. SP-OPL patterns accessible from the entry point EP3. 

Besides the 30 patterns described in the SP-OPL map, SP-
OPL has two supplementary patterns: Work Product 
Taxonomy (WPT), which describes types of artifacts, and 
Procedure Taxonomy (PRT), which describes types of 
procedures. We also reused these two patterns. Figures 2 and 3 
present the conceptual models of the PAE and WPPA patterns. 
PRPA, PRT and WPT patterns, although used in this paper, are 
not presented, due to space limitations.  

Patterns in SP-OPL are described using a form with several 
fields, including: name, intent, competency questions that the 
pattern aims to answer, conceptual model, axiomatization, and 
foundations (ontological analysis taking ontological 
distinctions of UFO into account). The conceptual models of 
the SP-OPL patterns are encoded in OntoUML [33], a UML 
profile that enables modelers to make finer-grained modeling 
distinctions between different types of classes and relations 
according to some ontological distinctions put forth by UFO.  

Fig. 2 shows the conceptual model of PAE pattern [8]. The 
intent of this pattern is to represent the occurrences of 
processes and activities in the context of a project, and their 
mereological structure. The following competency questions 
are addressed by this pattern: (PAE-CQ1) What is the project 
in which context a given process/activity occurrence occurred? 
(PAE-CQ2) How is a process occurrence structured in terms of 
sub-processes and activities? (PAE-CQ3) When did a process 
occurrence start and when did it end? (PAE-CQ4) When did an 
activity occurrence start and when did it end? (PAE-CQ5) 
From which activity occurrences does an activity occurrence 
depend on? 

 

Fig. 2. The Process and Activity Execution (PAE) ontology pattern. 

Process Occurrences and Activity Occurrences are 
complex events, and the whole-part relations between events 



are strict partial order. In the software process domain, there 
are two main kinds of Process Occurrences: General Process 
Occurrence and Specific Process Occurrence. A general 
process occurrence is the whole execution of the process 
defined for a Project. It is composed by specific process 
occurrences, allowing an organization to decompose a general 
process into sub-processes. A specific process occurrence, in 
turn, is decomposed into Activity Occurrences. Activity 
occurrences can be simple or composite. A composite activity 
occurrence is a complex event that is composed by other 
activity occurrences. A simple activity occurrence is not 
composed by other activity occurrences, but it is still a 
complex event in UFO [29], since it is composed by other 
events representing the participations of human resources, 
hardware and software resources, artifacts, and procedures in 
the activity occurrence [8]. 

Fig. 3 presents the conceptual model of the WPPA pattern 
[8]. The intent of this pattern is to represent the participation of 
artifacts (as input or output) in an activity occurrence. The 
following competency questions are addressed by this pattern: 
(WPPA-CQ1) Which artifacts are produced in (are an output 
of) an activity occurrence? (WPPA-CQ2) Which artifacts are 
used in (are an input to) an activity occurrence? (WPPA-CQ3) 
When did an artifact participation in an activity occurrence 
start and when did it end?  

 

Fig. 3. The Work Product Participation (WPPA) ontology pattern. 

An Activity Occurrence can have as its parts Artifact 
Participations, which are also events. An Artifact Participation 
is the participation of a single Artifact in an Activity 
Occurrence. Artifact participations can be of three types: (i) 
Artifact Creation, meaning that the artifact is created during the 
activity occurrence, and thus it is an output of this activity 
occurrence; (ii) Artifact Usage, meaning that the artifact is only 
used during the activity occurrence, and thus it is only an input 
for the activity occurrence; and (iii) Artifact Change, meaning 
that the artifact is changed during the activity occurrence, and 
thus it is both input and output for the activity occurrence [8]. 
It is worthwhile to point out that both produces and uses 
relations between Activity Occurrence and Artifact are derived 
from the participations of the artifacts in the activity 
occurrence. Thus they are represented preceded by a bar (/). 

Although the main concepts in ROoST have a counterpart 

in SP-OPL, when extending SP-OPL conceptualization for the 
testing domain, we had also to introduce new concepts that are 
not described in SP-OPL. In those cases, in order to maintain 
the alignment with UFO, we also analyzed the concepts 
introduced in ROoST in the light of UFO. 

IV. ROOST: A SOFTWARE TESTING ONTOLOGY  

The purpose of ROoST is to define a shared vocabulary 
regarding the testing domain to be used in knowledge 
management initiatives to facilitate communication, 
integration, search, and representation of test knowledge. In 
order to achieve this purpose, ROoST should be able to answer 
the following competency questions:  

CQ1. What is the project in which a given testing 

process/activity occurrence occurred? 

CQ2. How is a testing process structured in terms of testing 

activities and sub-activities? 

CQ3. When did a testing process start and when did it end? 

CQ4. When did a testing activity start and when did it end? 

CQ5. From which activities does a testing activity depend on 

to be performed? 

CQ6. What are the test levels typically considered in testing? 

CQ7. What are the artifacts produced in a testing activity? 

CQ8. What are the artifacts used by a testing activity? 

CQ9. How do testing artifacts relate to each other? 

CQ10. Which are the testing techniques adopted in a testing 

activity devoted to designing test cases? 

CQ11. To which test levels a testing technique can be applied? 

CQ12. Which are the testing techniques applied to derive a 

given test case? 

Once defined the competency questions, we looked for 

the patterns in SP-OPL to be reused. It is important to 

emphasize that SP-OPL drove the rewriting of the competency 

questions originally defined for ROoST. Moreover, some 

competency questions were not initially identified, and they 

were taken directly from SP-OPL. In both cases, we had to 

specialize them to the software testing domain. Very specific 

questions about the software testing domain that do not have a 

counterpart in SP-OPL were also considered. This is the case 

of CQ9 and CQ12.  

ROoST is developed in a modular way. Currently, 

ROoST has four modules (sub-ontologies). In this paper we 

present three of them. Due to space limitations, we do not 

present the Testing Environment sub-ontology. In the 

following subsections we present the other ROoST sub-

ontologies and discuss how we applied the reused patterns in 

their development. The conceptual models presented in this 

section are encoded in OntoUML [33]. Concepts reused from 

SP-OPL are shown in grey, and they are preceded by the 

pattern acronym (e.g., PAE::).  

A. Testing Process and Activities sub-ontology 

This sub-ontology addresses the competency questions CQ1 to 
CQ6. To answer them, we reused PAE pattern. CQ1 to CQ5 
have a direct correspondence to PAE-CQ1 to PAE-CQ5, and 



thus we specialized PAE concepts to the testing domain, as 
shown in Fig. 4. Testing Process Occurrence is a subtype of 
Specific Process Occurrence, since a testing process occurs in 
the context of the entire software process (General Process 
Occurrence) of a Project. A testing process, in turn, is 
composed by testing activities, and thus Testing Activity 
Occurrence is considered a subtype of Activity Occurrence. As 
well as Activity Occurrence, Testing Activity Occurrence can 
be further divided into Composite and Simple Testing Activity 
Occurrences. 

 

Fig. 4. ROoST’s Testing Process and Activities sub-ontology. 

Besides specializing concepts, we have also specialized 
relationships from PAE. For instance, in PAE, there is a whole-
part relationship between Specific Process Occurrence and 
Activity Occurrence. The whole-part relationship between 
Testing Process Occurrence and Testing Activity Occurrence is 
a subtype of the former. In this paper, whenever a ROoST 
relationship is a subtype of another relationship defined in SP-
OPL, we use the same name for both. 

 Looking at the literature [1, 9, 10], it is possible to say that 
the testing process consists of, at least, the following activities:  
Test Planning, Test Case Design, Test Coding, Test Execution, 
and Test Result Analysis. Thus, we considered that these are 
subtypes of Testing Activity Occurrence. Moreover, we 
considered that Test Planning is a Composite Testing Activity 
Occurrence. Although not shown in Fig. 4, test planning 
involves several sub-activities, such as defining the testing 
process, allocating people and resources for performing its 
activities, analyzing risks, and so on. On the other hand, we 
considered Test Case Design, Test Coding, Test Execution and 
Test Result Analysis as Simple Testing Activity Occurrences. 

 Software testing is usually carried out at different test levels 
[11]. Simple Testing Activity Occurrences are grouped 
according to the Test Level to which they are related, forming 

Level-based Testing activity occurrence (CQ6). Thus, Level-
based Testing is a subtype of Composite Testing Activity 
Occurrence. In Fig. 4, we made explicit the three most cited 
testing levels in the literature: Unit Testing, Integration Testing 
and System Testing. However, there may be other, such as 
Regression Testing. 

 To answer CQ1, we also needed two axioms defined in 
PAE that says that the relationship occurs in between General 
Process Occurrence and Project can be extended to the sub-
processes and activity occurrences that compose the former. 

 gpo: GeneralProcessOccurrence; p: Project, spo: 

SpecificProcessOccurrence occursIn(gpo,p)  partOf(spo,gpo)  

occursIn(spo,p)         (A1) 

 spo: SpecificProcessOccurrence; p: Project, ao: 

ActivityOccurrence occursIn(spo,p)  partOf(ao,spo)  

occursIn(ao,p)          (A2) 

B. Testing Artifacts sub-ontology 

The Testing Artifacts sub-ontology addresses the competency 

questions CQ7 to CQ9. To answer CQ7 and CQ8, we reused 

the WPPA pattern. CQ7 and CQ8 are related to WPPA-CQ1 

and WPPA-CQ2, respectively. On the other hand, since in 

ROoST we are not interested in modeling the events 

representing the artifact participations but only which artifacts 

were used and produced by a testing activity occurrence, 

WPPA-CQ3 is not relevant for ROoST. As a consequence, we 

modeled only the derived relationships /uses and /produces, 

instead of modeling the artifact participations.  

An important issue for ROoST is to describe the types of 

artifacts that are produced and used during the testing process. 

Thus, we reused the WPT pattern too. In WPT, an incomplete 

taxonomy of software artifacts is defined including, among 

others, the following kinds of artifacts: Document, which refers 

to artifacts consisting of textual statements usually associated 

with organizational patterns that define how they should be 

produced; Code, which concerns to portions of code written in 

a programming language; and Data, referring to data used or 

produced during the software process. 

During the software testing process, several artifacts are 
used and produced. An important issue for ROoST is to 
precisely define the relationships between testing activities and 
testing artifacts (CQ7 and CQ8), as well as the relationship 
between the artifacts (CQ9). In order to make this part of the 
testing domain conceptualization explicit, we specialized the 
relationships uses and produces from WPPA to link testing 
artifacts to the corresponding testing activities in which they 
were produced or used. Moreover, we defined relationships 
between the testing artifacts, as shown in Fig. 5. 

During Test Planning, a Test Plan is produced. In Test Case 
Design, different artifacts are used for deriving test cases, such 
as requirements specifications, use cases, diagrams, programs, 
and so on. Artifacts used for deriving test cases play the role of 
Test Case Design Input. The main outputs of a Test Case 
Design activity are Test Cases. A Test Case aims to test a Code 
To Be Tested, and specifies the Test Case Input and the 
Expected Result. 



 
Fig. 5. The ROoST’s Testing Artifacts sub-ontology. 

Test Case Input and Expected Result are roles played by 
Data in a test case, and are part of it. Whatever code fragments 
(such as programs, modules, and the whole system code) that 
have a Test Case designed for them play the role of Code To 
Be Tested. It is worthwhile to highlight that “role” in this paper 
is used in the sense of UFO, i.e. a role is an anti-rigid 
specialization of a sortal such that the specialization condition 
is a relational one [33]. Take as an example the role Code To 
Be Tested. It is an anti-rigid specialization of Code (a kind in 
UFO), such that the specialization condition is to be the target 
code of a Test Case (tests relation). The relational property of 
being the code to be tested by a Test Case is part of the very 
definition of the role Code To Be Tested. Whenever a concept 
in ROoST is stereotyped with <<role>>, this view applies. 

During a Test Coding activity occurrence, Test Cases are 
used to derive Test Code that implements them. Test Code is a 
portion of code that is to be run for executing a given set of test 
cases. There are three main subtypes of Test Code: Test Script, 
Driver and Stub. 

Test Execution requires as input the Test Code to be run and 
the Code To Be Tested. As an output of this activity, Test 
Results are produced. A Test Result is relative to a Test Case. 
Following this relationship, it is possible to know the Test Case 
Input and Expected Result to which an Actual Result must be 
compared during Test Result Analysis. Actual Result is the role 
played by Data when it is part of a Test Result. 

A test execution can run and achieve a result (Actual 
Result), but it can also fail, generating an Incident. Incidents 
may be defects or bugs, but may also be perceived problems, 

anomalies that are not necessarily defects. In an incident, what 
is initially recorded is the information about the failure (not the 
defect) that was generated during test execution. The 
information about the defect that caused that failure would 
come to light when someone (e.g. a developer) begins to look 
into the failure, but this is out of the scope of software testing. 
Thus, a Test Result contains either an Actual Result, or an 
Incident, or both. Moreover, a Test Result must include one of 
them, as defined by the following axiom: 

 tr TestResult(tr)   art (Actual Result(art) ˅  

Incident(art))  part of(art, tr) (A3) 

Finally, during a Test Result Analysis, Test Results are 
analyzed and a Test Analysis Report is produced.  

WPPA pattern also defines an important axiom for ROoST 
to answer CQ5. This axiom says that if an artifact art is an 
output of an activity occurrence a1, and art is also an input to 
another activity occurrence a2, then a2 depends on a1. 

a1, a2:ActivityOccurrence, art:Artifact  (produces(a1, art)  

uses(a2,art)  dependsOn(a2, a1))    (A4) 

From this axiom, we can infer important dependencies 

between testing activities, namely:  Test Coding depends on 

Test Case Design; Test Execution depends on Test Coding; 

Test Result Analysis depends on Test Execution. Moreover, the 

depends on relationship is transitive (A5). Thus, we can say, 

for instance, that Test Execution also depends on Test Case 

Design. 



C. Testing Techniques sub-ontology 

This sub-ontology addresses the competency questions CQ10 
to CQ12. In order to answer them, we reused the PRPA and 
PRT patterns. According to the PRT pattern, Procedures are 
classified into: Guideline, Method and Technique. According to 
the PRPA pattern, Procedures can be adopted to support the 
accomplishment of Activity Occurrences. Analogously to 
WPPA, PRPA includes a concept for the events representing 
procedure participations in activity occurrences. However, 
since in ROoST we are not interested in modeling those events, 
but only which procedures were adopted by a testing activity 
occurrence, we worked only with the derived relationship 
/adopts, as shown in Fig. 6.  

 

Fig. 6. ROoST’s Testing Techniques sub-ontology. 

To answer CQ10, we needed only one kind of procedure 
(Technique), and thus this concept was specialized as Testing 
Technique. There are several subtypes of Testing Technique, 
among them: Black-box, White-box, Defect-based, and Model-
based Testing Techniques. These testing techniques can be 
adopted by activity occurrences of the type Test Case Design. 

 Some testing techniques are more appropriate to certain test 
levels. To answer CQ11, we introduced a relationship between 
Testing Technique and Test Level. Black-box Testing 
Techniques, for example, applies to all test levels. White-box 
Testing Techniques, on the other hand, are suitable only for 
Unit Testing and Integration Testing. They are not suitable for 
System Testing, because it is difficult in practice to derive tests 
cases based on the source code when the entire system is 
considered [11]. Unit Testing, Integration Testing, and System 
Testing are typical instances of Test Level, which is the 
criterion for the generalization set of Level-based Testing. 

 Finally, for designing a specific test case, a testing 
technique may be applied. Thus, for answering CQ12, we 
introduced a relationship between Testing Technique and Test 
Case, in order to link a test case to the testing technique 
applied in its design. 

D. ROoST Evaluation 

In order to evaluate ROoST, we performed ontology 

verification & validation activities. ROoST evaluation started 

with a verification activity, where we checked if the concepts, 

relations and axioms defined in ROoST are able to answer its 

competency questions. Table 1 shows part of the verification, 

showing which elements of the ontology (concepts, relations, 

properties and axioms) answer CQ1, CQ4, CQ7 and CQ9. We 

should highlight that there are other axioms from the SP-OPL, 

and that also help to answer ROoST competency questions, 

but due to space limitations they were not presented in this 

paper, and thus are not listed in Table 1. 

TABLE 1. ROOST VERIFICATION  
Competency 

Question 
Concepts, Relations and Properties Axioms 

CQ1 

Testing Activity Occurrence part of 

Testing Process Occurrence 

A1, A2 

Testing Activity Occurrence subtype of 
Activity Occurrence 

Testing Process Occurrence subtype of 

Specific Process Occurrence 

Activity Occurrence part of 
Specific Process Occurrence 

Specific Process Occurrence part of 

Gerneral Process Occurrence 

Gerneral Process Occurrence occurs in 
Project 

CQ4 
Testing Activity Occurrence subtype of  

Activity Occurrence, which contains the 

properties startDate and endDate 

 

CQ7 

Test Planning produces Test Plan 

 

Test Case Design produces Test Case 

Test Coding produces Test Code 

Test Execution produces Test Result 

Test Analysis produces Test Analysis Report 

CQ9 

Test Case Input, Expected Result part of Test 

Case  

A3 
Test Code implements Test Case 

Test Result is relative to Test Case 

Actual Result, Incident part of Test Result 

Test Analysis Report analyzes Test Result 

 To validate ROoST, we instantiated its concepts and 

relations with individuals extracted from an actual project, in 

order to check if the ontology was able to represent concrete 

situations of the real world. These individuals were extracted 

from the Amazon Integration and Cooperation for 

Modernization of Hydrological Monitoring (ICAMMH) 

project. Table 2 shows part of the instantiation made. 

V. RELATED WORKS 

There are some ontologies for the software testing domain 

published in the literature. As discussed in Section 2, some of 

them are very simple [20, 25], or address testing from a  

specific point of view [21, 24] or do not present conceptual 

models, but only OWL implementations [23, 27]. Since we 

have already commented about those ontologies in Section II, 

in this section we compare ROoST only to those with higher 

coverage, namely: OntoTest [15, 16], STOWS [13, 14] and 

TaaS Ontology [17, 18]. 

  



TABLE 2. ROOST INSTANTIATION  

Concept Instance 

Project ICAMMH Project 

Black-box Testing 

Technique 

Equivalence partitioning, Boundary-value 
analysis (black-box techniques applied to 

derive test cases in the ICAMMH Project) 

White-box Testing 

Technique 

Control-flow-based, Data-flow-based criteria 

(white-box techniques applied to derive test 
cases in the ICAMMH Project) 

Test Case 

Test Case P01-256 [Collect by electronic 

media - Invalid date] (a test case produced in 
the ICAMMH Project) 

Test Case Design Input 

Use Case Specification “SAD_MCU_001 - 

Customize Data Collection” (artifact that was 

used to derive the test case P01-256) 

Test Case Input 

2009-15-11 [Year- month- day / file .txt with 

month invalid for data collection in header]  

(input data to the test case P01-256) 

Expected Result 
 Show Message: “Invalid file”  (expected 

result for the test case P01-256) 

Code To Be Tested 
CollectFormUtil.java (Java class that is to be 

tested by the test case P01-256) 

Test Code 
P01-256 Script (a test script that implements 

the test case P01-256) 

Actual Result “Invalid file” 

Concerning testing process and activities, ROoST has 

several commonalities with OntoTest, since they share the 

same basis (the Software Process Ontology proposed in [30]). 

OntoTest, as ROoST, makes an analogy between software 

process and software testing, and both consider that the testing 

process is decomposed into testing activities (Testing Step, in 

OntoTest) that can be further decomposed. However, 

OntoTest commits to a more restricted conceptualization: 

OntoTest considers that a Testing Process is composed by 

Testing Steps that, in turn, can be decomposed into Testing 

Activities. Testing Activities are not further decomposed. 

ROoST, on the other hand, admits testing activity 

decomposition in any level, making clear distinction between 

Composite Testing Activity Occurrence and Simple Testing 

Activity Occurrence. TaaS Ontology considers that the Test 

Activity (analogous to ROoST’s Testing Process Occurrence) 

is composed by Test Case Generation, Test Execution, Test 

Monitor, Test Resutl Analysis and Test Visualization. STOWS 

says nothing about decomposing testing activities. There is 

only a taxonomy of types of activities, which includes 

activities such as test planning, test case generation, test 

execution, among others. The OntoTest Testing Step sub-

ontology also considers basically the same types of activities 

as STOWS. However, none of these ontologies integrates this 

view with the one dealing with test level. OntoTest addresses 

Testing Phase (which corresponds to Level-based Testing in 

ROoST) detached from Testing Step. This also occurs in 

STOWS, which considers test levels as types of Contexts, but 

does not make any relation between Context and Activity. 

TaaS ontology addresses this issue using the concept of Test 

Stage, but does not link it to its concept of Test Activity. In 

ROoST, we integrate all aspects related to testing activities in 

a hierarchy, allowing representing different views on them.  

Concerning testing artifacts, TaaS Ontology does not 

address this issue. In STOWS, Artifact has a property Type 

that captures different types of artifacts, but there isn´t a 

relationship between Artifact and Activity. In OntoTest, there 

are two general relationships between Testing Step and Testing 

Artifact (consumes and is generated). Moreover, in [15] it is 

said that “each testing step may involve a number of different 

artifacts, such as test documents, test diagrams, test cases, test 

requirements, drivers and stubs, and artifacts under test”. 

However, these artifacts are not modeled, and OntoTest does 

not make explicit in which activities they are produced or 

used. In ROoST, we model the main artifacts used and 

produced during the testing process, and also model which 

artifacts are used and produced in each activity. Moreover, we 

establish several relationships between testing artifacts. 

Finally, concerning testing techniques, TaaS Ontology does 

not address this issue. In STOWS, there is the concept of 

Method, but again it is not linked to Activity. In OntoTest, 

there is a relationship between Testing Step and Testing 

Procedure, and it is said that “Testing procedures can be 

categorized in testing methods, testing guidance and testing 

techniques. […] Functional, structural, error-based and state-

based are examples of testing techniques”. However, as in the 

case of artifacts, these aspects are not modeled in OntoTest. 

ROoST, on the other hand, captures that there are several 

types of Testing Techniques, and that some of them applies to 

specific Test Levels. Moreover, we link Test Case to the 

Testing Technique, in order to capture which technique was 

applied to derive a given test case. 

VI.  CONCLUSIONS 

For properly managing testing knowledge, we need a common 

understanding of the testing concepts, in order to associate 

semantics to a large volume of test information. In order to 

deal with this problem, we developed ROoST (Reference 

Ontology on Software Testing). In this paper we present a 

fragment of ROoST, focusing on the software testing process, 

activities, artifacts that are used and produced by them, and 

testing techniques for test case design.  

The main distinguishing feature of ROoST when contrasted 

to other testing ontologies is that ROoST was developed 

taking characteristics of “beautiful ontologies” [28] into 

account. ROoST was developed in a principled way, following 

the SABiO method, which is a well-established method, used 

in several ontology development efforts [32]. Moreover, 

ROoST was built by means of reusing and extending patterns 

of the SP-OPL. Since SP-OPL is grounded in the Unified 

Foundational Ontology (UFO), ROoST inherits this 

foundational ground from SP-OPL. Further, concepts 

introduced in ROoST were also analyzed in the light of UFO. 

ROoST is a heavyweight modular ontology that was built 

considering several references, including international 

standards. It was evaluated from both verification and 

validation perspectives, to check if the ontology is able to 

answer the competency questions and to place the ontology in 

a real world situation. Finally, concerning its coverage, 

ROoST covers aspects related to software testing process and 

its activities, artifacts that are used and produced by those 

activities, testing techniques for test case design, and, the 

software testing environment, including hardware, software 



and human resources. This last aspect was not discussed in 

this paper, due to space limitations. Although ROoST presents 

a good coverage (especially when compared to other testing 

ontologies), there are still some points to advance, including 

the competencies of testing workers, i.e. the sets of skills 

needed to perform different testing activities. This aspect is 

very important for Knowledge Management (KM) in software 

testing, and we intend to address it in a near future. 

Finally, as a continuation of this work, we intend to develop 

a KM system to manage testing-related knowledge items. This 

KM system will be built using ROoST, and its usage will 

serve a further evaluation of ROoST.  

ACKNOWLEDGMENT  

The first author acknowledges FAPESP (Process: 
2010/20557-1) for the financial grant. The second author 
acknowledges FAPES (Process Number 52272362/11) for the 
financial grant. We also acknowledge ITA, ANA, Brazilian 
Agency of Research and Projects Financing (FINEP) and the 
Casimiro Montenegro Filho Foundation (FCMF) for providing 
the data of Project FINEP 5206/06. 

REFERENCES 

[1] IEEE Computer Society, SWEBOK, “A Guide to the Software 
Engineering Body of Knowledge,” 2004.  

[2] P. Ammann, J. Offutt, Introduction to Software Testing. UK: Cambridge 
University Press, Cambridge, 2008. 

[3] E. F. Souza, R. A. Falbo, and N. L. Vijaykumar, “Knowledge 
Management Applied to Software Testing: A Systematic Mapping,” 
Proc. of the 25th International Conference on Software Engineering and 
Knowledge Engineering (SEKE 2013), Boston, USA, 2013.  

[4] H. M. Kim, “Developing Ontologies to Enable Knowledge 
Management: Integrating Business Process and Data Driven 
Approaches,” AAAI Workshop on Bringing Knowledge to Business 
Processes, 2000. 

[5] S. Staab, R. Studer, H. P. Schurr, and Y. Sure, “Knowledge Processes 
and Ontologies,” IEEE Intelligent Systems, vol. 16, No. 1, 2001. 

[6] V. R. Benjamins, D. Fensel, and A. G. Pérez, “Knowledge Management 
through Ontologies,” The 2nd International Conference on Practical 
Aspects of Knowledge Management (PAKM98), Switzerland, 1998.  

[7] G. Guizzardi, “On Ontology, Ontologies, Conceptualizations, Modeling 
Languages and (Meta) Models,”  in Vasilecas, O., Edler, J., Caplinskas, 
A. (Org.). Frontiers in Artificial Intelligence and Applications, 
Databases and Information Systems IV.  IOS Press, Amsterdam, 2007. 

[8] R. A. Falbo, M.P. Barcellos, J.C. Nardi, and G. Guizzardi, “Organizing 
Ontology Design Patterns as Ontology Pattern Languages,” 10th 
Extended Semantic Web Conference, Montpellier, France, 2013. 

[9] I. Burnstein, Practical Software Testing: a process-oriented approach. 
3rd ed. New York: Springer Professional Computing, 2003. 

[10] Rex Black and Jamie L. Mitchell. Advanced Software Testing: guide to 
the ISTQB advanced certification as an advanced technical test analyst. 
USA:Oreilly & Assoc, 2008.  

[11] A. P. Mathur, Foundations of Software Testing. 5rd ed. Delhi, India: 
Dorling Kindersley (India), Pearson Education in South Asia, 2012. 

[12] B. Kitchenham, and S. Charters, “Guidelines for performing Systematic 
Literature Reviews in Software Engineering,” Technical Report, 
Computer Science and Mathematics  Keele University and Departament 
of Computer Science University of Durham, UK, v. 2.3, 2007. 

[13] H. Zhu and Q. Huo, “Developing A Software Testing Ontology in UML 
for a Software Growth Environment of Web-Based Applications,” 
Software Evolution with UML and XML, H. Yang, ed., pp. 263-295, 
IDEA Group, Inc., 2005. 

[14] H. Zhu and Y. Zhang, “Collaborative Testing of Web Services,”  In 
IEEE Transactions on Service Computing, pp. 116 - 130, v. 5,  2012. 

[15] E. F. Barbosa, E. Y. Nakagawa, and J. C. Maldonado, “Towards the 
establishment of an ontology of software testing,” International 
Conference on Software Engineering and Knowledge Engineering, 
SEKE, 2006. 

[16] E. F. Barbosa, E. Y. Nakagawa, A. C. Riekstin, and J. C. Maldonado, 
“Ontology-based Development of Testing Related Tools,” International 
Conference on Software Engineering & Knowledge Engineering 
(SEKE'2008), San Francisco, CA, USA, 2008. 

[17] L. Yu, S. Su,  and J. Zhao, “Performing Unit Testing Based on Testing 
as a Service (TaaS) Approach,” International Conference on Service 
Science, pp. 127-131, 2008. 

[18] L. Yu, L. Zhang, H. Xiang, Y. Su, W. Zhao, and J. Zhu, “A Framework 
of Testing as a Service,” Management and Service Science, International 
Conference on, pp. 1- 4, 2009. 

[19] G. Arnicans, D. Romans, and U. Straujums, “Semi-automatic 
Generation of a Software Testing Lightweight Ontology from a Glossary 
Based on the ONTO6 Methodology,” In: Frontiers in Artificial 
Intelligence and Applications, pp. , 263-276, v. 249, 2013. 

[20] S. Guo, J. Zhang, W. Tong, and Z. Liu, “An Application of Ontology to 
Test Case Reuse,” International Conference on Mechatronic Science, 
Electric Engineering and Computer, pp. 19-22, Jilin, China, 2011. 

[21] V. H. Nasser, W. Du, and D. MacIsaac, “Knowledge-based software test 
generation,” International Conference on Software Engineering and 
Knowledge Engineering, SEKE 2009, pp. 312 – 317,  2009. 

[22] X. Bai, S. Lee, W. Tsai, and Y. Chen, “Ontology-Based Test Modeling 
and Partition Testing of Web Services,” IEEE International Conference 
on Web Services, pp. 465-472, 2008.  

[23] H. Ryu, D. Ryu, and J. Baik, “A Strategic Test Process Improvement 
Approach Using an Ontological Description for MND-TMM,” 
International Conference on Computer and Information Science, pp. 
561-566, 2008.  

[24] P. G. Sapna and H. Mohanty, “An Ontology Based Approach for Test 
Scenario Management,” ICISTM 2011,  pp. 91–100, 2011. 

[25] X. Li, and  W. Zhang. “Ontology-based Testing Platform for Reusing,” 
International Conference on Internet Platform for Reusing, 2012. 

[26] L. Cai, W. Tong, Z. Liu, and J. Zhang. “Test Case Reuse Based on 
Ontology,” Pacific Rim International Symposium on Dependable 
Computing,  pp. 103-108, 2009. 

[27] A. Anandaraj, P. Kalaivani, and V. Rameshkumar, “Development of 
Ontology-Based Intelligent System For Software Testing,” In 
International Journal of Communication, Computation and Innovation, 
v. 2, 2011. 

[28] M. d’Aquin and A. Gangemi, “Is there beauty in ontologies? Applied 
Ontology,” vol. 6, n.3, p. 165–175, 2011. 

[29] G. Guizzardi, R.A. Falbo, and R.S.S. Guizzardi, “Grounding software 
domain ontologies in the Unified Foundational Ontology (UFO): the 
case of the ODE software process ontology,” in Proceedings of the XI 
Iberoamerican Workshop on Requirements Engineering and Software 
Environments, 244-251, 2008. 

[30] R.A. Falbo and G. Bertollo, “Establishing a Common Vocabulary for 
Software Organizations Understand Software Processes,” in EDOC 
International Workshop on Vocabularies, Ontologies and Rules for The 
Enterprise (VORTE), Enschede, The Netherlands. EDOC, Workshop on 
Vocabularies, Ontologies and Rules for The Enterprise, 2005. 

[31] A.C.O. Bringuente, R.A. Falbo, G. Guizzardi, “Using a Foundational 
Ontology for Reengineering a Software Process Ontology”. Journal of 
Information and Data Management, vol. 2, n. 3, pp. 511-526, 2011. 

[32] R. A. Falbo, “Experiences in Using a Method for Building Domain 
Ontologies,” Proc. of the 16th International Conference on Software 
Engineering and Knowledge Engineering, International Workshop on 
Ontology In Action, Banff, Canada, 2004. 

[33] G. Guizzardi, “Ontological Foundations for Structural Conceptual 
Models,” Universal Press, The Netherlands, ISBN 90-75176-81-3, 2005. 

 

 

View publication statsView publication stats

http://www.google.com.br/search?tbo=p&tbm=bks&q=bibliogroup:%22Springer+Professional+Computing%22&source=gbs_metadata_r&cad=7
http://www.livrariacultura.com.br/scripts/busca/busca.asp?avancada=1&titem=1&bmodo=&palavratitulo=&modobuscatitulo=pc&palavraautor=&modobuscaautor=pc&palavraeditora=OREILLY%20&%20ASSOC&palavracolecao=&palavraISBN=&n1n2n3=&cidioma=&precomax=&ordem=disponibilidade
https://www.researchgate.net/publication/261450604

