
Using Knowledge Servers to Promote Knowledge Integration in

Software Engineering Environments

Ricardo de Almeida Falbo 1,2

Crediné Silva de Menezes 2

Ana Regina C. da Rocha 1

1 COPPE/UFRJ

Computer Science Department

Federal University of Rio de Janeiro

Caixa Postal 68511 - CEP 21945-970

Rio de Janeiro - RJ - Brazil

e_mail: {rfalbo, darocha}@cos.ufrj.br

2 CT/UFES

Computer Science Department

Federal University of Espírito Santo

Fernando Ferrari Avenue

CEP 29060-900 - Vitória - ES - Brazil

e_mail: {falbo, credine}@inf.ufes.br

Abstract

One of the recurring problems in Software Engineering

Environments (SEEs) is the integration of tools. Three

dimensions have been considered in this context: data,

control and presentation. However, as the knowledge-

based support in SEEs increases, we believe that another

dimension must be considered: the knowledge integration.

In this paper we propose the use of Knowledge Servers to

promote knowledge integration in SEEs, offering domain

knowledge components to be reused and shared by the

tools. The Knowledge Server architecture is designed

based on domain ontologies and task models.

1. Introduction
As the complexity of the software development process

augments, it becomes essential to provide computer-based

tools to support software engineers to perform their tasks.

To be effective, however, these tools must work together

in a Software Engineering Environment (SEE).

 SEEs are built to support complex software

development processes, providing a framework to

integrate tools along three main dimensions: control, data

and presentation. With the increase of knowledge-based

support in SEEs, it becomes necessary to consider also a

knowledge integration dimension[1].

 We have been studying the knowledge integration in

TABA Workstation [2] during the last years. TABA is a

meta-environment that aims to instantiate SEEs based on

the requirements of different projects, application domains

and technologies.

 In this paper, we present our current approach to deal

with the knowledge integration problem. Basically, we

advocate the use of Knowledge Servers to promote

knowledge integration in SEEs. A Knowledge Server is an

infrastructure that makes domain knowledge components

available for reuse and sharing. Its architecture is designed

based on domain ontologies and task models.

 In the following sections, we first discuss the

integration of tools in SEEs and describe briefly TABA

Workstation. After, we discuss the role of ontologies in

knowledge integration. Then, we define Knowledge

Server and present a Knowledge Server developed for

TABA Workstation, showing how to build intelligent

assistants with it’s use. Finally, we present our

conclusions.

2. Tools’ integration in SEEs
Most of the architectures and definitions of SEEs treat

integration of tools as a three-dimension issue: control,

data and presentation. Nevertheless, with the growing

complexity of software processes, it becomes necessary to

offer knowledge-based support for helping software

engineers in their tasks. In this context, it is important to

consider a fourth dimension: knowledge integration [1].

 Knowledge-based tools (or intelligent assistants)

usually has to communicate with each other while working

in a SEE. So, it is essential that they share a common

vocabulary and the same interpretation for the terms used.

This is the main goal of the knowledge integration: to

establish the semantics of the information exchanged

between the various tools in a SEE.

 Many efforts have been made to provide intelligent

support for software process activities, such as

requirement specification, system design and risk analysis,

among others. Analyzing some of these efforts, we can

notice that the development of knowledge-based tools

obeys the following strategy: the knowledge is acquired

and modelled for a specific purpose, and embedded in an

intelligent assistant. Even in those SEEs that embody

some kind of knowledge-based support, the approach is

the same. However, this approach presents the following

problems:

a) the knowledge can hardly be shared or reused;

b) each tool is built based on a specific

conceptualization and uses its own vocabulary,

making the communication between tools difficult;

c) there is usually a large portion of knowledge that is

common to several tools, leading to redundancy and

inconsistency;

d) knowledge acquisition is made from scratch for each

new tool to be built, increasing the costs and lowering

the productivity of the development of knowledge-

based tools.

 This tendency must be reverted in order to achieve

truly integrated environments. Only with the knowledge

integration properly considered, it is possible to achieve

fully integrated SEEs.

 To share knowledge, however, it is necessary to

change the way tools are built. In the current SEEs (fig.

1(a)), the environment knowledge is given by the

knowledge embedded in each of its tools. Indeed, what is

required is the construction of a knowledge model for the

environment that could be used by each of the tools (fig.

1(b)). In this case, the environment offers the knowledge-

based support for its tools.

3. Knowledge integration in the TABA

Workstation
The knowledge integration has been studied in the context

of the TABA Workstation [2]. TABA is a prototype of a

meta-SEE that allows the specification and instantiation of

SEEs according to the particularities of specific software

processes, application domains and technologies. This

involves the definition of a software development process,

and the selection of tools to be provided. The instantiated

environments are used by software developers in the

development of specific software products.

 The first initiative to promote the knowledge

integration in TABA Workstation focused on the

integration of knowledge representation technologies [1].

This approach proved to be useful and needful, but not

enough. Actually, it is only a way to facilitate the

integration. Since it can be used to implement specific and

non-reusable knowledge, it cannot be considered a

solution to the knowledge integration problem. In fact, it

does not address the problems enumerated in section 2,

which are the heart of the matter. Thus, we had to look for

a more consistent approach for integrating knowledge.

4. Using ontologies to achieve knowledge

integration
The merits of an analysis of knowledge on a more abstract

level than that of representation languages have been

recognized since the publication of [3]. According to

Newell, it is necessary to consider a level of discourse (the

knowledge level) where the knowledge and the problem

solving could be dealt independently of their possible

implementations (the symbolic level). In the knowledge

level, problem solving agents are characterized in terms of

the action they can perform, their knowledge and their

goals. A formalism is only a symbolic system that encodes

a knowledge body.

 Our first effort was placed on the symbolic level. For

a successful knowledge integration, however, it must

happen at the knowledge level too. The key point in this

issue is the knowledge modelling. It is essential to shift

the focus on the development of knowledge-based tools to

an approach focusing on the sharing of common

knowledge. This approach should emphasize the

development for reuse, more specifically, knowledge

reuse.

The main impediment for the knowledge sharing

originates from the lack of a basic domain

conceptualization over which the various tools can be

built. Therefore, the use of ontologies arises as the key

point to deal with knowledge integration. An ontology is a

specification of a conceptualization [4], i.e., a description

of concepts and relations that can exist for an agent or a

community of agents. Basically, an ontology consists of

concepts and relations, and their definitions, properties

and constrains expressed as axioms.

Figure 1 - (a) Existing Environments and (b) the knowledge integration in a SEE.

One of the main benefits of the use of ontologies in

Knowledge-Based System (KBS) development is the

opportunity to adopt a more productive strategy for the

Knowledge Acquisition (KA). In the traditional

SEE

Tools
Knowledge model

SEE

Tools

(a) (b)

Knowledge Engineering, for each new application to be

built, a new conceptualization is developed. In an

ontology based approach, the KA can be accomplished in

two stages. First, the general domain knowledge relevant

to several applications should be elicited and specified as

ontologies. These, in turn, are used to guide the second

stage of the KA, when the particularities of a specific

software application are considered. In this way, the same

ontology can be used to guide the development of several

software applications, minimizing the costs of KA and

allowing knowledge sharing and reuse [5].

5. Knowledge Servers
To capture a knowledge model and its corresponding

domain theory, we built an infrastructure to make

knowledge components available to be reused and shared

among tools. This infrastructure is a Knowledge Server. A

Knowledge Server aims to provide an infrastructure for

developing KBSs in a specific domain. That is, the

Knowledge Server makes a knowledge framework about a

domain of interest available. In the context of a SEE, a

Knowledge Server serves as basis for building intelligent

assistants, assuring a common semantics and allowing

knowledge reuse and sharing.

 When analyzing the knowledge involved in the

design of a KBS, we can see that there are two basically

distinct, although connected, problems: the task to be

solved and the domain knowledge involved. The

separation between the domain model and the model of

the task to be performed improves the reusability of these

models. Thus, to aid the construction of KBSs, a

Knowledge Server must offer models of both domain and

task.

 Domain models must define a common vocabulary,

with fixed semantics of the terms used in the domain.

Therefore, we adopted an ontology-based representation

for Knowledge Servers. The domain knowledge

components provided by the Knowledge Server, called

knowledge modules (KM), correspond to an ontology or

one of its instantiation. While an ontology is a description

of the concepts and relations used in a domain, an

ontology instantiation is a set of statements about domain

elements that are made using these concepts and relations.

The knowledge base of an application committed with one

or various ontologies is to be the conjunction of the

corresponding knowledge modules, added to the specific

application knowledge.

 Task models are used to customize a general

inference engine to specific classes of problems, like

planning and diagnosis. From the task point of view, it is

clear that types of problems in different domains share

several common aspects. If the inference engine is a

general-purpose one, the strategy to solve the problem has

to be embedded as part of the knowledge base. Then,

Knowledge Servers provide reasoner templates for the

problem types that occur more frequently in the domain of

interest. Instead of providing only representation systems

and their general inference engines, there is a library of

task models that can be instantiated and adapted to

particular applications.

 Since this work focus on the integration in the

knowledge level, and not in the symbolic level, we do not

discuss the use of multiple representation formalisms. In

fact, we emphasize that the knowledge organization is the

main factor for the knowledge integration in SEEs. Figure

2 shows the general architecture of Knowledge Servers

composed by:

• a modular knowledge base, where each knowledge

module (KM) is a reusable body of knowledge

developed based on an ontology, and

• the inference engine of the chosen representation

system, associated with templates that specialize it for

the most frequently problem types in the domain.

 The knowledge modules and the templates of

problem types are the reusable components that the

Knowledge Server offers to aid the process of building

intelligent assistants for SEEs. In addition, these

components are strongly connected: the knowledge roles

Figure 2 - The General Architecture of Knowledge Servers.

that appear in a template of a problem type must be

fulfilled by the domain knowledge described in the

KM

(ontology

instantiation)

KM

(ontology

instantiation)

KM

(ontology

instantiation)

KM

(ontology)

KM

(ontology)

KM

(ontology)

Modular Knowledge Base

Design

Inference

Engine

Planning

...

Assignment Diagnosis

knowledge modules. Thus, with these components

available, it is possible to change the way intelligent

assistants are developed.

6. A Knowledge Server in the TABA Workstation
One important aspect to be considered in TABA

Workstation is the software development process. The

meta-environment and its instantiated SEEs need to

handle some knowledge about software processes. This

knowledge has to be shared along the Workstation. Due to

this, we decided to build a Knowledge Server for software

process domain.

The Software Process Knowledge Server (SPKS)

was developed in the following manner. First, we built an

ontology of software development process [6]. Given the

complexity of this domain, we adopted a leveled approach

for building ontologies [5]. The ontology of software

process was developed on the top of domain ontologies

for activity, procedure and resource. Each one of these

ontologies originates a knowledge module and has a

number of instantiations that also originates knowledge

modules. The knowledge modules were implemented in

Prolog, which inference engine is already integrated to the

environment, as a result of the first initiative to promote

knowledge integration in TABA Workstation [1]. Figure 3

shows part of the knowledge module for activity ontology.

Figure 4 shows part of a knowledge module derived from

an ontology instantiation for the Planning Activity.

subactivity(A,C) :- subactivity(A,B), subactivity(B,C).
superactivity(B,A) :- subactivity(A,B).
preactivity(A,B) :- output(S,A), input(S,B).
preactivity(A,C) :- preactivity(A,B), preactivity(B,C).
posactivity(A,B) :- preactivity(B,A).

Figure 3 – Activity Ontology Knowledge Module.

 To handle task knowledge, we developed task

models for planning and assignment, that are the main

problem types that occur in the definition of a software

process. For this to be done, we used the CommonKADS

library [7]. The models were selected and adapted for the

domain of interest. Then we developed templates in Eiffel,

based on the adapted task models. Figure 5 shows the

architecture of the SPKS.

 This infrastructure was used to develop Assist-Pro,

an intelligent assistant to support the definition of

software processes. First, we selected task templates from

the SPKS and adapted them to the problem in hands,

trying to match knowledge modules with their knowledge

roles. The knowledge roles that were not fulfilled had to

be elicited. In the case of Assist-Pro, it happened only

with a role concerning the adequability of life cycle

models to project characteristics. Since Assist-Pro

requires lots of knowledge about activities, methods,

techniques, tools, life cycle models, etc, some ontology

instantiation had to be done. TABA Workstation offers

facilities to input this knowledge, generating automatically

the corresponding knowledge bases in Prolog’s format,

like the one shown in Figure 4.

activity (Planning, ManagingActivity).

activity (SoftwareScopeDefinition, ManagingActivity).

activity (ResourceEstimating, ManagingActivity).

activity (EffortEstimating, ManagingActivity).

activity (Scheduling, ManagingActivity).

input (ScopeStatement, ResourceEstimating).

input (ScopeStatement, EffortEstimating).

input (EffortEstimation, Scheduling).

output (ProjectPlan, Planning).

output (ScopeStatement, SoftwareScopeDefinition).

output (ResourceEstimation, ResourceEstimating).

output (EffortEstimation, EffortEstimating).

output (TimelineChart, Scheduling).

subactivity (SoftwareScopeDefinition, Planning).

subactivity (ResourceEstimation, Planning).

subactivity (EffortEstimation, Planning).

subactivity (Scheduling, Planning).

Figure 4 – Planning Activity Knowledge Module.

 Process definition using Assist-Pro involves the

following steps: (i) project feature definition, (ii) selection

of a life cycle model, (iii) process decomposition, (iv)

method and technique assignment, and (v) definition of

inputs and outputs for each activity.

In steps (iii) to (v), Assist-Pro uses the knowledge

modules provided by SPKS to assist software engineers

defining processes. In step (ii), it uses its own knowledge

base about life cycle model adequability. In this way, the

SPKS offers facilities to be used in the construction of

knowledge-based tools, such as Assist-Pro.

7. Conclusions
 As the interest in providing knowledge-based

assistance in SEEs increases, it becomes essential to

consider tools’ integration as a four-dimension issue,

including, in addition to data, control and presentation,

knowledge integration.

Knowledge integration cannot be achieved

considering only the symbolic level. Providing services to

represent and store knowledge in a SEE is useful, but it is

not enough to promote knowledge integration. It is

necessary to change the way knowledge-based tools are

developed and to offer a framework that supports

development for/with knowledge reuse. This framework is

a Knowledge Server.

 Modular Knowledge Base

Figure 5 - The Software Process Knowledge Server.

Knowledge Servers make two main kinds of reusable

components available: domain knowledge components

and task templates. The knowledge is not any longer

acquired and modelled with a specific purpose and

embedded in an assistant. Unlike, it is available to the

SEE and can be used in the development of several tools.

 When using Knowledge Servers to promote

knowledge integration in SEEs, it is possible to achieve

Domain-Oriented SEEs (DOSEEs) [8], offering a library

of reusable domain components in various levels of

abstraction, including knowledge. Thus, a DOSEE can

support the development of software systems in a

particular domain (like medicine or law), embedding the

knowledge of this domain in it, and aiding software

engineers to develop software in a domain not familiar to

them.

Knowledge Servers address the four problems

enumerated in section 2 in the following manner:

a) Difficulty to share and reuse knowledge: Since the

Knowledge Server makes knowledge modules (that

operationalize ontologies and their instantiations) and

reasoner templates (that operationalize task models)

available, it is possible to reuse and share both

domain and task knowledge.

b) Communication problems due to different

conceptualizations adopted by each tool: Since the

knowledge modules are derived from ontologies,

there is a basic domain conceptualization and a well-

established vocabulary underlying the development of

tools, minimizing the communication problems.

c) Knowledge redundancy and inconsistency: Typically,

the knowledge common to various tools is the domain

knowledge, captured as ontologies and implemented

in the Knowledge Server knowledge modules.

Consequently, since the Knowledge Server makes

these knowledge modules available, the knowledge

redundancy and inconsistency in the SEE can be

minimized.

d) High costs and low productivity in the development

of knowledge-based tools for the SEE: Because the

Knowledge Server offers reusable components for

both domain and task, it is possible to adopt a more

productive strategy in the development of knowledge-

based tools for the SEE. In this approach, the

knowledge acquisition can be accomplished in two

stages. The first one is strongly supported by the

Knowledge Server. The second one, although more

closely supported by the experts, is still guided by the

first stage. In this way, the productivity can be

increased and costs reduced.

Acknowledgments

The authors acknowledge Kathia Oliveira for her

comments and CNPq (The Brazilian Research Council)

and CAPES for the financial support to this work.

References

[1] Falbo, R.A. and Travassos, G.H.; “Improving Tool’s

Integration on Software Engineering Environments

Using Objects and Knowledge”, Proceedings of the

SCI’97/ISAS’97, Caracas, Venezuela, 1997.

[2] Rocha, A.R. et alli; “TABA: a heuristic workstation

for software development”, COMPEURO’90, Israel,

May 1990.

[3] Newell, A.; “The Knowledge Level”, Artificial

Intelligence, 18, 1982.

[4] Gruber, T.R.; “Towards principles for the design of

ontologies used for knowledge sharing”, Int. J.

Human-Computer Studies, 43(5/6), 1995.

[5] Falbo, R.A., Menezes, C.S. and Rocha, A.R.; “A

Systematic Approach for Building Ontologies”.

Proc. of the IBERAMIA’98, Lisbon, Portugal, 1998.

[6] Falbo, R.A., Menezes,C.S. and Rocha, A.R.; “Using

Ontologies to Improve Knowledge Integration in

Software Engineering Environments”, Proceedings

of SCI’98/ISAS’98, Orlando, USA, July, 1998.

[7] Breuker, J., Van de Velde, W.; CommonKADS

Library for Expertise Modeling, IOS Press, 1994.

[8] Oliveira, K., Rocha, A.R., Travassos,G., Matwin, S;

“Towards Domain-Oriented Software Development

Environment for Cardiology”, CAiSE’98, 5th

Doctoral Consortium, Italy, June 1998.

software

process

ontology

(ontology

instantiation)

 (ontology

instantiation)

 activity

ontology

resource

ontology

procedure

ontology

SWI-Prolog’s

inference engine

Planning

Assingment

