

Using Knowledge Management to Improve Software Process Performance in
a CMM Level 3 Organization

Ricardo de Almeida Falbo, Ligia S. Mota Borges, Fabio Feu Rosa Valente
Computer Science Department, Federal University of Espírito Santo, Vitória – ES, Brazil

falbo@inf.ufes.br, ligias@zaz.com.br, fabio.valente@terra.com.br

Abstract

Developing quality software products in the

schedule and considering planned costs has always
been a challenge to software organizations. The
quality of a software product depends heavily on the
quality of the software process used to develop it. This
fact has led organizations to invest in improving their
organizational software processes. In this context,
Knowledge Management can be used to support
process improvement. In this paper, we present the
knowledge management approach adopted in a CMM
level 3 organization to support organizational process
tailoring to projects and process improvement based
on metric data collected from past projects.

1. Introduction

Software quality is directly related to the quality of
the process through which software is developed. Thus,
one of the main directions pursued by researchers and
practitioners is centered on studying and improving the
software process [1]. In this context, software process
definition is fundamental for achieving higher levels of
maturity [2].

To be effective and to lead to good quality products,
a software process should be adequate to the
application domain and to the specific project itself.
Processes should be defined considering features of the
application, development team and technology to be
applied. But, although different projects require
processes with specific features, it is possible to
establish a set of software process assets for use in
software process definition. This set of software
process assets is called an organization’s standard
software process. The project’s defined software
process is developed by tailoring the organization’s
standard software process to fit the specific
characteristics of the project [2]. However, tailoring the

standard process for a project is not a simple task. It
requires knowledge, experience and expertise from the
project managers.

In this paper we discuss the knowledge management
initiative carried out by the Xerox’s System
Development Center of Vitória (in Portuguese, Centro
de Desenvolvimento de Sistemas de Vitória – CDSV).
Its main goals are to support process definition and
improvement based on metric data collected from past
projects. Section 2 presents a brief report of CDSV
process improvement efforts, and discusses some
problems that motivated performing this initiative.
Section 3 addresses how knowledge management (KM)
can be used to improve software process performance.
Section 4 presents ProKnowHow, a KM-based tool
developed for supporting project’s software process
definition from a standard software process and
improvement based on metric data collected from past
projects. Section 5 discusses related works. Finally,
section 6 presents the conclusions of our work.

2. Process Improvement Efforts in CDSV

The System Development Center of Vitória (in
Portuguese, Centro de Desenvolvimento de Sistemas de
Vitória - CDSV) is one of the Xerox development
centers around the world. CDSV has invested in
software process quality, having been certified as
CMM (Capability Maturity Model) maturity level 3.

A fundamental concept of software process quality
in CMM is the organization’s standard software
process. An organization’s standard software process is
the operational definition of the basic process that
guides the establishment of a common software process
across the software projects in the organization. It
describes the fundamental software process assets that
each software project is expected to incorporate into its
defined software process. It also describes the
relationships between those software process assets,
and establishes a consistent way of performing the

software activities across the organization. It is
essential for long-term stability and improvement [2].

The organization’s standard software process is
used to guide the definition of a project’s software
process that is the operational definition of the software
process used by a project. The project’s defined
software process is a well-characterized and understood
software process, described in terms of software
standards, procedures, tools, and methods. It is
developed by tailoring the organization’s standard
software process to fit the specific characteristics of the
project [2].

At CMM level 3, one of the most important key
process areas (KPA) is Organization Process Focus
(OPF). The purpose of this KPA is to establish the
organizational responsibility for software process
activities that improve the organization’s overall
software process capability. It involves developing and
maintaining an understanding of the organization’s and
projects’ software processes and coordinating the
activities to assess, develop, maintain, and improve
these processes. The organization should provide the
long-term commitments and resources to coordinate the
development and maintenance of the software
processes across current and future software projects
via a group called software engineering process group
(SEPG). This group is responsible for the
organization’s software process activities. It is
specifically responsible for the development and
maintenance of the organization’s standard software
process and related process assets (as described in the
Organization Process Definition – OPD key process
area), and it coordinates the process activities with the
software projects [2].

To address this KPA, in 1998, after being certified
as CMM-level-3, CDSV established an annual project,
the Software Process Improvement (SPI) project, as a
means for improving continuously its software
processes. As a result, goals have been established
every year, and used as basis for planning the
improvement actions. Based on SPI projects from 1998
to 2001, the following problems were pointed out:

• In spite of having developed guidelines and
criteria for the projects’ tailoring of the
organization’s standard software process, in
agreement with OPD, this activity was still hard
to be done.

• As also defined in OPD, an organization’s
software process database should be established
and maintained, to collect and make available
data on the software processes and resulting
software work products. A library of software
process-related documentation should also be

established and maintained. At CDSV, this
database was developed as a set of documents,
and a major problem arose: it was difficult to
access them. Thus, knowledge sharing along the
projects was not effectively happening.

• According to OPF, the strengths and
weaknesses of the used software processes
should be identified relative to the standard
process. Information related to the use of the
organization’s standard software process by the
software projects should be collected, reviewed,
and made available [2]. This way, process
improvement can be made based on the
project’s feedback. At CDSV, it also proved to
be a hard task, especially when there are many
projects.

• As pointed out in the Integrated Software
Management KPA, the organization’s software
process database should be used for software
planning and estimating. In other words, the
database should be used as a source for
estimating, planning, tracking, and replanning a
software project. Data for similar software
projects should be used when possible. CDSV’s
process database was not adequately design to
support those tasks.

In sum, the most important findings were that it was
necessary to share knowledge and disseminate the
lessons learned from the projects through the
organization. Knowledge is a crucial resource of an
organization, and it should be carefully managed.
CDSV was not able to manage knowledge and learn
with the work done. Based on that, knowledge
management (KM) was pointed as an interesting
approach to deal with the problems detected.

3. Knowledge Management and Software
Process Improvement

Knowledge Management (KM) entails formally
managing knowledge resources in order to facilitate
capturing, access, dissemination and reuse of
knowledge, typically using advanced technology. KM
is formal in that knowledge is classified according to a
pre-specified ontology into structured databases [3]. In
this sense, ontologies are particularly important for
KM. They constitute the glue that binds KM activities
together, allowing a content-oriented view of KM [4].
Ontologies define the shared vocabulary used in the
KM system to facilitate communication, integration,
search, storage and representation of knowledge [3].

The basic KM activities include: knowledge
identification, capture, integration, retrieve,

dissemination, use, and maintenance. At the core of a
KM system, it is an organizational memory, supporting
reuse and sharing of organizational knowledge,
including lessons learned.

In the software development context, KM can be
viewed as the foundation for continuous improvement
of the software process and consequently, the resulting
products. The interaction between projects and
corporate memory establishes two feedback loops. The
first takes place during process execution, when
knowledge obtained during the project course is
analyzed and small changes to the execution of the
process are applied (learning in project level). The
second loop aims the knowledge packing at the end of
the project, and the use of this knowledge in a new
project, resulting in corporate learning [5]. Using a KM
approach, knowledge created during software processes
can be captured, stored, disseminated, and reused, so
that better quality and productivity can be achieved.
KM can be used to better support several activities,
such as software process definition, human resource
allocation, estimation, requirement analysis, quality
planning, and so on.

Analyzing the problems pointed out by the CDSV’s
SPI projects, we can clearly notice that KM is a
promising approach to deal with them. Software
development is a quickly changing, knowledge-
intensive business involving many people working in
different activities [6]. CDSV has problems identifying
the content, location, and use of the knowledge. As
pointed out by Rus and Lindvall [6], an improved use
of this knowledge is the basic motivation and driver for
KM in software engineering. Therefore, CDSV decided
to invest efforts in it.

However KM is neither a product in itself, nor a
solution that organizations can buy off-the-shelf. It is a
process implemented over a period of time, which has
much to do with human relationships as it does with
business practices and information technology [7].
Moreover, as pointed out by Liebowitz [8], KM should
start small and see what works. Thus, the KM efforts in
CDSV were planned in order to establish a gradual
competence in this area, including the following steps:
1. Initially, two main goals were establish: to develop

a KM-based organizational software process
database, and to provide KM-based support for
tailoring the organizational process to projects.

2. Once established the database, the following step
was to use its data for estimating, planning,
tracking, and replanning software projects. The
main goals of this step were to define metrics to be
collected that could support better estimation, and
to develop a KM-based estimation tool.

3. Finally, looking for leveraging CDSV to CMM
level 4, the goal is to use metric data as basis for
process improvement.

Currently, steps 1 and 2 are finishing, and as their
main result, a tool called ProKnowHow was developed.

4. ProKnowHow: A KM-based Tool for
Supporting Software Process Improvement

ProKnowHow is a KM-based tool for supporting
software process improvement in CDSV. Its
requirements include:

• ProKnowHow organizational memory should
act as the organization’s software process
database. It should contain both formal and
informal knowledge.

• The structure of the organizational memory
should be well defined, and then ontologies
have to be used to define it. Also, a
characterization scheme should be defined,
especially to deal with informal knowledge
retrieve and access.

• Politics for knowledge filtering should be
defined. Since knowledge relevance varies from
situation to situation, knowledge filtering is
essential to ensure that the knowledge retrieved
is really relevant for the situation at hands.

• A systematic procedure for projects’ process
definition should be established in order to be
supported by the tool.

• Software metrics should be defined based on
the organization’s objectives, and collected data
should be properly presented to support
estimation.

These requirements drove the main design
decisions made during ProKnowHow development.
First, we needed ontologies to ground the structure of
the organizational memory (OM). Two integrated
ontologies were selected for this purpose: the software
process ontology, partially presented in [9], and the
software metrics ontology, partially presented in [10].
Those ontologies were used to structure the OM, as
well as to support knowledge items classification.

Second, we decided to apply the Quality
Improvement Paradigm proposed by the Experience
Factory (EF) [11]. This paradigm proposes an
approach for software quality improvement that has
many common aspects with KM, and that is focused on
continuous quality improvement of software
organizations. In fact, the EF Organization concept was
before the term KM became popular, and the EF
Organization addresses many of the same concerns
[11]. The basis for the EF Organization concept is that

software development projects can improve their
performance by leveraging experience from previous
projects [11]. The EF Organization separates
responsibilities into two distinct organizations, as
shown in Figure 1: the Project Organization, which
uses past experiences to deliver new software products,
and the EF, which supports software development by
providing relevant experience. This organization
applies directly to CDSV, since its SEPG acts as the
EF, while the development area is the Project
Organization.

Concerning software processes, ProKnowHow was
developed to achieve the following goals:

• To support the standard process tailoring for
projects;

• To collect and disseminate the knowledge
acquired during standard process tailoring;

• To support standard process updating based on
the feedback from projects.

To achieve these goals, the OM in Figure 1 must
store knowledge about the various process assets,
project’s process plans, and lessons learned in tailoring
the organizational process for projects. In the Project
Organization of figure 1, plan means, in the case of
software process, plan the process. Do means perform
the project, following the project’s defined process. In
the EF, the project support should offer assistance for
tailoring the organization’s standard process to fit the
project’s characteristics. New projects’ experiences
should be analyzed and synthesized in order to support
SEPG in updating and improving the organizational
software process.

Concerning estimation and metrics, ProKnowHow
has to meet the following goals:

• To support project estimation through
retrieving data from past similar projects;

• To derive indicators from classes of projects
performed by the organization;

• To allow relating software metrics to
organizational goals.

To achieve these goals, the OM in Figure 1 must
store knowledge about software metrics, project’s
estimation plans, including estimated and accomplished
data, and lessons learned about estimation. In the
Project Organization, plan means, in the case of
estimation, plan the project, more precisely estimate
the project. Do means track the project, comparing
actual data to planned data. In the EF, the project
support should support estimation. Finally, new
projects’ experiences should also be analyzed and
synthesized.

Figure 2 shows ProKnowHow architecture and
functionalities. Following, we discuss them in more
details.

4.1. Organizational Memory

ProKnowHow’s OM stores both formal and informal
knowledge. Formal knowledge items can be artifacts
produced during the software development or ontology
instances. The latter is used to store general knowledge
about the software engineering domain described
through the software engineering ontologies that
ground ProKnowHow: the software process ontology
and the software metrics ontology, as previously cited.

Lessons Learned are the informal knowledge
handled by ProKnowHow. They are stored in the OM
with the following information:

Figure 1. Experience Factory Organization.

Experience Factory Organization

Plan

Do

Project
Plan

Project
Organization Experience Factory

Project
support

Analyze

Synthesize

Needs

Experience,
consulting

Raw experience

Feedback

OMExperience

Figure 2. ProKnowHow Architecture and Functionalities.

• Project: indicates in which project the lesson was
generated;

• Process Asset: refers to the process assets to
which the lesson is associated;

• Type of the lesson learned: identifies whether the
lesson is a good practice or an improvement
opportunity;

• Problem: a description of the problem being
addressed;

• Solution: a description of the solution adopted to
solve the problem;

• Context: a description of the situation in which
the lesson was generated.

As to process definition, the most important
artifacts are the projects’ software process plans.
Ontology instances, in turn, concern describing
software process assets. Once the standard process is
the basis for the project’s process tailoring, it is
necessary to capture knowledge about its assets,
including:

• Life cycle models – a description of an ordered
set of activities to be used as a guide to the
software process definition. They are used as a
reference in a software process definition for a
project, establishing macro-activities and the
dependency relation between them;

• Activities – tasks to be done during software
development;

• Artifacts – software artifacts that are produced
and consumed by the activities;

• Resources – refer to people, tools, equipments,
and so on, that are necessary to accomplish the
activities;

• Procedures – well established and organized
means for performing activities, including
methods, techniques, and document models,
which are patterns that define the format and
guidelines for project artifact development;

Concerning estimation, the most important artifacts
are the projects’ plans. Since we have applied the
GQ(I)M (Goal-Question-(Indicator)-Metric) paradigm
[12], ontology instances describe knowledge about
goals, quality characteristics (indicators) and metrics.
In fact, the software metric ontology used does not
address goals, as defined in GQ(I)M. But we decided
to treat them as ontology instances.

4.2. Knowledge Management Services of
ProKnowHow

As shown in figure 2, ProKnowHow offers a set of KM
services that includes: knowledge capturing, retrieve
and dissemination, and filtering. As discussed above,
ProKnowHow’s OM contains three types of knowledge
items: artifacts, instances of ontologies and lessons
learned. Then, ProKnowHow must offer facilities to
capture each one of these knowledge types.

Artifacts created during the software process are
submitted to configuration management and become
available to ProKnowHow. Instances of ontologies are
captured using the services for updating the standard
software process (instances of the software process
ontology), and for defining goals and metrics (instances
of the software metrics ontology). Finally, there is a
service for registering lessons learned.

When dealing with lessons learned, we have to
consider another question. Project-level knowledge can

Lessons
Learned

Capturing

Project Manager

SEPG

Formal Knowledge

Informal Knowledge

Organizational Memory

Knowledge
Filtering

Standard
Process

Updating

Goals and
Metrics

Definition

Process
Tailoring

Project
Estimation

Knowledge
Dissemination

be useful, but it is not always the case. Generally,
project-level knowledge must be handled to become an
organizational knowledge. In CDSV, the Knowledge
Manager is responsible to check all lessons learned,
and to decide if they should, or not, be available in the
informal knowledge repository (knowledge filtering).
Also, once defined that a lesson learned is really useful,
the Knowledge Manager should make the appropriate
changes to transform it in an organizational-level
knowledge.

ProKnowHow supports a workflow for approving
lessons learned. First, a project manager inputs a lesson
learned in the informal knowledge base. At this
moment, this knowledge is not available for other
developers. The knowledge manager must evaluate and
adapt the lesson learned so that it can be considered an
organizational knowledge. Once approved, the lesson
learned is made available.

During software process definition or project
estimation, the project manager can ask for help.
ProKnowHow offers a search functionality. This
reactive functionality can be used to retrieve both
formal and informal knowledge. We can say that
ProKnowHow also offers some kind of proactive
behavior (dissemination), since during process
definition it suggests software process assets according
to the process definition step, and during project
characterization it suggests metrics based on the
established project’s goals. In both cases, only
ontology instances are considered.

The project manager is free to accept, or not, the
suggestions given by the tool. However, if the resulting
process does not conform to the standard process,
he/she has to justify his/her attitude as a lesson learned.
Also, the project manager can note comments about the
guidelines that he/she has received from the tool. In
this way, informal knowledge can be captured.

4.3. Organizational Software Process Tailoring
and Project Estimation in ProKnowHow

ProKnowHow guides the project manager in the
adaptation of the standard process for each project,
suggesting life cycle models, activities, procedures,
resources, and so on. The workflow 1 in Figure 3
shows an outline of the process tailoring procedure
used in CDSV. It is composed of three main activities:
project characterization, life cycle model selection and
activity selection.

In the project characterization step, project
characteristics are informed, including staff features,
such as the user’s ability to communicate requirements

and team experience; problem features, such as
problem complexity and application domain stability;
product features, such as estimated product size and
product type (off-the-shelf / customized solution); and
development features, such as development paradigm
and software type (Real Time Systems, Information
Systems, Web Systems, and so on).

Once the project is characterized, a life cycle model
can be selected. Only life cycle models approved for
use by the CDSV are considered in this step. Based on
project’s characteristics, ProKnowHow suggests life
cycle models to be used. The project manager is free to
accept or reject this suggestion.

Using the selected life cycle model and project’s
characteristics, a preliminary process is proposed. In
the activity selection step, the project manager can add
or remove activities from the process. Also, for each
activity, pre-activities, sub-activities, input and output
artifacts, procedures, resources and tools should be
defined.

As previously cited, when selecting a life cycle
model to the project or when selecting activities and its
corresponding process assets, the project manager can
use the retrieval service for searching past process
plans or lessons learned. Also ProKnowHow
proactively suggests software process assets according
to the current process definition step, based on the part
of the organizational memory that deals with the
standard process.

ProKnowHow supports project estimation
following the process shown in the workflow 2 of
figure 3. The project characterization step, in this case,
is a review of the project characteristics informed
during process definition. In fact, there are some
characteristics that are relevant only for estimation
purposes, and thus were not treaded previously.

According to the GQ(I)M paradigm, there is a tight
relationship between organization’s goals and metrics,
i.e. organizational metrics should be defined based on
organizational goals. Project’s goals, in turn, should
agree with the organization’s goals. This way, when an
organizational goal is selected as a project goal,
metrics for the project can be suggested, based on the
organizational metrics for that goal. In other words, a
project does not define its metrics. It defines its goals.
Based on these goals, metrics are selected.

ProKnowHow supports defining goals and metrics
for a project using an extension of this approach. First,
the project manager should define the project’s goals.
During this step, he/she can use the retrieval service for
searching similar past projects or lessons learned.

Figure 3. Estimating Projects with ProKnowHow.

Once defined the project’s goals, quality
characteristics (indicators) can be selected to treat
those goals. As pointed out in the software metrics
ontology [10], a software quality characteristic can be
decomposed in others software quality characteristics.
Thus quality characteristics and sub-characteristics
should be defined to treat the goals. For each directly
measurable quality characteristic, i.e. a software quality
characteristic that is not composed of others software
quality characteristics, a metric can be selected to
measure it. For instance, suppose that the
organizational goal “Improve software quality” is
defined for a project and that the quality characteristic
“Functionality” is selected as one of the indicators to
manage that goal. Since functionality is not directly
measurable, then sub-characteristics should be selected.
If the sub-characteristic “suitability” is selected, the
metric “functional adequacy” can be selected for
measuring suitability. In this process, ProKnowHow
proactively suggests quality characteristics and metrics
based on the OM data defined early using the service
for goals and metrics definition (see figure 2).

Once defined the project’s metrics, the project
manager can establish values to be achieved for those
metrics in the project (project-specific goals). In the
example above, a project-specific goal can be defined
indicating that, in that project, functional adequacy
should be greater than 85%.

Early detection and prediction of the quality of the
software product is one of the most rewarding uses of
metrics. Then, we should use the metrics selected in the
previous step to estimate and track the project. When

estimating the future values of the same metric by using
past experience data, it is estimated based on a trend
that is observed in a sufficient period of time. Thus,
ProKnowHow focus on retrieving information from
similar past projects in order to support project
managers estimating and tracking their projects.

5. Related Work

Several works have exploited the use of KM to support
software engineering tasks. For instance, the special
issue of IEEE Software from May/June 2002
investigated KM’s state of the practice in software
engineering. In this issue, the articles report on the
needs, issues, results, success factors, and lessons
learned from a variety of KM applications [6].

Jay Liebowitz described a series of KM initiatives
at NASA Goddard Space Flight Center [8]. Some of
his conclusions also applied to the KM initiatives at
CDSV, and reflect some of the strategies used. First,
KM should start small. Several types of knowledge can
be managed, but it is not possible to start thinking in all
of then. CDSV opted by focusing in its processes and
their improvement. Second, knowledge should be
collected and disseminated during projects, when work
is being done. ProKnowHow uses this approach,
allowing project managers to search for knowledge
when they are doing their work. Also, lessons learned
can be registered during the project accomplishment.

Like ProKnowHow, several KM systems for
software engineering are based on the Experience
Factory concept. For instance, at Q-Labs [13], a system

Goals and
Metrics

Project
Characterization

Project’s
Estimates Definition of the

Project’s Goals
and Metrics

Estimating and
Tracking the

Project

Indicators,
Past Project’s
Estimations
Lessons
Learned

Organizational
Memory

Life Cycle
Models

Project’s
Defined
Process

Software type
Problem characteristics
Team characteristics
Paradigm and
development technology

Life Cycle
Model

Selection

Activity
selection

Activities
Resources
Procedures
Artifacts
Resources

1

2

for supporting experience management was developed.
The objective is to provide a “virtual office” for Q-
Labs, and to allow Q-Labs’ consultant to benefit from
the experience of others consultants. At
DaimlerChrysler [14], researches set up a Software
Experience Center that reuses experiences from
previous projects using a customized EF approach.
However, none of these works offers support for
defining software processes from a standard software
process. Thus, it is worth to remember that CDSV is a
CMM level 3 organization, and that some of its formal
knowledge are process assets.

6. Conclusions and Future Work

This paper presented the CDSV’s KM initiative
supported by ProKnowHow, a KM-based tool.
ProKnowHow was recently implanted at CDSV’s
Intranet, and we believe that it will contribute to
process improvement, mainly because:

• Process definition task is now being supported by
a tool. Since ProKnowHow gives several advices,
this task trends to become easier, as it is being
reported by project managers that started to use the
tool.

• The use of project’s feedback in software process
improvement is becoming easier. Since lessons
learned are no more stored on paper, it is being
easier to use them in order to find improvement
opportunities in the standard software process, as
reported by SEPG.

• ProKnowHow has potential for making estimation
easier, since past experience is being used to
support estimating new projects.

We expect to present more results as soon as
ProKnowHow’s data are used by the CDSV’s SPI
Project. But we have already identified some problems.
First, ProKnowHow search facility is not good enough,
especially concerning finding similar projects. We are
now working to improve this service using case-based
reasoning. Second, proactive dissemination in
ProKnowHow showed to be poor. We are studying
ways to improve this service using agent technology.

7. Acknowledgments

This work was accomplished with the support of
CNPq, an entity of the Brazilian Government reverted
to scientific and technological development.

8. References

[1] A. Fuggetta, “Software Process: A Roadmap”, in

Proceedings of The Future of Software Engineering,
ICSE’2000, Limerick, Ireland, 2000.

[2] M. C. Paulk, C. V. Weber, S. M. Garcia, M. B. Chrissis
and M. Bush, “Key Practices of the Capability Maturity
Model, Version 1.1”, Technical Report CMU/SEI-93-TR-
025, 1993.

[3] D. E. O’Leary, “Enterprise Knowledge Management”,
IEEE Computer, vol. 31, no. 3, pp. 54-61, March 1998.

[4] S. Staab, R. Studer, H.P. Schnurr and Y. Sure,
“Knowledge Processes and Ontologies”, IEEE Inteligent
Systems, vol. , no. , pp. 26-34, January/February 2001.

[5] M. Broomé and P. Runeson, “Technical Requirements for
the Implementation of an Experience Base”, in Proc. of
the 11th Int. Conference on Software Engineering and
Knowledge Engineering , SEKE’99, Kaiserslautern,
Germany, 1999.

[6] I. Rus, M. Lindvall, “Knowledge Management in
Software Engineering”, IEEE Software, pp. 26-38,
May/June 2002.

[7] V.R. Benjamins, D. Fensel, A.G. Pérez, “Knowledge
Management through Ontologies”, Proc. of the 2nd
International Conference on Practical Aspects of
Knowledge Management (PAKM98), Switzerland, 1998.

[8] J. Liebowitz, “A Look at NASA Goddard Space Flight
Center’s Knowledge Management Initiatives”, IEEE
Software, pp. 40-42, May/June 2002.

[9] R.A. Falbo, C.S. Menezes, A.R.C. Rocha. “A Systematic
Approach for Building Ontologies”. Proceedings of the
6th Ibero-American Conference on Artificial Intelligence,
Lisbon, Portugal, Lecture Notes in Computer Science,
vol. 1484, 1998.

[10] R.A. Falbo, G. Guizzardi, G., K.C. Duarte, “An
Ontological Approach to Domain Engineering”, in Proc.
of the 14th Int. Conference on Software Engineering and
Knowledge Engineering, SEKE’02, Ischia, Italy, 2002.

[11] V.R. Basili, C. Seaman, “The Experience Factory
Organization”, IEEE Software, pp30-31, May/June 2002.

[12] R.E. Park, W.B. Goethert, W.A.Florac, Goal Driven
Software Measurement – a Guidebook. Technical Report
CMU/SEI-96-BH-002, Software Engineering Institute,
Carnegie Mellon University, August 1996.

[13] M.G. Mendonça Neto, V. Basili, C.B. Seaman, and Y-
M Kim, “A Prototype Experience Management System
for a Software Consulting Organization”, in Proc. of the
13th Int. Conference on Software Engineering and
Knowledge Engineering, Buenos Aires, Argentina, 2001.

[14] K. Schneider, J-P. von Hunnius, V.R. Basili,
“Experience in Implementing a Learning Software
Organization”, IEEE Software, pp46-49, May/June 2002.

	1. Introduction
	2. Process Improvement Efforts in CDSV
	3. Knowledge Management and Software Process Improvement
	4. ProKnowHow: A KM-based Tool for Supporting Software Process Improvement
	4.1. Organizational Memory
	4.2. Knowledge Management Services of ProKnowHow
	4.3. Organizational Software Process Tailoring and Project Estimation in ProKnowHow

	5. Related Work
	6. Conclusions and Future Work
	7. Acknowledgments
	8. References

