
adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

Using a Well-Founded Multi-Level Theory to Support the

Analysis and Representation of the

Powertype Pattern in Conceptual Modeling

Victorio Albani Carvalho1,2, João Paulo A. Almeida1, and Giancarlo Guizzardi1

1Ontology & Conceptual Modeling Research Group (NEMO)

Federal University of Espírito Santo (UFES), Vitória, ES, Brazil
2Federal Institute of Espírito Santo (IFES), Colatina, ES, Brazil

victorio@ifes.edu.br; jpalmeida@ieee.org; gguizzardi@inf.ufes.br

Abstract. Multi-level conceptual modeling addresses the representation of sub-

ject domains dealing with multiple classification levels. In such domains, the

occurrence of situations in which instances of a type are specializations of an-

other type is recurrent. This recurrent phenomenon is known in the conceptual

modeling community as the powertype pattern. The relevance of the powertype

pattern has led to its adoption in many important modeling initiatives, including

the UML. To address the challenge of multi-level modeling, we have proposed

an axiomatic well-founded theory called MLT. In this paper, we demonstrate

how MLT can be used as a reference theory for capturing a number of nuances

related to the modeling of the powertype pattern in conceptual modeling. More-

over, we show how this theory can be used to analyze, expose limitations and

redesign the UML support for modeling this pattern.

Keywords: conceptual modeling, multi-level modeling, powertype, UML.

1 Introduction

Three fundamental quality attributes that must be reinforced in all conceptual model-

ing languages are expressivity, clarity and parsimony [1]. The first refers to the ability

of the language to capture all relevant aspects of the phenomena in reality it purports

to represent; the second to how easy it is for the language users to unambiguously

recognize which aspects of the underlying phenomena are represented; the third to

how economic a language is in not forcing the modeler to represent more than it is

necessary for a problem at hand. There is now a long tradition in conceptual modeling

of using Reference Theories to evaluate and (re) design conceptual modeling lan-

guages according to these quality attributes [2]. Examples of fundamental conceptual

modeling constructs that have been analyzed and re-designed following this strategy

include types and taxonomic structures, part-whole relations, intrinsic and relational

properties, roles, etc. [3]. In this paper, we address a fundamental conceptual model-

ing notion, which is recurrent in a multitude of application domains, namely, the no-

tion of multi-level classification.

In several subject domains, the categorization scheme itself is part of the subject

matter. In these subject domains, experts make use of categories of categories in their

accounts. For instance, to describe the conceptualization underlying the software de-

velopment domain, one needs to represent entities of different (but nonetheless relat-

ed) classification levels, such as tasks (i.e., specific events occurring in time and

space), types of tasks, and types of types of tasks. Other examples of multiple classifi-

cation levels come from domains such as biological taxonomy [4] and product types

[5]. The need to support the representation of subject domains dealing with multiple

classification levels has given rise to what has been referred to as multi-level model-

ing [5, 6]. Techniques for multi-level conceptual modeling must provide modeling

concepts to deal with types in various classification levels and the relations that may

occur between those types. The interest in multi-level modeling has led to a number

of research initiatives in this subject (e.g. [5, 6, 7, 8, 9]).

In this paper, we address an early and important approach for multi-level modeling

named the powertype pattern [8, 9]. This pattern is manifested when we have a case

in which the instances of a type (the so-called “powertype”) are specializations of a

lower-level type (the so-called “base type”). Take, for instance, the case in which we

want to express that the instances of the powertype Bird Species are types that spe-

cialize the base type Bird, including the particular subtypes of bird Golden Eagle and

Emperor Penguin. The powertype pattern is extensively used in many important

modeling initiatives. An example is the ISO/IEC 24744 standard [10]. Moreover, this

pattern can regularly be found in many catalogues of modeling best practices, in

which it appears as an ingredient of other patterns (see, for instance, [11]). Finally, the

relevance of this pattern has led to its adoption in the current version of the Unified

Modeling Language (UML) [12], which allows modelers to specify a powertype in

the context of a “generalization set”.

Despite its intuitive characterization, there are many important and subtle aspects

of the relation between the “powertype” and “base type” in the powertype pattern that

are often neglected. For instance, when stating that the instances of Bird Species are

subtypes of Bird, do we mean that all subtypes of Bird are instances of Bird Species?

Do we mean that only subtypes of Bird are instances of Bird Species? Both? Moreo-

ver, if the powertype can have as instances the subtypes of the base type then it fol-

lows that the instances of the base type can be instances of instances of the

powertype. But does that mean, for example, that all instances of Bird must be in-

stances of at least one instance of Bird Species? Does that mean that the instances of

Bird cannot be instances of more than one instance of Bird Species? Both?

In order to explore the semantic issues involving the powertype pattern, we em-

ploy here a multi-level modeling theory called MLT, which we have proposed origi-

nally in [13]. MLT is a formal axiomatic theory founded on the notion of (ontologi-

cal) instantiation and is able to: (i) clarify and position conflicting definitions of

powertype in the literature; and, (ii) enrich the expressivity of multi-level modeling

primitives, by defining new structural relations for variants of the powertype pattern.

So far, we have used MLT in order to provide conceptual foundations for dealing with

types at different levels of classification in core [14] and foundational ontologies [15].

Here we apply MLT to analyze the UML support for modeling the powertype pattern.

UML is a de facto standard for conceptual modeling and information systems en-

gineering. Moreover, it is the basis for ontology-driven conceptual modeling lan-

guages such as OntoUML [3], which in the past years have gained increasing adop-

tion in the conceptual modeling and ontology engineering communities [16]. For this

reason, we believe that providing precise and unambiguous semantics and advancing

the UML support for modeling powertypes amounts to an important contribution for

conceptual modeling, in general, and for ontology-driven conceptual modeling and

ontology engineering, in particular.

By using MLT as a well-founded reference theory, we analyze and expose a num-

ber of limitations in the existing UML support for modeling the powertype pattern. In

particular, we demonstrate that this support: (i) lacks expressivity, for example, for

representing different definitions of powertype that exist in the literature [8, 9], each

of which has relevant applications; (ii) that it lacks clarity, for example, because it

confounds constraints that apply to powertype instantiation with those that apply to

corresponding generalization sets; (iii) that it lacks parsimony, for example, because it

forces the modeler to explicitly represent at least one instance of each powertype. By

employing the results of this analysis, we propose a UML profile for addressing the

exposed limitations. We use the distinctions put forth by MLT to devise this profile

and we use the formal rules inherent to MLT to guide the development of the profile’s

syntactic constraints.

The remainder of this paper is structured as follows: section 2 reviews briefly the

MLT multi-level theory; section 3 discusses UML’s current support for powertypes,

revealing its limitations in light of MLT; section 4 presents our proposal to extend a

fragment of UML reflecting the rules of MLT; section 5 discusses related work and

section 6 presents concluding remarks.

2 MLT: A Theory for Multi-Level Modeling

MLT is formally defined using first-order logic, quantifying over all possible entities

(individuals and types). According to MLT, types are predicative entities that can

possibly be applied to a multitude of entities (e.g. Person, Car, Student). If a type t

applies to an entity e then it is said that e is an instance of t. In contrast, particular

entities, that have no instances, are considered individuals (e.g. John, Lassie, my car).

The instance of relation is represented in this formal theory by a binary predicate

iof(e,t) that holds if an entity e is instance of an entity t (denoting a type). MLT admits

types having individuals as instances as well as types that have other types as instanc-

es. In order to accommodate these varieties of types, the notion of type order is used.

Types having individuals as instances are called first-order types, types whose in-

stances are first-order types are second-order types and so on.

The logic constant “Individual” is used to define the conditions for entities to be

considered individuals: an entity is an instance of “Individual” iff it does not have

any possible instance (Axiom A1 in Table 1). The constant “First-Order Type” (or

shortly “1stOT”) characterizes the type that applies to all entities whose instances are

instances of “Individual” (A2 in Table 1). Analogously, each entity whose possible

extension contains exclusively instances of “1stOT” is an instance of “Second-Order

Type” (or shortly “2ndOT”) (A3 in Table 1).

It follows from axioms A1, A2 and A3 that “Individual” is instance of “1stOT”

which, in turn, is instance of “2ndOT”. We call “Individual”, “1stOT” and “2ndOT”

the basic types of MLT. According to MLT, every possible entity must be instance of

exactly one of its basic types (except the topmost type) (A4 in Table 1). For our pur-

poses in this paper, first- and second-order types are enough. However, this scheme

can be extended to consider as many orders as necessary [13].

Some structural relations to support conceptual modeling are defined in MLT. Ac-

cording to MLT, a type t specializes another type t’ iff all instances of t are also in-

stances of t’ (see definition D1 in Table 1). Since the reflexivity of the specialization

relation may be undesired in some contexts, we define in MLT the proper specializa-

tion relation as follows: t proper specializes t’ iff t specializes t’ and t is different from

t’ (see D2 in Table 1). The definitions presented thus far guarantee that both speciali-

zations and proper specializations may only hold between types of the same order.

From the axioms and definitions presented so far one can conclude that every type

that is not one of MLT’s basic types (e.g., a domain type) is an instance of one of the

basic higher-order types (e.g., “1stOT”, “2ndOT”), and, at the same time proper spe-

cializes the basic type at the immediately lower level (respectively, “Individual” and

“1stOT”) [13]. For example, consider a type “Person” that applies to all human be-

ings. Since “Person” applies to individuals, it is an instance of “1stOT” and proper

specializes “Individual”. Further, consider a type named “Person Age Phase” whose

instances are specializations of “Person” (thus, instances of “1stOT”) that classify

persons according to their age (e.g. “Child” and “Adult”). Thus, “Person Age Phase”

is instance of “2ndOT” and proper specializes “1stOT”.

MLT also defines relations that occur between types of adjacent orders, the so-

called cross-level structural relations. These relations support an analysis of the no-

tions of powertype in the literature.

One prominent notion of powertype was proposed by Cardelli [9]. According to

Cardelli, the same way specializations are intuitively analogous to subsets,

powertypes are intuitively analogous to powersets: “if A is a type, then Power(A) is

Table 1. MLT Axioms

A1 ∀𝑥 iof(𝑥, Individual) ↔ ¬∃𝑦 iof(𝑦, 𝑥)

A2 ∀𝑡 iof(𝑡, 1stOT) ↔ (∃𝑦 iof(𝑦, 𝑡) ∧ (∀𝑥 iof(𝑥, 𝑡) → iof(𝑥, Individual)))

A3 ∀𝑡 iof(𝑡, 2ndOT) ↔ (∃𝑦 iof(𝑦, t) ∧ (∀𝑡′iof(𝑡′, 𝑡) → iof(𝑡′, 1stOT)))

A4 ∀𝑥 (iof(𝑥, Individual) ∨ iof(𝑥, 1stOT) ∨ iof(𝑥, 2ndOT)) ∨ (𝑥 = 2ndOT)

D1 ∀𝑡, 𝑡′ specializes(𝑡, 𝑡′) ↔ (∃𝑥 iof(𝑥, 𝑡) ∧ ∃𝑦 iof(𝑦, 𝑡′) ∧ (∀𝑒 iof(𝑒, 𝑡) → iof(𝑒, 𝑡′)))

D2 ∀𝑡, 𝑡′ properSpecializes(𝑡, 𝑡′) ↔ (specializes(𝑡, 𝑡′) ∧ 𝑡 ≠ 𝑡′)

D3 ∀𝑡, 𝑡′ isPowertypeOf(𝑡, 𝑡′) ↔ (∃𝑥 iof(𝑥, 𝑡) ∧ (∀𝑡′′ iof(𝑡′′, 𝑡) ↔ specializes(𝑡′′, 𝑡)))

D4 ∀𝑡, 𝑡′characterizes (𝑡, 𝑡′) ↔ (∃𝑥 iof(𝑥, 𝑡) ∧ (∀𝑡′′ iof(𝑡′′, 𝑡) → properSpecializes(𝑡′′, 𝑡′)))

D5
∀𝑡, 𝑡′completelyCharacterizes(𝑡, 𝑡′) ↔ (characterizes(𝑡, 𝑡′) ∧
 (∀e iof(𝑒, 𝑡′) → ∃𝑡′′ (iof(𝑒, 𝑡′′) ∧ iof(𝑡′′, 𝑡))))

D6
∀𝑡, 𝑡′disjointlyCharacterizes (𝑡, 𝑡′) ↔ (characterizes(𝑡, 𝑡′) ∧
 (∀𝑒, 𝑡′′, 𝑡′′′ (iof(𝑡′′, 𝑡) ∧ iof(𝑡′′′, 𝑡) ∧ iof(𝑒, 𝑡′′) ∧ iof(𝑒, 𝑡′′′)) → 𝑡′′ = 𝑡′′′))

D7 ∀𝑡, 𝑡′partitions(𝑡, 𝑡′) ↔ (completelyCharacterizes(𝑡, 𝑡′) ∧ disjointlyCharacterizes(𝑡, 𝑡′))

the type whose elements are all the subtypes of A (including A)” [9]. Based on this

notion, MLT defines a powertype relation between a higher-order type and a base

type at a lower order as follows: a type t is powertype of a base type t’ iff all instances

of t specialize t’ and all possible specializations of t’ are instances of t (see D3). For

example, consider a type called “Person Type” such that all possible specializations of

“Person” are instances of it and, conversely, all its instances specialize “Person”. In

this case, “Person Type” is the powertype of “Person”. Since “Person” is instance of

“1stOT”, “Person Type” is instance of “2ndOT” and specializes “1stOT”. Note that it

follows from the definition of powertype that “1stOT” is powertype of “Individual”.

Analogously, “2ndOT” is powertype of “1stOT”, and so on. In other words, the notion

of orders or levels in MLT can be seen as a result of the iterated application of

Cardelli’s notion of powertype to the basic types of MLT.

An important variant of the notion of powertype was discussed by Odell [8]. Odell

defined powertype simply as a type whose instances are subtypes of another type (the

base type), excluding the base type from the set of instances of the powertype. Based

on Odell’s definition for powertypes [8], MLT defines the characterization relation

between types of adjacent levels: a type t characterizes a type t’ iff all instances of t

are proper specializations of t’ (definition D4). The characterization relation occurs

between a higher-order type t and a base type t’ when the instances of t specialize t’

according to a specific classification criteria. Thus, differently from the cases involv-

ing (Cardelli’s) is powertype of, there may be specializations of the base type t’ that

are not instances of t. For example, we may define a type named “Person Role” (with

instances “Employee” and “Client”) that characterizes “Person”, but is not a

powertype of “Person” since there are specializations of “Person” that are not instanc-

es of “Person Role” (e.g. “Child” and “Adult”).

Finally, MLT defines some refinements of the cross-level relation of characteriza-

tion, which are useful to capture further constraints in multi-level models. We consid-

er that a type t completely characterizes t’ iff t characterizes t’ and every instance of t’

is instance of, at least, an instance of t (D5). Moreover, iff t characterizes t’ and every

instance of t’ is instance of, at most, one instance of t it is said that t disjointly charac-

terizes t’ (D6). Finally, a common use for the notion of powertype in literature con-

siders a second-order type that, simultaneously, completely and disjointly characteriz-

es a first-order type. To capture this notion MLT defines the partitions relation. Thus,

t partitions t’ iff each instance of the base type t’ is an instance of exactly one instance

of t (D7). For example, we may consider a second-order type “Person Age Phase”

(with instances “Child”, “Adult” and “Elderly”) that partitions “Person”. A complete

formalization of MLT in first-order logic can be found in [13].

3 UML’s Powertype Pattern Support in a Nutshell

The notion of generalization set is central to the UML’s powertype pattern support.

According to the UML 2.4.1 specification [12] each generalization set contains a

particular set of generalizations that collectively describe the way a specific classifier

(a class) is specialized into subclasses. To provide support to the powertype pattern,

UML includes in its “powertypes” package a meta-association that relates a classifier

(the so-called “powertype”) to a generalization set that is composed by the generaliza-

tions that occur between the base classifier and the instances of the powertype [12].

The relation between the powertype and the generalization set is represented in the

UML notation by placing the name of the classifier next to the generalization set pre-

ceded by a colon. For example, in Fig. 1 three specializations of “Tree” are defined,

namely “Elm”, “Apricot” and “Saguaro”. The text “:Tree Species” denotes that the

three subtypes enumerated in the generalization set are instances of “Tree Species”

and that “Tree Species” is the “powertype” of the generalization set. Note that the

term “powertype” as used in UML does not correspond to the notion of “powertype”

as proposed by Cardelli. (This issue is discussed in section 4.) The “disjoint” con-

straint means that the subtypes have no instances in common while the “incomplete”

constraint means that there are instances of “Tree” that are not instances of “Elm”,

“Apricot” and “Saguaro”. The relation between the powertype (e.g. “Tree Species”)

and the base type (e.g. “Tree”) may be represented using a regular association with no

special syntax and semantics.

Fig. 1. The UML notation for the powertype pattern (adapted from [12]).

A key observation is that for a classifier to be considered a “powertype” in UML, it

must be related to a generalization set. Thus, in UML, the powertype pattern can only

be applied when specializations of the base type are explicitly modeled (otherwise

there would be no generalization set). We consider this undesirable as it rules out

simple models such as one defining “Tree Species” as a “powertype” of “Tree”, with-

out forcing the modeler to define specific instances for “Tree Species”.

Furthermore, the only syntactic constraint defined in UML concerning powertypes

is that “the classifier that maps to a generalization set may neither be a specific nor a

general classifier in any of the generalization relationships defined for that generaliza-

tion set” [12]. While this rule prevents the powertype from being involved in the gen-

eralization set defined to represent its own relation with the base type, this constraint

is insufficient to rule out scenarios in which the powertype is incorrectly related by

generalization with types of any other levels.

4 Applying MLT to Revisit the Powertype Support in UML

The application of MLT to revise the powertype support in UML leads to the formu-

lation of modeling recommendations to ensure: (i) a precise interpretation for the

UML constructs used to express the powertype pattern, (ii) a comprehensive support

for the powertype pattern including its variants in the literature, and; (iii) a number of

syntactic rules to prevent the construction of inconsistent models.

First of all, we should observe that the UML specification is silent with respect to

whether Cardelli’s notion of powertype can be adopted. However, given that a gener-

alization set can be said to define the classification criteria used to specialize the

general type, the UML notion of powertype seems to correspond to the characteriza-

tion relation in MLT (not to the is powertype of relation), in particular as other gener-

alization sets may co-exist defining other classification criteria for the subtypes. This

interpretation is corroborated by statements in the specification that explain that the

subtypes of a basetype are the instances of the “powertype” (excluding the basetype

itself).

Our first recommendation is to mark the association between the base type and the

higher order type with the «instantiation» stereotype, in order to distinguish it from

other domain relations that do not have an instantiation semantics. An association

stereotyped «instantiation» represents that instances of the target type are instantiated

by instances of the source type and, thus, denote that there is a characterization rela-

tion between the involved types (regardless of possible generalization sets). For ex-

ample, in Fig. 2 an association stereotyped «instantiation» having “Tree” as source

and “Tree Species” as target type is used to represent that instances of “Tree” are

instances of instances of “Tree Species” and, conversely, that instances of “Tree Spe-

cies” have instances of “Tree” as instances. Therefore, in MLT terms, it denotes that

“Tree Species” characterizes “Tree”. Since this modeling structure does not rely on

generalization sets, the modeler is not forced to represent instances of the powertype,

which would have been required in the case of plain UML.

Fig. 2. Illustrating the use of «instantiation».

The multiplicities of the “target” side of an «instantiation» association can be used

to distinguish between the different variations of characterization. Whenever the low-

er bound multiplicity of the target association end is set to one, each instance of the

base type is instance of, at least one instance of the powertype. Thus, the higher order

type completely characterizes the base type. In contrast, if the lower bound multiplici-

ty of the target association end is set to zero, the inferred characterization relation is

not a complete characterization. Analogously, if the upper bound multiplicity of the

target association end is set to one, each instance of the base type is instance of, at

most one instance of the higher order type. Thus, in this case, the higher order type

disjointly characterizes the base type. In contrast, if the upper bound multiplicity of

the target association end is set to many (*), the inferred characterization relation is

not a disjoint characterization.

Table 2 summarizes the suggested interpretation in terms of MLT, considering dif-

ferent combinations of lower and upper bound multiplicities for the target association

end. The combinations of multiplicities of the «instantiation» association with the

values of the related generalization set attributes create additional challenges for mod-

elers using the powertype pattern. These combinations are discussed in each of the

following subsections, in which we expose some semantic issues.

Lower and upper bound multiplicities set to one. When both the lower and the

upper bound multiplicities of an «instantiation» association are set to one, we have

that the powertype simultaneously, completely and disjointly characterizes (i.e. parti-

tions) the base type. For example, according to Fig. 2 “Tree Species” partitions

“Tree” (i.e. each instance of “Tree” is instance of exactly one instance of “Tree Spe-

cies”). If it is used in tandem with a complete generalization set it means that all the

instances of the higher-order type are enumerated in the diagram. For example, the

model in Fig. 3 (a) represents that: (i) every instance of “Person” must be either an

instance of “Man” or an instance of “Woman” and that (ii) “Man” and “Woman” are

the only admissible instances of “Person Gender”.

At a first superficial inspection, one could consider that «instantiation» associa-

tions having the lower bound multiplicity (of the target association end) set to one

could only be combined with a complete generalization set (as in Fig. 3 (a)). Howev-

er, this is not the case because the “complete” constraint represents whether all in-

stances of the supertype are instances of one of the subtypes in the generalization set,

and it is silent with respect to whether the higher-order type completely characterizes

the base type. Thus, a combination of an «instantiation» association having both low-

er and upper multiplicities set to one in a pattern with an incomplete generalization set

is admissible, and would mean that there are instances of the higher-order type that

are not enumerated in the generalization set. For example, Fig. 3 (b) represents that:

(i) each instance of “Tree” is instance of exactly one instance of “Tree Species” (rep-

resented by the «instantiation» association), (ii) “Elm”, “Apricot” and “Saguaro” are

instances of “Tree Species” (see the generalization set name), (iii) there are instances

of “Tree” that are not instances of “Elm”, “Apricot” nor “Saguaro (represented by the

incomplete constraint). Given the semantics of the «instantiation» stereotype in tan-

dem with the semantics of the incomplete generalization set we can infer that (iv)

there are instances of “Tree Species” that are not represented in the diagram.

Fig. 3. Using «instantiation» to denote partitions relations.

Table 2. The influence of the multiplicities in the semantics of «instantiation» associations.

UML Notation Semantics in terms of MLT

disjointlyCharacterizes (H, B) ∧ completelyCharacterizes(H, B)

≡ partitions(𝐻, B)

disjointlyCharacterizes (H, B) ∧ ¬completelyCharacterizes(H, B)

completelyCharacterizes(H, B) ∧ ¬disjointlyCharacterizes (H, B)

characterizes(H, B) ∧

¬completelyCharacterizes(H, B) ∧ ¬disjointlyCharacterizes(H, B)

Since the upper bound multiplicity of an «instantiation» association set to one

means that each instance of the base type is instance of at most one instance of the

higher-order type, a model combining it in a pattern with an overlapping generaliza-

tion set is inconsistent, and thus, deemed syntactically invalid.

Lower bound multiplicity set to zero and upper bound set to one. An association

stereotyped «instantiation» having the lower multiplicity set to zero and the upper

bound multiplicity set to one denotes that the target type disjointly characterizes but

does not completely characterize (in MLT sense) the source type. For example, sup-

pose that an organization defines a type of roles called “Management Role” such that

an employee cannot play more than one role of such type and it is not the case that all

employees play some “Management Role”. This scenario is illustrated in Fig. 4 (a),

showing “Organization President” and “Department Dean” as examples of instances

of “Management Role”. The interpretation of the combination of an «instantiation»

association having zero as the lower bound and one as the upper bound multiplicity

with an incomplete generalization set is more subtle than the cases we have discussed

so far. In order to analyze this combination, we should first note that: (i) there are

instances of “Employee” which are not instances of any instance of “Management

Role” (as a consequence of the semantics of the «instantiation» association); and (ii)

there are instances of “Employee” which are neither “Organization President” nor

“Department Dean” (as a consequence of the semantics of incomplete generalization

sets). The model is still silent with respect to whether all instances of “Management

Role” are enumerated in this generalization set. It is possible that there are no other

instances of “Management Role”, but an interpretation in which there are other man-

agement roles not mentioned in the model (e.g. “Division Head”) is also admissible.

Since an «instantiation» association having zero as the lower bound multiplicity

implies that there are instances of the base type that are not instances of any instance

of the higher-order type, a model combining it in a pattern with a complete generali-

zation set is deemed syntactically invalid. Further, as previously discussed, the com-

bination of an «instantiation» association with upper bound multiplicity set to one in a

pattern with an overlapping generalization set is also deemed syntactically invalid.

Lower bound multiplicity set to one and upper bound set to many. An «instantia-

tion» association having the lower multiplicity set to one and the upper bound multi-

plicity set to “many” (*) denotes that the target type completely characterizes but does

not disjointly characterize (in MLT sense) the source type. For example, suppose that

the rules of an organization define a type of roles called “Business Role” (having

instances as “Programmer”, “DB Designer” and “Sw Designer”) such that every em-

ployee must play one or more roles of such type.

Associations stereotyped «instantiation» with “one” as lower bound multiplicity

and “many” as upper bound multiplicity can be combined with any generalization sets

despite they are complete or incomplete, disjoint or overlapping. However, the gener-

alization sets constraints influence the semantics of the diagrams. For example, in Fig.

4 (b) the generalization set is complete and disjoint meaning each instance of “Em-

ployee” plays exactly one of the represented instances of “Business Role”. Therefore,

since the multiplicities of the «instantiation» association between “Business Role”

and “Employee” denotes that the instances of the former are overlapping, we con-

clude that there are non-represented instances of “Business Role” such that some of

these instances are overlapping between them or some of them are overlapping with

the represented ones. If the generalization set of Fig. 4 (b) were defined incomplete

we could infer that there were non-represented instances of “Business Role” such that

the whole set of instances of “Business Role” classifies all instances of “Employee”

having some overlaps. Finally, considering the hypothesis in which the generalization

set of Fig. 4 (b) were defined complete and overlapping we would have two possible

interpretations: (i) all instances of “Business Role” are represented in the model or (ii)

there are non-represented instances of “Business Role” but the represented ones al-

ready classify all instances of “Employee” having overlaps between them.

Fig. 4. Using «instantiation» with different multiplicities.

Lower bound multiplicity set to zero and upper bound set to many. An «instantia-

tion» association having the lower multiplicity set to zero and the upper bound multi-

plicity set to many (*) denotes that the target type characterizes (in MLT sense) the

source type, however it is neither a complete characterization nor a disjoint charac-

terization. Therefore, there may be instances of the base type that are instances of

more than one instance of the higher-order type and there may be instances of the

base type that are not instances of any instance of the higher-order type. For example,

Fig. 5 (a) consider a second-order type named “Social Role” whose instances repre-

sent roles that instances of “Person” may play in social relations, such as “Client”,

“Employee” and “Husband”. Some instances of “Person” may play more than one

“Social Role” and some other instances may play no social role.

Note that it is not possible to infer whether all instances of “Social Role” are repre-

sented or not in Fig. 5 (a): (i) they may all be enumerated, or (ii) there may be non-

represented instances of “Social Role”. If the generalization set of Fig. 5 (a) were

disjoint, the diagram would still be considered syntactically valid and we could infer

that there were non-represented instances of “Social Role” such that the whole set of

instances of “Social Role” have some overlaps. Finally, if the generalization set of

Fig. 5 (a) were complete, the diagram would be considered syntactically invalid since

the whole set of instances of “Social Role” does not classify all instances of “Person”.

Table 3 summarizes the semantics of the combinations of the multiplicities of «in-

stantiation» associations with the possible constraints of generalization sets, classify-

ing each possible combination as: (i) enumerated if one can infer that all instances of

the higher-order type are represented in the diagram; (ii) non enumerated if one can

infer that there are instances of the higher-order type not represented in the diagram;

(iii) silent: if it is not possible to infer whether the instances of the higher-order type

are enumerated or not; or (iv) invalid if the combination is syntactically invalid.

The «powerType» stereotype. Our second recommendation is to use the

«powerType» stereotype to represent Cardelli’s notion of powertype [9]. If a class

stereotyped «powerType» is the target of an «instantiation» association this means

that this type is powertype of the source type, i.e. the source type and all its specializa-

tions are instances of the target element. For example, in Fig. 5 (b), all types that (di-

rectly or indirectly) specialize “Person” are instances of “Person Type”.

According to Cardelli’s notion of powertype the base type itself is instance of the

higher-order type. Thus, in these cases, the lower bound multiplicity of the «instantia-

tion» association must be set to one and the upper bound to many (*). Moreover,

models in which the «powerType» stereotype is applied to types (classifiers) that are

not target of any «instantiation» association are deemed syntactically invalid.

Another important syntactic constraint involving «powerType» is that, since a

powertype (in MLT) does not define a classification criteria to be applied to instances

of the base type, there should be no generalization set anchored in types stereotyped

«powerType» (i.e. powertype relations do not give rise to generalization sets). For

example, considering the scenario illustrated in Fig. 5 (b), a generalization set named

“:Person Type” is not admissible. However, all subtypes of “Person”, despite the gen-

eralization sets in which they are involved, are instances of “Person Type”. Thus, all

instances of “Person Gender” and “Social Role” are instances of “Person Type”.

Fig. 5. Using «instantiation» (a) with unbounded multiplicities, and (b) with «powerType».

Syntactic constraints motivated by MLT rules. An important aspect of the pro-

posed interpretation is that it allows us to leverage the axioms and theorems of the

MLT formalization in order to guide the modelers in producing sound models. For

instance, given the definition of the is powertype of relation of MLT, a type may not

have more than one powertype and a higher order type may be a powertype of at most

one other type. This suggests a clear syntactic constraint: a class stereotyped

«powerType» can only be target of at most one «instantiation» association and a regu-

lar class can only be the source of at most one «instantiation» association having as

target a class stereotyped «powerType». Further, the MLT theorem stating that if a

Table 3. Analyzing the combination of «instantiation» with generalization set constraints

Association

Multiplicities

Generalization sets constraints

Lower Upper
{disjoint} {overlapping}

{complete} {incomplete} {complete} {incomplete}

1 1 enumerated non enumerated invalid invalid

0 1 invalid silent invalid invalid

1 * non enumerated non enumerated silent non enumerated

0 * invalid non enumerated invalid silent

type t specializes a type t’ then the powertype of t specializes the powertype of t’ may

be used to check the syntax of powertype hierarchies, and to generate the powertypes

hierarchy corresponding to the base types hierarchy. For example, in Fig. 6 (a) the

conjunction of the facts that: (i) “Employee” specializes “Person”, (ii) “Person Type”

is powertype of “Person” and (iii) “Employee Type” is powertype of “Employee”

implies that “Employee Type” must specialize “Person Type”.

Considering the MLT definitions of powertype, characterization and proper spe-

cialization we conclude that if a type t’ is powertype of a type t and a type t’’ charac-

terizes the same base type t then all instances of t’’ are also instances of t’ and, thus,

t’’ proper specializes t’. This theorem also suggests a syntactic constraint. For exam-

ple, in Fig. 6 (a) “Management Role” characterizes “Employee” and specializes

“Employee Type”, whereas “Person Gender” characterizes “Person” and specializes

“Person Type”. In this case, if the modeler fails to include any of the specializations

between the higher-order types, it would be possible to infer them automatically.

Another MLT theorem states that if two types t’ and t’’ both partition the same

type t then it is not possible for t’ to specialize t’’. Again this suggests a clear syntac-

tic constraint. For example, in Fig. 6 (b), “Person Age Phase” partitions “Person”

according to their age having “Child” and “Adult” (and other non-represented types)

as instances. “Person Gender”, in turn, partitions “Person” according to their gender

having “Man” and “Woman” as instances. Thus, to be syntactically valid, the model

may not include a specialization between “Person Age Phase” and “Person Gender”.

Recall that the MLT cross-level relations (characterization and is powertype of)

hold between a higher-order type and another type at one order lower. Thus, if two

types are linked through an «instantiation» association the type at the source associa-

tion end is at an order lower than the one in the target (e.g. in Fig. 6 (b) “Person” is

one order lower than “Person Age Phase”). Hence, cycles of associations stereotyped

«instantiation» are not allowed. For example, suppose A is the target in an «instantia-

tion» association in which B is the source while B is the target in another «instantia-

tion» association in which A is the source. This scenario is absurd since A must be at

one order lower than B and, simultaneously, B must be at one order lower than A.

Fig. 6. Syntactical constraints concerning specializations types and the types order.

Finally, we consider that all higher-order types represented in diagrams must have

cross-level relations with other types. Thus, we can determine the order of a type

considering the «instantiation» associations in which they are involved as target.

Types that are not targets of any «instantiation» association are first-order types (e.g.

“Person”, “Man”, “Woman”, “Adult” and “Child” in Fig. 6 (b)). Types that are target

in «instantiation» associations in which the sources are first-order types are second-

order types (e.g. “Person Gender” and “Person Age Phase” in Fig. 6 (b)), and so on.

The MLT axiom that states that each domain type must be instance of exactly one

MLT basic type (being thus at only one order) can be syntactically verified in our

models. Further, the MLT theorem that specialization relations may only hold be-

tween two types at the same order may also be syntactically verified. For example, in

Fig. 6 (b) there may not be specialization relations between a first-order type (i.e.,

“Person”, “Man”, “Woman”, “Adult” or “Child”) and a second-order type (i.e. “Per-

son Gender” or “Person Age Phase”). Otherwise, the model would be considered

syntactically invalid. A prototype plugin for the Visual Paradigm modeling tool that

implements the proposed profile and performs syntactic verification of MLT rules is

available at http://github.com/nemo-ufes/MLT-VP-plugin.

5 Related Work

An early attempt to address multi-level modeling by Odell [8] defined the concept of

powertype informally using regular associations between the powertype and a base

type. This differs from our approach because we use constructs having specialized

semantics to denote the cross-level relations between types defined in MLT. This

allows us to prescribe syntactic rules for the models that use these relations following

the axioms in the formal theory.
Similarly to Odell [8], Gonzalez-Perez and Henderson-Sellers [7] use an associa-

tion labeled “partitions” between a powertype and a base type (called a “partitioned
type” in their terminology). The authors illustrate their technique with a diagram in
which “partitions” is modeled as a many-to-one association between “Task” and
“TaskKind”, meaning that every instance of the partitioned type (“Task”) is linked to
exactly one instance of the powertype (“TaskKind”). In the sequel, they discuss that
the “partitions association possesses instantiation semantics”, and that, because of this,
“Task” is a special instance of “TaskKind” (the most generic kind of task). However, if
“Task” itself is an instance of “TaskKind”, then the lower bound multiplicity of the
“partitions” association in the “TaskKind” end cannot be one. This is because all in-
stances of subtypes of “Task” are also instances of “Task”, and thus instances of at
least two “TaskKinds” (one which is “Task” itself). This is an example of a mistake,
which could be avoided with a richer language support for the powertype pattern and
its variants, as we propose here.

The concept of powertype is founded on the notion that “instances of types can also
be types” [8]. Motivated by a similar observation, Atkinson and Kühne [17] defined
the notion of clabject, which is valuable to our approach. They discuss that every in-
stantiable entity has both a type (or class) facet and an instance (or object) facet. In our
approach, instances of higher-order types may be considered clabjects. For instance,
considering the previous example all instances of “TaskKind” as well as all instances
of “TaskPowertype” have their own instances being, thus, clabjects.

Atkinson and Kühne have also proposed a deep instantiation based approach [6],
[19] as a means to provide for multiple levels of classification whereby an element at
some level can describe features of elements at each level beneath that level. The au-
thors consider the main benefit of deep instantiation is to support multi-level modeling

without the need of introducing the required base type in the powertype pattern, which
they consider superfluous [19]. For example, using this approach it is possible to define
mobile phone models, such as “IPhone6” and “GalaxyS6”, omitting the notion of
“Mobile Phone” from the domain model. Important consequences of omitting base
types are that the modeler become unable to express whether the instances of a higher-
order type (mobile phone model in this example) are disjoint and/or covering types and
we are also prevented from determining metaproperties (such as e.g., rigidity) of the
base type (mobile phone in this case). It is worth noticing that the deep instantiation
approach allows the modeler to represent the base type if it is deemed desirable. How-
ever, if the modeler decides to represent the base type, the approach does not provide
constructs to represent the relation between it and the higher-order type, not distin-
guishing thus between the different possible kinds of cross-level relations. As a conse-
quence, the approach does not provide mechanisms to check if the rules concerning
these relations are respected, e.g., to guarantee that all instances of the higher-order
type (“Mobile Phone Model”) specialize the base type (“Mobile Phone”).

Telos [20] is a knowledge representation language that supports the representation
of types having other types as instances (i.e. clabjects). Roughly 30 axioms are defined
to formalize Telos’ principles for instantiation, specialization, object naming and at-
tribute definition [20]. Although it supports multi-level modeling through its notion of
type, it does not elaborate on the nature of cross-level relations between higher-order
types and base types. Further, it does not employ systematically the powertype pattern,
although we consider it would be possible to extend the Telos built-in support by using
its features of user-defined constraints and rules to formally define the cross-level
structural relations proposed in MLT.

6 Final Considerations

In this paper, we have addressed multi-level modeling from the perspective of the
powertype pattern. We have used a well-founded reference theory to support the analy-
sis and revision of the powertype support, demonstrating that the current support lacks
expressivity, clarity, and parsimony. By employing the result of this analysis, we pro-
pose a UML extension to address the exposed limitations. We use the formal rules of
MLT to systematically incorporate syntactic constraints in the profile thus guiding the
modeler to produce sound multi-level models. Our approach is able to distinguish
properties of the relation between higher-order and base types that cannot be expressed
in UML and that are required to represent multi-level classification schemes.

In [3], one of us has evaluated a fragment of UML at light of the Unified Founda-

tional Ontology (UFO). Based on this analysis, a UML extension for the purposes of

conceptual modeling (dubbed OntoUML) has been proposed. The ontology was used

as a theory to inform the definition of a profile with syntactic constraints that reflect

the UFO axioms. In this paper, we have applied a similar approach to extend UML

class diagrams using MLT as a theory to incorporate distinctions and constraints for

multi-level modeling. In [15], we have already combined MLT and UFO in order to

leverage both benefits of the foundational ontology and the multi-level modeling the-

ory. A natural extension of this work is to enrich OntoUML with the support for the

powertype pattern as discussed here. Finally, we aim at applying MLT to analyze and

enrich the semantics of the so-called deep modeling approaches [5, 19].

Acknowledgments. This research is funded by the Brazilian Research Funding
Agencies CNPq (grants number 311313/2014-0, 485368/2013-7, 312158/2015-7 and
461777/2014-2) and CAPES. The authors would like to thank Claudenir M. Fonseca
for implementing the Visual Paradigm plugin for the UML profile presented here.

References

1. Halpin, T., Morgan, T.: Information Modeling and Relational Databases. Morgan Kauf-

mann, San Francisco (2008)

2. Recker, J., Rosemann, M., Green, P., Indulska, M.: Do Ontological Deficiencies in Model-

ing Grammars Matter?. MIS Quarterly, Vol. 35, No. 1, 57-79 (2011)

3. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. University of

Twente, Enschede, The Netherlands (2005)

4. Mayr, E.: The Growth of Biological Thought: Diversity, Evolution, and Inheritance. Belk-

nap Press, Cambridge (1982)

5. Neumayr, B., Grün, K., Schrefl, M.: Multi-level domain modeling with m-objects and m-

relationships. In: Proc. 6th Asia-Pacific Conf. on Conceptual Modeling, p. 107-116 (2009)

6. Atkinson, C., Kühne, T.: The Essence of Multilevel Modeling. In: Proc. Of the 4th Interna-

tional Conference on the Unified Modeling Language, pp. 19-33. Toronto, Canada (2001)

7. Gonzalez-Perez, C., Henderson-Sellers, B.: A powertype-based metamodeling framework.

Software & Systems. Modeling, 5(1), pp. 72-90 (2006)

8. Odell, J.: Powertypes. In: Journal of Object-Oriented Programing, 7(2), pp. 8-12.(1994)

9. Cardelli, L.: Structural Subtyping and the Notion of Powertype. In Proc. Of the 15th ACM

Symposium of Principles of Programming Languages, pp. 70-79 (1988)

10. ISO/IEC.: ISO/IEC 24744: Software Engineering –Metamodel for Development Method-

ologies. ISO, Geneva (2007)

11. Fowler, M.: Analysis Patterns: Reusable Object Models. Addison-Wesley (1997)

12. OMG: UML Superstructure Specification – Version 2.4.1. (2011)

13. Carvalho, V. A., Almeida, J. P. A.: Towards a Well-Founded Theory for Multi-Level Con-

ceptual Modeling. Submitted (2015) available at http://nemo.inf.ufes.br/mlt

14. Carvalho, V. A., Almeida, J. P. A.: A Semantic Foundation for Organizational Structures:

A Multi-level Approach. In: 19th IEEE Intl Enterprise Distributed Object Computing Con-

ference (EDOC 2015), pp. 50-59. Adelaide, Australia (2015).

15. Carvalho, V. A., Almeida, J. P. A., Fonseca, C. M., Guizzardi G.: Extending the Founda-

tions of Ontology-based Conceptual Modeling with a Multi-Level Theory. In: 35th Intl.

Conf. on Conceptual Modeling (ER 2015), pp. 119-133 (2015)

16. Guizzardi, G. et al.: Towards Ontological Foundation for Conceptual Modeling: The Uni-

fied Foundational Ontology (UFO) Story. Applied Ontology, Vol. 10, IOS Press (2015).

17. C Atkinson, C., Kühne, T.: Meta-level Independent Modeling. In: Intl Workshop “Model

Engineering” (in conj. with ECOOP’2000). Cannes, France (2000)

18. Pirotte, A., Zimanyi, E., Massart, D., Yakusheva, T.: Materialization: a powerful and ubiq-

uitous abstraction pattern. In: 20 th Intl. Conf. Very Large DataBases, pp. 630–641 (1994)

19. Atkinson, C., Kühne, T.: Reducing accidental complexity in domain models. Software &

Systems Modeling, 7(3), pp 345-359. Springer-Verlag (2008)

20. Jeusfeld, M. A.: Metamodeling and Method Engineering with ConceptBase. In: Jeusfeld,

M. A., Jarke, M., Mylopoulos, J. (Eds.), Metamodeling for Method Engineering, pp 89-

168. The MIT Press (2009)

http://nemo.inf.ufes.br/mlt

