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Abstract. Multi-level conceptual modeling addresses the representation of sub-

ject domains dealing with multiple classification levels. In such domains, the 

occurrence of situations in which instances of a type are specializations of an-

other type is recurrent. This recurrent phenomenon is known in the conceptual 

modeling community as the powertype pattern. The relevance of the powertype 

pattern has led to its adoption in many important modeling initiatives, including 

the UML. To address the challenge of multi-level modeling, we have proposed 

an axiomatic well-founded theory called MLT. In this paper, we demonstrate 

how MLT can be used as a reference theory for capturing a number of nuances 

related to the modeling of the powertype pattern in conceptual modeling. More-

over, we show how this theory can be used to analyze, expose limitations and 

redesign the UML support for modeling this pattern.  
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1 Introduction 

Three fundamental quality attributes that must be reinforced in all conceptual model-

ing languages are expressivity, clarity and parsimony [1]. The first refers to the ability 

of the language to capture all relevant aspects of the phenomena in reality it purports 

to represent; the second to how easy it is for the language users to unambiguously 

recognize which aspects of the underlying phenomena are represented; the third to 

how economic a language is in not forcing the modeler to represent more than it is 

necessary for a problem at hand. There is now a long tradition in conceptual modeling 

of using Reference Theories to evaluate and (re) design conceptual modeling lan-

guages according to these quality attributes [2]. Examples of fundamental conceptual 

modeling constructs that have been analyzed and re-designed following this strategy 

include types and taxonomic structures, part-whole relations, intrinsic and relational 

properties, roles, etc. [3]. In this paper, we address a fundamental conceptual model-

ing notion, which is recurrent in a multitude of application domains, namely, the no-

tion of multi-level classification.  



In several subject domains, the categorization scheme itself is part of the subject 

matter. In these subject domains, experts make use of categories of categories in their 

accounts. For instance, to describe the conceptualization underlying the software de-

velopment domain, one needs to represent entities of different (but nonetheless relat-

ed) classification levels, such as tasks (i.e., specific events occurring in time and 

space), types of tasks, and types of types of tasks. Other examples of multiple classifi-

cation levels come from domains such as biological taxonomy [4] and product types 

[5]. The need to support the representation of subject domains dealing with multiple 

classification levels has given rise to what has been referred to as multi-level model-

ing [5, 6]. Techniques for multi-level conceptual modeling must provide modeling 

concepts to deal with types in various classification levels and the relations that may 

occur between those types. The interest in multi-level modeling has led to a number 

of research initiatives in this subject (e.g. [5, 6, 7, 8, 9]).  

In this paper, we address an early and important approach for multi-level modeling 

named the powertype pattern [8, 9]. This pattern is manifested when we have a case 

in which the instances of a type (the so-called “powertype”) are specializations of a 

lower-level type (the so-called “base type”). Take, for instance, the case in which we 

want to express that the instances of the powertype Bird Species are types that spe-

cialize the base type Bird, including the particular subtypes of bird Golden Eagle and 

Emperor Penguin. The powertype pattern is extensively used in many important 

modeling initiatives. An example is the ISO/IEC 24744 standard [10]. Moreover, this 

pattern can regularly be found in many catalogues of modeling best practices, in 

which it appears as an ingredient of other patterns (see, for instance, [11]). Finally, the 

relevance of this pattern has led to its adoption in the current version of the Unified 

Modeling Language (UML) [12], which allows modelers to specify a powertype in 

the context of a “generalization set”. 

Despite its intuitive characterization, there are many important and subtle aspects 

of the relation between the “powertype” and “base type” in the powertype pattern that 

are often neglected. For instance, when stating that the instances of Bird Species are 

subtypes of Bird, do we mean that all subtypes of Bird are instances of Bird Species? 

Do we mean that only subtypes of Bird are instances of Bird Species? Both? Moreo-

ver, if the powertype can have as instances the subtypes of the base type then it fol-

lows that the instances of the base type can be instances of instances of the 

powertype. But does that mean, for example, that all instances of Bird must be in-

stances of at least one instance of Bird Species? Does that mean that the instances of 

Bird cannot be instances of more than one instance of Bird Species? Both?  

In order to explore the semantic issues involving the powertype pattern, we em-

ploy here a multi-level modeling theory called MLT, which we have proposed origi-

nally in [13]. MLT is a formal axiomatic theory founded on the notion of (ontologi-

cal) instantiation and is able to: (i) clarify and position conflicting definitions of 

powertype in the literature; and, (ii) enrich the expressivity of multi-level modeling 

primitives, by defining new structural relations for variants of the powertype pattern. 

So far, we have used MLT in order to provide conceptual foundations for dealing with 

types at different levels of classification in core [14] and foundational ontologies [15]. 

Here we apply MLT to analyze the UML support for modeling the powertype pattern. 



UML is a de facto standard for conceptual modeling and information systems en-

gineering. Moreover, it is the basis for ontology-driven conceptual modeling lan-

guages such as OntoUML [3], which in the past years have gained increasing adop-

tion in the conceptual modeling and ontology engineering communities [16]. For this 

reason, we believe that providing precise and unambiguous semantics and advancing 

the UML support for modeling powertypes amounts to an important contribution for 

conceptual modeling, in general, and for ontology-driven conceptual modeling and 

ontology engineering, in particular. 

By using MLT as a well-founded reference theory, we analyze and expose a num-

ber of limitations in the existing UML support for modeling the powertype pattern. In 

particular, we demonstrate that this support: (i) lacks expressivity, for example, for 

representing different definitions of powertype that exist in the literature [8, 9], each 

of which has relevant applications; (ii) that it lacks clarity, for example, because it 

confounds constraints that apply to powertype instantiation with those that apply to 

corresponding generalization sets; (iii) that it lacks parsimony, for example, because it 

forces the modeler to explicitly represent at least one instance of each powertype. By 

employing the results of this analysis, we propose a UML profile for addressing the 

exposed limitations. We use the distinctions put forth by MLT to devise this profile 

and we use the formal rules inherent to MLT to guide the development of the profile’s 

syntactic constraints. 

The remainder of this paper is structured as follows: section 2 reviews briefly the 

MLT multi-level theory; section 3 discusses UML’s current support for powertypes, 

revealing its limitations in light of MLT; section 4 presents our proposal to extend a 

fragment of UML reflecting the rules of MLT; section 5 discusses related work and 

section 6 presents concluding remarks. 

2 MLT: A Theory for Multi-Level Modeling 

MLT is formally defined using first-order logic, quantifying over all possible entities 

(individuals and types). According to MLT, types are predicative entities that can 

possibly be applied to a multitude of entities (e.g. Person, Car, Student). If a type t 

applies to an entity e then it is said that e is an instance of t. In contrast, particular 

entities, that have no instances, are considered individuals (e.g. John, Lassie, my car).  

The instance of relation is represented in this formal theory by a binary predicate 

iof(e,t) that holds if an entity e is instance of an entity t (denoting a type). MLT admits 

types having individuals as instances as well as types that have other types as instanc-

es. In order to accommodate these varieties of types, the notion of type order is used. 

Types having individuals as instances are called first-order types, types whose in-

stances are first-order types are second-order types and so on. 

The logic constant “Individual” is used to define the conditions for entities to be 

considered individuals: an entity is an instance of “Individual” iff it does not have 

any possible instance (Axiom A1 in Table 1). The constant “First-Order Type” (or 

shortly “1stOT”) characterizes the type that applies to all entities whose instances are 

instances of “Individual” (A2 in Table 1). Analogously, each entity whose possible 



extension contains exclusively instances of “1stOT” is an instance of “Second-Order 

Type” (or shortly “2ndOT”) (A3 in Table 1).  

It follows from axioms A1, A2 and A3 that “Individual” is instance of “1stOT” 

which, in turn, is instance of “2ndOT”. We call “Individual”, “1stOT” and “2ndOT” 

the basic types of MLT. According to MLT, every possible entity must be instance of 

exactly one of its basic types (except the topmost type) (A4 in Table 1). For our pur-

poses in this paper, first- and second-order types are enough. However, this scheme 

can be extended to consider as many orders as necessary [13].  

Some structural relations to support conceptual modeling are defined in MLT. Ac-

cording to MLT, a type t specializes another type t’ iff all instances of t are also in-

stances of t’ (see definition D1 in Table 1). Since the reflexivity of the specialization 

relation may be undesired in some contexts, we define in MLT the proper specializa-

tion relation as follows: t proper specializes t’ iff t specializes t’ and t is different from 

t’ (see D2 in Table 1). The definitions presented thus far guarantee that both speciali-

zations and proper specializations may only hold between types of the same order. 

From the axioms and definitions presented so far one can conclude that every type 

that is not one of MLT’s basic types (e.g., a domain type) is an instance of one of the 

basic higher-order types (e.g., “1stOT”, “2ndOT”), and, at the same time proper spe-

cializes the basic type at the immediately lower level (respectively, “Individual” and 

“1stOT”) [13]. For example, consider a type “Person” that applies to all human be-

ings. Since “Person” applies to individuals, it is an instance of “1stOT” and proper 

specializes “Individual”. Further, consider a type named “Person Age Phase” whose 

instances are specializations of “Person” (thus, instances of “1stOT”) that classify 

persons according to their age (e.g. “Child” and “Adult”). Thus, “Person Age Phase” 

is instance of “2ndOT” and proper specializes “1stOT”. 

MLT also defines relations that occur between types of adjacent orders, the so-

called cross-level structural relations. These relations support an analysis of the no-

tions of powertype in the literature.  

One prominent notion of powertype was proposed by Cardelli [9]. According to 

Cardelli, the same way specializations are intuitively analogous to subsets, 

powertypes are intuitively analogous to powersets: “if A is a type, then Power(A) is 

Table 1. MLT Axioms 

A1 ∀𝑥 iof(𝑥, Individual) ↔ ¬∃𝑦 iof(𝑦, 𝑥) 

A2 ∀𝑡 iof(𝑡, 1stOT) ↔ (∃𝑦 iof(𝑦, 𝑡) ∧ (∀𝑥 iof(𝑥, 𝑡) → iof(𝑥, Individual))) 

A3 ∀𝑡 iof(𝑡, 2ndOT) ↔ (∃𝑦 iof(𝑦, t) ∧ (∀𝑡′iof(𝑡′, 𝑡) → iof(𝑡′, 1stOT))) 

A4 ∀𝑥 (iof(𝑥, Individual) ∨ iof(𝑥, 1stOT) ∨ iof(𝑥, 2ndOT)) ∨ (𝑥 = 2ndOT) 

D1 ∀𝑡, 𝑡′ specializes(𝑡, 𝑡′) ↔ (∃𝑥 iof(𝑥, 𝑡) ∧ ∃𝑦 iof(𝑦, 𝑡′) ∧ (∀𝑒 iof(𝑒, 𝑡) → iof(𝑒, 𝑡′))) 

D2 ∀𝑡, 𝑡′ properSpecializes(𝑡, 𝑡′) ↔ (specializes(𝑡, 𝑡′) ∧ 𝑡 ≠ 𝑡′)   

D3 ∀𝑡, 𝑡′ isPowertypeOf(𝑡, 𝑡′) ↔ (∃𝑥 iof(𝑥, 𝑡) ∧ (∀𝑡′′ iof(𝑡′′, 𝑡) ↔ specializes(𝑡′′, 𝑡))) 

D4 ∀𝑡, 𝑡′characterizes (𝑡, 𝑡′) ↔ (∃𝑥 iof(𝑥, 𝑡) ∧ (∀𝑡′′ iof(𝑡′′, 𝑡) → properSpecializes(𝑡′′, 𝑡′))) 

D5 
∀𝑡, 𝑡′completelyCharacterizes(𝑡, 𝑡′) ↔ (characterizes(𝑡, 𝑡′) ∧ 
          (∀e iof(𝑒, 𝑡′) → ∃𝑡′′ (iof(𝑒, 𝑡′′) ∧ iof(𝑡′′, 𝑡)))) 

D6 
∀𝑡, 𝑡′disjointlyCharacterizes (𝑡, 𝑡′) ↔ (characterizes(𝑡, 𝑡′) ∧ 
         (∀𝑒, 𝑡′′, 𝑡′′′ (iof(𝑡′′, 𝑡) ∧ iof(𝑡′′′, 𝑡) ∧ iof(𝑒, 𝑡′′) ∧ iof(𝑒, 𝑡′′′)) → 𝑡′′ = 𝑡′′′)) 

D7 ∀𝑡, 𝑡′partitions(𝑡, 𝑡′) ↔ (completelyCharacterizes(𝑡, 𝑡′) ∧ disjointlyCharacterizes(𝑡, 𝑡′)) 

 



the type whose elements are all the subtypes of A (including A)” [9]. Based on this 

notion, MLT defines a powertype relation between a higher-order type and a base 

type at a lower order as follows: a type t is powertype of a base type t’ iff all instances 

of t specialize t’ and all possible specializations of t’ are instances of t (see D3). For 

example, consider a type called “Person Type” such that all possible specializations of 

“Person” are instances of it and, conversely, all its instances specialize “Person”. In 

this case, “Person Type” is the powertype of “Person”. Since “Person” is instance of 

“1stOT”, “Person Type” is instance of “2ndOT” and specializes “1stOT”. Note that it 

follows from the definition of powertype that “1stOT” is powertype of “Individual”. 

Analogously, “2ndOT” is powertype of “1stOT”, and so on. In other words, the notion 

of orders or levels in MLT can be seen as a result of the iterated application of 

Cardelli’s notion of powertype to the basic types of MLT.  

An important variant of the notion of powertype was discussed by Odell [8]. Odell 

defined powertype simply as a type whose instances are subtypes of another type (the 

base type), excluding the base type from the set of instances of the powertype. Based 

on Odell’s definition for powertypes [8], MLT defines the characterization relation 

between types of adjacent levels: a type t characterizes a type t’ iff all instances of t 

are proper specializations of t’ (definition D4). The characterization relation occurs 

between a higher-order type t and a base type t’ when the instances of t specialize t’ 

according to a specific classification criteria. Thus, differently from the cases involv-

ing (Cardelli’s) is powertype of, there may be specializations of the base type t’ that 

are not instances of t. For example, we may define a type named “Person Role” (with 

instances “Employee” and “Client”) that characterizes “Person”, but is not a 

powertype of “Person” since there are specializations of “Person” that are not instanc-

es of “Person Role” (e.g. “Child” and “Adult”). 

Finally, MLT defines some refinements of the cross-level relation of characteriza-

tion, which are useful to capture further constraints in multi-level models. We consid-

er that a type t completely characterizes t’ iff t characterizes t’ and every instance of t’ 

is instance of, at least, an instance of t (D5). Moreover, iff t characterizes t’ and every 

instance of t’ is instance of, at most, one instance of t it is said that t disjointly charac-

terizes t’ (D6). Finally, a common use for the notion of powertype in literature con-

siders a second-order type that, simultaneously, completely and disjointly characteriz-

es a first-order type. To capture this notion MLT defines the partitions relation. Thus, 

t partitions t’ iff each instance of the base type t’ is an instance of exactly one instance 

of t (D7). For example, we may consider a second-order type “Person Age Phase” 

(with instances “Child”, “Adult” and “Elderly”) that partitions “Person”. A complete 

formalization of MLT in first-order logic can be found in [13].  

3 UML’s Powertype Pattern Support in a Nutshell 

The notion of generalization set is central to the UML’s powertype pattern support. 

According to the UML 2.4.1 specification [12] each generalization set contains a 

particular set of generalizations that collectively describe the way a specific classifier 

(a class) is specialized into subclasses. To provide support to the powertype pattern, 



UML includes in its “powertypes” package a meta-association that relates a classifier 

(the so-called “powertype”) to a generalization set that is composed by the generaliza-

tions that occur between the base classifier and the instances of the powertype [12]. 

The relation between the powertype and the generalization set is represented in the 

UML notation by placing the name of the classifier next to the generalization set pre-

ceded by a colon. For example, in Fig. 1 three specializations of “Tree” are defined, 

namely “Elm”, “Apricot” and “Saguaro”. The text “:Tree Species” denotes that the 

three subtypes enumerated in the generalization set are instances of “Tree Species” 

and that “Tree Species” is the “powertype” of the generalization set. Note that the 

term “powertype” as used in UML does not correspond to the notion of “powertype” 

as proposed by Cardelli. (This issue is discussed in section 4.) The “disjoint” con-

straint means that the subtypes have no instances in common while the “incomplete” 

constraint means that there are instances of “Tree” that are not instances of “Elm”, 

“Apricot” and “Saguaro”. The relation between the powertype (e.g. “Tree Species”) 

and the base type (e.g. “Tree”) may be represented using a regular association with no 

special syntax and semantics.  

 

Fig. 1. The UML notation for the powertype pattern (adapted from [12]). 

A key observation is that for a classifier to be considered a “powertype” in UML, it 

must be related to a generalization set. Thus, in UML, the powertype pattern can only 

be applied when specializations of the base type are explicitly modeled (otherwise 

there would be no generalization set). We consider this undesirable as it rules out 

simple models such as one defining “Tree Species” as a “powertype” of “Tree”, with-

out forcing the modeler to define specific instances for “Tree Species”. 

Furthermore, the only syntactic constraint defined in UML concerning powertypes 

is that “the classifier that maps to a generalization set may neither be a specific nor a 

general classifier in any of the generalization relationships defined for that generaliza-

tion set” [12]. While this rule prevents the powertype from being involved in the gen-

eralization set defined to represent its own relation with the base type, this constraint 

is insufficient to rule out scenarios in which the powertype is incorrectly related by 

generalization with types of any other levels.  

4 Applying MLT to Revisit the Powertype Support in UML 

The application of MLT to revise the powertype support in UML leads to the formu-

lation of modeling recommendations to ensure: (i) a precise interpretation for the 

UML constructs used to express the powertype pattern, (ii) a comprehensive support 

for the powertype pattern including its variants in the literature, and; (iii) a number of 

syntactic rules to prevent the construction of inconsistent models.  



First of all, we should observe that the UML specification is silent with respect to 

whether Cardelli’s notion of powertype can be adopted. However, given that a gener-

alization set can be said to define the classification criteria used to specialize the 

general type, the UML notion of powertype seems to correspond to the characteriza-

tion relation in MLT (not to the is powertype of relation), in particular as other gener-

alization sets may co-exist defining other classification criteria for the subtypes. This 

interpretation is corroborated by statements in the specification that explain that the 

subtypes of a basetype are the instances of the “powertype” (excluding the basetype 

itself).  

Our first recommendation is to mark the association between the base type and the 

higher order type with the «instantiation» stereotype, in order to distinguish it from 

other domain relations that do not have an instantiation semantics. An association 

stereotyped «instantiation» represents that instances of the target type are instantiated 

by instances of the source type and, thus, denote that there is a characterization rela-

tion between the involved types (regardless of possible generalization sets). For ex-

ample, in Fig. 2 an association stereotyped «instantiation» having “Tree” as source 

and “Tree Species” as target type is used to represent that instances of “Tree” are 

instances of instances of “Tree Species” and, conversely, that instances of “Tree Spe-

cies” have instances of “Tree” as instances. Therefore, in MLT terms, it denotes that 

“Tree Species” characterizes “Tree”. Since this modeling structure does not rely on 

generalization sets, the modeler is not forced to represent instances of the powertype, 

which would have been required in the case of plain UML.  

 

Fig. 2. Illustrating the use of «instantiation». 

The multiplicities of the “target” side of an «instantiation» association can be used 

to distinguish between the different variations of characterization. Whenever the low-

er bound multiplicity of the target association end is set to one, each instance of the 

base type is instance of, at least one instance of the powertype. Thus, the higher order 

type completely characterizes the base type. In contrast, if the lower bound multiplici-

ty of the target association end is set to zero, the inferred characterization relation is 

not a complete characterization. Analogously, if the upper bound multiplicity of the 

target association end is set to one, each instance of the base type is instance of, at 

most one instance of the higher order type. Thus, in this case, the higher order type 

disjointly characterizes the base type. In contrast, if the upper bound multiplicity of 

the target association end is set to many (*), the inferred characterization relation is 

not a disjoint characterization.  

Table 2 summarizes the suggested interpretation in terms of MLT, considering dif-

ferent combinations of lower and upper bound multiplicities for the target association 

end. The combinations of multiplicities of the «instantiation» association with the 

values of the related generalization set attributes create additional challenges for mod-

elers using the powertype pattern. These combinations are discussed in each of the 

following subsections, in which we expose some semantic issues. 



Lower and upper bound multiplicities set to one. When both the lower and the 

upper bound multiplicities of an «instantiation» association are set to one, we have 

that the powertype simultaneously, completely and disjointly characterizes (i.e. parti-

tions) the base type. For example, according to Fig. 2 “Tree Species” partitions 

“Tree” (i.e. each instance of “Tree” is instance of exactly one instance of “Tree Spe-

cies”). If it is used in tandem with a complete generalization set it means that all the 

instances of the higher-order type are enumerated in the diagram. For example, the 

model in Fig. 3 (a) represents that: (i) every instance of “Person” must be either an 

instance of “Man” or an instance of “Woman” and that (ii) “Man” and “Woman” are 

the only admissible instances of “Person Gender”. 

At a first superficial inspection, one could consider that «instantiation» associa-

tions having the lower bound multiplicity (of the target association end) set to one 

could only be combined with a complete generalization set (as in Fig. 3 (a)). Howev-

er, this is not the case because the “complete” constraint represents whether all in-

stances of the supertype are instances of one of the subtypes in the generalization set, 

and it is silent with respect to whether the higher-order type completely characterizes 

the base type. Thus, a combination of an «instantiation» association having both low-

er and upper multiplicities set to one in a pattern with an incomplete generalization set 

is admissible, and would mean that there are instances of the higher-order type that 

are not enumerated in the generalization set. For example, Fig. 3 (b) represents that: 

(i) each instance of “Tree” is instance of exactly one instance of “Tree Species” (rep-

resented by the «instantiation» association), (ii) “Elm”, “Apricot” and “Saguaro” are 

instances of “Tree Species” (see the generalization set name), (iii) there are instances 

of “Tree” that are not instances of “Elm”, “Apricot” nor “Saguaro (represented by the 

incomplete constraint). Given the semantics of the «instantiation» stereotype in tan-

dem with the semantics of the incomplete generalization set we can infer that (iv) 

there are instances of “Tree Species” that are not represented in the diagram.  

 

Fig. 3. Using «instantiation» to denote partitions relations. 

Table 2. The influence of the multiplicities in the semantics of «instantiation» associations. 

UML Notation Semantics in terms of MLT 

 
disjointlyCharacterizes (H, B) ∧ completelyCharacterizes(H, B) 

≡ partitions(𝐻, B) 

 
disjointlyCharacterizes (H, B) ∧ ¬completelyCharacterizes(H, B) 

 
completelyCharacterizes(H, B) ∧ ¬disjointlyCharacterizes (H, B) 

 
characterizes(H, B) ∧ 

¬completelyCharacterizes(H, B) ∧ ¬disjointlyCharacterizes(H, B)  

 



Since the upper bound multiplicity of an «instantiation» association set to one 

means that each instance of the base type is instance of at most one instance of the 

higher-order type, a model combining it in a pattern with an overlapping generaliza-

tion set is inconsistent, and thus, deemed syntactically invalid.  

Lower bound multiplicity set to zero and upper bound set to one. An association 

stereotyped «instantiation» having the lower multiplicity set to zero and the upper 

bound multiplicity set to one denotes that the target type disjointly characterizes but 

does not completely characterize (in MLT sense) the source type. For example, sup-

pose that an organization defines a type of roles called “Management Role” such that 

an employee cannot play more than one role of such type and it is not the case that all 

employees play some “Management Role”. This scenario is illustrated in Fig. 4 (a), 

showing “Organization President” and “Department Dean” as examples of instances 

of “Management Role”. The interpretation of the combination of an «instantiation» 

association having zero as the lower bound and one as the upper bound multiplicity 

with an incomplete generalization set is more subtle than the cases we have discussed 

so far. In order to analyze this combination, we should first note that: (i) there are 

instances of “Employee” which are not instances of any instance of “Management 

Role” (as a consequence of the semantics of the «instantiation» association); and (ii) 

there are instances of “Employee” which are neither “Organization President” nor 

“Department Dean” (as a consequence of the semantics of incomplete generalization 

sets). The model is still silent with respect to whether all instances of “Management 

Role” are enumerated in this generalization set. It is possible that there are no other 

instances of “Management Role”, but an interpretation in which there are other man-

agement roles not mentioned in the model (e.g. “Division Head”) is also admissible.  

Since an «instantiation» association having zero as the lower bound multiplicity 

implies that there are instances of the base type that are not instances of any instance 

of the higher-order type, a model combining it in a pattern with a complete generali-

zation set is deemed syntactically invalid. Further, as previously discussed, the com-

bination of an «instantiation» association with upper bound multiplicity set to one in a 

pattern with an overlapping generalization set is also deemed syntactically invalid. 

Lower bound multiplicity set to one and upper bound set to many. An «instantia-

tion» association having the lower multiplicity set to one and the upper bound multi-

plicity set to “many” (*) denotes that the target type completely characterizes but does 

not disjointly characterize (in MLT sense) the source type. For example, suppose that 

the rules of an organization define a type of roles called “Business Role” (having 

instances as “Programmer”, “DB Designer” and “Sw Designer”) such that every em-

ployee must play one or more roles of such type.  

Associations stereotyped «instantiation» with “one” as lower bound multiplicity 

and “many” as upper bound multiplicity can be combined with any generalization sets 

despite they are complete or incomplete, disjoint or overlapping. However, the gener-

alization sets constraints influence the semantics of the diagrams. For example, in Fig. 

4 (b) the generalization set is complete and disjoint meaning each instance of “Em-

ployee” plays exactly one of the represented instances of “Business Role”. Therefore, 

since the multiplicities of the «instantiation» association between “Business Role” 



and “Employee” denotes that the instances of the former are overlapping, we con-

clude that there are non-represented instances of “Business Role” such that some of 

these instances are overlapping between them or some of them are overlapping with 

the represented ones. If the generalization set of Fig. 4 (b) were defined incomplete 

we could infer that there were non-represented instances of “Business Role” such that 

the whole set of instances of “Business Role” classifies all instances of “Employee” 

having some overlaps. Finally, considering the hypothesis in which the generalization 

set of Fig. 4 (b) were defined complete and overlapping we would have two possible 

interpretations: (i) all instances of “Business Role” are represented in the model or (ii) 

there are non-represented instances of “Business Role” but the represented ones al-

ready classify all instances of “Employee” having overlaps between them. 

 

Fig. 4. Using «instantiation» with different multiplicities. 

Lower bound multiplicity set to zero and upper bound set to many. An «instantia-

tion» association having the lower multiplicity set to zero and the upper bound multi-

plicity set to many (*) denotes that the target type characterizes (in MLT sense) the 

source type, however it is neither a complete characterization nor a disjoint charac-

terization. Therefore, there may be instances of the base type that are instances of 

more than one instance of the higher-order type and there may be instances of the 

base type that are not instances of any instance of the higher-order type. For example, 

Fig. 5 (a) consider a second-order type named “Social Role” whose instances repre-

sent roles that instances of “Person” may play in social relations, such as “Client”, 

“Employee” and “Husband”. Some instances of “Person” may play more than one 

“Social Role” and some other instances may play no social role. 

Note that it is not possible to infer whether all instances of “Social Role” are repre-

sented or not in Fig. 5 (a): (i) they may all be enumerated, or (ii) there may be non-

represented instances of “Social Role”. If the generalization set of Fig. 5 (a) were 

disjoint, the diagram would still be considered syntactically valid and we could infer 

that there were non-represented instances of “Social Role” such that the whole set of 

instances of “Social Role” have some overlaps. Finally, if the generalization set of 

Fig. 5 (a) were complete, the diagram would be considered syntactically invalid since 

the whole set of instances of “Social Role” does not classify all instances of “Person”.  

Table 3 summarizes the semantics of the combinations of the multiplicities of «in-

stantiation» associations with the possible constraints of generalization sets, classify-

ing each possible combination as: (i) enumerated if one can infer that all instances of 

the higher-order type are represented in the diagram; (ii) non enumerated if one can 

infer that there are instances of the higher-order type not represented in the diagram; 

(iii) silent: if it is not possible to infer whether the instances of the higher-order type 

are enumerated or not; or (iv) invalid if the combination is syntactically invalid. 



The «powerType» stereotype. Our second recommendation is to use the 

«powerType» stereotype to represent Cardelli’s notion of powertype [9]. If a class 

stereotyped «powerType» is the target of an «instantiation» association this means 

that this type is powertype of the source type, i.e. the source type and all its specializa-

tions are instances of the target element. For example, in Fig. 5 (b), all types that (di-

rectly or indirectly) specialize “Person” are instances of “Person Type”. 

According to Cardelli’s notion of powertype the base type itself is instance of the 

higher-order type. Thus, in these cases, the lower bound multiplicity of the «instantia-

tion» association must be set to one and the upper bound to many (*). Moreover, 

models in which the «powerType» stereotype is applied to types (classifiers) that are 

not target of any «instantiation» association are deemed syntactically invalid. 

Another important syntactic constraint involving «powerType» is that, since a 

powertype (in MLT) does not define a classification criteria to be applied to instances 

of the base type, there should be no generalization set anchored in types stereotyped 

«powerType» (i.e. powertype relations do not give rise to generalization sets). For 

example, considering the scenario illustrated in Fig. 5 (b), a generalization set named 

“:Person Type” is not admissible. However, all subtypes of “Person”, despite the gen-

eralization sets in which they are involved, are instances of “Person Type”. Thus, all 

instances of “Person Gender” and “Social Role” are instances of “Person Type”. 

 

Fig. 5. Using «instantiation» (a) with unbounded multiplicities, and (b) with «powerType». 

Syntactic constraints motivated by MLT rules. An important aspect of the pro-

posed interpretation is that it allows us to leverage the axioms and theorems of the 

MLT formalization in order to guide the modelers in producing sound models. For 

instance, given the definition of the is powertype of relation of MLT, a type may not 

have more than one powertype and a higher order type may be a powertype of at most 

one other type. This suggests a clear syntactic constraint: a class stereotyped 

«powerType» can only be target of at most one «instantiation» association and a regu-

lar class can only be the source of at most one «instantiation» association having as 

target a class stereotyped «powerType». Further, the MLT theorem stating that if a 

Table 3. Analyzing the combination of «instantiation» with generalization set constraints 

Association 

Multiplicities 

Generalization sets constraints 

Lower Upper 
{disjoint} {overlapping} 

{complete} {incomplete} {complete} {incomplete} 

1 1 enumerated non enumerated invalid invalid  

0 1 invalid  silent invalid  invalid  

1 * non enumerated  non enumerated  silent non enumerated  

0 * invalid  non enumerated  invalid  silent 

 



type t specializes a type t’ then the powertype of t specializes the powertype of t’ may 

be used to check the syntax of powertype hierarchies, and to generate the powertypes 

hierarchy corresponding to the base types hierarchy. For example, in Fig. 6 (a) the 

conjunction of the facts that: (i) “Employee” specializes “Person”, (ii) “Person Type” 

is powertype of “Person” and (iii) “Employee Type” is powertype of “Employee” 

implies that “Employee Type” must specialize “Person Type”. 

Considering the MLT definitions of powertype, characterization and proper spe-

cialization we conclude that if a type t’ is powertype of a type t and a type t’’ charac-

terizes the same base type t then all instances of t’’ are also instances of t’ and, thus, 

t’’ proper specializes t’. This theorem also suggests a syntactic constraint. For exam-

ple, in Fig. 6 (a) “Management Role” characterizes “Employee” and specializes 

“Employee Type”, whereas “Person Gender” characterizes “Person” and specializes 

“Person Type”. In this case, if the modeler fails to include any of the specializations 

between the higher-order types, it would be possible to infer them automatically. 

Another MLT theorem states that if two types t’ and t’’ both partition the same 

type t then it is not possible for t’ to specialize t’’. Again this suggests a clear syntac-

tic constraint. For example, in Fig. 6 (b), “Person Age Phase” partitions “Person” 

according to their age having “Child” and “Adult” (and other non-represented types) 

as instances. “Person Gender”, in turn, partitions “Person” according to their gender 

having “Man” and “Woman” as instances. Thus, to be syntactically valid, the model 

may not include a specialization between “Person Age Phase” and “Person Gender”. 

Recall that the MLT cross-level relations (characterization and is powertype of) 

hold between a higher-order type and another type at one order lower. Thus, if two 

types are linked through an «instantiation» association the type at the source associa-

tion end is at an order lower than the one in the target (e.g. in Fig. 6 (b) “Person” is 

one order lower than “Person Age Phase”). Hence, cycles of associations stereotyped 

«instantiation» are not allowed. For example, suppose A is the target in an «instantia-

tion» association in which B is the source while B is the target in another «instantia-

tion» association in which A is the source. This scenario is absurd since A must be at 

one order lower than B and, simultaneously, B must be at one order lower than A.  

 

Fig. 6. Syntactical constraints concerning specializations types and the types order. 

Finally, we consider that all higher-order types represented in diagrams must have 

cross-level relations with other types. Thus, we can determine the order of a type 

considering the «instantiation» associations in which they are involved as target. 

Types that are not targets of any «instantiation» association are first-order types (e.g. 



“Person”, “Man”, “Woman”, “Adult” and “Child” in Fig. 6 (b)). Types that are target 

in «instantiation» associations in which the sources are first-order types are second-

order types (e.g. “Person Gender” and “Person Age Phase” in Fig. 6 (b)), and so on. 

The MLT axiom that states that each domain type must be instance of exactly one 

MLT basic type (being thus at only one order) can be syntactically verified in our 

models. Further, the MLT theorem that specialization relations may only hold be-

tween two types at the same order may also be syntactically verified. For example, in 

Fig. 6 (b) there may not be specialization relations between a first-order type (i.e., 

“Person”, “Man”, “Woman”, “Adult” or “Child”) and a second-order type (i.e. “Per-

son Gender” or “Person Age Phase”). Otherwise, the model would be considered 

syntactically invalid. A prototype plugin for the Visual Paradigm modeling tool that 

implements the proposed profile and performs syntactic verification of MLT rules is 

available at http://github.com/nemo-ufes/MLT-VP-plugin. 

5 Related Work 

An early attempt to address multi-level modeling by Odell [8] defined the concept of 

powertype informally using regular associations between the powertype and a base 

type. This differs from our approach because we use constructs having specialized 

semantics to denote the cross-level relations between types defined in MLT. This 

allows us to prescribe syntactic rules for the models that use these relations following 

the axioms in the formal theory. 
Similarly to Odell [8], Gonzalez-Perez and Henderson-Sellers [7] use an associa-

tion labeled “partitions” between a powertype and a base type (called a “partitioned 
type” in their terminology). The authors illustrate their technique with a diagram in 
which “partitions” is modeled as a many-to-one association between “Task” and 
“TaskKind”, meaning that every instance of the partitioned type (“Task”) is linked to 
exactly one instance of the powertype (“TaskKind”). In the sequel, they discuss that 
the “partitions association possesses instantiation semantics”, and that, because of this, 
“Task” is a special instance of “TaskKind” (the most generic kind of task). However, if 
“Task” itself is an instance of “TaskKind”, then the lower bound multiplicity of the 
“partitions” association in the “TaskKind” end cannot be one. This is because all in-
stances of subtypes of “Task” are also instances of “Task”, and thus instances of at 
least two “TaskKinds” (one which is “Task” itself). This is an example of a mistake, 
which could be avoided with a richer language support for the powertype pattern and 
its variants, as we propose here.  

The concept of powertype is founded on the notion that “instances of types can also 
be types” [8]. Motivated by a similar observation, Atkinson and Kühne [17] defined 
the notion of clabject, which is valuable to our approach. They discuss that every in-
stantiable entity has both a type (or class) facet and an instance (or object) facet. In our 
approach, instances of higher-order types may be considered clabjects. For instance, 
considering the previous example all instances of “TaskKind” as well as all instances 
of “TaskPowertype” have their own instances being, thus, clabjects. 

Atkinson and Kühne have also proposed a deep instantiation based approach [6], 
[19] as a means to provide for multiple levels of classification whereby an element at 
some level can describe features of elements at each level beneath that level. The au-
thors consider the main benefit of deep instantiation is to support multi-level modeling 



without the need of introducing the required base type in the powertype pattern, which 
they consider superfluous [19]. For example, using this approach it is possible to define 
mobile phone models, such as “IPhone6” and “GalaxyS6”, omitting the notion of 
“Mobile Phone” from the domain model. Important consequences of omitting base 
types are that the modeler become unable to express whether the instances of a higher-
order type (mobile phone model in this example) are disjoint and/or covering types and 
we are also prevented from determining metaproperties (such as e.g., rigidity) of the 
base type (mobile phone in this case). It is worth noticing that the deep instantiation 
approach allows the modeler to represent the base type if it is deemed desirable. How-
ever, if the modeler decides to represent the base type, the approach does not provide 
constructs to represent the relation between it and the higher-order type, not distin-
guishing thus between the different possible kinds of cross-level relations. As a conse-
quence, the approach does not provide mechanisms to check if the rules concerning 
these relations are respected, e.g., to guarantee that all instances of the higher-order 
type (“Mobile Phone Model”) specialize the base type (“Mobile Phone”). 

Telos [20] is a knowledge representation language that supports the representation 
of types having other types as instances (i.e. clabjects). Roughly 30 axioms are defined 
to formalize Telos’ principles for instantiation, specialization, object naming and at-
tribute definition [20]. Although it supports multi-level modeling through its notion of 
type, it does not elaborate on the nature of cross-level relations between higher-order 
types and base types. Further, it does not employ systematically the powertype pattern, 
although we consider it would be possible to extend the Telos built-in support by using 
its features of user-defined constraints and rules to formally define the cross-level 
structural relations proposed in MLT.  

6 Final Considerations 

In this paper, we have addressed multi-level modeling from the perspective of the 
powertype pattern. We have used a well-founded reference theory to support the analy-
sis and revision of the powertype support, demonstrating that the current support lacks 
expressivity, clarity, and parsimony. By employing the result of this analysis, we pro-
pose a UML extension to address the exposed limitations. We use the formal rules of 
MLT to systematically incorporate syntactic constraints in the profile thus guiding the 
modeler to produce sound multi-level models. Our approach is able to distinguish 
properties of the relation between higher-order and base types that cannot be expressed 
in UML and that are required to represent multi-level classification schemes.  

In [3], one of us has evaluated a fragment of UML at light of the Unified Founda-

tional Ontology (UFO). Based on this analysis, a UML extension for the purposes of 

conceptual modeling (dubbed OntoUML) has been proposed. The ontology was used 

as a theory to inform the definition of a profile with syntactic constraints that reflect 

the UFO axioms. In this paper, we have applied a similar approach to extend UML 

class diagrams using MLT as a theory to incorporate distinctions and constraints for 

multi-level modeling. In [15], we have already combined MLT and UFO in order to 

leverage both benefits of the foundational ontology and the multi-level modeling the-

ory. A natural extension of this work is to enrich OntoUML with the support for the 

powertype pattern as discussed here. Finally, we aim at applying MLT to analyze and 

enrich the semantics of the so-called deep modeling approaches [5, 19]. 
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