

USE OF MODELS AND MODELLING

TECHNIQUES FOR SERVICE DEVELOPMENT

Luís Ferreira Pires
*

Marten van Sinderen
*

Cléver Ricardo Guareis de Farias
**

João Paulo Andrade Almeida
*

*University of Twente (UT)

P.O. Box 217, 7500 AE, Enschede, The Netherlands

{pires, sinderen, almeida}@cs.utwente.nl

**Universidade Católica de Santos (Unisantos)

Rua Dr. Carvalho de Mendonça, 144

11070-906 Santos (SP), Brazil

cleverfarias@unisantos.br

Abstract: E-applications are increasingly being composed from individual services that

can be realized with different technologies, such as, e.g., Web Services and

standard component technologies. A current trend in the development of these

services is to describe their technology-independent and technology-specific

aspects in separate models. A prominent development that leads this trend is

the Model-Driven Architecture (MDA). An important feature of the MDA

approach is the explicit identification of Platform-Independent Models (PIMs)

and the flexibility to implement them on different platforms via Platform-

Specific Models (PSMs), possibly through (automated) model transformations.

A platform can be any technology that supports the execution of these models,

either directly or after translation to code in a programming language. This

paper aims at identifying the benefits of the MDA approach in the

development of services for e-applications. The paper presents a short

introduction to MDA, in the context of service development, and an overview

of the modelling capabilities of the Unified Modelling Language (UML), one

of MDA’s main modelling languages.

Keywords: Service-oriented development; Model Driven Architecture; Unified Modeling

Language.

1. INTRODUCTION

There is a growing need to compose e-applications from individual

services that can be provided by both proprietary components and third-party

service providers. This need arises from requirements with respect to, e.g.,

shorter time-to-market, reduced development costs, and reuse of proven

technological solutions. The ideal of a service-oriented development or

service-oriented architecture is also fuelled by the industrial uptake of

technologies such as Web Services and standard component technologies.

A current trend in the development of services is to separate their

technology-independent and technology-specific aspects, by describing them

in separate models. The most prominent development in this trend is the

Model-Driven Architecture (MDA) [10, 13] approach, which is being

fostered by the Object Management Group (OMG). The MDA approach is

not a design methodology, but rather a collection of guidelines to be applied

in combination with a design methodology in order to develop distributed

applications. The core of the MDA consists of a number of OMG standards,

including: the Unified Modelling Language (UML) [18], the Meta Object

Facility (MOF) [12], and the XML Metadata Interchange (XMI) [15].

The most important aspect of the MDA approach is the explicit

identification of Platform-Independent Models (PIMs) and the flexibility to

implement them on different platforms via Platform-Specific Models

(PSMs). A platform can be any technology that supports the execution of

these models, either directly or after translation to code. In the case of

distributed applications, MDA can be applied to develop PIMs that are

middleware technology-independent, and develop PSMs for specific

middleware platforms like CORBA/CCM, EJB or Web Services. MDA also

aims at facilitating the translation from PIMs to PSMs, by introducing

profiles for defining PIMs and PSMs, and by standardising transformations

between them, which can then be automated by tools. Some research is

being carried out in order to define these transformations and automate them.

This paper presents a short introduction to MDA and an overview of the

modelling capabilities of UML, which is one of MDA’s main modelling

languages. The paper is further structured as follows: section 2 introduces

some basic modelling concepts and principles; section 3 introduces the

MDA approach; section 4 discusses the modelling of services using UML;

finally, section 5 presents some final remarks.

2. MODELLING PRINCIPLES

A model is a representation of structural or behavioural aspects of a

system in a language that has a well-defined syntax, semantics, and possibly

rules for analysis, inference, or proof [13].

Models can be used in different ways in the course of a development

project. A model used to prescribe properties of a system or system part to

be built is called a prescriptive model. In contrast, a model used to describe

an existing system or system part is called a descriptive model. In the case of

prescriptive models, designers produce models of a system introducing

information that constrain the intended characteristics of the system being

specified. The information required for modelling is obtained along the

development trajectory, and documented in several ways.

In order to understand any non-trivial system, one has to cope with a

large amount of interrelated aspects. Attempting to capture all aspects of the

design in a single model yields too complex and useless models [6].

Therefore, models should be derived using specific sets of abstraction

criteria, which allow one to focus on particular aspects of the system at a

time.

2.1 Viewpoints and abstraction levels

A model is often characterized by the set of abstraction criteria used to

determine what should be included in the model. Viewpoints and abstraction

levels are examples of abstraction criteria.

A viewpoint defines a set of related concerns that play a distinctive role

in the design of a system. A model defined from a particular viewpoint

focuses on the particular concerns defined by the viewpoint. Viewpoints

should be chosen with respect to requirements that are of concern to some

particular group involved in the design process.

Examples of viewpoints are the five RM-ODP viewpoints [7]: enterprise,

information, computational, engineering and technology. The use of

different viewpoints in order to describe a system raises the issue of

consistency. Descriptions of the same or related entities appear in different

viewpoints. Therefore, one must assure that these multiple models are not in

conflict with each other.

Abstraction is the process of suppressing irrelevant detail to establish a

simplified model, or the result of that process [6]. A model M1 is at a higher

level of abstraction than a model M2 if M1 suppresses details of the system

that are revealed by M2. Specifically, the pair of models {M1, M2} is in a

refinement relationship, in which M1 (the abstraction) is more abstract than

M2 (the realization).

Refinement and abstraction are opposite and complementary types of

relationships or design activities. Through refinement, an abstraction is made

more concrete through the introduction of details, entailing design or

implementation decisions, while through abstraction, details of a more

concrete abstraction are omitted. An important property of refinement is that

the resulting model should conform to the original one [1].

Design methodologies normally define different abstraction levels to be

used for particular viewpoints. In these methodologies, abstraction levels are

usually related to milestones in the design trajectory, or are related with

particular design goals. Several design methodologies also define refinement

(and abstraction) relations in order to guide the development of related

abstraction levels.

2.2 Metamodelling

Metamodels can be used to define the syntax and semantics of models.

When instances of the elements of a model B are used to produce a model A,

B is said to be the metamodel of A. In this case, one can say that the abstract

syntax of the model A is defined in the metamodel B [4]. Furthermore, model

A can be considered as an instance of metamodel B.

The abstract syntax of a metamodel B can also be described in yet

another metamodel C, thus constituting a metametamodel. Although the

number of metalevels is arbitrary, metamodelling frameworks should define

a limited number of useful metalevels.

Whenever a metamodel is accompanied by natural language descriptions

of concepts that correspond to its elements, we say that the semantics of the

modelling elements are informally defined. This approach has been adopted

by OMG in the Meta-Object Facility (MOF) [11] and in the UML proposed

standards [16, 17]. More rigorous approaches define the semantics of

modelling elements in terms of a mathematical domain (e.g., the formal

semantics of the Specification and Description Language (SDL) in [8]), or in

terms of concrete, formal and explicit representations of domain

conceptualisations (e.g., an ontology [6]).

3. MODEL DRIVEN ARCHITECTURE

The MDA approach [13] to system (application) specification, portability

and interoperability is based on the use of formal and semi-formal models.

From the perspective of systems development, a significant quality of the

MDA approach is the independence of system specifications (i.e., sets of

models) from potential target implementation platforms. A system

specification exists independently of any implementation platform and has

formal or semi-formal transformation rules to many possible target

platforms. The application development effort is consolidated in the

platform-independent models, such that the investments necessary to move

to another platform can be reduced. Furthermore, model transformation rules

may be implemented in model-driven tools to (partially) automate the

transformation of platform-independent models into platform-specific

models, increasing the level of automation of the development trajectory.

From the perspective of systems interoperability, the use of platform-

independent models facilitates the creation of different platform-specific

models corresponding to the same set of platform-independent models,

which results ultimately in implementations that can be easily (if not

automatically) integrated.

Platform-independent models also play an important role in the re-use of

legacy applications. In this case, integration is done at a platform-

independent level, using platform-independent models that represent the

legacy application. These platform-independent models are derived by

reverse engineering.

3.1 MDA viewpoints

The MDA generally defines a platform as a set of subsystems or

technologies that provide coherent functionality through interfaces and

specified usage patterns. Any subsystem that depends on the platform can

use this functionality without concern for the details of how it is

implemented [13].

Three different viewpoints are considered [13]: computation-independent

viewpoint, platform-independent viewpoint and platform specific viewpoint.

The computation-independent viewpoint focuses on the system environment

and its requirements. However, there is no concern for the details of the

structure and processing of the system. The platform-independent viewpoint

focuses on the system operation, but hides the details necessary for a

particular platform. The platform-specific viewpoint combines the platform

independent viewpoint with the details of the use of a specific platform by a

system.

A computation independent model (CIM) is a model developed

according to the computation independent viewpoint. Similarly, a platform

independent model (PIM) and a platform specific model (PSM) are models

developed according to the platform independent and platform specific

viewpoints, respectively.

Platform independence is a relative term that depends on the potential

target platforms. For example, if the set of technologies that define a

platform comprehends middleware platforms, such as, e.g., CORBA and

Web Services, a CORBA Interface Definition Language (IDL) specification

is a platform-specific model, because it is bound to CORBA. In contrast, if

the set of technologies that define a platform comprehends programming

languages and CORBA ORB implementations, such as, e.g., the C++

language and the C++ ORB implementation, a CORBA IDL specification is

a platform-independent model, because it can be mapped onto several

programming languages.

3.2 Model transformation

Model transformation is basically seen as a mapping of elements of one

model onto elements of another model. Consider, for example, the creation

of software systems by code generation. Each generated artefact, either some

code in a programming language or some textual deployment artefact can be

manipulated as a model. These models are based on a defined structure,

which itself forms a metamodel. This metamodel can be expressed in terms

of the UML and/or MOF standards.

Model transformation is useful if formally or systematically defined. As

depicted in Figure 1Figure 1Figure 1a, a transformation may be defined at

the level of metamodels. When transformation is applied, a source model is

transformed into a target model according to the defined transformation

(rules).

Source

Meta-Model

Transformation

Source

Model

Target

Meta-Model

Target

Model

Meta-

Meta-Model1

apply transformation

define transformation

instance of instance of

instance of

Meta-

Meta-Model2

instance of

Source

Meta-Model

Transformation

Source

Model

Target

Meta-Model

Target

Model

Meta-

Meta-Model

apply transformation

define transformation

instance of instance of

instance of instance of

(a) separate meta-metamodel (b) common meta-metamodel
Figure 1: Model transformation

According to OMG definitions, a metamodel is based and constructed

from elements of an underlying meta-metamodel (the MOF) and a model is

constructed from elements of the metamodel. The use of a common meta-

metamodel for the target and source metamodels, as illustrated in Figure

1Figure 1Figure 1b may facilitate the definition of transformations.

Formatted: English (United States)

Formatted: English (United States)

Formatted: English (United States)

Formatted: English (United States)

The model transformation pattern can be applied successively. In this

case the notions of source and target models are relative. An intermediary

model is considered a target model from the perspective of the

transformation from the source model, and the same intermediary model is

considered a source model from the perspective of the transformation to the

final target model.

In order to allow a developer to guide the transformation of a source

model when necessary, transformations may be parameterised. An

annotation model may be used to hold the parameters for a transformation.

The application of the transformation may include a step that transforms the

source model into an annotated source model and then proceeds with the

transformation.

4. UNIFIED MODELING LANGUAGE (UML)

This section presents an overview of the modelling capabilities in the

Unified Modeling Language (UML), which has been standardized under the

auspices of the Object Management Group (OMG). Our discussion is

primarily based on UML 1.4 and 1.5 [14, 18] specifications. UML 1.5 is the

currently adopted UML specification by OMG. However, most of the

currently available UML tools provide support only to UML 1.4

specification. The UML 1.5 specification extends UML 1.4 with the so-

called action semantics, which mainly adds more preciseness to the

definition of actions and procedures. Since the first documents of UML 2.0

[16, 17] have just been publicly released, we do provide a highlight of the

main changes in this specification with respect to the previous one.

4.1 Structure modelling

UML defines a collection of diagrams for structure modelling, namely

class diagrams, component diagrams and deployment diagrams. UML does

not prescribe how these diagrams should be used in a development

trajectory, but only their abstract syntax and intended semantics (to a certain

extent and informally). A development methodology should be applied in an

actual development project to define the UML diagrams that have to be

produced to represent a certain model at the different phases, steps or

workflows devised for the development trajectory. Since component

diagrams are the most relevant type of diagram for the development of

service architecture, we exempt ourselves from discussing class and

deployment diagrams in this paper.

A component diagram captures dependencies among different kinds of

software components, such as implementation classes, source code files,

binary code files, executable files, and scripts. A component diagram has

only a type form, not an instance form.

UML 1.5 defines a component as a modular, deployable, and replaceable

part of a system that encapsulates implementation and exposes a set of

interfaces. A component diagram is a graph of components connected by

dependency relationships. Interfaces and calling dependencies among

components can also be captured using a component diagram. A calling

dependency occurs when a component uses a given interface. In such case,

dependency arrows from components to the interface on other component

must be employed.

A component diagram is used to model the static implementation view of

a service. Thus, the architecture of a given service is captured as a collection

of components and their dependency relationships. Since UML 1.5 does not

consider a component as a unit of design, but a unit of deployment, the role

of component diagrams in service development is rather limited. There is no

support to component-based development, since UML 1.5 does not allow the

representation of abstract components and does not support recursive

decomposition of internal structures.

In UML 2.0, a component is a modular unit with well-defined interfaces,

which allows it to be reusable and autonomous. The component concept has

been introduced to support component-based development, in which

components are modelled throughout the development trajectory, from

abstract business components to concrete software components.

A component has one or more provided and required interfaces and its

environment can only interact with it through these interfaces. The interfaces

of a component shield the component’s internal structure from its

environment. Components can be composed together to form bigger

components. This can be done by ‘wiring’ required interfaces to provided

interfaces under the condition that these interfaces are compatible. This

implies that a component C at some aggregation level is related to a

collection of composed components that together realise component C.

A component can have required and provided interfaces: required

interfaces are used by the component in order to perform its operation, while

provided interfaces are those through which the component provides its

capabilities. Required and provided interfaces are directly related to the

direction of operation invocations, i.e., operations at the required interfaces

are invoked by the component itself, while operations at the provided

interfaces are invoked by the component’s environment.

Alternatively, designers may group interfaces in a port, which defines an

interaction point between a component and its environment, or between a

component and some elements of its internal structure. Ports allow an even

stronger decoupling of a component from its environment than what is

already possible using only interfaces. A component can be defined

separately from its ports, making it reusable in any environment that

complies with the constraints imposed by these ports. Ports also group

interfaces, so that the possibly different aspects of the interactions with a

component can be properly separated.

UML 2.0 allows the specification of the internal details of a component

in some different alternative ways. Because a component is also a class, one

can define inside a component all the other classifiers (e.g., components and

classes) that are non-shareable parts the component. A more detailed

representation of the internal structure of a component can be defined by

showing instances of the classes owned by the component and how they

relate to the component’s ports.

4.2 Behaviour modelling

UML 1.5 defines a collection of diagrams for behaviour modelling,

namely use case diagrams, sequence diagrams, collaboration diagrams,

statechart diagrams and activity diagrams. Similarly to the structural

diagrams, UML 1.5 does not prescribe how these diagrams should be used in

a development trajectory. Although, use cases diagrams are considered

behavioural diagrams, these diagrams can only capture static behaviour.

Thus, we exempt ourselves from discussing it in the scope of this work.

4.2.1 Sequence diagrams

A sequence diagram shows how roles interact with each other in time, by

showing the messages they exchange; alternatively, it may represent this by

means of instances of the roles and the stimuli they produce. A sequence

diagram can be seen as a set of messages and their temporal ordering. It

relates to the system structure in that the roles and messages defined in a

sequence diagram should correspond to classifiers and operations defined in

structural diagrams.

A sequence diagram shows classifier roles (or instances), and the

messages (or stimuli) they exchange. A sequence diagram represents either:

(1) an interaction, consisting of message exchange between classifier roles

and possibly the consequences of these messages (the actions), or (2) an

interaction instance set, consisting of stimuli exchanged between instances

of classifier roles and possibly the consequences of these stimuli (the

actions). Sequence diagrams are also capable of representing other aspects of

the systems dynamics, like object creation and destruction, conditional

stimuli and focus of control.

Sequence diagrams define behaviour ‘by example’. They are normally

used to show how the system performs some specific parts of its

functionality. They are also related to some scenario of execution or

operation phase. Sequence diagrams can be useful at a high abstraction level,

when the designer wants to understand the global pattern of interaction

between system parts, and at a low abstraction level, when details of the

interaction between (more concrete) parts have to be described. Because they

represent the partial behaviour of multiple system parts, they are suited as

requirements for testing and verification, but are less suited for automatic

code generation.

UML 2.0 introduces capabilities to define interaction fragments (smaller

sequence diagrams) and to combine them together to form more complex

sequence diagrams. These capabilities include (conditional) branching of

interaction fragments, and references to interaction occurrences that can be

defined separately. The gates concept has been introduced to connect

different interaction fragments. The most important benefit of these new

capabilities is the possibility of structuring sequence diagrams in terms of

smaller fragments, increasing in this way the readability of sequence

diagrams, mostly of importance in the case of complex diagrams. These

capabilities make it possible to define behaviours more concisely and

completely, approaching in this way the purpose and expressiveness of state

charts.

Timing diagrams have been introduced in UML 2.0 to represent state

changes and conditions on a timeline. Timing diagrams are expected to be

useful for systems that have stringent timing constraints. UML 2.0 also

defines the so-called interaction overview diagram, which allows sequence

diagrams to be combined in the scope using the operator of activity

diagrams. This implies that more alternative scenarios can be represented in

a single diagram. Interaction overview diagrams bring interaction diagrams

closer to activity diagrams (see section 4.2.3), by allowing them to represent

behaviours in a more complete way.

4.2.2 Collaboration diagrams

The purpose of collaboration diagrams is similar to the purpose of the

sequence diagrams (define behaviour through scenarios), but collaboration

diagrams put more stress on the collaboration itself, i.e., on the roles

participating in the collaborations and the associations between these roles.

A collaboration diagram shows these roles and associations and plots an

ordered set of directed message exchanges on the associations, in order to

denote a specific interaction sequence.

A collaboration diagram shows classifier roles (or instances), their

associations (or links), and the messages (or stimuli) they exchange. It

contains the same information as sequence diagrams, but it represents the

associations (links) explicitly.

Collaboration diagrams can play the same roles in the development

trajectory as sequence diagrams. They only differ in that collaboration

diagrams are not really suitable to represent complex interaction sequences,

since the reader is forced to follow numbered messages throughout the

diagrams to understand the sequences being described. The main benefit of

collaboration diagrams is the combined representation of structural and

behavioural aspects in a single diagram.

In UML 2.0 collaboration diagrams have been renamed to

communication diagrams. They correspond to simple sequence diagrams,

i.e., sequence diagrams that do not use the structuring capabilities that have

been introduced in UML 2.0.

4.2.3 Activity diagrams

Activity diagrams in UML 1.5 are special cases of statechart diagrams. In

activity diagrams one represents activities and their relationships, which

allows one to define a behaviour that describes processes or workflows. The

activities themselves may consist of actions, which are (smaller) tasks that

are internal to the activity. Activity diagrams also include some capabilities

to define decisions and merging of execution flows, and synchronisation

states. Swim lanes can be used to partition an activity diagram, e.g., in terms

of the roles that are responsible for the different activities.

An activity diagram represents an activity graph, which is a variant of a

state machine. In activity graphs one defines activities (action states) and

transitions triggered by the completion of these activities.

Most (software) development methodologies prescribe that business

processes should be explicitly specified in the initial development steps.

Particularly in the case of the Unified Process [9], these business processes

can be used to specify the (behaviour of) use cases.

At the level of business models it is often necessary to model the

processes that have to be performed by the business without necessarily

assigning parts of these processes to some specific people, departments or

software applications. These models allow business architects to reason

about the procedural steps of these business processes, abstracting from how

these steps are supposed to be performed. In the course of the

implementation trajectory, choices have to be made concerning the

allocation of these procedural steps to physical or logical entities.

Models of business processes normally consist of related activities that

have to be performed in these processes. There are many alternative

techniques that are suited for modelling activities and their relationships. In

UML 1.5, activities can be modelled using activity diagrams.

In UML 2.0 activity diagrams are no longer a special case of statechart

diagrams. Activity graphs in UML 2.0 have a semantics that is closer to Petri

Nets, making them more suitable for the representation of business

processes.

4.2.4 Statechart diagrams

Statecharts can be used to represent the behaviour of an object instance or

other entities such as use cases, actors, subsystems, etc. Statecharts are used

to define behaviour in terms of reactions to stimuli (discrete events). A

statechart defines a collection of states and state moves, such that whenever

a stimulus occurs, the behaviour performs some actions and transitions (state

moves). Since behaviours defined using statechart diagrams can get rather

complex in the case of complex behaviours, UML has some additional

capabilities to structure these diagrams, like sub-states and sub-machines.

A statechart diagram represents a state machine. In essence a state

machine is a graph that consists of states and state transitions triggered by

events. A state may contain a list of internal transitions, which consist of

internal actions or activities to be performed by the state machine while in

this state. An event is some occurrence that may trigger a state transition.

Events can be either the change of some Boolean value, the expiration of a

timeout, an operation call or a signal. A transition is triggered by an event. A

(simple) transition is a relation between two states (state1 and state2), and

defines that whenever the state machine is in state1 and the event that

triggers the transition is processed, the state machine moves to state2. Only

one event is evaluated at a time and it is either discarded if it does not trigger

any transition, or it triggers only one transition (interleaving semantics). A

transition is said to be fired whenever it is performed (terminology derived

from Petri Nets).

During the development of a (software) system one has to define the

logical parts (objects) of the system and specify their behaviour. Statechart

diagrams allow one to specify completely the behaviour of the logical parts

of a system, as opposed to the partial specification through interactions

supported by sequence diagrams and collaboration diagrams. A criticism on

statechart diagrams is that although it is suitable for the specification of

behaviours that are relatively close to the implementation code, its

interleaving semantics makes it less suitable to specify the behaviour of

logical parts that may be decomposed and distributed, i.e., behaviours at

higher abstraction levels. These more abstract behaviours can be useful for

early analysis (e.g., through simulation) and since they constitute a statement

on functional requirements, they can also be used for conformance

assessment (verification).

In UML 2.0 interfaces can own a (protocol) state machine. Entry and exit

points and terminate pseudo-states have been introduced to facilitate the

reference to state machines and to improve structuring, allowing reusability

of state machines. UML 2.0 allows a state list to be represented by a single

state symbol. State machine extension allows one to reuse the definition of a

state machine and extend it with additional states and transitions. A state

machine may own other state machines, which can be referenced from its

internal states.

4.2.5 Action semantics

In UML, an action is a fundamental unit of executable functionality.

Until UML 1.4, actions in an activity could only be defined as strings,

typically an action-expression added to a transition definition. This implies

that no standard semantics existed for actions, which has been a major

obstruction, amongst other, for the interchange of information between

simulation tools [21].

The Action Semantics initiative has been started to define more precisely

the meaning of actions in UML; results of this initiative have been

incorporated already in the UML 1.5 specification [18]. In the UML 1.5

specification, a package Action has been added to define action semantics,

with minor needs for readjustment in the rest of the language. UML 2.0 is

built upon UML 1.5 for the behaviour part, i.e., the action semantics work

done in UML 1.5 has been reused in UML 2.0. In the remaining of this

section we refer to UML 2.0 and how it handles action semantics.

From an abstract point of view, an action is a fundamental unit of

executable functionality in an activity that contains the action. The execution

of an action implies a transformation or processing in the modelled system.

An action may have sets of incoming and outgoing activity edges, through

which it gets its input and delivers its output values, respectively. Incoming

and outgoing edges define the control and data flows that determine whether

an action is allowed to be performed. The completion of an action may

enable the execution of other actions that depend on this action. Actions may

have pre- and post-conditions. Streaming parameters allow actions to start

generating outputs while consuming inputs.

The different action types are used to define the semantics of individual

actions. The following types of actions have been identified:

 Invocation actions: operation calls and the sending of signals, either to

specific targets or broadcasting to potential targets;

 Read write actions: creation and destruction of objects, reading and

modifying the values of variables and structural features (e.g.,

attributes) and creation and destruction of links;

 Computation actions: transformation of a set of input values to a set of

output values by invoking a function.

Some additional read-write actions defined in UML 2.0 concern reading

instances of a classifier, reading links of an association, determining the

classifier of an instance and determining the association of a link. These

specific actions allow one to specify system with introspective or reflexive

capabilities, since they allow the behaviour to reason about the structure of

the system itself. In order to completely define the semantics of events in a

state machine, the acceptance of an event is defined as a specific form of

action. The raising of an exception is also defined as a specific form of

action.

The definition of action semantics makes it possible for tool vendors to

develop tools for simulation and verification of behaviour specifications

based on standard semantics. Action semantics has also enabled initiatives

that aim at defining executable UML specifications, for simulation or even

for prototyping. Executable UML [20] is an example of such an initiative.

4.3 Language extensibility

In the context of the MDA, an important characteristic of UML is its

extensibility capabilities. UML is currently being positioned as a general

purpose language that is expected to be customized for a variety of domains,

platforms and methods [16].

A mechanism called profiling is used to enable lightweight extensions of

the language. UML profiles extend the UML metamodel by specializing

elements of the metamodel. The use of UML profiles enables the reuse of

UML’s notation and tools.

In case customization requirements exceed the capabilities offered by

profiles, new languages may be defined via MOF metamodels. MOF 2.0

metamodels are being designed as instances of a subset of the UML 2.0, so

that it will be possible to represent them using UML class diagrams.

5. FINAL REMARKS

Technologies such as Web Services and component models have been

advocated as silver bullets for the service-oriented development of e-

applications. However, if we are to draw any lessons from the past, then the

most important would be: there are no (lasting) one-fits-all technology

solutions, and therefore technologies will always differ and evolve. Direct

mappings onto whatever specific technology, independently of how popular

this technology may be at a particular point in time, will lead to inflexible

systems: it results in technology lock-ins and hinders interoperability,

portability and integration when, inevitably, the technology changes or new

technologies enter the scene. MDA has been introduced against this

background. The MDA approach separates business (computation-

independent) models, computation (platform-independent) models and

platform models, enabling reuse of design artefacts at any of these levels,

thereby providing possibilities for better return on investment. In addition,

by defining transformations between these models, development projects can

be done in a shorter time span and with higher quality. Not surprisingly,

MDA led to a massive attention for models, modelling languages and

transformations, primarily concentrated around UML.

UML has been developed for the specification of object-oriented systems

and, as such, the concepts and abstractions used in UML facilitate the

development of software using object-oriented implementation technologies.

This yields a language that can potentially be translated into executable code

or even executed directly, supporting the last stages of a model-driven

development trajectory.

Despite that UML behaviour specification capabilities may be suitable to

support final stages of a model-driven development trajectory, the use of

UML for behaviour specification in earlier stages of a model-driven

development trajectory should be further investigated. Recently, constructs

for component-based development have been incorporated into UML 2.0,

allowing the concept of component to be recursively applied through the

development trajectory. Nevertheless, the refinement of behaviour

specifications is a deficiency of UML’s behaviour representation

capabilities. Still lacking is a notion of behaviour conformance in order to

relate behaviours defined at a high-level of abstraction and the refined

realizations of these behaviours [4]. Consequently, we cannot formally

assess the correctness of component compositions. Activity diagrams used to

express behaviour in an integrated perspective, e.g., for the purpose of

business modelling, are not related by refinement to statecharts that

distribute responsibilities of a business process to specific services and

components that support this business process.

In the context of MDA, much effort has been invested in language

definition and extension mechanisms, metamodelling, model transformation

specification and tool support. The study of platform-independence,

however, has been somewhat overlooked. We have been striving to address

this in our research [1, 2], by providing guidelines for the selection of

abstraction criteria and modeling concepts for platform-independent

modeling. Further research is necessary in order to define criteria to ensure

the beneficial exploitation of the PIM-PSM separation of concerns adopted

by MDA.

REFERENCES

1. Almeida, J.P.A., Sinderen, M. van, Ferreira Pires, L. and Quartel, D.: A systematic

approach to platform-independent design based on the service concept. In: 7th IEEE Intl.

Enterprise Distributed Object Computing (EDOC) Conference, Sept. 2003, pp. 112-123.

2. Almeida, J.P.A., Sinderen, M. van, Ferreira Pires, L. and Wegdam, M.: Handling QoS in

MDA: a discussion on availability and dynamic reconfiguration. In: Workshop on Model

Driven Architecture: Foundations and Application (MDAFA) 2003, CTIT Technical

Report TR–CTIT–03–27, University of Twente, The Netherlands, June 2003, 91-96.

3. De Farias, C.R.G.: Architectural Design of Groupware Systems: a Component-Based

Approach. PhD thesis, University of Twente, Enschede, the Netherlands, 2002.

4. Dijkman, R.M., Quartel, D., Ferreira Pires, L. and Sinderen, M. van: An Approach to

Relate Viewpoints and Modeling Languages. In: 7th IEEE Enterprise Distributed Object

Computing (EDOC) Conference, Sept. 2003, pp. 14-27.

5. Harel, D. and Rumpe, B.: Modelling Languages: Syntax, Semantics and All That Stuff.

Technical Report, The Weizmann Institute of Science, Rehovot, Israel, MCS00-16, 2000.

6. Guizzardi, G., Ferreira Pires, L. and van Sinderen, M.: On the role of Domain Ontologies

in the Design of Domain-Specific Visual Languages. In: 2nd Workshop on Domain-

Specific Visual Languages, ACM OOPSLA, 2002.

7. International Telecommunications Union (ITU): Open Distributed Processing Reference

Model. Part 1 - Overview. ITU Rec. X.901 | ISO/IEC 10746-1, Geneva, 1997.

8. International Telecommunications Union (ITU): SDL Formal Semantics Definition. ITU

Rec. Z.100, Annex F, Geneva, 2000.

9. Jacobson, I., Booch, G. and Rumbaugh, J.: The unified software development process.

Addison Wesley, USA, 1999.

10. Object Management Group: MDA Guide Version 1.0. May 2003.

11. Object Management Group: Meta Object Facility (MOF) 2.0 Core Proposal. April 2003.

12. Object Management Group: Meta Object Facility (MOF) Specification 1.4. April 2002.

13. Object Management Group: Model Driven Architecture (MDA). July 2001.

14. Object Management Group: OMG Unified Modelling Language Specification, version

1.4. September 2001.

15. Object Management Group: OMG XML Metadata Interchange (XMI) Specification,

Version 1.2, January 2002.

16. Object Management Group: UML 2.0 Infrastructure Specification. September 2003.
17. Object Management Group: UML 2.0 Superstructure Specification. August 2003.
18. Object Management Group: Unified Modeling Language Specification, version 1.5.

March 2003.

19. Quartel, D.A.C.: Action relations. Basic design concepts for behaviour modelling and

refinement. CTIT Ph.D-thesis series, no. 98-18, University of Twente, Enschede, The

Netherlands, 1998.

20. Mellor, S.J. and Balcer, M.J.: Executable UML. A foundation for the Model-Driven

Architecture. Addison-Wesley, 2002.

21. Mellor, S.J., Tockey, S., Arthaud, R. and Leblanc, P.: Software-platform-independent

precise action specification for UML. White paper. http://www.projtech.com.

http://www.projtech.com/

