
Transforming OntoUML into Alloy:

Towards Conceptual Model Validation using a Lightweight Formal Method

Bernardo F. B. Braga, João Paulo A. Almeida, Giancarlo Guizzardi, Alessander B. Benevides

Ontology and Conceptual Modeling Research Group (NEMO), Computer Science Department,

Federal University of Espírito Santo (UFES), Vitória, ES, Brazil

bernardofbbraga@gmail.com jpalmeida@ieee.org, gguizzardi@acm.org, abbenevides@inf.ufes.br

Abstract— While conceptual modeling is strongly related to the

final quality of the software product [15], conceptual modeling

itself remains a challenging activity. In particular, modelers

must ensure that conceptual models properly formalize their

intended conceptualization of a domain. This paper proposes

an approach to facilitate the validation process of conceptual

models defined in OntoUML by transforming these models

into specifications in the logic-based language Alloy and using

its analyzer to generate instances of the model and assertion

counter-examples. By allowing the observation of sequences of

snapshots of model instances, the dynamics of object creation,

classification, association and destruction are revealed. This

confronts the modeler with the implications of modeling

choices and allows them to uncover mistakes or gain

confidence in the quality of conceptual models.

Keywords: Conceptual modeling, OntoUML, validation,

lightweight formal methods, Alloy.

I. INTRODUCTION

The practical relevance of thorough requirements
analysis is emphasized by evidence provided by the
empirical software engineering community, which states that
it is much cheaper to find and fix software problems during
the requirements and design phase than after delivery [11]. In
this context, properly acquiring knowledge on a problem
domain prior to detailed design has justified several efforts in
conceptual modeling, which can be defined as “the activity
of formally describing some aspects of the physical and
social world around us for purposes of understanding and
communication” [1]. In order to support such purposes, a
formal conceptual model must capture a modeler‟s intention
and convey a precise message with unambiguous semantics.
This is particularly important if conceptual models are to be
used effectively as a basis for the construction of an
information system.

As argued for in [2], the quality of a conceptual modeling
language can be assessed by considering the extent to which
the language supports the definition of models that capture
the modeler‟s conceptualization of a domain. This concern
has justified the revision of a portion of UML into the
OntoUML conceptual modeling language. This revision
enables modelers to make finer-grained distinctions between,
among other things, different types of classes according to

This work has been supported by CNPq and by FAPES in the scope
of the INFRA-MODELA project.

the UFO foundational ontology [2]. These ontological
distinctions reflect, in turn, different manners an object can
be an instance of a type. In particular, focusing on the
different modal (temporal) consequences these different
modes of instantiation imply.

Regardless of the quality of the conceptual modeling
language employed, conceptual modeling itself remains a
challenging activity, requiring additional methodological and
tool support for ensuring that the modeler‟s intention is
properly reflected in the models.

The development tool to aid the construction of
OntoUML conceptual models presented in [3] has given us
so far the opportunity to verify models for ontological well-
formedness, i.e., adherence to ontological consistency rules
defined at the language-level. While this guarantees some
quality for conceptual models by enforcing ontological
consistency via domain-independent syntactic rules, it does
not serve to increase the modeler‟s confidence in the correct
representation of the intended domain conceptualization, i.e.,
it does not support modelers in answering the question “have
we built the right model for this particular domain?”.

This paper proposes an approach to facilitate the
validation process of conceptual models defined in
OntoUML by transforming these models into specifications
in the logic-based language Alloy (a “lightweight formal
method” [4]) and using its analyzer to generate instances of
the model and possibly produce assertion counter-examples.
Validation is defined here as “the process of determining the
degree to which a model is an accurate representation of the
real-world from the perspective of the intended uses of the
model” [14]. Our approach supports validation by allowing
the observation of sequences of snapshots of model
instances. We argue that the visualization of instances
confronts the modeler with the implications of modeling
choices. Should the instances reveal inadmissible states-of-
affairs (or sequences thereof), the model may be analyzed to
identify opportunities for correction in an iterative validation
approach. Moreover, we believe that this can also be used as
means to identify missing or over restrictive domain rules.

In this article, we build on our earlier work in [5], in
which we have discussed the assessment of the modal
aspects of conceptual models. Here we focus on the issue of
dynamic classification, thus, we concentrate on illustrating
sequences of snapshots of model instances which reveal the
dynamics of object creation, classification, association and
destruction.

mailto:jpalmeida@ieee.org
mailto:gguizzardi@acm.org
mailto:abbenevides@inf.ufes.br

The rest of the paper is organized as follows: Section II
briefly describes OntoUML. Section III describes Alloy.
Section IV presents our transformation rules from OntoUML
to Alloy. Section V presents instance generation and
analysis. Section VI discusses related work and section VII
brings final conclusions.

II. ONTOUML

Due to space limitations, we concentrate here on a
fragment of the Unified Foundation Ontology (UFO) [2],
with a specific focus on those distinctions that are spawned
by variations in meta-properties of a modal nature. UFO‟s
main categories are depicted in Fig. 1 below and are briefly
discussed in the remainder of this section by using a running
example depicted in Fig. 2. Since OntoUML is a modeling
language which metamodel is designed to be isomorphic to
the UFO ontology, the leaf ontological distinctions in Fig. 1
appear as modeling primitives in the language (stereotyped
classes and relationships in Fig. 2).

A. Substances and Moments

UFO is based on a fundamental distinction between
Individuals and Universals (roughly instances and types,
respectively) and, within the category of individuals, it
differentiates between Substances and Moments. The
distinction between Substances and Moments is based on the
formal notion of existential dependence, a modal notion that
can be briefly defined as follows: Definition 1 (existential
dependence): an individual x is existentially dependent on
another individual y iff, as a matter of necessity, y must exist
whenever x exists. In other words, in every world w, if x
exists in w then y must also exist in w. ■

Substances are existentially independent individuals, i.e.,
there is no Entity x disjoint from y that must exist whenever
a Substance y exists. Examples of Substances include
ordinary mesoscopic objects such as a Person or a Car.
Conversely, a Moment is an individual that can only exist in
other individuals, i.e., that is existentially dependent on other
individuals. Here, we concentrate on relational moments or
relators (e.g., a covalent bond, an enrollment or a marriage).

So, a Substantial Universal is a universal whose instances
are Substances (e.g., the universal Person or the universal
Apple). While, a Relator Universal is a universal whose

instances are individual relational moments (e.g., the
particular enrollment connecting John and Organization0 in
Fig. 3 is an instance of the universal Enrollment).

Additionally, Kinds and Relators represent what is
termed an Ultimate Sortal Universal [2]. An Ultimate Sortal
Universal is a universal that supplies a principle of identity
which is obeyed by its instances. A principle of identity is a
principle for which we can judge whether two individuals are
the same and which conditions an individual remain the
same, i.e., it supplies the conditions for univocal
identification and persistence of an individual [2]. For
instance, in a given conceptualization, a principle of identity
for Cars could be “having the same chassis number”, hence,
in that context, two cars are the same iff they have the same
chassis number and a car c remains the same entity as long as
it preserves that chassis number, irrespective of other
changes it could suffer. Every individual of the conceptual
model must instantiate one and only one Ultimate Sortal
Class supplying the principle of identity it should obey [2].
Finally, all instances classified under a Sortal Universal obey
the same principle of identity.

B. Rigidity

We need to define some additional modal notions
(rigidity and non-rigidity) to be able to make further
distinctions within Object Universal. Definition 2
(Rigidity): A universal U is rigid if for every instance x of
U, x is necessarily (in the modal sense) an instance of U. In
other words, if x instantiates U in a given world w, then x
must instantiate U in every world w’ accessible from w. ■ .
Non-Rigidity is taken here to be simply the logical negation
of rigidity.

C. Sortal Universals

Sortals, as previously mentioned, are sorts of universals
that carry principles of identity for their instances. Person,
Car, Dog and Student are examples of Sortal Universals.

Sortal Universals that are rigid are named Kinds and
subKinds. These universals define a stable backbone, a
taxonomy of rigid universals instantiated by a given
substance individual (the Kind being the Ultimate Substance
Sortal for objects).

Within the category of non-rigid sortal universals we
have a further distinction between Phases and Roles. Both
Phases and Roles are specializations of Kinds or subKinds.
However, they are differentiated w.r.t. their specialization
conditions. For the case of Phases, the specialization
condition is always an intrinsic one. For instance, in Fig. 2, a
Child is a Person within a certain age. For Roles, in contrast,
their specialization condition is a relational one: a Student is
a Person who is enrolled in (has a study relation to) a School,
etc. Formally speaking, this distinction is based on a meta-
property named Relational Dependence: Definition 3
(Relational Dependence): A type T is relationally
dependent on another type P via relation R iff in every world
w, for every instance x of T there is an instance y of P in that
world such that x and y are related via R in w. ■ Finally, as
discussed in [2], Phases (in contrast to Roles) are always
defined in a partition set. For instance, in Fig. 2, the

Figure 1. Exerpt of UFO taxonomy[2]

universals Child, Teenager and Adult define a phase partition
for the Kind Person. As consequence, we have that in an
each world w, every Person is either a Child, a Teenager or
an Adult in w and never more than one of these.
Additionally, if x is a Child (Teenager, Adult) in w, there is
always a possible world w’, accessible from w, in which x
will not be a Child, in which case he will be either a
Teenager or an Adult.

Figure 2. Running example

In summary, in the example of Fig. 2, these model
distinctions (definitions 2 and 3) are exemplified by
contrasting the (Kind) universal Person, the (Role) universal
Student and the (Phase) universal Teenager. Please note that,
since instances of non-rigid universals may change their
types, classifiers representing non-rigid universals are
subject to dynamic classification.

D. Mixin Universals

Mixins are sorts of universals that do not carry a
principle of identity, instead they classify individuals that
obey different principles of identity (e.g., Agent in Fig. 2
which classifies different kinds of entities such as Persons
and Organizations). Hence, mixins are types which provide
properties to (characterize) individuals which have already
being individuated by sortal-supplied principles.

Mixin Universals can also be refined under more specific
categories regarding rigidity. Rigid mixins are called
Categories. We use the general term Mixin instead for
mixins which are not rigid.

E. Relator Universals and Relations

In order to represent the relation between Student and
Person, one should model Student as a Role played by
Person in a certain context, where he is enrolled in a School.
Analogously, one should model School as a Role played by
an Organization when providing educational services to a
Student. This context is materialized by the Material
Relation study (represented as the «material» stereotype in
OntoUML), which is in turn, derived from the existence of
the Relator Universal Enrollment («relator»). In other words,
we can say that a particular student x studies at a particular
school y iff there is an Enrollment z that mediates x and y.
This situation is illustrated in Fig. 2. The formal relations of

mediation in this model represent the existential dependence
of the relator on its bearers [2].

III. ALLOY

Alloy is defined as “a structural modeling language based
on first-order logic, for expressing complex structural
constraints and behavior” [4]. The language is supported in a
constraint solver called “Alloy Analyzer” which provides
simulation and checking for an Alloy model.

A model in Alloy consists of logical constraints which
are captured in signature and fact declarations. When a
model is instantiated by the Alloy Analyzer, atoms are
generated from signatures respecting the logical constraints
in the model. In other words, a signature at the model level
introduces a set of atoms at the instance level.

Listing 1 shows an example of an elementary Alloy
model, which includes a Person signature. At the instance
level, “Person atoms” are generated by the Alloy analyzer.
Other signatures, such as “Organization” produce other kinds
of atoms. Fig. 3 depicts a sequence of instance-level states,
each containing several atoms.

Signatures can include field declarations, which
introduce relations between signatures. There are no top-
level relations in Alloy; relations can only be declared as
fields in signature declarations, e.g. in Listing 1, signature
Enrollment has a field student, which introduces a relation

EnrollmentPerson. On every field or signature declaration,
it is possible to use a multiplicity keyword to restrict the
cardinality of the relation. The keywords are one, lone, some
and set, which restricts the image to one, one or zero, one or
more and zero or more elements, respectively. In Listing 1
the field student in signature Enrollment uses the keyword
“one”, which means that for every Enrollment, there will be
one and only one Person associated to it via the student
relation. Note that the multiplicity keyword applies only in
one direction. No constraint is implied on how many
Enrollments a person may relate to. Such restrictions may be
added as signature facts or as facts. Facts introduce
constraints which are assumed to be always true. Signature
facts do the same but are implicitly universally quantified
over the signature‟s set.

Signatures in Alloy can be used as a basis for the
definition of subsignatures. The subsignature mechanism
corresponds intuitively to the notion of specialization in
conceptual modeling; subsignatures inherit relations and
constraints of upper level signatures. For example, in listing
1, signatures Man and Woman are subsignatures of the
Person signature (which is indicated by the keyword “in”).
The sets introduced by these signatures are subsets of the
Person signature. A signature that is not a subsignature is
called a top-level signature. Each atom generated by the
Alloy Analyzer belongs to one and only one top-level
signature, although they can belong to any number of
subsignatures.

IV. TRANSFORMATION

Our approach is based on the transformation of
OntoUML models into Alloy models. The product of this
transformation is an Alloy specification that can be fed into
the Alloy Analyzer to generate a sequence of instance-level
states which are valid according to the language axioms.
Throughout this section we use a running example shown in
Listing 1. It corresponds to the OntoUML model presented
in Fig. 2.

A. Individuals and state transition representation

Individuals of the conceptual model are represented as
Alloy atoms. In the same way Alloy atoms belong to one and
only one top level signature, instances of an OntoUML
conceptual model belong to one and only one ultimate sortal
class. Thus, in our approach, each ultimate sortal class (i.e.,
each Kind and each Relator) is transformed into an Alloy
signature. When the Alloy Analyzer generates atoms to find
a suitable instance of the Alloy Model, each generated atom
represents a unique individual of the conceptual model.

Since Alloy, in its latest version, has no built-in notion of
state transition, we reify this notion by declaring a State
signature, ordered with the native “util/ordering” library. By
associating individuals to State atoms, we are able to
represent the dynamics of states of affairs in an ordered,
linear and discrete time representation.

To represent creation and/or destruction of individuals, a
field exists is declared in the state signature, with the purpose
of capturing which atoms exist in a given state. In other

words, an atom x exists in a state s iff relation sx belongs
to exist. Further, in our view, the existence of an individual is
undivided in time, i.e., if an individual is destructed at some
point, it cannot exist in any subsequent states. In other
words, for every state s, for every instance x of the
conceptual model, if x exists in s, then it must either exist in
the state next to s, or not exist in any subsequent states. This
rule is depicted in Listing 1, line 28 (^ denotes transitive
closure and @ is used to prevent a field name from being
expanded i.e to refer to x‟s particular “exist” field). We also
constraint every ultimate sortal atom to exist in some state,
but omit such rule due to space limits.

B. Class representation

In our approach, each class is represented as a set. An
atom x representing an individual is said to instantiate a
given class C if x belongs to set that represents C. However,
since OntoUML allows dynamic classification for non-rigid
classes, we must represent classes differently according to
rigidity. Rigid classes are represented as simple atom sets,
while non-rigid classes are represented as fields of the state
signature. This way, rigid classification is state-independent
(as expected) and each state conveys information of the
current classification of atoms by non-rigid classifiers.

SubKinds (which are rigid classes) are represented as
subsignatures, i.e., subsets of a signature set. When the Alloy
Analyzer populates the model with atoms, it arbitrarily
includes some of them in the possible subKind sets.
Categories, on the other hand, are abstract classes whose
extension is equal to the sum of the extensions of the classes

which subsume it. Categories are thus represented as total
functions of the classes that subsume it. For example, in
Listing 1 function Agent defines a set of atoms that
instantiate the Agent class, namely, the union of Person and
Organization sets.

All non-rigid classes, including roles, phases and mixins,
are represented as fields of the State signature, with subtle
differences in representation due to their different
specialization conditions. This means that the transformation
for each of these classes must introduce different constraints
for the different fields. In particular, fields representing roles
are constrained such that every member must be a target of
the corresponding mediation relationship, reflecting the
relational dependence of roles. In turn, fields representing
mixins are constrained such that they are equal to the union
of all sets representing classes that subsume the mixin. This
is necessary since mixins are abstract classes and, similarly
to categories, cannot be instantiated directly.

Generalization sets (i.e., sets of generalization relations
forming a partition) in (Onto)UML are quite trivial to
transform. Disjointness is represented with the disj keyword,
either as a function in fact constraints, or for some special
cases, such as phase partitioning, in the classes‟ declaration.
Completeness is represented by equating the general class set
to the union of the generalized classes‟ sets. The general
approach is to apply these constraints in the State signature
facts, such as we have done in the case of Person phase
partitions (Listing 1, lines 29 and 30). Nevertheless, if the
generalization set connects rigid classes, its properties of can
be represented as a simple fact, such as in the case of the
Man and Woman partitions of Person (Listing 1, line 05).

Listing 1. An Alloy model

C. Associations

Similarly to non-rigid classes, associations are
generically represented as fields of the state signature e.g. the
material relation study (Listing 1, line 25), which is derived
from the Enrollment relator, as mentioned in Section II.E.

The cardinality of a relation can be narrowed down with

the basic multiplicity keywords. Consider a relation A mn
B, where m and n are multiplicity keywords and A and B are
sets. Such relation is constrained to map each member of A
to n members of B and to map m members of B to each
member of A. Again, since we only have four basic
multiplicity keywords (“one”, “lone”, “some”, “set” as
discussed in section III), this mechanism works only for
defining the most common cardinalities in conceptual
modeling, namely 1, 0…1, 1…* and *. Nevertheless, the
cardinalities may be further narrowed down by universal
quantification of the relation and the use of the # operator.

Mediations imply existential dependency and exist
throughout the extent of the relators‟s existence. Due to this,
we can represent mediations as fields of the relator signature.

V. AN EXAMPLE

In this section we shall guide through some instances of
the model generated by the Alloy Analyzer from the
specification presented in Listing 1. Each box represents an
individual and each arrow a relation. Theme options have
been applied to improve visualization, such as projecting
over the state signature, applying different shading for Alive
and Deceased phases, and hiding individuals which do not
exist in the currently visible state. The individuals John and
Mary below represent two distinct instances of Person.

Our method takes advantage of the Alloy Analyzer to
offer automatic instance generation, which confronts the
modeler with arbitrary model population. The visualization
of individuals of the conceptual model, their behavior while
migrating between non-rigid classes and how they associate
with other individuals will either strengthen the modeler‟s
confidence in the produced model, if faced with expected
behavior, or reveal characteristics which are not intended and
can then be corrected. Further, situations which are indeed
expected by the modeler and do not emerge in random

instance generation can be searched for by the Alloy
analyzer using logical constraints in the form of predicates.
Failure by the Alloy Analyzer to find such instances is not an
assurance of their absence. This is because the analysis
conducted by Alloy is not „complete‟ in the sense that it
examines only a finite space of cases [4]. This space of cases
is constrained by a parameter called scope, which restricts
the number of top-level signatures. Within the given scope,
the analysis is exhaustive.

Fig. 3 shows a sequence of states generated by the Alloy
Analyzer from the Alloy model shown in Listing 1, which
was in turn obtained from automatic transformation of the
OntoUML model in Fig. 2. The first state reveals two Person
atoms (John and Mary), one Enrollment atom and one
Organization atom. Mary is a living (thus insurable) adult.
John is a deceased (thus not insurable) child and a Student;
Organization0 is his school. This raises the first question on
the model: should deceased persons be allowed to be
Students? We are not advocating there is a general
ontological choice that should be countenanced in all
conceptualizations; simply that a choice must be made and
this choice should reflect the intended conceptualization. In
the second state, the study relationship between John and
Organization0 no longer holds. Thus, Enrollment0 is
destroyed, John is no longer a student and Organization0 is
no longer a School. Two things emerge as unusual in this
state transitioning: John came back to life and Mary turned
from an Adult to a Teenager. To ensure that phase
transitioning occurs as intended, additional constraints
should be added since the OntoUML model does not make
explicit the phase transition conditions (and thus from the
perspective of the generated Alloy specification, phase
transitions are arbitrary). In the last state transition, Mary and
Organization0 are destructed and John turns from Child
straight to Adult. This brings another kind of questioning on
the abstraction of the domain. What is the semantics of the
destruction of a substance individual? How discrete is our
state representation? Should we allow John to be a Child in
one state and an Adult on the next? Some sort of control on
the intrinsic reason that makes a Person change this kind of
phase should be reified.

The questions that emerged in this section reflect
modeling choices and missing domain-specific constraints
that affect deeply the behavior of the conceptual model, and
should be elucidated in order to guarantee that the model
corresponds to the intended conceptualization. If it does not,
constraints should be added, or the model should be
corrected in order to improve its quality.

VI. RELATED WORK

Several approaches in literature aim at assessing whether
conceptual models comply with their intended
conceptualizations. Although many approaches (e.g., [6] and
[7]) focus on analysis of behavioral UML models, we are
primarily concerned with structural models and thus refrain
from further analysis of behavioral-focused work.

A prominent example is the USE (UML Specification
Environment) tool proposed in [8]. The tool is able to
indicate whether instances of a UML class diagram respect

Figure 3. A sequence of states

constraints specified in the model through OCL. Differently
from our approach, which is based on the automatic creation
of example state sequences, in USE the modeler must
specify sequences of snapshots in order to gain confidence
on the quality of the model (either through the user interface
or by specifying sequences of snapshots in a tool-specific
language called ASSL, A Snapshot Sequence Language).

Similar to USE, [9] focuses on analysis and constraint
validation of single snapshots only. Differently from our
approach, [9] relies on manual translation of class diagrams.
Further, they translate all classes into Alloy signatures,
which suggests that no dynamic classification is possible.

The approach described in [10, 16] is similar to ours in
that the authors have implemented a model transformation to
automatically generate Alloy specifications from UML class
diagrams. Further, they introduce a notion of state transition
to show sequences of snapshots. However, since they also
translate all classes into Alloy signatures, dynamic
classification is not accounted for. This implies in significant
differences in the transformation patterns and restricts the
applicability of the approach to analyze conceptual models
that rely on dynamic classification.

VII. CONCLUDING REMARKS

Conceptual Modeling constitutes a fundamental phase in
Software Engineering and Database Design in which aspects
of the domain of discourse are represented in diagrammatic
specifications. As well understood in these fields, the quality
of implementations is strongly dependent on the quality of
the conceptual models from which they are derived.

In the last decade, UML has become a de facto standard
for Conceptual Modeling in Software Engineering. However,
its adequacy for that purpose is impaired due to its
ambiguous semantics. For this reason, many approaches
have been developed in order to: (i) provide formal
semantics for UML; (ii) provide automated mechanisms for
checking the formal consistency of UML models.

Nonetheless, none of the related works we have
identified covering (i) and (ii) capture the issue of dynamic
classification/object migration. Object Migration has been an
important issue in the literature of conceptual modeling at
least since the late seventies [12] and its role in capturing
subtle semantics aspects of software systems can be
summarized by the following quote from [13]: “To
effectively model complex applications in which constantly
changing situations can be represented, a systems must be
able to support the evolution… of individual objects. The
strict uniformity of objects contained in a class is
unreasonable… An object that evolves by changing its type
dynamically is able to represent changing situations as it can
be an instance of different types from moment to moment.”
Additionally, as discussed in depth [2], having an explicit
account for modeling and analysis of dynamic classification
in a conceptual modeling language is fundamental to avoid
semantic interoperability problems. As demonstrated there,
for instance, the false identity of two classes in some
practical model integration situations can only be spotted
when the difference in modal (temporal) extensions of these
classes are contrasted and made explicit.

Finally, from a real-worlds semantics perspective, there
is an important difference between our work and other
traditional conceptual modeling accounts of dynamic
classification in the literature such as [12, 13], namely, that
our dynamic categories reflect a system of theoretical
distinctions founded in research in formal ontology,
philosophy of language and cognitive science. For this
reason, these distinctions are not only precise from a logical
point of view but are also cognitively warranted in the sense
that they reflect the meta-level categories that we humans as
cognitive subjects in fact employ to construct our
conceptualizations of reality (as empirically supported by
several works, see in [2]). This characteristic is of great
importance for conceptual modeling, in which the resulting
specifications should not only be formally correct but should
also be effective in supporting humans in tasks such as
problem-solving, understanding and communication.

REFERENCES

[1] J. Mylopoulos, “Conceptual Modeling and Telos,”.Conceptual
Modeling, Databases, and CASE: An Integrated View of Information
Systems Development, Wiley, 1992.

[2] G. Guizzardi, Ontological foundations for structural conceptual
models, PhD thesis, University of Twente, The Netherlands, 2005.

[3] A.B. Benevides and G. Guizzardi, “A model-based tool for
conceptual modeling and domain ontology engineering in ontouml,”
ICEIS 2009, Lecture Notes in Business Information Processing
(LNBIP), vol. 24, Springer, 2009, pp. 528–538.

[4] D. Jackson, Software abstractions, Logic, Language, and Analysis,
MIT Press, Cambridge, Massachusetts, London, England, 2006.

[5] A.B. Benevides, G. Guizzardi, B.F.B. Braga, and J.P.A. Almeida,
“Assessing modal aspects of OntoUML conceptual models in Alloy”,
ER 2009 Workshops (ETheCoM), Lecture Notes in Computer
Science (LNCS) vol. 5833, Springer, p. 55-64.

[6] M.E. Beato, M. Barrio-Solórzano, and C.E. Cuesta, “UML automatic
verification tool (TABU),” Specification and Verification of
Component-Based Systems (SAVCBS‟04) at ACM SIGSOFT
2004/FSE-12, 2004.

[7] I. Schinz, T. Toben, C. Mrugalla, and B. Westphal, “The rhapsody
uml verification environment,” Proc. 2nd Software Engineering and
Formal Methods (SEFM 2004), IEEE CS Press, 2004, p. 174–183.

[8] M. Gogolla, F. Büttner, and M. Richters, “Use: A uml-based
specification environment for validating uml and ocl,” Science of
Computer Programming 69, 2007, p. 27–34.

[9] T. Massoni, R. Gheyi, and P. Borba, “A uml class diagram analyzer,”
3rd International Workshop on Critical Systems Development with
UML, affiliated with 7th UML Conference, 2004, pp. 143–153.

[10] Maintainers: UML2Alloy. Project website:
http://www.cs.bham.ac.uk/~bxb/UML2Alloy/index.php

[11] B. Boehm, V. Basili, “Software Defect Reduction Top 10 List,”
Computer, vol. 34, no. 1, 2001, pp. 135-137.

[12] C.W. Bachman, M. Daya, The Role Concept in Data Models, Third
International Conference on Very Large Databases, 1977.

[13] M. Papazoglou, B.J. Kramer, A Database Model of Object Dynamics,
The VLDB Journal, 1996.

[14] US Department of Defense (DoD), DoD Directive 5000.59, “DoD
Modeling and Simulation (M&S) Management,” 2007.

[15] O. Pastor, J.C. Molina, Model-Driven Architecture in Practice: A
Software Production Environment Based on Conceptual Modeling,
Springer-Verlag New York, LLC, 2007.

[16] K. Anastasakis, B. Bordbar, G. Georg, I. Ray, “On challenges of
model transformation from uml to alloy,” Software & Systems
Modeling, 2009.

