
Transformation of Ontology-Based Conceptual Models
into Relational Schemas

Gustavo L. Guidoni1,2, João Paulo A. Almeida1, and Giancarlo Guizzardi1,3

1 Ontology & Conceptual Modeling Research Group (NEMO),
Federal University of Espı́rito Santo, Vitória, Brazil

2 Federal Institute of Espı́rito Santo, Colatina, Brazil
3 Free University of Bozen-Bolzano, Italy

gustavo.guidoni@ifes.edu.br, jpalmeida@ieee.org, gguizzardi@unibz.it

Abstract. Despite the existence of several strategies for transforming structural
conceptual models into relational schemas, there are a number of features of
ontology-based conceptual models that have not been taken into account in the
existing literature. Most approaches fail to support conceptual models that: (i)
include overlapping or incomplete generalizations; (ii) support dynamic clas-
sification; (iii) have multiple inheritance; and (iv) have orthogonal hierarchies.
This is because many of the approaches discussed in the literature are based on
the object-relational mapping and, as a consequence, assume primitives underly-
ing object-oriented programming languages (instead of conceptual modeling lan-
guages). This paper addresses this gap, focusing on the realization of taxonomic
hierarchies of ontology-based conceptual models. We explore some ontological
meta-properties that characterize classes in these models (sortality and rigidity)
to guide the transformation and avoid some problems in existing approaches.

Keywords: Object-relational mapping · transformation · impedance mismatch ·
ontology primitives.

1 Introduction

Conceptual models play an important role in the design of relational databases, and
are often used to guide the definition of relational schemas. Several systematic model
transformation approaches to this end have been explored in the academic literature and
incorporated in production-ready tools [23]. In these approaches, elements and patterns
of a resulting relational schema have their origin traced back to corresponding elements
and patterns of a source conceptual model. By using a model transformation approach,
design decisions are incorporated into transformation specifications; automated model
transformation then shields designers from manual (error-prone) realization steps.

A significant challenge of a model transformation approach is to preserve the seman-
tics of a source model. This is because, often, source and target models are based on
different paradigms, employ different concepts, which results in a variety of technical
problems. A manifest example of this is the so-called “Object-Relational Impedance
Mismatch” [15], which results from a “semantic gap” with object-oriented constructs
not bearing a direct correspondence with constructs in relational schemas.



The existing transformation approaches that target relational schemas vary in a num-
ber of ways, including: (i) the primitives with which the source conceptual model is
defined (e.g., as given by the source modeling language and its underlying abstrac-
tions), (ii) the realization strategies employed to bridge the semantic gap, (iii) the non-
functional properties of the resulting database systems (such as time performance, ease
of use, maintainability), and (iv) level of automation.

Consider, for example, approaches to transform an object-oriented inheritance hi-
erarchy into relational schemas (such as those discussed by [2, 16]). Concerning the
adopted primitives (i), their vast majority assume objects are classified statically (i.e.,
objects cannot change classes at runtime); some of them assume single inheritance only.
Concerning the realization strategies employed (ii), approaches adopt variations of one
table per class, one table per leaf class and one table per hierarchy. Strategy choices
are either fixed in a particular approach or discussed with general heuristics. For ex-
ample, when discussing these approaches, Ambler [2] argues that if priority is given to
the support for polymorphism, then the best strategy is one table per class, at the cost
of performance. Keller [16] indicates the use of one table per hierarchy strategy if the
transformation purpose is performance and maintainability.

Despite the existence of several strategies for transforming object-oriented models
into relational schemas, there are a number of features of ontology-based conceptual
models that have not been taken into account in the existing literature. Most approaches
do not cater for source conceptual models that: (i) include overlapping or incomplete
generalizations; (ii) support dynamic classification; (iii) have multiple inheritance; and
(iv) have orthogonal hierarchies. This is because many of the approaches discussed in
the literature are based on the object-relational mapping and, as a consequence, assume
primitives underlying object-oriented programming languages (instead of conceptual
modeling languages). This paper addresses this gap, focusing on the realization of tax-
onomic hierarchies of ontology-based conceptual models, which do not adhere to the
constraints of inheritance hierarchies in programming languages. Further, by exploring
ontological distinctions for types—specifically the formal metaproperties of sortality
and rigidity—we are able to devise a novel transformation strategy and avoid some
problems in existing approaches.

This paper is further structured as follows. Section 2 presents the primitives we as-
sume in a source conceptual model. It also introduces a running example. Section 3
identifies predominant strategies in the literature to transform class hierarchies into rela-
tional schemas; it identifies limitations that motivate us to investigate a novel approach.
Section 4 presents the ontology-based approach, which is applied to the running ex-
ample. Section 5 discusses how the proposed approach is positioned with respect to the
dominant strategies and other related work. Section 6 presents concluding remarks.

2 Primitives of the Source Conceptual Model

We assume that the basic elements of a taxonomy in a structural conceptual model
are classes and their relations of specialization (also called “is-a”, subclassing, or in-
heritance relations). Classes are used to capture common properties of entities they
classify, and, in a taxonomic hierarchy, more general classes are specialized into more



specific (sub-)classes, which “inherit” attributes and associations of their superclasses
(for brevity, we call here both the attributes and associations of a class its “features”).
We assume conceptual modelling approaches share these ground notions, nevertheless,
there are variations including additional supporting mechanisms, their semantics and
their possible range of use, as discussed in the remainder of this section.

Multiple Inheritance. A first source of variation concerns the possibility of a subclass
to specialize more than one superclass. In a taxonomic hierarchy with multiple inheri-
tance, a class can be a subclass of different classes [6]. A subclass in such a hierarchy
inherits the properties of all its superclasses. Multiple inheritance has been avoided in
some programming languages as it leads to some implementation difficulties. In con-
ceptual modeling, however, multiple inheritance is hardly dispensable, as it enables
opportunities for modularity and reusability [7].

Overlapping Classification. Another variation concerns whether an object can si-
multaneously instantiate multiple classes which are not related by specialization. For
example, a person may instantiate both the BrazilianCitizen and the ItalianCit-
izen subclasses of Person. In UML, this can be explicitly supported with the so-called
overlapping generalization sets, in which a set of non-disjoint classes specialize the
same superclass. Additionally, this kind of scenario can be supported with different–
orthogonal–hierarchies that specialize a common superclass based on different criteria.
For example, persons may be classified according to their age and according to citizen-
ship status. In this setting, a Brazilian adult would instantiate both the BrazilianCi-

tizen and the Adult subclasses of Person (each from a different generalization set).
Non-Exhaustive Classification. A related variation concerns whether specializing

subclasses “cover” the specialized superclass, i.e., whether they jointly exhaust all the
classification possibilities for the superclass. In UML, this can be explicitly supported
with the so-called complete generalization sets, which are opposed to incomplete gen-
eralization sets. In the case of an incomplete generalization set, it is possible for an
instance of the superclass not to instantiate any of the subclasses in the set. For exam-
ple, it is possible for a person to be stateless (in the sense of not being considered a
national by any State), and hence a nationality generalization set could be marked as
“incomplete” even in the case all known nationalities are explicitly modeled.

Dynamic Classification. Another variation we consider concerns whether instances
can change the set of classes they instantiate throughout their existence. For example, a
Person may be reclassified from Child to Adult with the passing of time. This is not
possible if static classification is assumed. Many modeling languages support only static
classification given their roots in object-oriented programming languages that likewise
only support static classification; in these languages, the class that an object instanti-
ates is defined at object instantiation time, and remains fixed throughout that object’s
life cycle. Nevertheless, in conceptual modeling, dynamic classification has been con-
sidered an important feature and studied by several authors [1, 9, 21, 22, 25]. Dynamic
classification enlarges the realm of classes to include those which apply contingently
or temporarily to their instances. Examples include the ontological notions of phases
(such as Child and Adult), and roles (such as BrazilianCitizen, ItalianCiti-
zen, Employee and Customer).



Abstract and Concrete Classes. Finally, we assume that the conceptual modeling
technique may distinguish between abstract and concrete classes. Abstract classes have
no “direct” instances, i.e., all of their instances are also instances of specializing sub-
classes. Concrete classes in their turn are not bound by this constraint (and thus can
have “direct” instances).

Running Example. Figure 1 shows a UML model exploring all of the aspects of a
source conceptual model we address in this paper, and is used further as a running
example. It includes: (i) an overlapping and incomplete generalization set, in which
Persons are specialized according to—none or more than one—enumerated countries
of citizenship; (ii) a generalization set orthogonal to the first one, in which Persons

are classified dynamically according to life phase; (iii) multiple inheritance, with each
PersonalCustomer being both a Customer and an Adult Person, as well as each
CorporateCustomer being both a Customer and an Organization); (iv) orthogonal
classification hierarchies (with Organization being classified as a CorporateCus-

tomer when it establishes a relation with another Organization and also possibly
being classified as a PrimarySchool in which children may be enrolled or as a Hos-

pital); (v) an abstract class NamedEntity, which is specialized into Person and Or-

ganization and an abstract class Customer, which is specialized into concrete classes
PersonalCustomer and CorporateCustomer.

Fig. 1. Running example

3 Current Realization Strategies

The relational model does not directly support the concept of inheritance, and, hence,
realization strategies are required to preserve the semantics of a source conceptual
model in a target relational schema. Such strategies are described by several authors
[3, 8, 16, 18, 23] under various names. In this section, we review the most salient strate-
gies in the literature. We discuss their applicability in relation to the source conceptual
modeling primitives under discussion.



One table per class. This strategy is also called “Class-table” [8], “Vertical inheri-
tance” [23] or “One class one table” [16]: In this strategy, each class gives rise to
a separate table, with columns corresponding to the class’s features. In this strategy,
specialization between classes in the conceptual model gives rise to a foreign key in
the table that corresponds to the subclass (henceforth “subclass tables” for simplicity).
This foreign key references the primary key of the table corresponding to the superclass
(henceforth “superclass table” for simplicity). For example, when applying this strategy
under the hierarchy formed by the classes Customer, PersonalCustomer and Cor-

porateCustomer in Figure 1, all classes are transformed into tables. Foreign keys in
the PERSONAL CUSTOMER and CORPORATE CUSTOMER tables refer to the primary key of
the CUSTOMER table. The relational schema directly reflects the organization of classes
in the conceptual model, and no restriction on the primitives of the model are imposed.
Multiple inheritance can be supported by using a composite foreign key in subclass ta-
bles (PERSONAL CUSTOMER in fact has a composite key referencing the primary keys
of the ADULT and CUSTOMER tables). Constraints on a generalization set (overlapping
and non-exhaustive classification) are reflected in integrity constraints concerning the
cardinality of entries in the subclass tables for a particular row in each superclass table.
Dynamic classification is implemented by deletion of a row in a subclass table (cas-
caded to further subclass tables) and, possibly, insertion in another. Abstract classes
and concrete classes are treated alike. The main drawback of this approach is its per-
formance characteristics. In order to manipulate a single instance of a class, e.g., to
read all its attributes or to insert a new instance with its attributes, one needs to traverse
a number of tables corresponding to the depth of the whole specialization hierarchy.
For example, consulting the name and credit card of a Person one needs to traverse
four(!) tables, namely NAMED ENTITY, PERSON, ADULT and PERSONAL CUSTOMER (and
even more tables if we are also interested in a person’s nationality). This limitation
motivates the adoption of other strategies, as discussed in the sequel.

One table per leaf class. In this strategy, also termed “horizontal inheritance” [23],
each of the leaf classes in the hierarchy gives rise to a corresponding table. Features
of all (non-leaf) superclasses of a leaf class are realized as columns in the leaf class
table. No foreign keys emulating inheritance are employed in this approach. The strat-
egy can be understood as reiterated application of an operation of “flattening” of su-
perclasses. For example, when applying this strategy under the hierarchy formed by
the classes Customer, PersonalCustomer and CorporateCustomer in Figure 1, the
credit rating attribute of the Customer correspond to columns in both the PER-

SONAL CUSTOMER and CORPORATE CUSTOMER tables (which also has columns for at-
tributes of its other superclasses: birth date and address respectivelty). Any ref-
erences to a superclass (e.g., the references realized as foreign keys of a SUPPLY-

CONTRACT) now refer to an entry in either of the subclass tables (in this case PER-

SONAL CUSTOMER or CORPORATE CUSTOMER). Referential integrity tends to be prob-
lematic if the number of leaf classes is large. For example, if there are two references
from a superclass to another class in the model and ten leaf classes, there will be the
need to maintain referential integrity for twenty references. Special attention is required
when the conceptual model has multiple inheritance, because of possible name colli-
sion (easily addressed with name conventions). (If multiple inheritance is disallowed,



the strategy becomes equivalent to one table per inheritance path.) This strategy ad-
dresses the performance issue discussed for the one table per class, at the cost of poly-
morphic queries. Consider, for example, a query for all customers to ascertain average
credit rating. In the one table per class strategy such a query involves only one ta-
ble. In this strategy, however, the query requires the union of PERSONAL CUSTOMER and
CORPORATE CUSTOMER). The higher the class in the specialization hierarchy, the higher
the number of classes involved in a polymorphic query. Regardless of the performance
characteristics, there is a more serious concern when it comes to supporting overlapping
generalization sets and orthogonal hierarchies. In the presence of overlapping classifi-
cation, there is an issue with the identification of an instance of the superclass. Consider
the “flattening” of Person in our example. In case a person has double Brazilian and
Italian citizenship, there would be a row in the BRAZILIAN CITIZEN table and another
row in the ITALIAN CITIZEN table denoting the same person, but without a correlating
identifier. This problem is also present for orthogonal hierarchies of an abstract super-
class. (There would be, e.g., a row in the ADULT table corresponding to a row in the
BRAZILIAN CITIZEN table.) Further, there is a problem with the preservation of iden-
tity in dynamic classification (when objects change classes, a row is deleted from one
table and added to another, all attributes that are inherited from superclasses must be
copied to the new row). Differently from one table per class, there is no stable identifier.

One table per hierarchy. This strategy, also called “Single-table” [8] or “One inheri-
tance tree one table” [16], can be understood as the opposite of one table per leaf class,
applying a “lifting” operation to subclasses instead of the “flattening” of superclasses.
Consider, e.g., the hierarchy formed by Customer, PersonalCustomer and Corpo-

rateCustomer. Customer is the top-level class in this hierarchy, and will thus give
rise to a corresponding CUSTOMER table. Attributes of each subclass become columns
in the superclass table, with mandatory attributes corresponding to optional columns.
This strategy usually requires the creation of an additional column to distinguish which
subclass is (or which subclasses are) instantiated by the entity represented in the row
(a so-called “discriminator” column). The “lifting”operation is reiterated until the top-
level class of each hierarchy is reached. In principle, the performance problems dis-
cussed for the other strategies do not appear in this approach. However, as discussed
in [23], standard database integrity mechanisms cannot prevent certain inconsistencies.
In our example, the ENROLLMENT table would have foreign keys to the top-level class
NAMED ENTITY, since Person and Primary School would be “lifted” to the corre-
sponding top-level class. Thus, the discriminator would have to be checked to make
sure that only children are enrolled in primary schools, because the database would
admit any named entity enrolled in another named entity, e.g., hospitals enrolled in
hospitals. In addition, the greater the number of leaf classes in a hierarchy, the greater
the number of optional columns that remain unattributed in every row. This approach is
problematic in the face of multiple inheritance. If multiple inheritance is admitted, then
there may be top-level classes that are not disjoint (e.g., Customer and NamedEntity).
This means that there will be rows in more than one table denoting the same individual,
a problem which also appeared in one table per leaf class, albeit for different reasons.
Dynamic classification at the top of the hierarchy (such as the case of Customer) also
poses a challenge, not unlike the one faced by one table per leaf class.



4 Ontological Semantics to the Rescue

In the previous section, we have observed that there are a number of deficiencies of
existing conceptual model transformation approaches, with (i) poor performance in
various data manipulation operations, (ii) failure to explore beneficial database mecha-
nisms, and/or (iii) lack of support for various conceptual modeling primitives including
orthogonal classification hierarchies, overlapping non-exhaustive generalization sets as
well as dynamic classification and multiple inheritance.

In contrast with all the aforementioned approaches, our proposal in this paper ex-
plores the ontological semantics [12] of the elements represented in a conceptual model.
By identifying formal ontological meta-properties of the classes in a model, including
sortality and rigidity, we are able to guide the transformation. We use here the ontolog-
ical distinction underlying the Unified Foundational Ontology (UFO) [12], which have
their roots in OntoClean [11]. Here we discuss only the ontological distinctions that are
needed in this paper. For further reference and formalization, see [12, 14].

Take a subject domain focused on objects (as opposed to events or occurrences). Cen-
tral to this domain we will have a number of object kinds, i.e., the genuine fundamental
types of objects that exist in this domain. The term “kind” is meant here in a strong
technical sense, i.e., by a kind, we mean a type capturing essential properties of the
things it classifies. In other words, the objects classified by that kind could not possibly
exist without being of that specific kind. In Figure 1, we have represented two object
kinds, namely, Person and Organization. These are the fundamental kinds of entities
that are deemed to exist in the domain. Kinds tessellate the possible space of objects in
that domain, i.e., all objects belong necessarily to exactly one kind.

Static subdivisions (or subtypes) of a kind are naturally termed subkinds. In our ex-
ample, the kind Organization is specialized in the subkinds Primary School and
Hospital. Object kinds and subkinds represent essential properties of objects, i.e.,
properties that these objects instantiate in all possible situations. They are examples
of what are termed rigid or static types. There are, however, also types that represent
contingent or accidental properties of objects (termed anti-rigid types). These include
phases and roles. Phases represent properties that are intrinsic to entities; roles, in con-
trast, represent properties that entities have in a relational context, i.e., contingent rela-
tional properties. In our example, we have a phase partition including Child and Adult
(as phases in the life of a Person). Several other types in the example are roles: Em-
ployee, Contractor, BrazilianCitizen and ItalianCitizen (the last two in the
context of a relation with a national state, not represented in the model, for simplicity).

Kinds, subkinds, phases, and roles are all object sortals. In the philosophical liter-
ature, a sortal is a type that provides a uniform principle of identity, persistence, and
individuation for its instances. A sortal is either a kind (e.g., Person) or a specializa-
tion of a kind (e.g., Child, Employee, Hospital), i.e., it is either a type representing
the essence of what things are or a sub-classification of entities that “have that same
type of essence”. There are also types that apply to entities of multiple kinds, these
are called non-sortals. An example of non-sortal is Customer (which can be played
by both people and organizations). We call these role-like types that classify entities of
multiple kinds role mixins. Another example of non-sortal is NamedEntity. However,
it is a rigid non-sortal, classifying objects of various kinds statically.



In addition to objects, there are also existentially dependent endurants, i.e., endurants
that depend on other endurants for their existence. Here, we highlight the so-called re-
lators, which reify a relationship mediating endurants. In our example, an instance of
Employment can only exist as long as a particular instance of Person (playing the Em-
ployee role) and a particular instance of Organization (playing the corresponding
Employer role, omitted here) exist. The meta-properties we have discussed for object
types also apply to relator types. In our example, Employment, Enrollment and Sup-

plyContract are relator kinds.4. Relators are composed of another type of dependent
endurant termed a qua-entity (or role instance) [12]. Each qua-entity composing a re-
lator inheres in one of the relatum of that relator while being relationally dependent on
the other relata.

Figure 2 revisits Figure 1, now including class stereotypes according to the ontolog-
ical distinctions discussed above, which are part of UFO-based OntoUML profile [12].
According to the rules that apply to OntoUML (formally characterized in [14]):

– non-sortals (such as �category� and �roleMixin�), when present in a model, are
always superclasses (and never subclasses) of sortals (such as �kind�, �subkind�,
�role�, �phase�, �relatorKind�);

– non-sortals are abstract and are only instantiated through their sortal subclasses;
– sortals that are not kinds (�subkind�, �role�, �phase� or �role�) specialize exactly

one kind (or �relatorKind�), from which they inherit their principle of identity. So,
there is no multiple inheritance of kinds, since all kinds are mutually disjoint;

– rigid types (�kind�, �subkind�, �category�, �relatorKind�) never specialize anti-
rigid types (�role�, �roleMixin� or �phase�).

Fig. 2. Running example with OntoUML stereotypes added.

4 It is not in the scope of this paper to discuss strategies for the representation of n-to-n re-
lationships. With the reification of these relationships into relators, the challenge is already
addressed at the conceptual model level, with many other benefits [10].



We can now use the ontological distinctions to articulate a transformation strategy.
In a nutshell, this strategy results in a schema composed of tables corresponding to the
kinds of entities in the domain. Because of this, it is termed one table per kind.

The first two steps of our approach are based on the operations of flattening and lift-
ing, which are guided by the aforementioned ontological distinctions. Non-sortals are
flattened towards sortals (step 1). Sortals are lifted until their kinds are reached (step 2).
These operations basically correspond to the graph transformation model abstraction
rules proposed in [13]. In particular, the former to the non-sortal abstraction rule (R2),
and the latter to a combination of the sortal abstraction rule (R3) and the subkind and
phase partition abstraction rule (R4). Flattening is performed from all top-level non-
sortals. In our running example, the name attribute NamedEntity is flattened to PER-

SON and ORGANIZATION. The same applies to credit rating in Customer. When all
non-sortals have been flattened, lifting is performed recursively from the leaves of the
inheritance tree, propagating mandatory attributes as optional, until kinds are reached.5

Table 1 shows the two operations as graph transformations. The classes flattened or
lifted are shown in grey. For lifting, there are two cases. When a generalization set is
involved (a), a discriminator enumeration is introduced, with labels corresponding to
each SubType j in the set. Otherwise (b), a Boolean attribute suffices.

Table 1. Transformation Patterns.

Rule Source Graph Target Graph

Fl
at

te
ni

ng
L

ift
in

g

After these operations have been carried out, as a final step of our approach (step 3),
tables are produced for each of the classes in the refactored model. The tables corre-
sponding to dependent entities must have foreign keys to the entities on which they
depend. This is the case for tables corresponding to relator kinds, and also for the dis-
criminating tables in the case of overlapping generalization sets. In the latter case, each
row in a discriminator table represents a qua-entity connecting role players with the

5 For the implementation repository see https://github.com/nemo-ufes/ontouml2db

https://github.com/nemo-ufes/ontouml2db


corresponding (reified) role class. As previously discussed, qua-entities and relators are
existentially dependent entities.

Figure 3 presents the schema that results from the application of these transformation
steps in the conceptual model in Figure 2. We obtain the five tables corresponding to
object kinds: PERSON, ORGANIZATION, and three corresponding to relator kinds: EM-
PLOYMENT, ENROLLMENT and SUPPLY CONTRACT. An additional table for the discrim-
inator that results from the overlapping generalization set nationality is introduced
(PERSON-NATIONALITY, representing a qua-entity connecting a person to a particular
nationality type). Finally, for all the tables representing dependent entities types, we
introduce the corresponding dependency keys.

Fig. 3. Resulting relational schema in running example one table per kind.

5 Discussion and Comparison to Alternative Approaches

Table 2 summarizes the comparison between the proposed one table per kind strategy
and the three dominant strategies in the literature, where: n is the total number of classes
in the source conceptual model, h is the maximum height of the hierarchy (i.e., maxi-
mum path size from a top-level class to a leaf class), nl is the number of leaf classes in
the hierarchy, nt the number of top-level classes, and nk is the number of kinds. Note
that the number of kinds (nk) is equal to or lower than the number of leaf classes (i.e.,
nk ≤ nl ≤ n), and that they are equal (nk = nl) only in case there are no subkinds, roles
and phases. Thus, the number of tables to required to represent entities in the domain in
the proposed one table per kind strategy is equal to or lower than that required by one
table per class and one table per leaf class. The comparison with one table per hier-
archy requires us to consider the number of top-level classes (nt ). The two approaches
result in the same number of tables when there are no non-sortals (nk = nt ).

The table also presents worst-case figures for the retrieval and insertion of an entity
(with all its attributes). One table per class fares poorly in this comparison, with h joins



Table 2. Comparison between Realization Strategies.

Realization
Strategy

No of tables
representing

entities

No of joins
to retrieve
an entity

No of tables
affected in insert

operation

No of tables in union to
read one attribute

(polymorphic query)

Multiple
inheritance

Orthogonal
hierarchies

Dynamic
classification
performance

One table per class n h h+1 1 yes yes poor
One table per leaf class nl 1 1 nl yes no poor
One table per hierarchy nt 1 1 1 no yes good
One table per kind nk 1 1 nk (1, if defined in sortal) yes yes good

required in the worst case. The performance of polimorphic queries is considered, with
respect to the number of tables involved in a union to read one attribute defined in a
superclass. One table per leaf class performs poorly in this respect. All others perform
equally, except one table per kind when the attribute is defined in a non-sortal, in which
case, nk unions may be required in the worst case (when the non-sortal class in which
the attribute is defined classifies entities of all kinds in the model). Even in this case, the
approach is equal to or better than one table per leaf class (since nk ≤ nl). Table 3 shows
the values for these variables for a number of models in different domains (those also
employed in [13]), revealing that height of the hierarchy ranges from two to six, and the
number of kinds in a model is typically one fourth or one fifth of the total number of
classes. The average number of leaf classes (nl) is 39, contrasted with 15 for kinds.

Problems with multiple inheritance in one table per hierarchy do not appear in one
table per kind because there is no multiple inheritance of kinds. Multiple inheritance
of non-kind sortals (subkinds, phases and roles) does not pose a problem, as discrim-
inators identify the instantiated classes. Multiple inheritance of non-sortals creates no
problems because they are flattened into kinds. Problems with orthogonal hierarchies
and overlapping generalization sets in one table per leaf class also do not arise as a
consequence of the transformation strategy. Kinds tables are where the entities primary
keys are placed, and hence there is no problem with the same entity being represented in
several tables. Flattening of non-sortals poses no problem in this scenario. In the lifting
of non-kind sortals, orthogonal hierarchies and overlapping generalization sets are, not
unlike multiple inheritance, reflected in discriminators in the kind table. Dynamic clas-
sification is supported naturally as reclassification is simply change in discriminators.
This is not the case with one table per class and one table per leaf class, which require
deletion and insertion, posing a problem for referential integrity.

In addition to the dominant strategies we have discussed, there are approaches which
use the distinction between abstract and concrete classes, with impact on performance
characteristics. For example, one table per concrete class is a variant of one table per

Table 3. Variable occurrences by OntoUML model.

Variables OntoUML Models
Cloud

Vulnerability ECG G.805 MPOG Normative
Acts OpenBio OpenFlow Open

Provenance PAS 77 Software
Requirements Average

n 30 49 123 15 59 231 20 33 66 17 64
h 3 2 6 4 3 5 2 2 3 2 3
nl 12 18 70 7 43 163 8 12 41 11 39
nt 5 4 14 3 5 9 4 8 5 2 6
nk 12 18 18 5 10 37 6 17 19 7 15



class in which abstract classes are flattened out. Since flattening of abstract classes
reduces the height of the hierarchy, this strategy has the potential of improve the per-
formance of retrieving and inserting an entity. Nevertheless, that performance is still
much dependent on the size of the concrete class hierarchy. Further, dynamic classifica-
tion performance remains a challenge in this approach. By identifying the ontological
meta-properties of classes in the source conceptual model, we are able to better nav-
igate performance tradeoffs, beyond what can be achieved with the abstract–concrete
distinction. For example, strategies such as one table per rigid sortal become possible,
approximating one table per concrete class in terms of performance but circumvent-
ing its difficulty with dynamic classification. This approach is favored by Rybola and
Pergl [20], who focus on the transformation of sortals. In his Ph.D. thesis, Rybola [19]
proposes the transformation of non-sortals with a pattern that introduces a table for each
class. In this sense, his approach approximates one table per class, but produces even
more tables due to the patterns employed to address the relation between the non-sortal
and sortal hierarchies. This exacerbates the performance issues when accessing or in-
serting an object. The techniques proposed in that work can be adapted to our strategy.
In particular, quite sophisticated integrity rules and validation triggers were proposed to
preserve the semantics of the original constructs from the source OntoUML model.

Over the years, a number of authors have compared the various object-relational
mapping strategies in terms of system infrastructure (performance and storage) and re-
lational schema design (understanding and maintainability). Among these, Keller [16]
points out the infrastructure and design “forces” that govern the development of a re-
lational schema, as well as some characteristics used in the application design, such
as polymorphism. The author also exposes the consequences of using the strategies,
which also is done by Fowler [8] when identifying the strengths and weaknesses of
each strategy. Ambler [2] performs a brief comparison between the strategies and is
concerned with the practical differences between the relational and the object-oriented
paradigms. Philippi [18] establishes the consequences of mapping strategies in relation
to the infrastructure and design aspects of the relational schema when the inheritance hi-
erarchy is associated with other classes of the model along with association cardinality.
In turn, Torres [23] does not perform a systematic comparison between the strategies,
but identifies their adoption in the various object-relational mapping tools. A common
characteristic of all these efforts is their focus on the primitives of object-oriented pro-
gramming languages as opposed to conceptual modeling primitives.

Some authors [4, 18] have identified three types of approaches to bridge the gap be-
tween an object model and a relational schema: (i) the “forward engineering” approach
(also called object-relational mapping), in which the relational schema is generated
from the class model that must be persisted (often together with the necessary code to
propagate object persistence to the database); (ii) the “reverse engineering” approach
(also called relational-object mapping), in which classes are produced from the existing
relational structure; and (iii) the “meet-in-the-middle” approach, in which conceptual
model and relational schema are designed, implemented and evolved separately, re-
quiring some middleware to perform the correspondence between the objects and the
database. Our approach is clearly positioned in the “forward engineering” camp.



6 Conclusions

The study of ontological foundations in conceptual modeling has produced a number of
advances over the last decades. This paper extends some of these advances to relational
schema design. We have shown that considering the ontological status of classes in
a conceptual model makes it possible to conceive of novel transformation strategies
that cannot be articulated with ontologically neutral conceptual modeling primitives.
We have shown that the one table per kind strategy has performance characteristics
that differ from the dominant approaches in the literature. Further, it supports multiple
inheritance, orthogonal and overlapping hierarchies and dynamic classification.

We hypothesize that one table per kind can improve schema comprehension, as well
as query writing and readability. This is because of the role that kinds play in cogni-
tion. There is a significant body of evidence in cognitive psychology [17, 26, 27], that
object kinds are the most salient category of types in human cognition, being respon-
sible for our most basic operations of object individuation and identity. Further, there
is empirical evidence that the ontological distinctions employed here (those underlying
OntoUML) contribute to improving the quality of conceptual models without requiring
an additional effort to produce them [24]. In future work, we intend to assess whether
the benefits trickle down to the system-level when coupled with the transformation
strategy proposed here. We also intend to evaluate the impact of the various strate-
gies on maintainability, in particular when considering the evolution of the relational
schema (e.g., with the introduction/removal of classes, attributes, associations and the
required data migration). Usability, maintainability and database performance analysis
requires careful consideration of application-specific demands. Thus, considering appli-
cation sensitivity is a clear issue for further work and application characteristics (e.g.,
demands on polymorphic queries) could guide the selection of a strategy.

Finally, recent developments have shown that there is a fruitful interplay between
ontology-based techniques and database realization. For example, Ontology-Based Data
Access (OBDA) approaches such as Ontop [5], have shown that is is possible to ex-
pose relational data in terms of a computational ontology. This is done in a meet-in-
the-middle fashion by relying on the manual specification of a mapping from a com-
putational ontology to an existing relational schema. We understand that synthesizing
ODBA mappings with our approach is feasible, and would allow transparent ontology-
based access to the produced relational schemas.

Acknowledgments

This research is partly funded by the Brazilian Research Funding Agencies CNPq
(grants 312123/2017-5 and 407235/2017-5) and CAPES (23038.028816/2016-41).

References

1. Albano, A., Bergamini, R., Ghelli, G., Orsini, R.: An object data model with roles. In: Proc.
19th International Conf. on Very Large Data Bases. pp. 39–51. Morgan Kaufmann (1993)

2. Ambler, S.W.: Mapping objects to relational databases (1997), White Paper, AmbySoft Inc.



3. Ambler, S.W.: Agile database techniques: effective strategies for the agile software devel-
oper. Wiley (2003)

4. Cabibbo, L.: Objects meet relations: On the transparent management of persistent objects.
In: Proc. CAiSE 2004. LNCS, vol. 3084, pp. 429–445. Springer (2004)

5. Calvanese, D. et al.: Ontop: Answering SPARQL queries over relational databases. Semantic
Web 8(3), 471–487 (2017)

6. Cardelli, L.: A semantics of multiple inheritance. In: Kahn, G., MacQueen, D.B., Plotkin,
G.D. (eds.) Semantics of Data Types. LNCS, vol. 173, pp. 51–67. Springer (1984)

7. Carré, B., Geib, J.: The point of view notion for multiple inheritance. In: Yonezawa, A. (ed.)
Proc. OOPSLA/ECOOP 1990. pp. 312–321. ACM (1990)

8. Fowler, M.: Patterns of enterprise application architecture. Addison-Wesley Longman Pub-
lishing Co., Inc. (2002)

9. Gottlob, G., Schrefl, M., Röck, B.: Extending object-oriented systems with roles. ACM
Trans. Inf. Syst. 14(3), 268–296 (1996)

10. Guarino, N., Guizzardi, G.: “We Need to Discuss the Relationship”: Revisiting Relationships
as Modeling Constructs. In: Proc. CAiSE. LNCS, vol. 9097, pp. 279–294. Springer (2015)

11. Guarino, N., Welty, C.A.: An overview of ontoclean. In: Handbook on Ontologies, pp. 201–
220. Springer (2009)

12. Guizzardi, G.: Ontological foundations for structural conceptual models. Ph.D. thesis, Uni-
versity of Twente (10 2005)

13. Guizzardi, G., Figueiredo, G., Hedblom, M.M., Poels, G.: Ontology-based model abstrac-
tion. In: Proc. RCIS 2019. pp. 1–13. IEEE (2019)

14. Guizzardi, G., Fonseca, C.M., Benevides, A.B., Almeida, J.P.A., Porello, D., Sales, T.P.:
Endurant types in ontology-driven conceptual modeling: Towards OntoUML 2.0. In: Proc.
ER 2018. LNCS, vol. 11157, pp. 136–150. Springer (2018)

15. Ireland, C., Bowers, D., Newton, M., Waugh, K.: A classification of object-relational
impedance mismatch. In: Proc.1st DBKDA. pp. 36–43 (March 2009)

16. Keller, W.: Mapping objects to tables: A pattern language. In: EuroPLoP 1997: Proc. 2nd
European Conf. Pattern Languages of Programs. Siemens Tech. Report 120/SW1/FB (1997)

17. Macnamara, J.T., Macnamara, J., Reyes, G.E.: The logical foundations of cognition. No. 4
in Vancouver Studies in Cognitive Science, Oxford University Press on Demand (1994)

18. Philippi, S.: Model driven generation and testing of object-relational mappings. Journal of
Systems and Software 77, 193–207 (2005)

19. Rybola, Z.: Towards OntoUML for Software Engineering: Transformation of OntoUML into
Relational Databases. PhD thesis, Czech Technical University in Prague (2017)

20. Rybola, Z., Pergl, R.: Towards OntoUML for software engineering: Transformation of kinds
and subkinds into relational databases. Comput. Sci. Inf. Syst. 14(3), 913–937 (2017)

21. Steimann, F.: On the representation of roles in object-oriented and conceptual modelling.
Data Knowledge Engineering 35(1), 83–106 (2000)

22. Steimann, F.: The role data model revisited. Applied Ontology 2(2), 89–103 (2007)
23. Torres, A. et al.: Twenty years of object-relational mapping: A survey on patterns, solutions,

and their implications on application design. Information & Software Technology 82 (2017)
24. Verdonck, M., Gailly, F., Pergl, R., Guizzardi, G., Martins, B., Pastor, O.: Comparing tradi-

tional conceptual modeling with ontology-driven conceptual modeling: An empirical study.
Information Systems 81, 92 – 103 (2019)

25. Wieringa, R.J., de Jonge, W., Spruit, P.: Using dynamic classes and role classes to model
object migration. TAPOS 1(1), 61–83 (1995)

26. Xu, F.: From lot’s wife to a pillar of salt: Evidence that physical object is a sortal concept.
Mind & Language 12(3-4), 365–392 (1997)

27. Xu, F., Carey, S.: Infants metaphysics: The case of numerical identity. Cognitive psychology
30(2), 111–153 (1996)


	Transformation of Ontology-Based Conceptual Models into Relational Schemas

