Towards Federated Ontology-Driven Data Integration in
Continuous Software Engineering

Paulo Sérgio dos Santos Jinior
LEDS Research, Department of
Informatics, Federal Institute of

Education, Science and Technology

of Espirito Santo
Serra, ES, Brazil
paulo.junior@ifes.edu.br

ABSTRACT

Organizations have adopted Continuous Software Engineering
(CSE) practices aiming at making software development faster, iter-
ative, integrated, continuous, and aligned with the business. In this
context, they often use different applications (e.g., project manage-
ment tools, source repositories, and quality assessment tools) that
store valuable data to support daily activities and decision-making.
However, data items often remain spread in different applications
that adopt different data and behavioral models, posing a barrier
to integrated data usage. As a consequence, data-driven software
development is uncommon, missing valuable opportunities for
product and process improvement. In this paper, we explore an
ontology network addressing CSE aspects to develop a data inte-
gration solution in which networked ontologies are the basis to
build reusable and autonomous software components that work
together in a system federation to provide meaningful integrated
data. We achieve a comprehensive and flexible solution that can
be used as a whole or partially, by extracting only the components
related to the subdomains of interest.

CCS CONCEPTS

* Software and its engineering — Software creation and manage-
ment.

KEYWORDS

Continuous Software Engineering, Data Integration, Ontology

ACM Reference Format:

Paulo Sérgio dos Santos Junior, Jodo Paulo A. Almeida, and Monalessa
P. Barcellos. 2023. Towards Federated Ontology-Driven Data Integration
in Continuous Software Engineering. In XXXVII Brazilian Symposium on
Software Engineering (SBES 2023), September 25-29, 2023, Campo Grande,
Brazil. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3613372.
3613380

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.
SBES 2023, September 25-29, 2023, Campo Grande, Brazil

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0787-2/23/09...$15.00
https://doi.org/10.1145/3613372.3613380

Jodo Paulo A. Almeida
Ontology and Conceptual Modeling
Research Group (NEMO),
Computer Science Department,
Federal University of Espirito Santo
Vitéria, ES, Brazil
jpalmeida@ieee.org

Monalessa P. Barcellos
Ontology and Conceptual Modeling
Research Group (NEMO),
Computer Science Department,
Federal University of Espirito Santo
Vitoria, ES, Brazil
monalessa@inf.ufes.br

1 INTRODUCTION

The need to continuously plan, build, operate, deploy, and eval-
uate software has been recognized by the Software Engineering
community and addressed under the banner of Continuous Soft-
ware Engineering (CSE) [1, 2, 13]. CSE consists of a set of practices
and tools that supports a holistic view of software development
to make it faster, iterative, integrated, continuous, and aligned
with the business. It understands the development process not as
a sequence of discrete activities, performed by distinct and dis-
connected teams, but as a continuous flow, considering the entire
software life cycle [13].

To perform CSE, organizations need supporting tools and often
use different applications to aid different aspects of software de-
velopment [13]. For example, agile management practices can be
supported by project management and time-tracking applications,
while continuous development and integration can be supported
by integrated development environments, version control, and
code quality tools. The intensive use of applications in software
development creates opportunities involving the various kinds of
data they store, enabling data-driven software development [4],
i.e., the use of data to drive software engineering activities and
decision-making.

Although applications employed throughout the software lifecy-
cle store useful data to support data-driven software development,
data items are usually distributed in heterogeneous applications,
which can make it difficult to integrate them. As a consequence,
using data to drive software development has been uncommon,
missing valuable opportunities for informed decision-making. Par-
ticularly in agile software development, decisions have been com-
monly based on subjective aspects, such as previous experiences
of the managers and stakeholders, intuitions, or a combination of
these [31]. A recent study investigating CSE adoption in Brazilian
software organizations corroborated this perception and revealed
that only 17% of them use data to drive software development [19].

One of the reasons organizations fail to leverage data stored
in applications is the difficulty to access, integrate, analyze, and
view data handled by heterogeneous applications. In general, each
application implements its own data and behavioral models and
focuses on specific aspects of the software process, with little con-
cern with sharing and integration aspects, leading thus to several
conflicts [6]. Particularly in the agile development context, the
challenge is to use data to support the development process in
such a way that does not represent a bottleneck to process agility.

https://doi.org/10.1145/3613372.3613380
https://doi.org/10.1145/3613372.3613380
https://doi.org/10.1145/3613372.3613380

SBES 2023, September 25-29, 2023, Campo Grande, Brazil

There is a need to extract useful information from data stored in
applications and present it to the team effectively and proactively,
without requiring extra effort from it [33].

One source of difficulty for data integration is semantic het-
erogeneity, which can result in conflicts whenever divergent in-
terpretations are given to the same information item, a situation
that may not even be detected [33]. Neglecting these “semantic
conflicts” can lead to poorly integrated solutions that fail in achiev-
ing their purposes (e.g., providing incorrect information) [21]. In
the last decades, ontologies have become the predominant way
to deal with these issues in semantic integration initiatives [20].
Ontologies establish a common conceptualization about the ap-
plications subject domains in order to support communication
and integration.

In [25], we explored the use of an ontology on agile develop-
ment with Scrum to integrate software development data spread
across applications and thereby support data-driven software de-
velopment. The results were promising. By using the proposed
approach and the resulting integrated solution, a Brazilian pub-
lic software development unit reported improved estimates and
product quality. Despite that, data from applications addressing
certain CSE processes, such as continuous integration and con-
tinuous deployment, was not included in the original solution.
Aiming to build a more comprehensive data integration solution
that covers several CSE processes, we decided to expand the scope
of integrated data by means of an ontology network —i.e., a set
of ontologies integrated to each other in a network — addressing
CSE comprehensively. In order to give flexibility to the resulting
solution, we organize solution‘s components corresponding to the
various sub-ontologies in a system federation. This allows one to
adopt the solution as a whole as well as use only those components
related to the subdomains of interest.

This work introduces two contributions. The first is the Con-
tinuum ontology network, which is integrated into the Software
Engineering Ontology Network (SEON) [22] and addresses CSE
aspects. The second contribution is an ontology-driven data inte-
gration solution called The Band. For integrating data and properly
supporting data-driven software development, it is necessary to
create a coherent information system architecture in which the
various software-related processes, data storages, and applica-
tions are integrated in such a way that they appear seamless from
the point of view of the individual user [32]. For that, in The Band,
we use networked ontologies as the basis to build reusable and au-
tonomous software components and organize them in a Federated
Information System (FIS) [5] architecture in which all components
work together in the federation. As a result, data from different
applications can be integrated and visualized to provide mean-
ingful information to aid in software development activities and
decision-making. The innovation proposed in this paper relies on
combining ontology network and FIS for building reusable soft-
ware components able to recover, integrate and present relevant
data to enable data-driven software development.

This paper is organized as follows: Section 2 provides a brief
background for the paper; Section 3 introduces Continuum; Sec-
tion 4 presents an overview of The Band and discusses how it uses
Continuum and FIS; Section 5 discusses related work; and finally,
Section 6 presents our final considerations and future work.

Santos Jr et al.

2 BACKGROUND

Continuous Software Engineering. CSE encompasses a holistic set
of continuous activities [13] for software engineering supported by
a number of practices and tools. In CSE, customers are proactive,
and users and other stakeholders are involved in the process, learn-
ing from usage data and feedback. Planning is continuous, and
so is requirements engineering, which focuses on features, mod-
ularized architecture and design, and fast realization of changes.
Agile practices are employed, including short development cycles,
continuous integration of work, continuous delivery, and continu-
ous deployment of releases. Quality assurance involves automated
tests, regular builds, pull requests, audits, and run-time adaption.
Knowledge is shared and continuous learning happens, capturing
decisions and rationale [18].

Integration. Integration can be defined as the act to incorporate
components into a complete set, conferring to it some expected
properties. The components are combined in a way to form a
new system constituting a whole and creating synergy. Integration
is a complex task and when is performed at the semantic level,
it is necessary to deal with the intended meaning of concepts
in a data schema or operation signature, requiring to contrast
and harmonize the conceptualizations underlying applications to
be integrated [27]. Ontologies can be used at this level to assign
semantics to information items.

Ontologies. An ontology is a formal, explicit specification of a
shared conceptualization [15]. The conceptualization is an ab-
stract and simplified view of the world which is intended to be
represented for some purpose [29]. Ontologies can be organized in
a three-layered architecture [26] with (i) Foundational ontologies
modeling the very basic and general concepts and relations that
make up the world (e.g., objects, events, participation); (ii) Core
ontologies providing refinement to foundational ontologies by
adding detailed concepts and relations in a specific area that still
spans across various domains (e.g., covering in general organiza-
tional processes, organizational structure, legal relations); and (iii)
Domain ontologies focusing on a particular domain (e.g., software
testing, banking, inventory management, and car insurance).

Another distinction sets apart ontologies as conceptual mod-
els, called reference ontologies, from ontologies as computational
artifacts, called operational ontologies [16]. The former aim at
making the best possible description of a domain, regardless of its
computational properties; the latter is designed with the focus on
guaranteeing desirable computational properties [10].

For large and complex domains, such as Software Engineer-

ing, ontologies can be organized in an Ontology Network (ON),
which consists of a set of ontologies (the networked ontologies)
connected to each other through relationships in such a way to
provide a comprehensive and consistent conceptualization [30].
In this work, we use SEON [22], an ON that describes various sub-
domains of Software Engineering and organizes its ontologies
according to the aforementioned layers.
Federated Information Systems. A FIS is a set of distinct and au-
tonomous information system components that participate in a
federation. Participants in the first place operate independently,
but have possibly given up some autonomy to participate in a fed-
eration [5] (e.g., adhering to federation-wide data conventions).

Towards Federated Ontology-Driven Data Integration in Continuous Software Engineering

3 CONTINUUM ONTOLOGY NETWORK

Continuum is an ON that aims at representing the conceptual-
ization related to the processes involved in CSE. In the Software
Engineering big picture, CSE appears as a (large) subdomain in-
volving other subdomains. Thus, we developed Continuum as a
subnetwork of SEON [22]. Therefore, we reused some elements
of SEON, such as its architecture, integration mechanisms, and
some key pre-existing networked ontologies.

Figure 1 shows the architecture of the current version of Contin-
uum. Continuum follows the same three-layer architecture used
in SEON. Thus, UFO (the Unified Foundational Ontology) [17]
grounds core ontologies that, in turn, are used to define domain-
specific ontologies. Domain-specific concepts can also be directly
grounded in UFO. In Figure 1, each circle (network’s node) repre-
sents an ontology. Ontologies above the double dotted red line are
the ones from SEON that are directly used in Continuum, namely:
Enterprise Ontology (EO) [12], Software Process Ontology (SPO)
[3, 23], System and Software Ontology (SysSWO) [8], Reference
Software Requirements Ontology (RSRO) [11], Reference Ontology
on Software Testing (ROoST)[28], Configuration Management Pro-
cess Ontology (CMPO) [7], Quality Assurance Process Ontology
(QAPO) [23], and Reference Ontology of Software Defects, Errors,
and Failures (OSDEF) [9]). A dotted circle represents an ontology
under development. Arrows denote the dependency relationships
between networked ontologies, indicating that concepts from the

target ontology are reused by the source ontology.

l Continuum l

Foundation Layer

| Core Layer I

SEOCN Ontologies
(pre-existing)

CSE Domain
Ontologies

_/

Figure 1: Continuum’s architecture.

The current version of Continuum is composed of the Scrum
Reference Ontology (SRO) [25], which addresses aspects (e.g., pro-
cesses, roles, and artifacts) related to agile software development
with Scrum and the Continuous Integration Reference Ontology
(CIRO), which regards practices and other concepts related to
continuous integration (e.g., building, testing, and inspection pro-
cesses). The Continuous Deployment Reference Ontology (CDRO),
which concerns aspects related to the continuous delivery and
deployment domain, is under development. Figure 2 presents a
fragment of Continuum, including concepts from SRO and CIRO.

SBES 2023, September 25-29, 2023, Campo Grande, Brazil

Performed Process [}

periormedin ZA

, o
I ‘Software Project | I General Performed Project Process

depends on P

. -
| performed activity]-* cre

startDate
endDate

Specific Performed Project Process

SEON

Continuum

[Aperommedin |1

| Continuous Integration Process I._1| Continuous Build Process |.J_| Candidate Code Building |;—“| Candidate Code |
built
Integrated Code

Code under Integraition

Figure 2: Fragment of Continuum

SRO and CIRO use concepts from SEON ontologies to describe
concepts about Scrum and Continuous Integration. By integrat-
ing several subdomains, Continuum identifies the connections
between different CSE processes. For example, a Source Code is
created in an activity of the Scrum Process (Performed Scrum Devel-
opment Task) (SRO) and integrated into the software in an activity
of the Continuous Integration Process (CIRO).

4 THE BAND

The Band! is a data integration software solution based on SEON
and FIS architectures. The networked ontologies used in The Band
indicate the subdomains supported by applications that can be
integrated. For example, by using SRO and CIRO, The Band allows
integrating data from applications addressing agile development
and continuous integration aspects. By using QAPO, data con-
cerning software quality can also be integrated. The networked
ontologies function as reference ontologies for data integration.

The Band works as a FIS. Each networked ontology is trans-
formed into an Ontology-Based Service (OBS) that is a system of
The Band federation and has its own repository, called Ontology-
Based Data Repository (OBDR). Therefore, each OBS captures,
stores, and shares data related to the domain portion addressed
by the referred networked ontology.

Figure 3 illustrates the correspondence between ontology net-
work (on the left-hand side) and system federation (on the right-
hand side) in The Band. Dotted rectangles specify the abstraction
layers (Foundational, Core, and Domain) [22]. A solid arrow in-
dicates that the source ontology reuses concepts from the target
ontology, with the consequence that the respective OBSs (on the
right-hand side of the figure) need to exchange data related to
that concept (dotted arrows). This general realization pattern is
employed throughout Continuum. For example, the Source Code
concept (from SysSwO) is reused by SRO and CIRO. Hence, the
OBSs referring to these ontologies must communicate with each
other to share data related to Source Code.

Since each OBS is built from a networked ontology, it embodies
the ontology’s concepts, axioms and relationships. An OBS is an
autonomous system that has the capability of sharing data and

1 The Band: the name alludes to the analogy that each ontology-based service of the
architecture is a musician that plays an instrument (ON concepts, relations, and
rules) and the services together are responsible for creating music (information) from
musical notes (data application) to engage an audience (organization).

SBES 2023, September 25-29, 2023, Campo Grande, Brazil

N . g Domain Ontology-Based Services Layer“&_
Domain Layer . P et
RN Core Ontology-Based Services Layer

Core Layer -, S T MRRITIEL AT
ermmmmemeeeses - ¢ Foundational E
{ Foundational Ontological
: Layer ; | Services Layer
V-~ e LA - - -
: ﬂ 5’ H | : t- H |
' H | + OBS and CBDR : |
: Foundational +for Foundational |
i Ontology ! ' i Ontology |
‘ N ‘ 4,‘ . eeeemeeonan .’ =
P o o]
X X VI .. OB
i Core Core DBSfo?'-‘{:dng’DR OES_ a’ljd OBDR 3 E
! . Onfology C1 Ontology €. lorore - J
[+, Ontology C1 Ontology C2,
H ., T B A '
""""""""""""" | |
‘ ,‘4——' ‘ .,' k—t k—!} :
0BS and OBDR OBS and OBDR E
Domal.n Domain v for Domain « - = > for Domain :
Ontology D1 ... Dnidleay D2 - ., Ontalogy D1 Ontolagy D2 |
o - .
r — q < 5
‘ "‘ Ontology-Based Ontology-Based communication
. Service Data Repository
Layer Onfology Dependence Transformation
4 oy Dep (08S) (CBDR)

Figure 3: Transformation of ON into FIS.

functionality with other OBSs or with a client. To be autonomous,
each OBS should manage all data related to the domain portion
addressed by the respective networked ontology. Therefore, each
OBS considers all concepts and relationships of the networked
ontology, even if the concepts are from different source ontologies
(i.e., reused concepts). For example, if the Source Code concept
(from SysSwO) is reused by SRO, it needs to be addressed by the
OBS referring to SRO. Similarly, if the Source Code concept (from
SysSwO) is reused by CIRO, it needs to be addressed by the OBS
referring to CIRO. As a result, the same concept is handled by more
than one service. On one hand, this requires communication to
ensure data consistency (e.g., if the OBSs referring to SRO and
CIRO are used to integrate application data, it is necessary to en-
sure that data related to Source Code is consistent in both SRO
and CIRO OBDRs). On the other hand, this allows one to use only
the OBSs directly related to the domain portion involved in the
integration scenario. For example, if the integration scenario re-
gards agile development, one can use the OBS referring to SRO
and does not need to use the OBS referring to SysSwO because the
SysSwO concepts relevant to the Scrum context (e.g., Source Code
as a Software Item produced in a Performed Scrum Development
Task) are also included in SRO.

By creating OBSs based on networked ontologies, it is possible
to observe the relationships among them and identify which data
needs to be exchanged among different OBSs. By organizing OBSs
in a FIS, relevant FIS criteria can be considered to contribute to
defining the solution architecture. For example, by applying the
transparency criterion(5], The Band must allow a client to search
data without knowing where it is stored and using a query lan-
guage based on a common conceptualization (i.e., concepts from
the ON); while an OBS must have the capability of sharing and
exchanging data with other OBSs. By applying the autonomy crite-
rion [5], OBSs must be able to work independently of other OBSs
and handle all necessary data to deal with the domain of interest.

Santos Jr et al.

4.1 The Band Architecture

An overview of The Band architecture is presented in Figure 4. The
Band contains five main components:

(i) Application Software Artifacts (ASAs): are software items (e.g.,
a code library) that enable the communication of applications
with the federation. Each ASA is application-specific and is devel-
oped to communicate with an application based on its data model
to retrieve and send data to it.

(ii) ETL components use ASAs to extract data from an applica-
tion’s database, transform, and load it in OBDRs. They are split into
two components: the Extract Component and the Transform/Load
Component. The former extracts data from an application and pub-
lishes it in a message queue. The latter consumes data from a mes-
sage queue, applies transformations based on semantic mappings,
and stores data in an OBDR. This way; it is possible for several
OBSs to consume data from a single queue and store transformed
data in distinct OBDRs. The semantic mappings use networked
ontologies as a bridge between the applications and identify which
elements of the different applications are equivalent according to
the ON conceptualization.

(iii) Ontology-Based Services (OBS): As explained in the pre-
vious section, OBSs are services corresponding to a networked
ontology (e.g., the OBS referring to SRO handles data regarding
sprints, development tasks, developers, user stories, among oth-
ers). Each OBS has an OBDR which is based on the networked
ontology conceptual model and, thus, it represents the concepts
of that ontology. It can be implemented in different ways, such as
arelational database or a graph database. The OBS uses its OBDR
to store and share data with other OBS.

(iv) Data Publishing Components: enable (a) the extract compo-
nents (ETL components) to share data with the OBSs when data
is extracted from an application, and (b) the OBSs to share and
exchange data with each other OBSs when changes happen in data
stored in the related OBDRs (i.e., when data is inserted, deleted, or
updated in the OBDR). When data stored in an OBDR is changed,
the data publishing component uses a queue and automatically
propagates the changes in all OBDRs that contain the changed
data. This action is needed to keep data consistency in all OBDRs
and allow each OBS (plus its OBDR) to be autonomous in the FIS.

(v) Data Access Components: provide interfaces to data retriev-
ing (e.g., dashboards, Rest and GraphQL APIs, or data repository
command) and visualization (e.g., dashboard).

The components are organized in a four-layer architecture.
From bottom to top, the first layer is Application Integration
Layer, which contains ASAs to communicate with applications
and ETL components (extract components) that extract data from
the applications and send it to the Internal Data Communication
Layer. 1t also contains Data Publishing Components that support
the propagation of data changes to different OBDRs of the Feder-
ated Ontology-Based Service Layer (via Internal Data Communi-
cation Layer), keeping data consistent.

The Internal Data Communication Layer contains Transform/load

Componentsthat use ASAs, and Data Publishing components from
the Application Integration Layer to load application data into
OBDRs and support data sharing among different OBSs contained
in the Federated Ontological Service Layerto keep data consistent.

Towards Federated Ontology-Driven Data Integration in Continuous Software Engineering

The Federated Ontological Service Layer receives retrieve com-
mands from the Federated Data Access Layer, which contains
Data Access Components and provides interfaces to data retriev-
ing and visualization, and sends data to be presented at that
layer. When data loaded in an OBDR is changed, the Federated
Ontology-Based Service Layer communicates with the Internal
Data Communication Layer to propagate the changes in all OB-
DRs containing the changed data and, thus, ensure data consis-
tency.

The Federated Data Access Layer contains Data Access Compo-
nents that provide interfaces to data retrieving (e.g., APIs) and visu-
alization (e.g., dashboard), via requests to the Federated Ontology-
Based Service Layer. At this layer, a client can use GraphQL API
and OBDR Command Data Access Components to manipulate data
(i.e. create, update, and delete) or retrieve data from the OBDR
using HTTP Protocol or SQL commands, respectively. Dashboard
allows a client to visualize integrated data using charts and tables.
It uses the OBDR commands (e.g., SQL queries) to retrieve data
from one or more OBDRs.

Federated Data Access Layer

grolig] e H

GraphQLAPI e -Dono e DEsnhoart yJoeoR command

x x
L) B
¥ ¥ ¥ ¥

OBS A OBS N

OBDR OBDR
A i A

g : Federated Ontology-Based Service Layer J

= N
Transform and Transform and
Load A Load N

¥ ¥

Message Broker

L) Internal Data Communication Layer A
g M Application Integration Layer ¥ ™
Extract A Extract N

Data Publishing A

Data Publishing N

ASAA ASAN
h L) A ~/
— A | A .
- o
Application A Application B Application N
Legend “._____. Applications that Support a software development process .
il | | (

Communication
between The Band and
external environment

External Communication

Component Layer Environment between layers

Client Solution

Figure 4: The Band architecture overview.

4.2 Implementing The Band

We have implemented an instance of The Band aiming at inte-
grating data from Microsoft Azure DevOps? (an application that

2https:/ /azure.microsoft.com/en-us/products/devops

SBES 2023, September 25-29, 2023, Campo Grande, Brazil

supports project management), Gitlab® (a source repository and
application that supports CI and CD), Sonar? (an application that
addresses software quality aspects), and Clockify® (a time-tracking
application).

The Band is a data integration solution that looks like an “ice-
berg” because only 10% of it (Data Access Components) is above the
water while 90% (ASAs, OBSs, OBDRs, Extract and Transform/Load
components) is under the water. In other words, a client only sees
the data access components (e.g., Dashboard and Data View) while
the other components supporting the data access components
are not noticed by the client. Next, we present information about
the technologies we used to implement The Band.

The dashboards were developed using Metabase® and Dremio” .
Dremio allows creating a data lakehouse with the OBDRs, and,
thus defining commands to search OBDRs and retrieve data from
them. Metabase allows using Dremio’s SQL commands to create
dashboards. The data views were developed using Budibase®, a
No-Code development platform that allows creating applications
to visualize data stored in a data source.

The OBSs were developed using Java and Spring Boot frame-
work? to create REST and GraphQL webservices, while the OBDRs
were implemented using the relational database PostgreSQL.

Finally, the ASAs, Extract, Transform/Load components were de-
veloped using Python, Apache Beam!?, and Spring Cloud Stream,
respectively. Apache Beam and Spring Cloud Stream allow extract-
ing data from different data sources, applying transformations
(e.g., join, filter, combine, union, and split) on data, and loading
transformed data on OBDR using Python and Java, respectively.
Examples of the implemented components are available in [24].

5 RELATED WORK

There are some works that propose the use of ontologies to support
data integration (e.g.,[6, 14]). However, none of them addresses
CSE or combines ON and FIS in an overall solution. In this work,
we take a step further by exploring ON and FIS architectures to
provide an integration solution made of reusable components that
can work both as a FIS that covers CSE as a whole and as individual
autonomous systems devoted to specific CSE aspects.

Some Mining Software Repository (MSR) efforts that aim at pro-
viding data to support decision-making in software development
are related to ours (e.g., [?]). Differently from our work, these works
were not concerned with semantic aspects or creating reusable
software components. Neglecting semantic aspects can lead to
conflicts whenever the same information item is given divergent
interpretations [33]. Our work proposes the use of networked on-
tologies to assign semantics to data and structure services and
repositories in the integration solution. The created OBSs and OB-
DRs are used to integrate applications. They work as systems of a
FIS, making it easier to add new applications or change the ones

3https://about.gitlab.com/
4https://sonarcloud.io/
Shttps://clockify.me/

Shttps:/ /www.metabase.com/
7https:/ /www.dremio.com/
8https://budibase.com/
https://spring.io/
1Ohttps://beam.apache.org/

https://azure.microsoft.com/en-us/products/devops
https://about.gitlab.com/
https://sonarcloud.io/
https://clockify.me/
https://www.metabase.com/
https://www.dremio.com/
https://spring.io/
https://beam.apache.org/

SBES 2023, September 25-29, 2023, Campo Grande, Brazil

that were integrated to others addressing similar scope (e.g., when
the organization changes one application for another). Once se-
mantics is assigned to applications’ information items (e.g., class
and attributes), it is possible to change an application data repos-
itory for another (e.g., from Microsoft Azure DevOps to Jirall).
The cited works, in turn, provide solutions considering the data
structure of the used repositories, which makes it difficult to reuse
them with different repositories. By using networked ontologies,
our work not only supports the integration solution but also helps
to understand the domain of interest.

In conclusion, we note that none of them use ON, has an archi-
tecture based in FIS, produce ontology-based reusable software
components, and address CSE aspects, as our proposal does.

6 FINAL CONSIDERATIONS

This work presented The Band, which combines ON and FIS to
provide a federated ontology-driven data integration solution. The
Band contains ontology-based components organized in a system
federation. In this sense, the federated system can be used as a
whole (i.e., covering all the subdomains represented in the net-
worked ontologies) or one can select only the components related
to the domains of interest. For example, if one wants to integrate
data from applications supporting agile development manage-
ment, the components referring to CIRO would not be necessary.
Moreover, if an organization using The Band decides to change
one of the used applications, data from the new application can be
integrated into The Band, and data from the previous application
is not lost. Thus, the organization can keep historical data even
if an organization changes the applications, and data from the
new application can be integrated with data from the previous
one. Furthermore, as the ON evolves, The Band can be extended
to cover other subdomains and, thus, increase the range of tools
that can be integrated.

Currently, we are running some tests with The Band and de-
veloping the Continuous Deployment Ontology (CDO) to extend
Continuum . As future work, we plan to carry out a case study in a
software organization to evaluate The Band in a practical setting.
Finally, it is worth noticing that the proposal of using ON and FIS
raised in this work is not limited to the CSE (sub)domain. The
proposed solution can be an inspiration for other researchers to
explore ON and FIS in other domains.

ACKNOWLEDGMENTS

This research is funded in part by CNPq (313687/2020-0) and
FAPES (281/2021, 1022/2022 and 2023-5L1FC).

REFERENCES

[1] Monalessa P. Barcellos. 2020. Towards a Framework for Continuous Software
Engineering. In XXXIV SBES (Natal, Brazil) (SBES '20). 626-631.

Jan Bosch. 2014. Continuous Software Engineering: An Introduction. Springer.
3-13 pages.

[3] Ana Bringuente, Ricardo Falbo, and Giancarlo Guizzardi. 2011. Using a Foun-
dational Ontology for Reengineering a Software Process Ontology. Journal of
Information and Data Management 2, 3 (2011), 511-511.

Erik Brynjolfsson et al. 2011. Strength in Numbers: How Does Data-Driven Deci-
sion making Affect Firm Performance? O&M: Decision-Making in Organizations
Journal (2011).

2

(4

Hywww.atlassian.com/software/ jira

(5]

[10

[11

(12

13

14

[15

(16

(17

[18

19

[20

[21

[22

[23

[24

[25

[26

[27

[28

[29

[30

[31

[32

[33

Santos Jr et al.

Susanne Busse et al. 1999. Federated Information Systems: Concepts, Termi-
nology and Architectures. Forschungsberichte des Fachbereichs Informatik 99, 9
(1999), 1-38.

Rodrigo E Calhau and Ricardo de A. Falbo. 2010. An Ontology-based Approach
for Semantic Integration. In 14th EDOC. IEEE Computer Society, 111-120.
Rodrigo E Calhau and Ricardo de A. Falbo. 2012. A Configuration Management
Task Ontology for Semantic Integration. In Proceedings of the 27th Annhual ACM
Symposium on Applied Computing. 348-353.

Bruno B. Duarte et al. 2018. Ontological foundations for software requirements
with a focus on requirements at runtime. Applied Ontology (online) (2018).
Bruno B. Duarte et al. 2018. Towards an Ontology of Software Defects, Errors
and Failures. In Conceptual Modeling: 37th International Conference, ER 2018,
Xi'an, China, October 22-25. 349-362.

Ricardo de Almeida Falbo. 2014. SABiO: Systematic Approach for Building
Ontologies. (2014).

Ricardo de A. Falbo and Julio C. Nardi. 2008. Evolving a Software Requirements
Ontology. In XXXIV Conferencia Latinoamericana de Informdtica, Santa Fe,
Argentina. 300-309.

Ricardo de Almeida Falbo, Fabiano Borges Ruy, Giancarlo Guizzardi, Mona-
lessa Perini Barcellos, and Jodo Paulo A. Almeida. 2014. Towards an Enterprise
Ontology Pattern Language. SAC 14, 323-330.

Fitzgerald, Brian and Stol, Klaas-Jan. 2017. Continuous software engineering: A
roadmap and agenda. Journal of Systems and Software 123, 176-189.

Vinicius S. Fonseca, Monalessa P. Barcellos, and Ricardo de A. Falbo. 2017. An
ontology-based approach for integrating tools supporting the software mea-
surement process. In Science of Computer Programming 135, 20-44.

Thomas R. Gruber. 1993. A translation approach to portable ontology specifica-
tions. Knowledge Acquisition 5, 2 (1993), 199-220.

Giancarlo Guizzardi. 2007. Conceptualizations, Modeling Languages, and (Meta)
Models. In DB&IS’2006, Vol. 155. I0S Press, 18.

Giancarlo Guizzardi et al. 2022. UFO: Unified foundational ontology. Applied
Ontology 17, 1 (2022), 167-210.

Jan Ole Johanssen et al. 2019. Continuous software engineering and its support
by usage and decision knowledge: An interview study with practitioners. Journal
of Software: Evolution and Process 31, 5 (2019), e2169.

Paulo S. Santos Junior, Monalessa P. Barcellos, Fabiano B. Ruy, and Moises S.
Omeéna. 2022. Flying over Brazilian Organizations with Zeppelin: A Preliminary
Panoramic Picture of Continuous Software Engineering. In Proceedings of the
XXXVI Brazilian Symposium on Software Engineering (SBES '22). 279-288.
Julio C. Nardi, Ricardo de A. Falbo, and Jo@o Paulo A. Almeida. 2013. Foun-
dational Ontologies for Semantic Integration in EAI: A Systematic Literature
Review. In 12th IFIP. Springer, 238-249.

Stanislav Pokraev. 2009. Model-driven semantic integration of service-oriented
applications. Ph.D. Dissertation. University of Twente.

Fabiano R., Ricardo de A. Falbo, Monalessa P. Barcellos, Simone D. Costa, and
Giancarlo G. 2016. SEON: A Software Engineering Ontology Network. In Know!-
edge Engineering and Knowledge Management: 20th International Conference,
EKAW 2016, Bologna, Italy, November 19-23, 2016, Proceedings 20. 527-542.
Fabiano Borges Ruy. 2017. Software Engineering Standards Harmonization: An
Ontology-based Approach. Ph.D. Dissertation. UFES.

Paulo Sérgio S. Jinior, Monalessa P. Barcellos, and Jodo Paulo A. Almeida. 2023.
The Band's Code. https://gitlab.com/immigrant-data- driven-development/
site.

Paulo S. Santos Juinior, Monalessa P. Barcellos, Ricardo de A. Falbo, and Joao
Paulo A. Almeida. 2021. From a Scrum Reference Ontology to the Integration of
Applications for Data-Driven Software Development. Information and Software
Technology 136 (2021), 106570.

Ansgar Scherp et al. 2011. Designing Core Ontologies. Applied Ontology (2011),
177-221.

S.Izza. 2009. Integration of industrial information systems: from syntactic to
semantic integration approaches. Enterprise Information Systems (2009), 1-57.
Erica E de Souza, Ricardo de A. Falbo, and Nandaudi L. Vijaykumar. 2017. ROoST:
Reference Ontology on Software Testing. Applied Ontology (2017), 59-90.
Steffen Staab and Rudi Studer. 2010. Handbook on ontologies. Springer Science
& Business Media.

Mari Carmen Sudrez-Figueroa et al. 2012. Ontology Engineering in a Networked
World. Springer.

Richard B. Svensson et al. 2019. The Unfulfilled Potential of Data-Driven De-
cision Making in Agile Software Development. In Agile Processes in Software
Engineering and Extreme Programming. 69-85.

Francois Vernadat. 2007. Interoperable Enterprise Systems: Principles, Con-
cepts, and Methods. Annual Reviews in Control 31 (2007), 137-145.

H Wache et al. 2001. Ontology-Based Information Integration: A Survey of
Existing Approaches. International Journal on Artificial Intelligence 47 (2001),
108-117.

www.atlassian.com/software/jira
https://gitlab.com/immigrant-data-driven-development/site
https://gitlab.com/immigrant-data-driven-development/site

	Abstract
	1 Introduction
	2 Background
	3 Continuum Ontology Network
	4 The Band
	4.1 The Band Architecture
	4.2 Implementing The Band

	5 Related Work
	6 Final Considerations
	References

