
 71

Towards an MDA-based development methodology for
distributed applications

Anastasius Gavras1, Mariano Belaunde2, Luís Ferreira Pires3, João Paulo A. Almeida3
1Eurescom GmbH, 2France Télécom R&D, 3University of Twente

1gavras@eurescom.de, 2Mariano.belaunde@rd.francetelecom.com, 3{pires,alme}@ewi.utwente.nl

Abstract
This paper proposes a development methodology for distributed applications based on the principles and
concepts of the Model-Driven Architecture (MDA). The paper identifies phases and activities of an MDA-
based development trajectory, and defines the roles and products of each activity in accordance with the
Software Process Engineering Metamodel (SPEM). The development methodology presented in this
paper is being developed and applied in the European 5th Framework project MODA-TEL, which aims at
assessing the applicability and potential of MDA in the context of telecom services and applications. This
paper also discusses the application of the proposed methodology on a typical telecom service case study.
The paper claims that the proposed methodology is general enough to be applicable to distributed
applications in other domains as well.

1. Introduction
The Model-Driven Architecture (MDA) [6], which is being currently promoted by the Object
Management Group (OMG), consists of a set of concepts and principles for the development of
distributed applications. The MDA standards define technologies to support these concepts and
principles, but they do not prescribe nor require any specific development methodology, by which we
mean that MDA gives no guidelines in terms of the processes (activities and phases), roles and
responsibilities that are involved in the development trajectory of a distributed application. Furthermore,
the MDA technologies are not explicitly related to identifiable activities within software development
processes, since these technologies are being developed to be generally applicable in combination with
development processes that may already be anchored in organisations.

Since MDA does not prescribe a development methodology, each MDA-based development project has
to define its own methodology or apply existing ones. This paper outlines the MDA-based development
methodology that is being developed and applied in the MODA-TEL project [2]. MODA-TEL is an
European IST 5th Framework project that aims at assessing the applicability and potential of MDA in the
context of telecom services and applications. This paper identifies phases and activities in the
development process, and defines the roles and products of each activity in accordance with the Software
Process Engineering Metamodel (SPEM) [3]. The methodology presented in this paper can be seen as a
framework for combining established software development processes with the MDA concepts, principles
and technologies, and thus customising the specific software engineering process that may be used in an
organisation. This allows organisations to profit from the benefits of applying MDA, like model
reusability, preservation of application development investments and automated transformations, to name
just a few.

The paper is further structured as follows: Section 2 gives an overview of our methodology, in terms of its
main activities and phases, Section 3 discusses the activities of the project management phase, Section 4
discusses the project preparation activities, Section 5 presents the activities of the project execution phase,
Section 6 illustrates some activities of our methodology with a case study on the development of a
VoiceXML application and Section 7 draws some conclusions.

2. Development activities and phases
We start the identification of the development phases in an MDA-based project by classifying the users of
MDA technology in three categories:

 72

• Knowledge builders: people who build knowledge (repositories) to be used in multiple different
MDA-based projects. This category includes systems architects, platform experts, quality engineers
and methodology experts. We estimate that this group amounts approximately 5% of the total MDA
users population;

• Knowledge facilitators: people who assemble, combine, customise and deploy knowledge for each
specific MDA-based project. This category includes project managers and quality engineers. We
estimate that this group amounts approximately 5% of the total MDA users population;

• Knowledge users: people who apply the knowledge built and facilitated by the other user categories,
respectively. This category includes designers and software engineers. We estimate that this group
amounts approximately 90% of the total MDA users population.

Figure 1 illustrates the three categories of MDA technology users.

 Knowledge builders: build knowledge repositories

Architects Platform
experts

Quality
engineers

Methodology
experts

Knowledge facilitators: assemble, combine and deploy knowledge

Project
managers

Quality
engineers

 Knowledge users: apply knowledge

Designers Software
engineers

Figure 1. Categories of MDA users

Figure 1 shows that different roles and skills can be identified in the MDA users population. These roles
perform different activities and require different tools.

In any MDA-based project, the distinction between preparation activities and execution activities is
essential. Preparation activities are those that structure and plan the work, and as such they enable
knowledge reuse, which is one the main benefits of the MDA. Preparation activities are mainly performed
by knowledge builders and should start before the project execution activities. However, it should be
possible to switch between preparation and execution activities, allowing the preparation activities to be
revisited while the execution activities are being carried out. This is necessary because project
requirements may change (e.g., change of platform), more detailed requirements may be defined (e.g.,
some requirements were not detailed enough) and problems may occur in the execution phase (e.g.,
selected modelling language is found too limited or not expressive enough), amongst others.

The MODA-TEL methodology identifies the following phases:

1. Project management: aims at organising and monitoring the project;

2. Preliminary preparation: aims at identifying modelling and transformation needs;

3. Detailed preparation: aims at obtaining the modelling and transformation specifications;

4. Infrastructure setup: aims at making tool support and metadata management facilities ready to use;

5. Project execution: aims at producing the necessary software artefacts and the final products.

Figure 2 shows the five phases of the MODA-TEL methodology and their relationships. For reasons of
conciseness, in Figure 2 we have omitted the relationships between the project management phase and the
other phases.

 73

Precedence dependency
Dependency

Strong feedback
Weak feedback

4

3

2

5

Project Execution

Infrastructure setup

Preliminary preparation

Detailed preparation

Project execution

4

3

2

Project
management

1

5

Preparation activities

Figure 2. Development phases

The phases of our methodology correspond to the available and required expertise identified before, and,
therefore, these phases can be directly associated with the partitioning of the MDA users expertise shown
in Figure 1: phase 1 is mainly performed by knowledge facilitators, phases 2, 3 and 4 are mainly
performed by knowledge builders, while phase 5 is mainly performed by knowledge users.

Figure 2 shows how the preparation activities have been structured in different phases. These phases are
useful to understand and to describe the dependencies between the activities. Project management
activities have a direct impact on all the other activities; in particular, the activity that defines the whole
software development process prescribes the list of the execution activities to be performed, such as, e.g.,
the sequence of transformations to be implemented. Activities of the preliminary and detailed preparation
phases, such as selecting a platform and deciding on the usage of a modelling language, are the key
elements to enable reuse of knowledge in the project execution phase. Finally, the activities of the
infrastructure set-up phase, such as, e.g., tool selection, influence the preliminary and detailed preparation
phases, even if project managers have decided to be as much tool-independent as possible.

Figure 2 also shows that many dependencies have been identified between the development phases of our
methodology, which means that these phases should be performed iteratively and incrementally.
Feedback from the execution activities to the preparation activities, and vice-versa, should be taken into
account in an effective way. The availability of model-to-model transformations, code generation
techniques and well-defined traceability strategies are crucial for this purpose.

3. Project management phase
We distinguish between typical process management activities, such as keeping track of milestones and
resource consumption, and activities that are directly related to management decisions absolutely
necessary to setup the project, such as the selection of the engineering process. Additional activities
known and applied from “best practices” in project management can still be added to this phase, but are
not explicitly covered by our methodology.

The management activities identified here may be strongly influenced by preparation activities, e.g., in
case SPEM [3] is used to explicitly describe the engineering process, and by execution activities, such as
requirements analysis.

In the project management phase we have identified three activities:

• Software Development Process (SDP) selection, which results in the description of the software
development process to be followed at the execution phase, in terms of specific sub-activities and the
resulting work products. A discussion on the use of MDA in combination with some established
software development processes can be found in [4];

• Project organisation (identification of roles), which results in the allocation of activities to process
roles;

 74

• Quality management, which defines procedures to enhance the quality of the development projects.
Some aspects of quality management can be orthogonal to the SDP, such as, for example, the
maturity levels of the Capability Maturity Model (CMM) [7].

Figure 3 depicts the activities of the process management phase and the relationships between these
activities.

Software
Development

Process (SDP)
Selection

Project
Organisation
(Identification

Of Roles)

Quality
Management

Software
Development

Process (SDP)
selection

Project
organisation
(identification

of roles)

Project management

Quality
management

Figure 3. Project management activities

Since MDA is based on the principles of object-orientation and component-based development it fits well
into most contemporary software development processes. MDA has been conceived to allow the existing
development processes in organisations and projects to be reused to a large extent, since MDA concepts
can be applied in the scope of these processes.

We use the term Model Driven Engineering (MDE) to denote the process of applying an MDA-based
SPD. The engineering aspects, i.e., the designing, building and maintaining pieces of software, are
dynamic and contrast with the static nature of a set of models. There is no single way to engineer software
and many different alternatives can be found by reusing elements of some established software
development processes.

Figure 4 shows the relationship between the SDP selection activity of the process management phase and
the project execution phase.

Project execution

Software
Development

Process (SDP)
selection

Project
organisation
(identification

of roles)

Figure 4. Influence of the SDP on the project execution phase

4. Preparation activities
The preparation activities have been grouped in three phases, namely preliminary preparation, detailed
preparation and infrastructure setup. Each of these phases and their relationships with other phases are
discussed below.

4.1. Preliminary preparation phase
In the preliminary preparation phase we identify four activities:

• Platform identification: a platform refers to technological and engineering details that are irrelevant
to the fundamental functionality of a system (or system part). What is irrelevant and what is
fundamental with respect to a design depends on particular design goals in different stages of a

 75

design trajectory. Therefore, in order to refer to platform-independent or platform-specific models,
one must define what a platform is, i.e., which technological and engineering details are irrelevant, in
a particular context with respect to particular design goals. In this activity we identify the concrete
target platform(s) on which the application is supposed to be implemented and their common
abstraction in terms of an abstract platform [1]. Concrete platforms may also include legacy
platforms;

• Modelling language identification: models must be specified in a modelling language that is
expressive enough for its application domain. This activity identifies the specific needs for modelling
languages. Since models can be used for various different purposes, such as data representation,
business process specification, user requirements capturing, etc., many different modelling languages
may be necessary in a development project. Process roles for performing this activity include domain
experts;

• Transformations identification: transformations define how model elements of a source model are
transformed into model elements of a target model. This activity identifies the possible or necessary
transformation trajectories from the abstract to the concrete platforms. These transformations have to
take into account the modelling languages identified before;

• Traceability strategy definition: traceability in model transformation refers to the ability to establish a
relationship between (sets of) model elements that represent the same concept in different models.
Traces are mainly used for tracking requirements and changes across models. This activity defines
the strategy to be applied in the definition of traces along the development trajectory.

Figure 5 shows the activities of the preliminary preparation phase.

Platform
Identification

Modelling
Language

Identification

Preliminary preparation

Transformation
Identification

Traceability
Strategy

Platform
identification

Modelling
language

identification

Transformation
identification

Traceability
strategy

Figure 5. Preliminary preparation activities

The activities of the preliminary preparation phase often depend on the requirement analysis activity of
the project execution phase (see Section 5), as depicted in Figure 6.

Software
Development

Process (SDP)
Selection

project
organisation
(identification

of roles)

Project management

Requirements
Analysis

Project execution

Modelling

Software
Development

Process (SDP)
selection

Preliminary preparation

analysis ModellingRequirements

Figure 6. Influence of requirements analysis on the preliminary preparation phase

In case model-driven techniques are used for requirement analysis, certain preliminary preparation
activities may precede requirement analysis. For example, this can be the case if a UML profile or a
metamodel is available for the User Requirement Notation (URN) [8]. Identifying such a profile or
metamodel is a preliminary preparation activity to be performed before requirements analysis.

4.2. Detailed preparation phase
In the detailed preparation phase we have identified two activities:

 76

• Specification of modelling languages: in accordance with the specific needs for modelling languages
identified before, this activity identifies the concrete general purpose or domain specific modelling
languages that shall be used in the execution phase. Source and target metamodels used in the
transformations are also defined in this activity. Process roles for performing this activity include
domain experts;

• Specification of transformations: model transformations need rules and annotations to control the
transformation process. Rules control the transformation of an annotated source model to a target
model. Rules have to be defined at the metamodel level, in order to be applicable to any instance of
the source metamodel that is transformed to an instance of the target metamodel. Rules can be
formalized in a certain modelling language or metamodel, or they may be defined as code in a
scripting or programming language. Annotations are information related to a model, optionally
defined in terms of elements of this model’s metamodel. This activity is concerned with the
specification of the necessary transformation rules and annotations.

Figure 7 shows the activities of the detailed preparation phase.

Specification
of Modelling
Languages

Reuse observations

Detailed preparation

Specification of
Transformations

Specification
of modelling
languages

Reuse considerations

Specification of
transformations

Figure 7. Detailed preparation activities

Language and transformation specifications produced in this phase are strong candidates for reuse,
namely in future projects in similar application domains. Therefore these specifications should be
somehow stored and catalogued for future use. These reuse considerations are also depicted in Figure 7.

4.3. Infrastructure setup phase
In the infrastructure setup phase we have identified two activities:

• Tool selection: a number of activities in our methodology have to be handled by tools, such as (i) the
definition of models and metamodels, (ii) the transformation and code generation based on model
information, (iii) the definition of constraints and rules to verify model compliance. This activity
aims at selecting of one or more tools to support activities in the development process. For the
selection of appropriate tools, all requirements from the software engineering perspective are
identified and mapped to capabilities of existing tools available on the market;

• Metadata management: metadata provides in most cases information about the structure of data, e.g.,
which data types are available, the structure of these data types, what data aggregations are valid, etc.
Different technology families usually define their own ways to manage metadata, as well as to
generate and manipulate metadata repositories. Metadata can be used in different situations, like, e.g.,
to store information about transformations, to store information about available resources, to support
migration or to support applications during runtime. In each project, the necessary support for
metadata as well as the way to manage metadata is defined in this activity.

Figure 8 shows the activities of the infrastructure setup phase.

Tool
Selection

Infrastructure setup

Tool
selection

Metadata
management

Figure 8. Infrastructure setup activities

 77

The tool selection activity can be quite intricate. The choice of the most appropriate MDA tool depends
mainly on the level of engineering support required in the project. In some projects, MDA tools may be
required to support behaviour modelling and simulation. In general MDA tools should also give support
to traceability, for example, to associate code fragments to their corresponding model elements in order to
guarantee that changes in the code are reflected in the model and vice-versa. Extensibility, integration
with XML-based techniques and interoperability with other tools may also be important requirements to
consider. Furthermore, other circumstances like the availability of a certain tool in an organisation or the
experience of the designers with some specific tool may strongly influence if not determine the choice.
The tool selection activity may have an impact on each of the preparation activities, as well as on the
metadata management activity.

5. Execution phase

The project execution phase is the main phase of a project, since in this phase the developers apply the
acquired knowledge to produce software artefacts and deliver the final products. The specific activities of
this phase depend on the selected SDP, which is described in terms of sub-activities and work products.
However, for the purpose of our methodology we have identified general activities that appear in virtually
any object-oriented or component-based SDP. Our methodology has identified seven activities in the
project execution phase:

• Requirements analysis: this activity generally aims at (i) establishing a dictionary with well-defined
terminology and (ii) structuring the requirements. Both the dictionary and the requirements are
normally used as input to produce conceptual domain models. Requirements should also be
associated to their corresponding model elements, allowing traceability from requirements to models
or even to code. It may be even possible to have some model-to-model transformation that creates an
initial platform-independent model (PIM) from requirements models;

• Modelling: this activity comprises the formal specification, construction, documentation and
(possibly) visualisation of artefacts of distributed systems, using one or more modelling languages.
This activity is concerned with the development of software engineering specifications that are
expressed as an object or component model or combinations thereof. The products of this activity are
specifications of the structure of these artefacts, such as names, attributes and relationships with other
artefacts. Behaviour specifications describe the behaviour of the artefacts in terms of states, allowed
transitions and the events that can cause state changes. The interactions between artefacts may also
be represented in behaviour specifications. These models are created with the help of tools that
support the representation of the artefacts and their behaviour;

• Verification/Validation: this activity is concerned with (i) determining whether or not the products of
the modelling activity fulfil the requirements established by the requirements analysis activity, and
(ii) evaluating whether the products of the modelling activity are free from failures and comply with
the requirements established in the requirements analysis activity. Some existing technologies allow
these activities to be performed (semi-) automatically by using tool support. A verification/validation
strategy for the produced models has to be explicitly defined in this activity;

• Transformations: this activity is concerned with the refinement of the models produced in the
modelling activity by means of rules and annotations that control the transformation process. The
artefacts defined by the modelling activity are refined by defining data structures and procedures,
defining message protocols for the interactions, mapping the artefacts into classes and mapping these
onto constructs of a programming language (model-to-code transformations);

• Coding/Testing: this activity is concerned with the development of code that is necessary to
complement the automated code generation. With current technology, somecoding is still required by
developers after a model-to-code transformation has been performed. The same applies for the
execution of test cases. Automatic testing is possible to some extent, but usually manual testing is
also necessary to complement the testing activities;

• Integration/Deployment: this activity is concerned with the embedding of the newly developed
systems into their operational environment. In large organisations, new services and applications
have to co-exist with established systems and work on existing infrastructures. The MDA prescribes
that (new) functionality should be modelled at the platform-independent level. Since platform-
independent models of the existing (legacy) systems can be developed by applying reverse
engineering, integration issues can be addressed already at the platform-independent level. The
deployment sub-activity is concerned with the management of the life-cycle of component instances

 78

running on the nodes of a platform. This sub-activity handles issues like, e.g., the transfer of
implementations to the appropriate nodes, and instantiation, configuration, activation and
deactivation of component instances;

• Operation/Maintenance: this activity is concerned with the overall management of the life-cycle of a
distributed application, including issues like, e.g., dynamic configuration, dynamic service upgrade,
and service migration to different nodes;

Figure 9 shows the activities of project execution phase.

Project execution

Requirements
Analysis Modelling Verification

Validation

Transformations
(Marking …)

Coding
Testing

Integration
Deployment

Operation
Maintenance

Requests for process and methods re engineering

Requirements
Analysis Modelling Verification

Validation

Coding
Testing

Integration
Deployment

Operation
Maintenance

Requirements
analysis Modelling Verification/

Validation

Transformations Coding/
Testing

Integration/
Deployment

Operation/
Maintenance

Figure 9. Project execution activities

In general, the activities in the project execution phase can be repeated more than once, e.g., if multiple
development iteration cycles are applied or errors are found. In case failures, defects or other problems
are discovered in one of the activities, the process should resolve the issue at the modelling activity, since
models are supposed to drive the whole process execution phase. All activities of the project execution
phase can generate feedback to refine and improve of the processes and methods, influencing in this way
the preliminary or the detailed preparation phases or both, depending on the severity of the feedback.

6. Case study: a VoiceXML application
VoiceXML [9] is a technology that provides telecom operators with features to enhance their services
with interactive voice responses. These services are voice-based and include Text To Speech (TTS), and
Automatic Speech Recognition (ASR) subsystems. VoiceXML is a mark-up language (i.e., an XML
schema), for specifying voice dialogues and has been introduced in order to free the authors of voice
response applications from low-level programming and resource management.

In the MODA-TEL project we have a VoiceXML case study that aims at defining voice-based telecom
services in a PIM model, and providing the transformation to a PSM model based on the existing
infrastructures. France Telecom (FT) and Telenor will use different concrete platforms in order to stress
the MDA character of the case study. Below we briefly discuss some activities of our methodology as it
has been applied in the case study, focusing on the FT implementation.

6.1. Project management
MS Project has been selected as the tool for project organisation (work partitioning and identification of
roles). We have decided to use a process definition tool to specify the engineering process to be executed
and we are using SPEM [3] for this purpose. The requirements for the process definition tools are (i)
support for the SPEM notation and (ii) the ability to export the model representing the engineering
process. The SPEM UML profile implemented within the Objecteering tool [10] has been selected for this
purpose.

Figure 10 illustrates the development process intended for developing the voice services on top of
Euphonie, which a France Telecom proprietary VoiceXML platform that offers a framework for
developing, executing and debugging interactive voice services using next generation technologies and
VoiceXML. This process has been specified using Objecteering and the SPEM UML profile.

 79

Exec PIM to PSM transformation

Model PIM dialogs and business data

Exec Descriptor Generation Exec Business Class generation

Fill business code

Compile and Integrate

Test

Figure 10. Development process for voice services

6.2. Preliminary preparation phases
A specific voice-oriented UML profile should be used by end-users to model dialogs at PIM level. An
intermediate PSM metamodel is used for representing the projection of a specific voice service into the
Euphonie platform.

Two model-to-model transformations are being defined in the FT implementation: (i) from the UML
profile to the PIM metamodel and (ii) from the PIM metamodel to the Euphonie PSM metamodel. Two
code generators are also being defined: (i) for generating the state machine descriptors and (ii) for
producing the Java classes compliant with the Euphonie platform.

We expect that all the code associated with dialog description will be produced directly from the PIM
models and annotations. For business code only the skeletons of the classes will be generated. Up to now,
no decision has been taken on how to handle traceability.

6.3. Detailed preparation
The Transformation Rule Language (TRL) [11] formalism and textual syntax will be used to specify
model-to-model transformation. TRL is a language used to express queries and transformations on
models in compliance with the metamodelling principles defined in the MOF 2.0 standard. TRL is under
development and is part of the proposal of the Open QVT consortium in response to the MOF2.0/QVT
RFP.
There are many alternatives for the implementation of the transformation rules and for code generation. A
standard textual editor is being used to define the rules in TRL (XEmacs from GNU). The rules are being
compiled and tested using the TRLengine model transformation prototype provided by FT.

For the PIM/PSM model-to-model transformation, the FT implementation is considering either to use the
output of the TRLengine tool or to implement the rules using the J language supported by the
Objecteering tool. For the last alternative, a UML profile associated with the Voice PSM metamodel is
necessary and has to be defined.

For code generation rules the alternatives are to implement them using the J language within the
Objecteering tool, to use the facilities for tool generation provided by the ArcStyler tool or to use the
APIs provided by the Univers@lis tool [12]. Univers@lis is a model repository tool that allows one to
store object-oriented models. Model elements are represented as instances of metaclasses that are defined

 80

according to an object-oriented metamodel. Univers@lis provides support for the UML 1.3 metamodel
and the MOF 1.3 metamodel. Other metamodels can be supported by simply importing their specification
into the tool.

An important requirement for implementing the model-to-model and code generators is the ability to
access the input models, using an API or a dedicated model manipulation language, and the ability to
export the output models once they are generated. The latter requirement is crucial to preserve tool
independence.

For the definition of the PIM voice metamodel and the PSM voice metamodel any UML tool providing
class diagram support and XMI externalization can be used. For the definition and implementation of the
PIM-level voice UML profile, we intend to use the MDA tool provided by Objecteering.

Figure 11 shows the results of the detailed preparation phase represented in terms of a refined software
development process showing the necessary models, metamodels and transformations, and their
relationships.

Define the PIM -PSM transformations rules with TRL

Define the PIM Voice M etamodel

Implement the PIM UM L Profile for Voice

Test the transformation rules on the example

Define the PIM -PSM transformation rules informally

Provide an example of a Voice model

Define the PSM Euphonie M etamodel

Rules.DOC:
Voice M M :

Example:

Euphonie M M :

VoiceToEuphone.TRL:

Voice.PROF:

[Not OK]

[OK]

Figure 11. Result of the detailed preparation phase

6.4. Project execution (tool chain)
One of the purposes of this case study is to apply our MDA-based methodology to re-implement an
address book service that has been developed before using a traditional (non-MDA) approach. Therefore,
requirement analysis has already being done before for this service.

The dialogs of the address-book voice application are being specified in UML using the Voice UML
Profile. The Objecteering UML modeller is being used for that. These dialogs were originally specified

 81

using a text-based proprietary formalism. The XMI exporter within the UML tool is used to export the
model to the other tools, in particular the TRLengine used for model transformation.

Verification and validation on the models is planned to be performed directly within the Objecteering
UML tool. We use the validation rules implemented using the J language for that purpose.

The implementation of the model to model transformations and code generation are considered as part of
the preparation activity. During the execution phase, the end-user only needs to know how to invoke the
transformation. We plan to add menu items within the Objecteering Voice UML profile to facilitate the
invocation of the transformations for the end-user. For this purpose Objecteering should allow the
definition of specialised menus.

The Java environment is used for coding and testing. Only some specific business operations are being
implemented in Java. So far, no decision has been taken on the automation of the integration and the
deployment phases.

7. Conclusions
A development methodology should define guidelines to be used in a development project, in terms of the
necessary activities, roles, work products, etc. The methodology presented in this paper gives such
guidelines and combines them with the concepts and principles of the MDA. The methodology itself is
under development and its application on the case studies that are being performed in the MODA-TEL
project will certainly provide the necessary feedback and refinement to improve its applicability.

An MDA-based development trajectory can require many different metamodels, models, transformations
and their supporting tools. From our experience with the case study we can conclude that the MDA
approach requires that the engineering process is explicitly described and documented in terms of the
necessary work products and activities, such as illustrated in Figure 10 and Figure 11. The explicit
definition of the engineering process makes an MDA-based project manageable.

References
[1] J.P.A. Almeida, M.J. van Sinderen, L. Ferreira Pires, D.A.C. Quartel. A systematic approach to

platform-independent design based on the service concept. In Proceedings of the Seventh IEEE
International Conference on Enterprise Distributed Object Computing (EDOC 2003), Brisbane,
Australia, September 2003.

[2] http://www.modatel.org
[3] MODA-TEL project. Deliverable D3.1: Model-Driven Architecture definition and methodology,

2003. Available at http://www.modatel.org/public/deliverables/D3.1.htm
[4] MODA-TEL project. Deliverable D3.2: Guidelines for the application of MDA and the technologies

covered by it, 2003.
Available at http://www.modatel.org/public/deliverables/D3.2.htm

[5] Object Management Group. Software Process Engineering Meta-model V1.0 (SPEM), formal/02-11-
14, November 2002

[6] Object Management Group. MDA-Guide, V1.0.1, omg/03-06-01, June 2003
[7] Software Engineering Institute. The Capability Maturity Model: guidelines for improving the

software process. Carnegie Mellon University. Addison Wesley Publishing Company, 1995
[8] ITU-T. Recommendation Z.150: User Requirements Notation (URN): Language requirements and

framework. Geneva, February 2003.
[9] W3C. Voice Extensible Markup Language (VoiceXML) Version 2.0. W3C Candidate

Recommendation. February 2003. Available at http://www.w3.org/TR/voicexml20/
[10] http://www.objecteering.com/
[11] Response to the Query/Model/View RFP. Revised submission 1.0. August 2003.

Available at http://www.omg.org/cgi-bin/doc?ad/03-08-05
[12] http://universalis.elibel.tm.fr/index.html

