
Towards a Framework for Continuous Software Engineering

Monalessa Perini Barcellos
Ontology and Conceptual Modeling Research Group (NEMO), Computer Science Department

Federal University of Espírito Santo, Vitória – ES, Brazil
monalessa@inf.ufes.br

ABSTRACT
Characteristics and demands of the modern and digital society
have transformed the software development scenario and
presented new challenges to software developers and engineers,
such as the need for faster deliveries, frequent changes in
requirements, lower tolerance to failures and the need to adapt
to contemporary business models. The adoption of agile
practices has allowed organizations to shorten development
cycles and increase customer collaboration. However, this has
not been enough. Continuous actions of planning, construction,
operation, deployment and evaluation are necessary to produce
products that meet customers’ needs and behaviors, to make
well-informed decisions and identify business opportunities.
Thus, organizations should evolve from traditional to continuous
and data-driven development in a continuous software
engineering approach. Continuous Software Engineering (CSE)
consists of a set of practices and tools that support a holistic
view of software development with the purpose of making it
faster, iterative, integrated, continuous and aligned with
business. It is a recent topic of Software Engineering, thus there
are many open questions. This paper introduces a CSE
framework that represents CSE processes, points out some
research questions and discusses proposals to address them.

CCS CONCEPTS
• Software and its engineering ® Software creation and
management

KEYWORDS
Continuous Software Engineering, Framework, Ontology

ACM Reference format:

Monalessa Perini Barcellos. 2020. Towards a Framework for Continuous
Software Engineering. In Proceedings of Brazilian Symposium on Software
Engineering. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3422392.3422469

1 Introduction
Changes and unpredictability in market demands, complex and

changing customer needs, and pressure to deliver products faster
are challenges faced by many software organizations. Some of
the difficulties that need to be overcome when dealing with
these challenges are due to the lack of connection between
important software development activities such as planning,
implementation and deployment [7]. These difficulties are
usually accentuated when development adopts a traditional
sequential approach, prescribed by the waterfall life cycle model.

To address market demands, many organizations have
adopted agile methods with the intention of increasing the
organization responsiveness to change. By emphasizing
flexibility, efficiency and speed of delivery, agile practices have
led to a paradigm shift in how software is developed [8][26]. In
the last two decades, it has been perceived that increasing the
frequency of some critical development activities contributes to
reduce some problems. Practices such as "release early, release
often" have been established mainly in the context of open
source software development and have proven beneficial in
terms of quality and consistency [24]. The successful adoption of
agile methods has also provided evidence of the need for greater
flexibility and adaptation in the software development
environment [27].

Some initiatives have emerged aiming to speed up the
development process and improve the connection between its
activities. For example, Continuous Integration [3] seeks to
eliminate discontinuities between development and delivery. In a
similar approach, DevOps [6] recognizes that the integration
between software development and software operation must be
continuous. Extending the need for integration to other levels,
BizDev [7] advocates that continuity should exist not only in the
software process context, but also between software and
strategic processes of the organization.

The need for continuous software planning, building,
operation and evaluation is addressed in Continuous Software
Engineering (CSE), which understands that the software
development process is not a sequence of discrete activities,
performed by distinct and disconnected teams. It aims to
establish a continuous flow between software-related activities,
taking into consideration the entire software life cycle. It is a
recent topic that seeks to transform discrete development
practices into more iterative, flexible and continuous
alternatives, keeping the goal of building and delivering quality
products according to established time and costs [7].

As a recent topic, there are several emergent works (e.g.,
[6][7][18][19][26]) but there are also many issues to be

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.
SBES '20, October 21–23, 2020, Natal, Brazil
© 2020 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8753-8/20/09…$15.00
https://doi.org/10.1145/3422392.3422469

SBES, October, 2020, Natal, RN, Brazil Barcellos, M. P.

addressed. For example, a formal description of CSE aspects and
involved processes is needed to enable its adoption in real world
settings [12]. Moreover, it is necessary to provide knowledge to
overcome challenges in the introduction and enhancement of
CSE in companies [21][17]. In fact, a general conceptualization
to provide understanding about CSE as a whole is needed. Thus,
in this paper, we introduce a framework for CSE, representing a
set of processes to be performed in the CSE context and the main
relations between them. We also discuss some research
opportunities and introduce some proposals to address them. The
paper is organized as follows. Section 2 provides the background
for the paper. Section 3 introduces the proposed CSE framework.
Section 4 discusses research questions and proposals of solution.
Section 5 concludes the paper.

2 Background
CSE involves practices and tools that aims at establishing an
end-to-end flow between customer demand and the fast delivery
of a product or service. The ‘big picture’ by which this might be
achieved goes beyond agile principles and surfaces a more
holistic set of continuous activities [7]. According to Johanssen
et al. [17], in CSE, customers are proactive, and users and other
stakeholders are involved in the process, learning from usage
data and feedback. Planning is continuous, so as requirements
engineering, which focuses on features, modularized architecture
and design, and fast realization of changes. Agile practices are
employed, including short development cycles, continuous
integration of work, continuous delivery and continuous
deployment of releases. There is version control of code,
branching strategies, fast commit of code, code coverage and
code reviews. Quality assurance involves automated tests,
regular builds, pull requests, audits and run-time adaption.
Knowledge is shared and continuous learning happens,
capturing decisions and rationale.

In the last years, some works have addressed CSE processes
and practices. Olsson et al. [26] defined the Stairway to Heaven
model (StH), which describes the evolution path organizations
follow to successfully move from traditional to customer data-
driven software development. It comprises five stages:
traditional development, agile organization, continuous
integration, continuous deployment, and R&D as an innovation
system. In summary, organizations evolving from traditional
development start by experimenting with one or a few agile
teams. Once these teams are successful, agile practices are
adopted by the organization. As the organization starts showing
the benefits of working agile, system integration and verification
becomes involved and the organization adopts continuous
integration. Once continuous integration runs internally, lead
customers often express an interest to receive software
functionality earlier than through the normal release cycle. They
want continuous deployment of software. The final stage is
where the organization collects data from its customers and uses
the installed customer base to run frequent feature experiments
to support customer data-driven software development.

 Fitzgerald and Stol [7] argue that continuous activities go
beyond software engineering activities. They introduce the
Continuous* term, as a set of activities from business,
development, operations and innovation that provides the
holistic view of the software life cycle. Continuous planning,
continuous security, continuous use, continuous trust and
continuous experimentation are some of the Continuous*
activities considered by the authors. They introduce BizDev,
analogous to DevOps, but referring to the continuity and
alignment between business strategy and software development.

From interviews performed with CSE practitioners,
Johanssen et al. [16] defined the Eye of CSE, which consists of 33
elements (e.g., practices) organized in nine categories. According
to the authors, the Eye of CSE can serve as a checklist for
practitioners to tackle the subject of CSE by incrementally
applying CSE elements and keeping an eye on potential next
steps. The proposal differs from the sequential nature of the StH
model [26]. Even if some CSE elements, such as continuous
integration and delivery, require a stepwise introduction, the
authors argue that CSE should be approached from multiple
angles simultaneously.

Some studies have investigated specific aspects related to
CSE, such as user feedback [15], practical issues [16], human
factors [28] and decision knowledge [20]. Some of them reveal
challenges and difficulties faced in the CSE context. From works
reported in the literature, it can be noted that a consensus about
what CSE is and its practices has not been achieved yet [16].

3 A Framework for CSE
Aiming to provide knowledge about CSE, we have worked on a
framework that represents a set of processes to be performed in
the CSE context and the main relations between them. Its
purpose is to provide an overview of CSE and serve as a basis for
future research. It was inspired mainly by the works by Olsson
et al. [26], Fitzgerald and Stol [7] and Johanssen et al. [16]. The
processes were defined taking processes suggested in [7] and
stages defined in [26] into account. Different from [26], our
framework considers that processes can be performed
simultaneously and gradually. Elements from [16] were also
considered to define the processes (e.g., Continuous Knowledge
Management was based on knowledge-related elements of the
Eye of CSE). Figure 1 shows an overview of the proposed
framework. In the figure, processes containing development
activities and that are at the core of CSE are represented by
pentagons, rectangles with rounded edges represent other
processes, thin arrows represent data flow from/to the repository
and wide arrows represent information flow between process.
Data flows mean that the process produces and stores data in the
repository, or uses data stored in it (for example, Agile
Development stores in the repository data about effort spent on
the tasks). Information flows mean that processes change
information, which does not necessarily involve data from the
repository (for example, Continuous Quality Assurance can
establish new quality standards/goals to be used in Agile

Towards a Framework for Continuous Software Engineering SBES, October, 2020, Natal, RN, Brazil

Development). For visualization reasons, information flows
between core processes are omitted in the figure (they are
implicit in the shape used to represent these processes).
Moreover, Continuous Knowledge Management and Continuous
Software Measurement are represented as vertical rectangles,
meaning that they are related to all the other processes.

Figure 1: Framework for CSE - Overview

In a nutshell, organizations adopt Agile Development
practices, which include, among others, the notion of small and
empowered teams, backlog, short time-box and daily standup
meetings. Once agile development has been adopted, there is the
need to test the built code in the broader context of the system.
This leads to the adoption of Continuous Integration, which
involves, among others, test-driven development, automated
build and test environment. When the customer demands more
frequent releases of software, the organization performs
Continuous Deployment, where software is deployed at
customers at the end of agile sprints, or even more frequently,
and after passing the continuous integration testing activities.
These three processes working together embody the DevOps
approach [6]. Organizations can perform Continuous
Experimentation, which involves experiments (e.g., tests A/B)
to continuous evaluate new features and optimize existing
features by considering customer data and feedback. Over the
processes, quality assurance activities (e.g., verification and
validation) are continuously performed (Continuous Quality
Assurance) aiming at product and process quality.

Continuous Software Measurement define measures
necessary to provide useful information for daily activities and
decision making (e.g., number of sprints, planned tasks,
performed tasks, team productivity, number of defects, number
of deployments, user feedback, etc.). During the execution of the
processes, data is collected and stored in the data repository.
Data is used to aid in Continuous Planning, Monitoring and
Control and support data-driven decision making. Based on
information obtained from data analysis, plans are reviewed,

new plans are established and corrective actions are performed
in alignment to the business goals (Business Alignment),
which is consistent with the BizDev approach [7]. Data from the
repository combined to management and business information
are used to Continuous Improvement and Innovation of
products and processes. Data provided from users in the
experiments are particularly important in this context. Finally,
Continuous Knowledge Management disseminates
knowledge useful to perform the processes and also captures,
evaluates and makes available new knowledge produced when
processes are performed.

Concerning the relations among the processes, Business
Alignment provides business information to Continuous
Planning, Monitoring and Control that, in turn, provides
management information regarding software projects, aiming to
align business and software projects. These processes exchange
information with the core processes to carry out development
activities according to business and projects goals. The relations
between these processes allow to connect and align aspects from
BizDev and DevOps approaches.

Continuous Experimentation uses information from the core
processes to evaluate features and provides information to these
processes to improve existing features or develop new ones.
Information from the experiments results are used in Continuous
Planning, Monitoring and Control to adjust or create plans
according to the features to be developed or adjusted. They are
also important to reveal new opportunities in Business
Alignment.

Continuous Quality Assurance uses information from the
core processes (e.g., requirements, produced artifacts, adopted
methods) and inform them about quality standards/goals to be
met and quality assurance results. This information is also
relevant to adjust plans considering the actions necessary to
correct non-conformities. It is also useful to Continuous
Improvement and Innovation, helping identify improvements
that can be made in software products and processes.
Information about improvements and innovation is relevant to
the establishment of new quality standards and goals.
Continuous Improvement and Innovation needs to take
management and business information into account. On the
other side, improvements and innovation actions need to be
aligned to business and considered in new plans.

Continuous Software Measurement identifies information
needs from all the processes and define measures to be collected
to meet the information needs. Lastly, Continuous Knowledge
Management captures knowledge from all the process and also
provides knowledge to all of them.

4. Research Questions and Proposals of Solution
We have used our framework as starting point to identify
research questions that can be explored in future research. Our
plan is to advance on the research and add the produced results
to the framework, turning it into a more robust tool to support

SBES, October, 2020, Natal, RN, Brazil Barcellos, M. P.

CSE. In this section, we discuss some questions and some
proposals on which we have worked to address the questions.

RQ1. How to implement CSE practices and evolve from a practice to
another?

Implement CSE practices requires changes in the way the
organization works. Many times, organizations struggle with the
changes to be made along the path and with the order in which
to implement them [26]. There are some proposals that aim to
help organizations in this matter, such as [26] and [19].
However, it is necessary to grow knowledge (best practices,
guidelines, models, approaches, etc.) about how CSE processes
can be implemented. Moreover, different organizational contexts
need to be taken into account (e.g., startup, software factory,
product-based companies) because CSE practices must be
tailored to fit the business goals, culture, environment and other
aspects of the organization. In this sense, we have explored the
use of Systems Thinking [23] theory and tools to support
understanding the organization and, thus, define actions to
implement CSE practices according to the organization
characteristics, problems and priorities. We have proposed and
experienced a systems thinking-based process to support
organizations to define actions to implement CSE practices [31].
From that and future experiences and studies, we intend to
define a set of guidelines to aid organizations to identify how to
implement CSE practices according to their characteristics.

RQ2. In CSE, which are the involved processes/activities, resources,
artifacts and stakeholders? For example, what does constitute
continuous integration?

CSE involves several processes, including development,
management, supporting and business processes, among others.
In the context of Software Engineering as a whole, there are
standards (e.g., [14]), maturity models (e.g., [33]) and a vast
literature defining and detailing processes. However, as a recent
topic, there is a lack of such definitions in the CSE context.
Without a clear definition about the processes involved in CSE,
researchers and practitioners may have different understandings
about CSE. For example, practitioners often define CSE driven by
processes closer to development [16], while researchers tend to
see the big picture [7]. Our framework and works such as [7]
help identify processes involved in CSE. However, it is necessary
to detail the processes, its elements (e.g., inputs, outputs, roles),
and clearly represent the relations between them. Moreover, it is
necessary to explain how they differ from ‘traditional’ processes.

Processes can be defined by means of textual descriptions or
by using conceptual modeling principles and tools, such as in
[21]. Ontologies (more specifically reference ontologies) can be
particularly useful in this matter. A reference ontology is a
special kind of conceptual model representing a model of
consensus within a community. It is a solution-independent
specification with the aim of making a clear and precise
description of the domain of interest in reality for the purposes
of communication, learning and problem-solving [11].
Ontologies can describe a particular domain (so called domain
ontologies) or a task/process (so called task ontologies) [10].

They have been successfully used to represent knowledge and
solve knowledge-related problems in Software Engineering (e.g.,
[2][1][34]). Therefore, as we are interested in detailing CSE
processes, we have proposed the use of task ontologies to
provide knowledge about CSE processes. A task ontology clearly
represents the process and provides knowledge that enables to
answer the following general questions regarding the process
being addressed: (i) which are the process activities? (ii) Who is
responsible for performing them? (iii) How the activities are
decomposed into sub-activities? (iv) What is the control flow
between them? (v) What are the inputs and outputs of each
activity?. Currently, we are working on task ontologies referring
to the Continuous Integration and Continuous Deployment
processes of our framework.

RQ3. Which tools can be used to support the processes?

Automated tools are crucial to implement CSE. There is a
large set of tools available for organizations to use to support
CSE processes [32]. The tools used by an organization directly
influence the way it performs CSE. There are cases in which the
adopted tools keep the organization from making a complete
transition and fully adapting CSE. Practitioners, in particular
developers and CSE specialists, often rely on a tool-driven
approach for defining CSE. Commercially available tools
influence their understanding of CSE [16]. The selection of the
tools to compose the ‘CSE tool chain’ must be careful and take
technological and organizational aspects into account. In this
sense, we have investigated criteria to select tools to support
CSE processes (e.g., required technology to use the tool, tool
price, potential to integration to others tools used by the
organization, team experience with the tool, supported
processes/activities, ease of use, user support, etc.). We intend to
reach a set of criteria suitable for CSE context and that can be
customized according to the organization context and interests.
For example, depending on the organization characteristics,
some criteria can be disregarded (e.g., if the organization
requires the use of free tools, tool price criterion is not
considered). Moreover, criteria can have different weights for
different organizations.

RQ4. How to obtain integrated data to support software
development and decision making in CSE?

During the execution of CSE processes, data is produced and
stored in different ways. For example, the tools used to support
the processes collect and store data regarding the supported
processes. Electronic spreadsheets are also commonly used to
store complementary management data. According to Svensson
et al. [35], despite the vast amount of data stored in tools,
decisions on software development are commonly based on
subjective aspects, such as previous experiences of the managers
and stakeholders, intuitions or a combination of these. One of
the reasons organizations fail to leverage data stored in tools is
the difficulty to access, integrate, analyze and view data handled
by heterogeneous tools. Due to its continuous nature, in CSE the
need for integrated data increases. CSE values data-driven
software development [7][26], in which data about the processes,

Towards a Framework for Continuous Software Engineering SBES, October, 2020, Natal, RN, Brazil

team, products, clients and organization are used to support
daily activities and decision-making. Therefore, it is necessary to
integrate data produced by different agents and tools and
provide integrated information to support well-informed
decisions. However, integration is not an easy task. One source
of difficulty for data integration is semantic heterogeneity,
which can result in conflicts whenever the same information
item is given divergent interpretations, a situation which may
not even be detected [36]. Neglecting these semantic conflicts
can lead to incorrect integration and wrong information for
decision-making. To reduce these conflicts, integration should
address semantic issues. Ontologies have become the
predominant way to deal with semantics in semantic integration
initiatives [25]. They can be used to establish a common
conceptualization about the domain in order to support
communication and data integration. They work as an
interlingua to map the concepts used by different tools and data
sources, enabling data and services understanding [5]. Inspired
by works such as [5], [9] and [29], we have developed and used
domain ontologies as reference models to integrate tools that
support CSE processes. We started by developing a Scrum
Reference Ontology and integrating it to ontologies from the
Software Engineering Ontology Network (SEON) [30], covering
requirements and project management aspects. We applied the
ontology as a basis to integrate tools (e.g., Clockify and Azure
DevOps) used by development teams in the software unit of a
Brazilian government agency. As a result, data from different
tools were integrated and shown in dashboards, providing useful
information for managers to make decisions.

RQ5. Which measures can be used in CSE?

An understanding of the organization capabilities to achieve
business goals can only be obtained through measuring [13].
This varies from business measures (e.g., revenue) to
management (e.g., team productivity) and development-related
measures (e.g., test coverage, time to deploy a new release).
Therefore, it is necessary to define appropriate measures to
properly evaluate the use of CSE practices in the organization.
Measures are also particularly important to continuous
experimentation, since they quantify experiments results and
facilitate measuring the value-add of specific product features.
Identifying relevant measures is of high importance in order to
collect data that will work as a basis for product improvement
and development of new features [4]. We have started to
investigate measures to support data-driven software
development and decision making in CSE. RQ5 is strongly
connected to RQ4 because data provided from integrated tools
should be related to measures defined to meet the organization
information needs. Therefore, we have made efforts to develop a
semantic integration platform to serve as infrastructure to
support measurement and data integration. The platform uses
ontologies from SEON [30] (and new ontologies we have
developed to address CSE aspects), to build semantic services
that aid in tools integration to enable extraction of data related
to the measures that meet the organization information needs.

RQ6. How to collect feedback from users? How to use users’
feedback to support process and product improvement and identify
new business opportunities?

In CSE, new versions of the software product are delivered to
the client more often. This enables developers to frequently
retrieve user feedback on the latest software increment.
Moreover, in a CSE environment it is possible to carry out
experiments to evaluate features to be incorporated to the
product. However, there is still no well-established processes to
interact with users in a CSE environment [16] (this issue is also
related to RQ2). User feedback can be collected in an explicit
manner (e.g., through forms and written reviews), but
monitoring the implicit user feedback is also important to
improve understanding the need for new requirements [22].
Moreover, the organization needs to develop the capability to
effectively use collected data about user feedback to test new
ideas with customers [4]. Aiming to address this research
question, we will associate results related to RQ2, RQ4 and RQ5.
We intend to provide knowledge about the processes that collect
feedback from users (RQ2), providing an integrated view of user
feedback in a CSE environment. We also plan to investigate
methods and techniques that can be adopted to support
obtaining user feedback and stimulating user to make explicit
his/her implicit impressions. We will extend our data
integration and measurement solution (RQ4 and RQ5) to cover
user feedback data considering measures that meet information
needs. By analyzing data, it will be possible to verify alignment
between business goals and software development, improve
products and identify new opportunities (e.g., new requirements
that can be incorporated to the product, or even a new product).

5 Final Considerations
This paper introduced a framework representing processes
involved in a CSE environment. As we said, the processes
constituting our framework were selected considering mainly
[7], [16] and [26]. However, our work differs from these.
Fitzgerald and Stol [7] define a set of continuous activities and
organize them into categories. The authors do not discuss how
the activities relate to each other in a CSE environment. Olsson
et al. [26] define sequential stages to implement CSE practices,
but some aspects, such as quality assurance and knowledge
management, are not considered. Johanssen et al. [16] identify
some CSE practices without relating them to processes.
Different from these works, our framework identifies CSE
processes and the main relations among them by means of
information and data flows. The framework provides a more
comprehensive view of CSE than [26] and details aspects not
covered in [7]. By providing an overview of a CSE environment,
the framework can help practitioners to better make decisions
about how to implement it. The framework aids to implement
CSE practices considering the big picture, instead of each process
in isolation. For researchers, it can serve as a starting point to
future research. In this sense, we have identified some research
questions and worked on solutions to address them.

SBES, October, 2020, Natal, RN, Brazil Barcellos, M. P.

We plan to use results from our works related to the RQs to
improve the framework, making it more robust. For example, we
intend to: detail the framework processes by defining their
subprocesses, activities, artifacts and involved roles (RQ2);
provide a catalog of tools to support the processes and a set of
criteria to select the ones more suitable for an organization
(RQ3); make available an infrastructure to the data repository
and a semantic integration approach to integrate tools aiming to
produce integrated data (RQ4); provide a catalog of measures
related to the processes (RQ5); add a process to support
organization analysis to define strategies to implement CSE
(RQ1). The framework can also be extended to include other
processes (e.g., processes related to human resources). Moreover,
methods and practices such as the ones cited in [16] can be
mapped to the processes to increase knowledge for their
execution. Furthermore, other solutions can be proposed to
address the research questions

In this paper, we explored six research questions. Other
questions can be investigated. For example, there are many
issues related to knowledge management. On one side, CSE is
strongly based on knowledge. On the other side, agile practices
tend to neglect knowledge recording and storage. So, how to
deal with that in a balanced way? The work described in this
paper is a work in progress. From it, we expect to enable
advances in CSE state of the art and state of the practice as well
as motivate other researchers to do so.

REFERENCES
[1] Monalessa P. Barcellos and Ricardo A. Falbo. 2013. A software measurement

task ontology. In Proceedings of the 28th ACM Symposium on Applied
Computing, 311–318. https://doi.org/10.1145/2480362.2480428

[2] Monalessa P. Barcellos, Ricardo A. Falbo, and Ana Regina Rocha. 2013. A
strategy for preparing software organizations for statistical process control.
Journal of the Brazilian Computer Society 19, 4.

[3] Kent Beck. 2000. Extreme Programming Explained: Embrace Change. Addison-
Wesley.

[4] Jan Bosch (ed.). 2014. Continuous Software Engineering. Springer.
[5] Rodrigo F. Calhau and Ricardo A. Falbo. 2010. An Ontology-based Approach

for Semantic Integration. In Proceedings 14th IEEE International Enterprise
Distributed Object Computing Conference, 111–120.

[6] Patrick Debois. 2011. Devops: a software revolution in the making? Cutter IT
Journal 24, 8.

[7] Brian Fitzgerald and Klaas-Jan Stol. 2017. Continuous software engineering: A
roadmap and agenda. Journal of Systems and Software 123: 176–189.

[8] Nina D. Fogelström, Tony Gorschek, Mikael Svahnberg, and Peo Olsson. 2010.
The impact of agile principles on market-driven software product
development. Journal of Software Maintenance and Evolution: Research and
Practice 22, 1: 53–80. https://doi.org/10.1002/spip.420

[9] Vinícius .S. Fonseca, Monalessa P. Barcellos, and Ricardo A. Falbo. 2017. An
ontology-based approach for integrating tools supporting the software
measurement process. Science of Computer Programming 135: 20–44.
https://doi.org/10.1016/j.scico.2016.10.004

[10] Nicola Guarino. 1998. Formal Ontology and Information Systems. In:
Proceedings of the International Conference in Formal Ontology and Information
Systems - FOIS’98, Trento, Italy: 3–15.

[11] Giancarlo Guizzardi. 2007. On Ontology, Ontologies, Conceptualizations,
Modeling Languages and (Meta)Models. Frontiers in Artificial Intelligence and
Applications, Databases and Information Systems IV. IOS Press, Amsterdam.

[12] Jez Humble and David Farley. 2010. Continuous delivery: reliable software
releases through build, test, and deployment automation. Pearson.

[13] Jez Humble and Joanne Molesky. 2011. Why enterprises must adopt devops to
enable continuous delivery. CUTTER IT JOURNAL 24, 8.

[14] ISO/IEC. 2008. ISO/IEC 12207:2008 - Systems and Software Engineering -
Software Life Cycle Process . International Organization for Standardization
and the International Electrotechnical Commission, Geneva, Switzerland.

[15] Jan O. Johanssen, Anja Kleebaum, Bernd Bruegge, and Barbara Paech. 2019.
How do Practitioners Capture and Utilize User Feedback During Continuous

Software Engineering? In IEEE 27th International Requirements Engineering
Conference (RE), 153–164. https://doi.org/10.1109/RE.2019.00026

[16] Jan O. Johanssen, Anja Kleebaum, Barbara Paech, and Bernd Bruegge. 2018.
Practitioners’ Eye on Continuous Software Engineering: An Interview Study.
In Proceedings of the International Conference on Software and System Process,
41–50. https://doi.org/10.1145/3202710.3203150

[17] Jan Ole Johanssen, Anja Kleebaum, Barbara Paech, and Bernd Bruegge. 2019.
Continuous software engineering and its support by usage and decision
knowledge: An interview study with practitioners. Journal of Software:
Evolution and Process 31, 5: e2169. https://doi.org/10.1002/smr.2169

[18] Teemu Karvonen, Lucy E.T. Lwakatare, Tanja Sauvola, Jan Bosch, Helena H.
Olsson, Pasi Kuvaja, and Markku Oivo. 2015. Hitting the Target: Practices for
Moving Toward Innovation Experiment Systems. In International Conference of
Software Business, 117–131.

[19] Teemu Karvonen, Tanja Suomalainen, Marko Juntunen, Tanja Sauvola, Pasi
Kuvaja, and Markku Oivo. 2016. The CRUSOE Framework: A Holistic
Approach to Analysing Prerequisites for Continuous Software Engineering. In
17th International Conference on Product-Focused Software Process Improvement,
643–661.

[20] Anja Kleebaum, Jan O. Johanssen, Barbara Paech, Rana Alkadhi, and Bernd
Bruegge. 2018. Decision Knowledge Triggers in Continuous Software
Engineering. In Proceedings of the 4th International Workshop on Rapid
Continuous Software Engineering, 23–26.
https://doi.org/10.1145/3194760.3194765

[21] Stephan Krusche and Bernd Bruegge. 2017. CSEPM - A Continuous Software
Engineering Process Metamodel. In IEEE/ACM 3rd International Workshop on
Rapid Continuous Software Engineering, 2–8.
https://doi.org/10.1109/RCoSE.2017.6

[22] Walid Maalej, Hans-Jörg Happel, and Asarnusch Rashid. 2009. When Users
Become Collaborators: Towards Continuous and Context-Aware User Input.
In Proceedings of the 24th ACM SIGPLAN Conference Companion on Object
Oriented Programming Systems Languages and Applications, 981–990.
https://doi.org/10.1145/1639950.1640068

[23] Donella Meadows. 2008. Thinking in Systems: A Primer. Chelsea Green
Publishing Company.

[24] Martin Michlmayr, Brian Fitzgerald, and Klaas-Jan Stol. 2015. Why and How
Should Open Source Projects Adopt Time-Based Releases? IEEE Software 32, 2:
55–63. https://doi.org/10.1109/MS.2015.55

[25] Julio C. Nardi, Ricardo A. Falbo, and João Paulo A. Almeida. 2013.
Foundational Ontologies for Semantic Integration in EAI: A Systematic
Literature Review. In Proceedings 12th IFIP WG 6.11 Conference on e-Business, e-
Services, and e-Society, I3E 2013, 238–249.

[26] Helena H. Olsson, Hiva Alahyari, and Jan Bosch. 2012. Climbing the “Stairway
to Heaven” - A Mulitiple-Case Study Exploring Barriers in the Transition from
Agile Development towards Continuous Deployment of Software. In 2012 38th
Euromicro Conference on Software Engineering and Advanced Applications, 392–
399. https://doi.org/10.1109/SEAA.2012.54

[27] Efi Papatheocharous and Andreas S Andreou. 2014. Empirical evidence and
state of practice of software agile teams. Journal of Software: Evolution and
Process 26, 9: 855–866. https://doi.org/10.1002/smr.1664

[28] Efi Papatheocharous, Marios Belk, Jaana Nyfjord, Panagiotis Germanakos, and
George Samaras. 2014. Personalised Continuous Software Engineering. In
Proceedings of the 1st International Workshop on Rapid Continuous Software
Engineering, 57–62. https://doi.org/10.1145/2593812.2593815

[29] Laylla D. C. Renault, Monalessa P. Barcellos, and Ricardo A. Falbo. 2018. Using
an Ontology-based Approach for Integrating Applications to Support Software
Processes. In Proc. of the XVII Brazilian Symposium on Software Quality.

[30] Fabiano Ruy, Ricardo A. Falbo, Monalessa P. Barcellos, Simone D. Costa, and
Giancarlo Guizzardi. 2016. SEON: A software engineering ontology network.
In Proceedings of the 20th International Conference on Knowledge Engineering
and Knowledge Management. https://doi.org/10.1007/978-3-319-49004-5_34

[31] Paulo Sérgio Santos Jr, Monalessa P. Barcellos, and Rodrigo F. Calhau. 2020.
Am I going to Heaven? First step climbing the Stairway to Heaven Model -
Results from a Case Study in Industry. In Proceedings of the 34th Brazilian
Symposium on Software Engineering (SBES).

[32] Mojtaba Shahin, Muhammad A. Babar, and Liming Zhu. 2017. Continuous
Integration, Delivery and Deployment: A Systematic Review on Approaches,
Tools, Challenges and Practices. IEEE Access 5: 3909–3943.

[33] Software Engineering Institute. 2018. Capability Maturity Model Integration
(CMMI 2.0).

[34] Érica F. Souza, Ricardo A. Falbo, and Nandamudi L. Vijaykumar. 2017. ROoST:
Reference Ontology on Software Testing. Applied Ontology 12: 59–90.

[35] Richard B. Svensson, Robert Feldt, and Richard Torkar. 2019. The Unfulfilled
Potential of Data-Driven Decision Making in Agile Software Development. In
Agile Processes in Software Engineering and Extreme Programming, 69–85.

[36] Holger Wache, Thomas Vogele, Ubbo Visser, Heiner Stuckenschmidt, Gerhard
Schuster, H. Neumann, and S. Hubner. 2001. Ontology-Based Information
Integration: A Survey of Existing Approaches. In Proceedings of the IJCAI’01 -
Workshop: Ontology and Information Sharing, 108–117.

