
Toward a Well-Founded Theory for

Multi-Level Conceptual Modeling

Victorio A. Carvalho1,2 and João Paulo A. Almeida1

1Ontology & Conceptual Modeling Research Group (NEMO)

Federal University of Espírito Santo (UFES), Vitória, ES, Brazil
2Research Group in Applied Informatics, Informatics Department,

Federal Institute of Espírito Santo (IFES), Colatina, ES, Brazil

victorio@ifes.edu.br; jpalmeida@ieee.org

Abstract. Multi-level conceptual modeling addresses the representation of subject domains dealing

explicitly with multiple classification levels. Despite the recent advances in multi-level modeling tech-

niques, we believe that literature in multi-level conceptual modeling would benefit from a theory that:

(i) formally characterizes the nature of classification levels, and (ii) precisely defines the structural

relations that may occur between elements of different classification levels. This work aims to fill this

gap by proposing an axiomatic theory that can be considered a reference top-level ontology for types

in multi-level conceptual modeling. The theory provides the modeler with basic concepts and patterns

to articulate domains that require multiple levels of classification as well as to inform the development

of well-founded languages for multi-level conceptual modeling. The whole theory is founded on a basic

instantiation relation and characterizes the concepts of individuals and types, with types organized in

levels related by instantiation. Further, it includes intra-level structural relations that are used to define

expressive multi-level models and cross-level relations that allow us to account for and incorporate the

different notions of power type in the literature.

Keywords: Multi-level modeling, conceptual modeling, power types, clabjects, ontology.

1 Introduction

Conceptual modeling is the activity of formally describing some aspects of the physical and social

world around us for the purposes of understanding and communication [33]. It is generally con-

sidered a fundamental activity in information systems engineering [40], in which a given subject

domain is described independently of specific implementation choices [21]. The main artefact of

this activity is a conceptual model, i.e., a specification aiming at representing a conceptualization

of the subject domain of interest. Conceptual models are often used as a basis for the construction

and evolution of information systems, which justifies the interest in the activity of conceptual

modeling from the perspective of information systems engineering [40].

Given the scope and purpose of conceptual modeling, suitable techniques for this endeavour

should be based on abstractions with consideration for human cognition and common sense [21,

19]. With this respect, there is ample psychological evidence to support the hypothesis that hu-

mans conceive of the physical and social world using some notion of “categories” and use cate-

gorization or classification strategies since a pre-language age of 3-4 months (see [21], pp. 114-

118). Thus, it is no surprise that a vast majority of conceptual modeling techniques are based on

notions such as “class” and “type”, and that subject matter experts often refer to “kinds”, “cate-

gories” and “sorts” in their accounts of a subject domain.

In several subject domains, the categorization scheme itself is part of the subject matter, and

thus experts make use of categories of categories in their accounts. For instance, considering the

software development domain [17], project managers often need to plan according to the types of

tasks to be executed during the software development project (e.g. “requirements specification”,

“coding”). They may also need to classify those types of tasks giving rise to types of types of tasks.

In this case, “requirements specification” and “coding” could be considered as examples of “tech-

nical task types”, as opposed to “management task types”. Finally, during project development,

they need to track the execution of individual tasks (e.g. specifying the requirements of the system

X). Thus, to describe the conceptualization underlying the software development domain, one

needs to represent entities of different (but nonetheless related) classification levels, such as tasks

(specific individual occurrences), types of tasks, and types of types of tasks. Other examples of

multiple classification levels come from domains such as that of organizational roles (or profes-

sional positions) [43], biological taxonomy [31] and artefact types (e.g., product types) [36].

The need to support the representation of subject domains dealing with multiple classification

levels has given rise to what has been referred to as multi-level modeling [6, 36]. Techniques for

multi-level conceptual modeling must provide modeling concepts to deal with types in various

classification levels and the relations that may occur between those types.

The power type pattern [9, 39] is an example of an early approach for multi-level modeling and

is used to model situations in which the instances of a type (the power type) are specializations of

a lower-level type (the base type). Odell [39] illustrated the power type pattern with an example

considering a type “Tree Species” having instances such as “Sugar Maple”, “Apricot”, “American

Elm” and “Saguaro”. Since all instances of “Tree Species” specialize “Tree”, “Tree Species” is a

power type of “Tree”.

While some prominent approaches for multi-level modeling are based on the notion of power

type, there is no consensus about the exact definition of a power type. For example, based on the

concept of power set, Cardelli [9] coined the notion of power type to characterize a type that

captures the common structure of all types that specialize a specific type (the base type). Accord-

ing to the definition of Cardelli, the base type itself and any other type whose all instances are

instances of the base type are instances of the power type. In contrast, Odell defined power type

simply as a type whose instances are subtypes of another type (the base type), excluding the base

type from the set of instances of the power type. Differently from Cardelli, Odell admits the ex-

istence of specializations of the base type that are not instances of the power type1.

In addition to the lack of consensus concerning the definition of power type, most multi-level

modeling approaches based on this notion lack a formal account for it (e.g. the UML support to

model power types [41] and the metamodeling framework proposed in [17]) . Further, most of

1 This discussion is extended in this paper in section 4, where we show how the definitions are related to each other

and how they can be given different uses.

these approaches represent the relation between a power type and a base type as a regular associ-

ation with no specialized semantics.

Other prominent approaches for multi-level modeling (such as [5, 36]) propose to treat the

instantiation between arbitrary adjacent levels uniformly [2], i.e., they defend that the instantiation

relations between specific individuals and their types should also be applied to the instantiation

relation occurring between types of adjacent classification levels. To meet this challenge it is

necessary to admit the existence of entities, which are, simultaneously, type (class) and instance

(object) [2]. The authors have coined the term “clabject” to emphasize this dual facet of classes

in a generalized multi-level scheme.

Despite the recent advances in multi-level modeling techniques, we believe that the literature

would benefit from a theory that: (i) formally characterizes the nature of classification levels, and

(ii) precisely defines the relations that may occur between elements of different classification

levels. Such a theory should be useful to guide the development of well-founded languages for

multi-level conceptual modeling and to provide the modeler with basic concepts and patterns to

conceptualize domains that require multiple levels of classification.

This work aims to fill this gap by proposing a theory for multi-level conceptual modeling

named MLT. This theory is founded on a basic instantiation relation and characterizes the con-

cepts of individuals and types, with types organized in levels related by instantiation. MLT ac-

counts for the notion of power type with two contributions: (i) it clarifies and positions conflicting

definitions of power type, and (ii) it defines new structural relations for variants of the power type

pattern enriching the expressivity of multi-level modeling primitives. The basic entities in the

theory and all proposed relations between entities are formally defined through axiomatization in

first-order logic.

The resulting theory can be considered a reference top-level ontology for types in multi-level

conceptual modeling. Although we do not propose a language for multi-level conceptual model-

ing, we explore patterns that emerge from the application of the theory as well as modeling con-

straints to ensure that multi-level models respect the theory axioms. Since our focus is on concep-

tual modeling (and not language engineering or language metamodeling) we focus our account

on what is called “ontological instantiation” in [3] and we are thus unconcerned with “linguistic

instantiation”.

This paper is further organized as follows. Section 2 presents the basic entities in MLT. Section

3 discusses intra-level relations including specialization and a novel relation we call subordina-

tion. Section 4 discusses cross-level relations which are the basis to incorporate the notion of

power type and its variations. Section 5 illustrates the application of the theory to the domain of

biological taxonomy. Section 6 discusses the MLT accounts for attributes, relationships and dy-

namic classification and presents some remarks on the identity conditions of types. Section 7

discusses related work and section 8 presents conclusions and future steps.

2 MLT Foundations: Basic Types and the Instantiation Relation

The notions of type and individual are central for our multi-level modeling theory. Types are

predicative entities that can possibly be applied to a multitude of entities (including types them-

selves). Particular entities, which are not types, are considered individuals.

Each type is characterized by an intension, which is used to judge whether the type applies to

an entity (e.g., whether something is a Person, a Dog, a Chair) (it is also called principle of appli-

cation in [21]). If the intension of a type t applies to an entity e then it is said that e is an instance

of t. Thus, the instance of relation (or instantiation relation2) maps a type to the entities that fall

under the type. The set of instances of a type is called the extension of the type [23]. We assume

that the theory is only concerned with types with non-trivially false intensions, i.e., with types

that have possible instances in the scope of the conceptualization being considered.

MLT is formalized in first-order logic, quantifying over all possible individuals and types. The

instantiation relation is formally represented by a binary predicate iof(e,t) that holds if an entity

e is instance of an entity t (denoting a type). For instance, the proposition iof(Vitória,City) denotes

the fact that “Vitória” is an instance of the type “City”.3

We build up the theory defining the conditions for entities to be considered individuals, with

the constant “Individual” in axiom A1. An entity is an instance of “Individual” iff it does not

possibly play the role of type in instantiation relations.

∀x iof(x, Individual) ↔ ∄y iof(y, x) (A1)

We consider that two types are equal iff the sets of all their possible instances are the same (see

Axiom A2). Note that this definition of equality only applies to elements which are not individu-

als, hence the ‘guard’ conditions on the left-hand side of the implication.

∀t1, t2 (¬iof(t1, Individual) ∧ ¬iof(t2, Individual)) →

((t1 = t2) ↔ (∀e iof(e, t1) ↔ iof(e, t2))) (A2)

As a multi-level modeling theory, we deal with types that have individuals as instances as well

as with types whose extension is composed of other types. In order to accommodate these varieties

of types, the notion of type order is used. Types whose instances are individuals are called first-

order types. Types whose instances are first-order types are called second-order types. Those

types whose extensions are composed of second-order types are called third-order types, and so

on. We use the term higher-order type to refer to types with order higher than one.

2 We are aware that certain approaches such as RM-ODP distinguish the terms instantiation and instance, but this

distinction is not required here, and hence we use the terms interchangeably.
3 For the sake of clarity in the presentation, we focus in this section on types that apply necessarily to their instances

(the so-called rigid types [21]). A treatment of dynamic classification (and non-rigidity) is deferred to section 6.2.

Axiom A3 characterizes “First-Order-Type” (or shortly “1stOT”), defining a first-order type

as an entity whose instances are instances of “Individual”. Analogously, A4 and A5 characterize

“Second-Order Type” (or “2ndOT”) and “Third-Order Type” (“3rdOT”). A4 defines that an entity

t is a second-order type iff all its instances are first-order types (i.e., instances of “1stOT”), and

A5 defines that an entity t is a third-order type iff all its instances are second-order types (i.e.,

instances of “2ndOT”). This scheme can be simply extended to consider as many orders as nec-

essary. However, since we have not encountered examples of types in conceptual modeling with

order higher than three, we present our theory here for the sake of brevity considering only first-

order, second-order and third-order types.

∀t iof(t, 1stOT) ↔ (∃y iof(y, t) ∧ (∀x iof(x, t) → iof(x, Individual))) (A3)

∀t iof(t, 2ndOT) ↔ (∃y iof(y, t) ∧ (∀t′iof(t′, t) → iof(t′, 1stOT))) (A4)

∀t iof(t, 3rdOT) ↔ (∃y iof(y, t) ∧ (∀t′iof(t′, t) → iof(t′, 2ndOT))) (A5)

Substituting t for Individual in axiom A3 and considering A1, one can see that “Individual” is

an instance of “1stOT” (theorem T1). Analogously, using further axioms A4 and A5 we can show

that “1stOT” is an instance of “2ndOT” and “2ndOT” is an instance of “3rdOT” (see theorems

T2 and T3).

iof(Individual, 1stOT) (T1)

iof(1stOT, 2ndOT) (T2)

iof(2ndOT, 3rdOT) (T3)

Theorem T4 states that “Individual”, “1stOT”, “2ndOT” and “3rdOT” have no instances in

common i.e., their extensions are disjoint. To see why this theorem holds, we need to analyze all

the possible combinations of the basic types in pairs, starting from evaluating the possibility for

an entity to be instance of both “Individual” and “1stOT”. According to A1, instances of “Indi-

vidual” do not have instances, while according to A3 instances of “1stOT” necessarily have some

instance. Thus, no entity can be an instance of “Individual” and “1stOT” simultaneously. Using

A1 in tandem with A4 and A5 we can conclude also that “Individual” does not have instances in

common with “2ndOT” nor with “3rdOT”. Now, suppose an entity e, which is instance of both

“1stOT” and “2ndOT”. Using A3 and A4, all its instances should be simultaneously “Individual”

and “1stOT”, which is impossible, as we have already concluded. Hence, there are no entities

which simultaneously instantiate “1stOT” and “2ndOT”. Following analogous reasoning and us-

ing axioms A4 and A5 one can conclude that “2ndOT” and “3rdOT” do not have instances in

common. Finally, applying the same strategy and using axioms A3 in tandem with A5 one can

see that “1stOT” and “3rdOT” have no entities in common.

∄x (iof(x, Individual) ∧ iof(x, 1stOT)) ∨ (iof(x, Individual) ∧ iof(x, 2ndOT)) ∨

(iof(x, Individual) ∧ iof(x, 3rdOT)) ∨ (iof(x, 1stOT) ∧ iof(x, 2ndOT)) ∨

(iof(x, 1stOT) ∧ iof(x, 3rdOT)) ∨ (iof(x, 2ndOT) ∧ iof(x, 3rdOT)) (T4)

Axiom A6 states that each entity in our domain of enquiry is necessarily an instance of “Indi-

vidual”, “1stOT”, “2ndOT” or “3rdOT” (except “3rdOT” whose type is outside the scope of the

formalization). This makes the set of extensions of “Individual”, “1stOT”, “2ndOT” and “3rdOT”

a partition of the set of entities considered in the theory (and their union the domain of quantifi-

cation).

∀x (iof(x, Individual) ∨ iof(x, 1stOT) ∨ iof(x, 2ndOT) ∨ iof(x, 3rdOT) ∨ (x = 3rdOT)) (A6)

Axioms A1 to A6 prescribe a strictly stratified organization of entities into orders. As a result,

the instance of relation in MLT is asymmetric (i.e. irreflexive and antisymmetric) (Theorem T5)

and anti-transitive (Theorem T6). These properties of instantiation relations are consistent with

those widely accepted in the conceptual modeling community [23, 26].

∄x, y (iof(x, y) ∧ iof (y, x)) (T5)

∄x, y, z (iof(x, y) ∧ iof(y, z) ∧ iof (x, z)) (T6)

To see that T5 and T6 hold, one needs to observe that the stratification prescribed by axioms

A1 to A6 guarantees that instantiation relations hold between two elements such that the latter is

one order higher than the former. Thus, the instances of an entity are in one order lower than it,

while its types are in one order higher.

To demonstrate the validity of T5 we follow a case based strategy considering all possible cases

for entities in the domain of quantification according to A6:

- First, suppose y is an instance of “Individual”. Since instances of “Individual” do not have

any possible instance (A1), iof(x, y) is never true. Thus, T5 holds for this case.

- Suppose y is an instance of “1stOT”. According to A3, x must be an instance of “Individual”

to make iof(x, y) true. Since instances of “Individual” do not have any possible instance (A1),

iof(y, x) is never true. Thus, T5 holds for this case.

- Suppose y is an instance of “2ndOT”. According to A4, x must be an instance of “1stOT” to

make iof(x, y) true. If x is instance of “1stOT”, all its instances must be instances of “Individ-

ual” (A3), requiring y to be an instance of “Individual” to make iof(y ,x) true. Since y cannot

be simultaneously instance of “2ndOT” and “Individual” (T4), T5 holds. The case in which

y is an instance of “3rdOT” is analogous to this one.

- Finally, suppose that y is “3rdOT”. To see why iof(y, x) is never true, we can consider all

cases for x according to A6. If x is an instance of “Individual”, iof(y, x) is false (A1). If x is

an instance of “1stOT”, y would have to be an instance of “Individual” to make iof(y,x) true.

However, this is not possible, as instances of “Individual” do not have any possible instance

(A1), and “3rdOT” does (T3). If x is an instance of “2ndOT”, y would have to be an instance

of “1stOT” (A4) to make iof(y, x) true. Being y an instance of “1stOT”, every instance of it

would be an instance of “Individual” (A3). However, since y is “3rOT”, its instances should

be instances of “2ndOT” (A5). This is not possible, given T4. The case in which x is an in-

stance of “3rdOT” is analogous. If x is “3rdOT”, y would have to be instance of “3rdOT” to

make iof(y, x) true (A5). Being y an instance of “3rdOT”, every instance of it would be an

instance of “2ndOT”, which is impossible, considering that “3rdOT” and “2ndOT” have no

instances in common (T4).

To demonstrate the validity of T6, we follow a case-based analysis similar to one we used to

analyze T5.

- First, suppose z is an instance of “Individual”. Since instances of “Individual” do not have

any possible instance (A1), iof(y, z) is never true. Thus, T6 holds for this case.

- Suppose z is an instance of “1stOT”. According to A3, y must be an instance of “Individual”

to make iof(y, z) true. Since instances of “Individual” do not have any possible instance (A1),

iof(x, y) is never true. Thus, T6 holds for this case.

- Suppose z is an instance of “2ndOT”. According to A4, y must be an instance of “1stOT” to

make iof(y, z) true. If y is instance of “1stOT”, x must be an instance of “Individual” to make

iof(x, y) true (A3). Being z an instance of “2ndOT” and x an instance of “Individual”, iof(x,z)

is never true. Thus, T6 holds for this case. The case in which z is an instance of “3rdOT” is

analogous to this one.

- Finally, suppose that z is “3rdOT”. In this case, to make iof(y, z) true, y must obviously be an

instance of “3rdOT”. If y is instance of “3rdOT”, x must be an instance of “2ndOT” to make

iof(x, y) true (A5). Being x an instance of “2ndOT”, it cannot be instance of “3rdOT” (T4).

Thus, iof(x,z) is never true and T6 holds in this case.

Note that the notion of order we have used is inspired on the ramified hierarchy introduced by

Russell in his type theory [14]. However, Russell’s main goal with the notion of order was to

prevent circularity in the hierarchy of types and hence sets of a given order could include sets of

an arbitrary lower order. Differently from Russell, in our theory a type can only have instances at

the immediately lower order, resulting in levels of entities. This is a common feature of the in-

stance of relation in various techniques which adopt the so-called strict metamodeling principle

[2]. Further, stratified levels arise from the cascaded application of the power type pattern starting

from first-order types.

Fig. 1 illustrates the elements that form the basis for our multi-level modeling theory, using a

notation that is largely inspired in UML [41]. We use the UML class notation to represent the

basic types of the theory (“Individual”, “1stOT”, “2ndOT” and “3rdOT”). We use associations as

usual to represent relations between instances of the related types. The multiplicity of the associ-

ations reflect the constraints in the formalization. For example, each instance of “Individual” is

instance of at least one instance of “1stOT”, and, on the inverse direction, each instance of

“1stOT” has at least one instance of “Individual” in its extension. We use dependencies (dashed

arrows) to represent when relations hold between the types, with labels to denote the names of

the predicates that apply. For instance, a dashed arrow labelled iof between “Individual” and

“1stOT” represents that the former is an instance of the latter (i.e., that iof(Individual,1sOT)

holds). In Fig. 1 the dashed arrows are justified by theorems T1-T3. The notation used to elaborate

Fig. 1 is used in all further diagrams in this paper.

Fig. 1. Basic foundations of our multi-level modeling theory: basic types and instance of relations.

3 Intra-level structural relations

In this section, we discuss the relations that occur between types of the same order (the intra-level

structural relations). All definitions are based on the instantiation relation.

We start with the ordinary specialization between types. Definition D1 defines that t1 special-

izes t2 iff all instances of t1 are also instances of t2. Since instances of “Individual” do not have

instances (A1), D1 states that specialization only applies to elements that are not individuals (i.e.

elements that have some possible instances). As discussed in [23, 26] specialization is a partial

order relation (i.e., a reflexive, transitive and antisymmetric relation), which is guaranteed in

MLT.

∀t1, t2 specializes(t1, t2) ↔ (∃y iof(y, t1) ∧ (∀e iof(e, t1) → iof(e, t2))) (D1)

According to D1, every type specializes itself. Since this may be undesired in some contexts,

we define the proper specialization relation (we used the qualifier ‘proper’ as in ‘proper subset’

considering that the extension of the specialized type is a proper subset of the extension of the

general type [23]). Definition D2 thus defines that t1 proper specializes t2 iff t1 specializes t2 and

is different from it.

∀ t1, t2 properSpecializes(t1, t2) ↔ (specializes(t1, t2) ∧ t1 ≠ t2) (D2)

Insofar as the instances of a type are defined by its intension, the proper specialization

relation reflects the fact that the intension of the specializing type keeps the constraints stated by

the intension of the specialized type and adds some other constraint(s) to it. To put it more for-

mally, consider two types, t and t’. If t’ proper specializes t, this means that the intension of t’ is

given by the conjunction of the intension of t and a predicate that captures the additional con-

straints defined by t’ with respect to t. Further, since we consider there is no relevant type without

possible instances, the resultant intension of t’ cannot be a trivially false predicate. For example,

consider that “Man” is a type that applies to every instance of “Person” of the male gender. As-

suming this, the intension of “Man” is given by the conjunction between the intension of “Person”

and a predicate that captures the property of being male. Thus, in this case, “Man” proper spe-

cializes “Person”.

Fig. 2 augments Fig. 1 by including the representation of specialization and proper specializa-

tion relations. Note that the axioms and definitions presented thus far guarantee that these rela-

tions may only hold between types of the same order, which is reflected in the diagram.

Fig. 2. Intra- level structural relations: specializations and proper specializations.

Substituting t2 for Individual in definition D1 and comparing the right-hand side of the result-

ant proposition with the right-hand side of axiom A3, we conclude that an entity is instance of

“1stOT” iff it specializes “Individual” (theorem T7). Analogously, it follows from D1 and A4

that an entity is instance of “2ndOT” iff it specializes “1stOT” (theorem T8). Finally, from D1

and A5 one can see that every instance of “3rdOT” specializes “2ndOT” (theorem T9). There-

fore, an important consequence of the theory presented so far is that any instance of a higher-

order type (any instance of “1stOT”, “2ndOT”, and “3rdOT”) specializes the basic type at an

immediately lower order.

∀t iof(t, 1stOT) ↔ specializes(t, Individual) (T7)

∀t iof(t, 2ndOT) ↔ specializes(t, 1stOT) (T8)

∀t iof(t, 3rdOT) ↔ specializes(t, 2ndOT) (T9)

This leads to a basic pattern in the theory: Every type that is not a basic type (e.g., a domain

type) is an instance of one of the basic higher-order types (“1stOT”, “2ndOT”, and “3rdOT”),

and, at the same time specializes the basic type at the immediately lower level (respectively, “In-

dividual”, “1stOT”, “2ndOT”). For example, consider the enterprise domain, in which we may

need a type to capture the concept of “Employee”. The type “Employee” classifies individuals

(e.g. John or Mary), i.e., every instance of “Employee” is also instance of “Individual”. Thus, by

axiom A3, we have that “Employee” is instance of “1stOT” and, considering T7, “Employee”

specializes “Individual”. In fact, since “Employee” and “Individual” are different types, we can

say that “Employee” proper specializes “Individual”. This basic pattern is illustrated in Fig. 3. In

order to preserve the intuition in the representation, we used the traditional UML notation to rep-

resent specializations (in this case to represent the fact that the proposition properSpecializes(Em-

ployee, Individual) holds). We have used the instance specification notation to represent an indi-

vidual (John), while keeping the use of dashed arrows to show instantiation. The theory basic

types are shaded to differentiate them from domain elements.

Fig. 3. Using the theory to model a domain.

MLT supports also specializations and instantiations occurring between domain elements. For

instance, supposing we need to classify the employees according to their highest academic de-

grees we can consider types such as “PhDEmployee” and “BachelorEmployee” to classify re-

spectively employees having Ph.D. and bachelor degrees. These types are proper specializations

of “Employee” since their instances are also instances of “Employee”. Thus, by the transitivity of

specialization, they also specialize “Individual” and, considering theorem T7, they are instances

of “1stOT”.

Further, we may consider a second-order type called “EmployeeAcademicDegreeType” that

has as instances the types that specialize “Employee” according to the academic degree (e.g

“PhDEmployee” and “BachelorEmployee”). More formally, “EmployeeAcademicDegreeType”

is a type applied to types that have the intension given by the conjunction of the intension of

“Employee” and a predicate that captures the property of having a specific highest academic de-

gree. For example, the intension of “PhDEmployee” is given by the conjunction of the intension

of “Employee” and a predicate that captures the property of having a Ph.D. academic degree, thus

“PhDEmployee” is instance of “EmployeeAcademicDegreeType”. Again applying the basic pat-

tern, “EmployeeAcademicDegreeType” is an instance of “2ndOT” (since its instances are in-

stances of “1stOT”) and specializes “1stOT” (see A4 and T8).

Fig. 4 augments Fig. 3 adding the discussed entities and relations. In order to increase the read-

ability of the diagram, we use dashed rectangles to group elements that have a common link to

another element and draw only one arrow between the border of the rectangle and the other ele-

ment. For example, instead of representing two iof links between “EmployeeA-

cademicDegreeType” and its instances, we group its instances in a dashed rectangle and draw one

iof link between such rectangle and “EmployeeAcademicDegreeType”. Moreover, we omitted

the representation of some relations that are implied by the represented relations. For example,

although we do not represent that “PhDEmployee” proper specializes “Individual” it can be in-

ferred by the fact that it proper specializes “Employee” which, in turn, proper specializes “Indi-

vidual”.

Fig. 4. Instantiations and specializations between domain elements.

Consider now an extension of the example in Fig. 4 in which we introduce a second second-

order type called “EmployeeRoleType” beside “EmployeeAcademicDegreeType”. The instances

of “EmployeeRoleType” are specializations of “Employee” according to the role they play (e.g.

“Programmer” and “ResearchManager”). Consider further that, in order to reflect required quali-

fications in the domain, all instances of “EmployeeRoleType” must specialize instances of “Em-

ployeeAcademicDegreeType”. In other words, the intension of each instance of “EmployeeRole-

Type” is given by the conjunction of the intension of an instance of “EmployeeA-

cademicDegreeType” and an additional constraint capturing the role their instances must play.

For example, we may consider that “Programmer” specializes “BachelorEmployee” and “Re-

searchManager” specializes “PhDEmployee”. To allow modelers to capture this kind of relations

between higher-order types that implies specializations between their instances MLT defines the

notion of subordination.

We call subordination the relations that occur between two higher-order types t1 and t2 when

t1 applies to types that have the intension given by the conjunction of the intension of an instance

of t2 and a predicate that captures a constraint following some classification criteria. Therefore,

D3 defines that t1 is subordinate to t2 iff every instance of t1 specializes an instance of t2. Sub-

ordination is a relation between types, and thus D3 excludes the possibility of subordination in-

volving instances of “Individual” (i.e. entities with no possible instances).

∀t1, t2 isSubordinateTo (t1, t2) ↔
(∃x iof(x, t1) ∧ (∀t3 iof(t3, t1) → (∃t4 iof(t4, t2) ∧ properSpecializes(t3, t4)))) (D3)

Since subordination implies specializations between the instances of the involved types at one

order lower, and specializations can only be established between types at the same order, subor-

dination can only hold between higher-order types of equal order (see Fig. 5).

Fig. 5. Intra-level structural relations: subordination.

Fig. 6 illustrates the augmented example, showing that “EmployeeRoleType” is subordinate to

“EmployeeAcademicDegreeType”. Note that subordination between two higher-order types im-

plies specialization between their instances but should be clearly distinguished from a specializa-

tion between the higher-order types (in the example, “EmployeeRoleType” does not specialize

“EmployeeAcademicDegreeType”). Moreover, as we show later in section 5, the use of subordi-

nation relations between higher-order types plays a fundamental role on the specification of tax-

onomies of types in one order lower.

Fig. 6. An example of subordination relation.

Table 1 summarizes the characteristics of the defined intra-level structural relations.

Table 1. Intra-level structural relations characteristics

Name Meaning
Domain and

Range
Properties

Specialization

specializes(t1,t2)

The intension of t1 adds some classification criteria to

the one of t2 or both types have the same intension

(t2=t1), i.e. every instance of t1 is also an instance of

t2.
Types of the same

order (instances of

1stOT, 2ndOT or

3rdOT)

Reflexive, an-

tisymmetric

and transitive.

Proper Specialization

properSpecializes(t1,t2)

The intension of t1 adds some classification criteria to

the one of t2 i.e. every instance of t1 is also an instance

of t2 and there at least one instance of t2 that is not

instance of t1.
Irreflexive,

antisymmet-

ric and transi-

tive Subordination

isSubordinateTo(t1,t2)

The intension of each instance of t1 adds some classi-

fication criteria to the intension of some instance of t2

i.e. every instance of t1 proper specializes some in-

stance of t2.

Higher-order types

of the same order

(instances of

2ndOT or 3rdOT)

4 Cross-level Structural Relations

This section defines the relations that occur between types of adjacent levels (the so-called cross-

level structural relations). These relations support our analysis of the notions of power type in the

literature, as well as their full incorporation in the theory.

4.1 The Power Type of Relation

The use of power types is one of the most common techniques for multi-level modeling. A

seminal theory for the notion of power type was proposed by Cardelli [9]. According to [9], the

same way specializations are intuitively analogous to subsets, power types can be intuitively un-

derstood as powersets. The powerset of a set A, is the set whose elements are all possible subsets

of A including the empty set and A itself. Thus, “if A is a type, then Power(A) is the type whose

elements are all the subtypes of A” (including A) [9]. Following Cardelli’s definition, definition

D4 defines that iff a type t1 is power type of a type t2 all instances of t1 are specializations of t2

and all possible specializations of t2 are instances of t1. In this case, t2 is said the base type of t1.

Analyzing it in terms of the intension of the involved types, iff a type t1 is power type of a type

t2 the intension of t1 defines that its instances are applicable to instances of t2 but t1 does not

define a classification criteria. Thus, the extension of t1 is composed by all specializations of t2,

including t2 itself. Further, D4 guarantees that entities without instances (individuals) are not

considered power types of other entities.

∀t1, t2 isPowertypeOf(t1, t2) ↔ (∃x iof(x, t1) ∧ (∀t3 iof(t3, t1) ↔ specializes(t3, t2))) (D4)

Recall that “Individual” is an instance of “1stOT” (theorem T1) and that all the types that spe-

cialize “Individual” are also instances of “1stOT” (theorem T7). Thus, it follows from the defini-

tion of power type (D4) that “1stOT” is power type of “Individual” (theorem T10). Analogously,

“2ndOT” is power type of “1stOT” (theorem T11), and “3rdOT” is power type of “2ndOT” (the-

orem T12).

isPowertypeOf(1stOT, Individual) (T10)

isPowertypeOf(2ndOT, 1stOT) (T11)

isPowertypeOf(3rdOT, 2ndOT) (T12)

It is interesting to note that, to be a power type, a type must have an intension that defines that

all its instances are specializations of the base type and, conversely, all specializations of the base

type are instances of the power type (see D4). Thus, it is possible to conclude that each type has

at most one power type (theorem T13) and that each type is power type of, at most, one other type

(theorem T14). This suggests a concrete syntactic constraint for a multi-level model: only one

higher-order type can be linked to a base type through the is power type of relation.

∀p, t isPowertypeOf(p, t) → ∄p′(p ≠ p′) ⋀ isPowertypeOf(p′, t) (T13)

∀p, t isPowertypeOf(p, t) → ∄t′(t ≠ t′)⋀ isPowertypeOf(p, t′) (T14)

Theorem T13 can be proved as follows: (i) supposing two higher order types, p and p’, are

power type of t, according to D4, both p and p’ should have as only instances all possible special-

izations of t; (ii) thus, applying axiom A2, we conclude that p is equal to p’ (p=p’). Analogously,

theorem T14 can be proved as follows: (i) supposing p is power type of t, according to D4, p

should have as only instances all the specializations of t; (ii) if we also consider a type t’ such that

p is power type of t’ then p should have as only instances all the specializations of t’; thus, t = t’.

In his accounts for the notion of power type [9], Cardelli proved that if a type t2 specializes a

type t1 then the power type of t2 specializes the power type of t1. Since our definition for

isPowertypeOf relation follows Cardelli’s definition, we verified that this property is entailed by

our theory. Theorem T15 formalizes this property. This may be used to check the syntax of power

type hierarchies, and also to generate the power type hierarchy corresponding to the base type

hierarchy.

∀t1, t2, t3, t4(specializes(t2, t1) ∧ isPowertypeOf(t4, t2) ∧ isPowertypeOf(t3, t1)) → specializes(t4, t3) (T15)

T15 can be proved as follows: (i) considering that t3 is power type of t1 by definition D4 we

conclude that t1 and all its specializations are instance of t3; (ii) considering the transitivity of

specialization and that t2 specializes t1, we have that all specializations of t2 also specialize t1,

and thus, all specializations of t2 are instance of t3; (iii) considering that t4 is power type of t2 by

D4 we conclude that all instances of t4 are specializations of t2; (iv) thus, by (ii) and (iii) we

conclude that all instances of t4 are also instances of t3, i.e., t4 specializes t3.

Given the power type of definition (D4), if p1 is power type of t1 we conclude that p1 is one

order higher than t1, i.e., if t1 is a first-order type (iof(t1,1stOT)) then p1 is a second-order type

(iof(p1,2ndOT)), if t1 is a second-order type (iof(t1,2ndOT)) p1 is a third-order type

(iof(p1,3rdOT)), and so on. Furthermore, since instances of “Individual” are not types, they cannot

participate in isPowertypeOf relations as power type nor as base type. Fig. 7 augments Fig. 1 by

including the representation of isPowertypeOf relations.

Fig. 7. Cross-level relations: isPowertypeOf.

Since the power type of a base type is a type whose intension defines that its instances classify

instances of the base type, for each first-order type f it is always possible to define a second-order

type s such that s is power type of f and for each second-order type s it is possible to define a third-

order type t such that t is power type of s. While the theory necessitates the existence of the power

type of any type (except the power types of third-order types, which are outside the scope of the

theory), the decision on whether to represent the power type of a particular type is a modeling

decision. When the power type is not relevant for the domain being modeled it is often omitted

from the model.

To illustrate the use of the power type of relation, we augment the example of Fig. 6 in Fig. 8

introducing “EmployeeType”, which is power type of “Employee”. Consequently, all types that

specialize “Employee” are instances of “EmployeeType”. Since the instances of “Employ-

eeType” are first-order types, “EmployeeType” is an instance of “2ndOT” and specializes

“1stOT”. Further, since all instances of “EmployeeRoleType” are also instances of “Employ-

eeType”, it follows that “EmployeeRoleType” specializes “EmployeeType”. Analogously, “Em-

ployeeAcademicDegreeType” specializes “EmployeeType”.

Fig. 8. An example of isPowertypeOf relation.

Although the definition of power type we adopted here is compliant with the one proposed by

Cardelli [9], there are other definitions to this term in software engineering literature which have

had great influence in practice, for example those definitions in [39,23].

4.2 The Categorization Relation

In [39], Odell stated that a power type is a type whose instances are subtypes of another type.

It is important to notice that Odell’s definition is less strict than Cardelli’s [9] definition. Cardelli

follows the power set concept stating that all the specializations of the base type are instances of

the power type. Odell’s definition, in turn, does not comply with that restriction. Thus, as pointed

out by [23], the relation defined by Odell is misnamed power type since, in fact, it denotes a subset

of the power set.

Inspired by Odell’s definition [39] we defined the categorization relation (Definition D5): a

type t1 categorizes a type t2 iff all instances of t1 are properSpecializations of t2. Further, D5

guarantees that categorization relations only apply to elements that are not individuals (i.e., ele-

ments that have instances).

∀t1, t2 categorizes (t1, t2) ↔ (∃x iof(x, t1) ∧ (∀t3 iof(t3, t1) → properSpecializes(t3, t2))) (D5)

The categorization relation occurs between a higher order type t1 and a base type t2 when the

intension of t1 defines that their instances specialize t2 according to a specific classification cri-

teria. Thus, the instances of t1 specialize t2 but t2 is not an instance of t1 and there may be other

types that specializes t2 according to other classification criteria and, thus, are not instances of

t1. Categorization relations only occur between types of adjacent levels (see Fig. 9).

Fig. 9. Cross-Level relations: categorizes.

Recall that, if a type t’ proper specializes a type t, the intension of t’ is given by the conjunction

of the intension of t and a predicate that captures the additional constraints defined by t’ with

respect to t. Extending this reasoning, if a higher-order type h categorizes t, the intension of h

establishes some criteria to define the additional constraint that is introduced to the intension of t

to compose the intension of its instances. Thus, every type t’ whose intension extends the inten-

sion of t following the established criteria is considered an instance of h.

In our previous example, “EmployeeAcademicDegreeType” uses the employees’ academic de-

gree as criteria to classify employees. Putting it more precisely, the intension of “EmployeeA-

cademicDegreeType” defines that, to be considered an instance of it, a type must have its inten-

sion given by the conjunction of the intension of “Employee” and a constraint that captures the

property of having a specific academic degree. Therefore, “EmployeeAcademicDegreeType” cat-

egorizes “Employee”.

Still considering the previous example, the intension of “PhDEmployee” is given by the con-

junction of the intension of “Employee” and a predicate that captures the property of having a

PhD degree. Thus, “PhDEmployee” is an instance of “EmployeeAcademicDegreeType”. Analo-

gously, since the instances of “EmployeeRoleType” specialize “Employee” according to roles the

employees are hired to play and the academic degrees they have, “EmployeeRoleType” also cat-

egorizes “Employee”, having instances such as “Programmer” and “Research Manager”.

Note that, if a type t1 is subordinate to t2 and t2 categorizes a type t3, considering the defini-

tions of subordination (D3) and categorization (D5) we conclude that all instances of t1 proper

specialize some instance of t2 and that all instances of t2 proper specialize t3. Applying the proper

specialization definition (D2) it follows that all instances of t1 proper specialize t3 and, thus, t1

categorizes t3. This idea is formalized in theorem T16. This theorem can be used to check the

completeness of models.

∀t1, t2, t3 (isSubordinateTo(t1, t2) ∧ categorizes(t2, t3)) → categorizes(t1, t3) (T16)

Further, considering the definitions of power type (D4), categorization (D5) and proper spe-

cialization (D2) we conclude that if a type t2 is power type of a type t1 and a type t3 categorizes

the same base type t1 then all instances of t3 are also instances of the power type t2 and, thus, t3

proper specializes t2. This idea is formalized in theorem T17. Again, this theorem can be used to

check the completeness of models: a model would be incomplete if it omits the specialization

between a type that categorizes a base type and this base type’s power type.

∀t1, t2, t3 (isPowertypeOf(t2, t1) ∧ categorizes(t3, t1)) → properSpecializes(t3, t2) (T17)

Thus, considering our previous example, both “EmployeeAcademicDegreeType” and “Em-

ployeeRoleType” categorize “Employee” and proper specialize “EmployeeType”.

In some cases, one needs more expressiveness in the description of the relation between higher-

order type and categorized type. For instance, suppose that our company considers that each em-

ployee must play at least one role, i.e., in addition to the fact that “EmployeeRoleType” catego-

rizes “Employee” the instances of “EmployeeRoleType” must completely classify the instances

of “Employee”. In order to accommodate this expressiveness we define a variation of categori-

zation relation called complete categorization (see definition D6). Thus, we are able to state that

“EmployeeRoleType” completely categorizes “Employee”.

∀t1, t2 completelyCategorizes(t1, t2) ↔

(categorizes(t1, t2) ∧ (∀e iof(e, t2) → ∃t3 (iof(e, t3) ∧ iof(t3, t1)))) (D6)

We also define a variation of categorization relation, called disjoint categorization, to accom-

modate the cases in which each instance of the base type is instance of at most one instance of the

higher-order type. Thus, according to D7, a type t1 disjointlyCategorizes t2 iff t1 categorizes t2

and every instance of t2 is instance of, at most, an instance of t1.

∀t1, t2 disjointlyCategorizes (t1, t2) ↔

(categorizes(t1, t2) ∧ ∀e, t3, t4 ((iof(t3, t1) ∧ iof(t4, t1) ∧ iof(e, t3) ∧ iof(e, t4)) → t3 = t4)) (D7)

In our example, we could consider that each employee falls under one classification according

to his higher academic degree. Thus, “EmployeeAcademicDegreeType” simultaneously disjoint-

lyCategorizes and completelyCategorizes “Employee”, i.e. each instance of “Employee” is in-

stance of one and only one instance of “EmployeeAcademicDegreeType”. In this case we say that

“EmployeeAcademicDegreeType” partitions “Employee” (see Fig. 10). D8 formally defines the

partitioning relation.

∀t1, t2 partitions(t1, t2) ↔ (completelyCategorizes(t1, t2) ∧ disjointlyCategorizes(t1, t2)) (D8)

The intension of a higher order type which partitions a base type defines that its instances must

apply to instances of the base type and also define a classification criteria such that each instance

of the base types is classified by one and only one instance of the higher order type.

Although the definition that Odell gave to the notion of power type is aligned with the relation

we call categorizes, all examples of use provided in [39] exhibit relations that should be classified

as partitions according to our theory. Henderson-Sellers [23], following those examples of use,

provided a set theoretic formalization for the notion we call here partitions.

Since all power type based relations (power type of, categorization, complete categorization,

disjoint categorization and partitioning) define that the instances of their domains are specializa-

tions/proper specializations of their ranges, both their domains and their ranges are types. Further,

their domains must be a type in one order higher than their range. Thus, only higher-order types

may play the role of domain of those power type based relations. Since complete categorization,

disjoint categorization and partitioning imply the more general categorization relation, only the

former are represented in Fig. 10 for simplicity.

Fig. 10. An example of domain modeling applying categorization and subordination relations.

A consequence of the partitions definition is that, if two types t1 and t2 both partitions the same

type t3 then it is not possible for t1 to specialize t2. This is captured in theorem T18. Again, this

theorem suggests a clear syntactic constraint for a multi-level modeling language in the presence

of more than one partition of the same base type.

∀ t1, t2, t3 (partitions(t1, t3) ∧ partitions(t2, t3)) → ¬properSpecializes(t1, t2) (T18)

T18 can be proved as follows: (i) Using the definition of partitions (D8), we conclude that the

instances of t1 form a disjoint and complete partition of t3. (ii) Supposing t1 proper specializes

t2, using the definition of proper specialization (D2) we conclude that all instances of t1 must

also be instances of t2 and t2 must have at least one additional instance that is not an instance of

t1. (iii) Consider that t4 is the type that is instance of t2 and is not an instance of t1. Since t2 also

partitions t3, then t4 must specialize t3. (iv) However, the instances of t2 that are also instances

of t1 already completely and disjoint classify the instances of t3. Thus, t4 does not have possible

instances, and thus is not a valid type according to our theory. Therefore, there is no hypothesis

in which t1 partitions t3, t2 partitions t3 and t1 specializes t2.

Table 2 summarizes some information about the cross-level relations. All these relations are

irreflexive, antisymmetric and intransitive.

Table 2. Cross-level structural relations characteristics

Name Meaning Domain and Range
Instantiation

iof(e,t)
The intension of t applies to e.

Elements of adjacent

levels.

Power type of

isPowertypeOf(t1,t2)

The intension of t1 defines that its instances apply to in-

stances of t2 but do not define a classification criteria.

Thus, the extension of t1 is composed by all specializations

of t2, including t2 itself.

Types of adjacent lev-

els (2ndOT→1stOT or

3rdOT→2ndOT)

Categorization

categorizes(t1,t2)

The intension of t1 defines that its instances apply to in-

stances of t2 according a specific classification criteria.

Thus, the extension of t1 is composed by the proper special-

izations of t2 that follows the specified classification crite-

ria.

Complete Categorization

completelyCategorizes(t1,t2)

A variation of categorization in which the classification cri-

teria defined by the intension of t1 guarantees that each in-

stance of t2 is instance of at least one instance of t1.

Disjoint Categorization

disjointlyCategorizes(t1,t2)

A variation of categorization in which the classification cri-

teria defined by the intension of t1 guarantees that each in-

stance of t2 is instance of at most one instance of t1.

Partitioning

partitions(t1,t2)

A variation of categorization in which the classification cri-

teria defined by the intension of t1 guarantees that each in-

stance of t2 is instance of exactly one instance of t1.

5 Applying the theory to Taxonomical Structures

The previous section presented general implications of our theory for multi-level modeling. In

this section we consider a representative application scenario in order to illustrate the theory ex-

pressiveness. We consider the biological taxonomy for living beings [31], which is one of the

most mature examples of taxonomical hierarchies. The biological taxonomy for living beings

classifies living beings according to biological taxa in seven or more ranks, e.g., kingdom, phylum,

class, order, genus, species, and breed.

According to our theory every domain type is an instance of one of the basic higher-order types

(“1stOT”, “2ndOT”, and “3rdOT”), and specializes the basic type at the immediately lower level

(respectively, “Individual”, “1stOT”, “2ndOT”). Applying this pattern, we identify that (i) “Liv-

ingBeing” is an instance of “1stOT” and specializes “Individual” (since its instances are particular

living beings), (ii) “BiologicalTaxon” and its specializations are instances of “2ndOT” and spe-

cializes “1stOT” (its instances are the first-order types which classify living beings, such as, e.g.,

the “Animalia” kingdom and the “Homo Sapiens” species4), and (iii) “BiologicalRank” special-

izes “2ndOT” and instantiates “3rdOT” (its instances are second-order types which classify taxa,

such as, e.g., the “Species” taxon). Fig. 11 shows a model for this domain using the basic pattern.

Fig. 11. Applying our theory basic pattern to the biological taxonomy for living beings.

Each “LivingBeing” is instance of one instance of each “Biological Rank”, i.e., each living

being is instance of one kingdom, one phylum, and so on. Therefore, we conclude that each one

of the seven instances of “BiologicalRank” partitions “LivingBeing”. Further, the instances of

“Biological Rank” (specializations of “Biological Taxon”) obey a subordination chain such that

every instance of “Phylum” proper specializes one instance of “Kingdom”, every instance of

“Class” proper specializes one instance of “Phylum”, and so on. Thus, according to our theory,

each instance of “Biological Rank” is subordinate to another instance of “Biological Rank”, form-

ing a chain of subordination (except “Kingdom” which is the top of the chain). Since all instances

of “Biological Rank” specialize “BiologicalTaxon” and each instance of “BiologicalTaxon” is

instance of exactly one instance of “Biological Rank” (e.g., “Animal” is instance of “Kingdom”,

“Collie” is instance of “Breed”, etc.) according to our theory, “Biological Rank” partitions “Bio-

logicalTaxon”. Fig. 12 illustrates how the notions in the theory can be employed; one instance of

each represented biological rank is shown.

4 Note that in biology there is a long and involved debate on the ontological status of taxa such as species [15]. One of

the interpretations is that biological taxa (e.g., the “Homo Sapiens” species, the “Canis Lupus Familiaris” species)

represents a group of animals rather than a kind or type of animal. We stay clear of this debate and represent species

(and other taxa) as the type that is instantiated by all members of that group (and only by them) (e.g., “Human” and

“Dog”).

Fig. 12. Using our theory to describe the structural relations that exist in biological taxonomy (relations between the

notions of biological rank, biological taxon and living being).

This example of application shows the expressiveness of our theory. We have explored the

entities and relations to fully describe the structural arrangement of the biological taxonomy for

living beings.

The pattern to classify domain types as instantiations and specializations of the theory basic

types permitted us to identify the level of each involved concept. Using the notion of partitioning

relation we were able to (i) express how the instances of biological rank apply to living beings

and (ii) to understand the relation between biological rank and biological taxon. The notion of

subordination relation was central for understanding how the instances of biological rank are

related to each other.

Finally, it allowed us to notice that the shape of tree that the biological taxonomy for living

beings exhibits is explained by the combination of two characteristics, namely, (i) the partitions

relations that all instances of “BiologicalRank” have with “LivingBeing”, and (ii) the chain of

subordination that the instances of “BiologicalRank” forms.

6 Accounting for Attributes, Relationships and Dynamic Classification

6.1 Attributes and Relationships

As we have discussed so far, types capture common features of the entities that are considered

their instances. If we say that “John” is an instance of the types “Person” and “Man”, this is

because there are certain characteristics that he shares with other instances of “Person” (such as

having a brain, being a biped mammal) and with other instances of “Man” (such as having a Y

chromosome). These common features are referred to in the intension of the types and are often

not explicitly represented in conceptual models. Differently from these common features, features

that may vary across different instances of a type or even across different points in time, are often

captured using the notions of attributes and relationships (both which trace back in the conceptual

modeling literature to Chen’s work on the Entity Relationship model [13]). Examples of attributes

are a person’s height and weight, a mobile phone’s screen size and a computer’s storage capacity.

Examples of relationships include a marriage between husband and wife, an employment between

a person and an organization, the friendship between persons in a social network, etc. This section

extends our account to include these ubiquitous notions in conceptual modeling.

In order to account for attributes in MLT, we extend our domain of quantification (which thus

far included only types and individuals) to cover also attributes and their possible values in dif-

ferent possible worlds. In order to keep our formalization simple despite this additional sorts of

elements in the domain of quantification, the axioms defined in this section are formalized in

many-sorted first-order logic, assuming four disjoint sets: a set ‘E’ of individuals and types, a set

‘A’ of attributes, a set ‘V’ of values that can be assigned to the attributes and a set ‘W’ of possible

worlds. The MLT axioms described in the previous sections can be understood in the light of this

strategy as quantifying always over the set ‘E’ (composed by individuals and types).

To represent the relation between types and attributes, we define a ternary predicate

typeHasAttribute (t, a, at) that holds if a type t has an attribute a of type at. For example, the

proposition typeHasAttribute (MobilePhone, serialNumber, String) denotes that “serialNumber”

is an attribute defined for the type “MobilePhone” having “String” as the type of its assignable

values. Therefore, each instance of “MobilePhone” may assign instances of “String” to the attrib-

ute “serialNumber” 5.

We consider that attributes are dependent on types. To capture this notion, Axiom A7 states

that for each attribute a there must be some entity t which has a. Further, A7 states that each

attribute has a unique type at for its values.

∀ a: A (∃ t: E, ∃! at: E (typeHasAttribute (t, a, at))) (A7)

5 Datatypes such as String and Integer can be considered first-order types whose instances (e.g. the integer value “1”

and the string “xyz”) are “abstract entities” (see [21], p. 327).

To allow the representation of the values assigned to an attribute we define the predicate has-

Value(e,a,v,w) that holds if an entity e assigns a value v to the attribute a in a world w. In order to

cater for “multivalued” attributes, values assigned by entities to attributes are considered sets of

entities. Therefore, the sort ‘V’ of possible values of attributes is, indeed, the powerset of the sort

of entities ‘E’ (V = ℙ(E)). For instance, the proposition hasValue(MyPhone, SerialNumber,

{“1234”}, w1) states that a specific instance of “MobilePhone”, named “MyPhone”, has the uni-

tary set {“1234”} assigned to the attribute “SerialNumber” in a world “w1”.

We consider that, a type t has an attribute a of type at, iff all instances of t have (at all possible

worlds) a set of values v for a respecting attribute type at (i.e., all elements composing the set of

values v must be instances of at). This definition is captured by D9. Axiom A8 defines that any

entity that has a value for an attribute a, must be an instance of a type that has the attribute a.

Further, we consider that the scope of an attribute is limited to a specific type and its specializa-

tions. Thus, if two different types t and t’ have a common attribute a it means that there is a type

t’’ such that t’’ has the attribute a and both t and t’ specializes t’’ (see axiom A9).

∀t: E, a: A (typeHasAttribute (t, a, at) ↔

 (¬iof(t, Individual) ∧ ¬iof(at, Individual) ∧ ∀e: E(iof(e, t) →

 ∀w: W, ∃! v: V (hasValue(e, a, v, w) ∧ ∀e′: E(e′ ∈ v → iof(e′, at)))))) (D9)

∀e: E, a: A, v: V, w: W (hasValue(e, a, v, w) → ∃ t, at ∶ E (iof(e, t) ∧ typeHasAttribute (t, a, at))) (A8)

∀t, t′, at: E, a: A ((typeHasAttribute (t, a, at) ∧ typeHasAttribute (t′, a, at)) →

∃ t′′: E (typeHasAttribute (t′′, a, at) ∧ specializes(t, t′′) ∧ specializes(t′, t′′))) (A9)

As a consequence of the definitions and axioms present so far, if a type t’ specializes t, then t’

has all attributes of t, capturing the semantics of inheritance (see theorem T19). Theorem T19 can

be proved as follows: (i) considering that t defines an attribute a, by A9 we infer that all instances

of t must assign values to a; (ii) Since t’ specializes t, by the specialization definition we conclude

that all instances of t’ are also instances of t, and thus, all instances of t’ must assign values to a;

(iii) Therefore, by D9 we conclude that t’ also has the attribute a. Another consequence that fol-

lows from the definitions and axioms defined so far is that given an attribute a there exists one

topmost type t that defines a, i.e. there is a type t that has a such that any other type t’ that has the

attribute a specializes t (see T20).

∀t, t′, at: E, a: A ((typeHasAttribute (t, a, at) ∧ specializes (t′, t)) → typeHasAttribute (t′, a, at)) (T19)

∀ a: A, ∃ ! t, at: T (typeHasAttribute (t, a, at) ∧ ∀ t′: T(typeHasAttribute(t′, a, at) → specializes(t′, t))) (T20)

The use of sets as values to the attributes allows the representation of multivalued attributes

(by setting as the attribute value a set with more than one element) and the representation of

optional attributes by allowing attributes to have a null set as value. Definitions D10 and D11

capture the notions of mandatory and monovalued attributes in order to express constraints on the

multiplicities of attributes. An attribute a is mandatory iff in every possible world, the values

assigned to it are not empty sets. An attribute a is monovalued iff in every possible world, the

values assigned to it by all entities are sets containing at most one value. Therefore, in order to

express, for example, that each instance of “MobilePhone” has one and only one “serialNumber”,

besides defining that typeHasAttribute (MobilePhone, SerialNumber, String) one should also state

that isMandatoryAttribute(SerialNumber) and isMonoValuedAttribute(SerialNumber).

∀a: A (isMandatoryAttribute (a) ↔ ∀e: E, v: V, w: W(hasValue(e, a, v, w) → ∃e′: E(e′ ∈ v))) (D10)

∀a: A (isMonoValuedAttribute (a) ↔

∀e: E, v: V, w: W(hasValue(e, a, v, w) → ∀e′, e′′: E((e′ ∈ v ∧ e′′ ∈ v) → e′ = e′′))) (D11)

In the case of multi-level modeling, attributes defined in higher-order types can be given a

value for types. We assume that attributes defined in one order capture properties of elements of

the immediately lower order and, thus, may have values assigned to them in one order lower. In

other words, attributes defined in first-order types have values assigned for individuals, attributes

defined in second-order types have values assigned for first-order types, and so on.

Fig. 13 illustrates the concepts presented so far. To capture that each instance of “Mo-

bilePhone” must have an IMEI number, a screen of a specific size and a specific storage capacity

the “MobilePhone” type defines three mandatory and monovalued attributes, namely “imei”,

“screenSize” and “storageCapacity”. Therefore, assuming that all these attributes have values of

type “String” we may state that typeHasAttribute(MobilePhone, Imei, String), typeHasAttrib-

ute(MobilePhone, ScreenSize, String), and typeHasAttribute(MobilePhone, StorageCapacity,

String) hold.

Fig. 13. Illustrating the account for attributes.

In Fig. 13, “MyMobile” is an instance of “MobilePhone” (i.e. iof(MyMobile, MobilePhone)

holds) having “12345” as its IMEI number, a “4-inch” screen and “16 GB” of storage capacity

(in Fig. 13 we represented the assignment of values to attributes by adding, after the attribute

name, an equality “=” followed by the valued assigned to the attribute; attributes are considered

by default mandatory and monovalued). Assuming that Fig. 13 illustrates the state-of-affairs of a

world w1, we may state that hasValue(MyMobile, Imei,{“12345”}, w1), hasValue(MyMobile,

ScreenSize,{“4 inches”}, w1) and hasValue(MyMobile, StorageCapacity,{“16 GB”}, w1) hold.

Further, considering that each instance of “MobilePhone” must be classified by one instance

of “MobilePhoneModel”, we define a type “MobilePhoneModel” that partitions “MobilePhone”

(i.e., partitions(MobilePhoneModel, MobilePhone) holds). To capture the official launch date of

each mobile phone model, we define that “MobilePhoneModel” has an attribute named

“launchDate” (typeHasAttribute(MobilePhoneModel, LaunchDate, String)). In Fig. 13 “IPh-

one5” is an instance of “MobilePhoneModel” launched on “21 Sept., 2012” (i.e. hasValue(IPh-

one5, LaunchDate, {“21 Sept., 2012”}, w1) holds).

All attributes introduced in the example so far only have effects at the immediately lower level,

complying thus to what has been called “shallow instantiation” [6]. However, a key characteristic

of an account for attributes in a multi-level theory is that attributes defined in higher-order types

(such as second- and third-order types) may affect the intension of the instances of these higher-

order types. In other words, some attributes of a higher-order type aim at capturing regularities

over instances of its instances, constraining the set of possible instances of its instances. Following

[22] we classify these attributes as regularity attributes.

Definition D12 formalizes the notion of regularity attributes as attributes that affect the inten-

sion of the instances of the types that have it, i.e. two instances having different values assigned

to a regularity attribute must have different instances. Therefore, recalling that in MLT two types

are the same if they have the exact same possible instances, D12 defines that, an attribute a is a

regularity attribute iff every different value for a results in a different type6. Further, since regu-

larity attributes affect the intension of instances of a type, they are necessarily defined by higher-

order types. This constraint is reflected in D12.

 ∀a: A (regularityAttribute (a) ↔

(∀t, at: E (typeHasAttribute (t, a, at) → (iof(t, 2ndOT) ∨ iof(t, 3rdOT))) ∧

∀t, t′: E, v, v′: V, w: W ((hasValue(t, a, v, w) ∧ hasValue(t′, a, v′, w) ∧ v ≠ v′) → t ≠ t′))) (D12)

Fig. 14 extends Fig. 13 adding to “MobilePhoneModel” the attributes “instancesScreenSize”,

“instancesMinStorageCapacity” and “instancesMaxStorageCapacity”. All these attributes effec-

tively serve as parameters in the intension of the instances of “MobilePhoneModel”, i.e. the values

assigned to these attributes influence the selection of the possible instances of instances of “Mo-

bilePhoneModel”. Therefore, they are considered regularity attributes. For example, by assigning

the value “4 inches” to the attribute “instancesScreenSize” of “IPhone5” we are representing that

every instance of “IPhone5” must have 4-inch screens. Analogously, by assigning the values “16

6 A more comprehensive definition would acknowledge that differences in various regularity attributes simultaneously

may cancel each other’s effects on the intension, thus we could add a ceteris paribus clause to definition D12, which

would then state that an attribute a is a regularity attribute iff different values for a with all other things equal would

result in a different type.

GB” and “32 GB” respectively to the attributes “instancesMinStorageCapacity” and “in-

stancesMaxStorageCapacity” of “IPhone5” we are representing that every instance of “IPhone5”

must have storage capacity between 16 and 32 GB. Therefore, having a 4-inch screen and storage

capacity between 16 and 32 GB are parts of the intension of “IPhone5”.

Fig. 14. Illustrating the notion of regularity attributes.

The influence of the regularity attributes of higher-order types over the intension of its instances

may be reflected as constraints over the possible values for attributes of the base type. For exam-

ple, the fact that “instancesScreenSize” is a regularity attribute of “MobilePhoneModel” is re-

flected by the fact that an instance of “MobilePhoneModel” must have as instances mobile phones

having a specific “screenSize”. Therefore, the fact that “IPhone5” has the value “4 inches” as-

signed to the regularity attribute “instancesScreenSize” implies that every instance of “IPhone5”

must have the value “4 inches” assigned to the attribute “screenSize”. Analogously, the values

assigned to the regularity attributes “instancesMinStorageCapacity” and “instancesMaxStor-

ageCapacity” of “MobilePhoneModel” constrain the possible values the instances of a specific

(instance of) “MobilePhoneModel” may have. For example, the values “16GB” and “32 GB”

respectively assigned to “instancesMinStorageCapacity” and “instancesMaxStorageCapacity” of

“IPhone5” imply that its instances must have a value between 16 and 32 GB assigned to the

“storageCapacity” attribute. To emphasize the relations between the regularity attributes of “Mo-

bilePhoneModel” and the attributes of “MobilePhone” and the constraints over their values, in

Fig. 14 we placed the related attributes in colored boxes that are linked to each other. Note that

this is not meant as a modeling language construct, and our sole intention here is to draw attention

to these relations involving regularity attributes.

A mechanism to express the relations between regularity attributes defined by types in one

order and attributes of types in one order lower is a desirable feature of multi-level modeling

languages. Indeed, some potency-based approaches to multi-level modeling include some support

for the representation of regularity attributes. For example, in Melanie [1] the notions of durability

and mutability are used to capture situations in which the regularity attribute of a higher-order

type t directly influences the possible values that instances of instances of t may assign to an

attribute (such as the relation between the attribute “instancesScreenSize” of “MobilePhone-

Model” and the attribute “screenSize” of “MobilePhone” illustrated in Fig. 14). For further dis-

cussion considering the relation between MLT and clabject and deep-instantiation based ap-

proaches see the related work section.

To account for basic relations in our theory we follow a strategy similar to the one adopted by

OWL [49], Telos [34] and Ecore [47]: we represent a binary relation between two types t1 and t2

as an attribute defined in t1 with type t2 (actually representing an association end connected to

t2). This treatment allows the reuse of the notions of mandatory, monovalued and regularity at-

tributes. These can be applied on both association ends when necessary, giving rise to two oppos-

ing attributes each one defined in each of the related types having the other type as the type of the

attribute (again similarly to Ecore and OWL). For example, consider the scenario illustrated in

Fig. 15. According to Fig. 15, each instance of “MobilePhone” must have an instance of “Proces-

sor” installed in it (“installedProcessor”) and each instance of “Processor” may be “installed in”,

at most, one instance of “MobilePhone”. Thus: (i) “MobilePhone” has a mandatory and mono-

valued attribute called “installedProcessor” having “Processor” as type (formally, typeHasA-

tribute(MobilePhone, installedProcessor, Processor), isMandatoryAttribute(installedProcessor)

and isMonoValuedAttribute(installedProcessor)); and (ii) “Processor” has a mono-valued attrib-

ute called “installedIn” having “MobilePhone” as type (formally, typeHasAtribute(Processor, in-

stalledIn, MobilePhone) and isMonoValuedAttribute(installedIn)).

Following the same approach, we could represent the relation between “MobilePhoneModel”

and “ProcessorModel” depicted in Fig. 15. To capture that each (instance of) “MobilePhone-

Model” is compatible with one (instance of) “ProcessorModel” we could define in “MobilePhone-

Model” a mandatory mono-valued attribute called “compatibleProcessorModel” having “Proces-

sorModel” as type (formally, typeHasAtribute(MobilePhoneModel, compatibleProcessorModel,

ProcessorModel)). Moreover, we could capture the fact that each (instance of) “ProcessorModel”

may be compatible with some (instance of) “MobilePhoneModel” by defining in “Processor-

Model” an attribute called “compatiblePhoneModels” having “MobilePhoneModel” as type (for-

mally, typeHasAtribute(ProcessorModel, compatiblePhoneModels, MobilePhoneModel).

Whenever opposite attributes are defined, we need to relate the two attributes in order to con-

strain that whenever an instance of one type refers to an instance of the other type through an

attribute, the reference in the opposite direction also holds. For example, we need to constrain

that whenever an instance e of “MobilePhone” refers to an instance e’ of “Processor” through the

attribute “installedProcessor” then e’ refers to e through the attribute “installedIn”. In this case,

we say that the attributes “installedProcessor” and “installedIn” are opposite attributes. The refers

to predicate is formally defined in D13, while D14 formally defines the is opposite predicate. D13

states that an entity e refers to an entity e’ through attribute a (in a world w), iff the value of e for

a (in w) is a set that includes e’. D14, in its turn, states that two attributes a and a’ are opposite

iff whenever an entity e refers to an entity e’ through the attribute a, e’ refers to e through a’ and

vice versa. In the example below, isOpposite(installedIn, installedProcessor) and isOppo-

site(compatiblePhoneModels, compatibleProcessorModel) hold.

 ∀e, e′: E, a: A, w: W (refersTo(e, e′, a, w) ↔ ∀ v: V(hasValue(e, a, v, w) → (e′ ∈ v))) (D13)

 ∀a, a′: A (isOpposite (a, a′) ↔ ∀e, e′: E, w: W (refersTo(e, e′, a, w) ↔ refersTo(e′, e, a′, w))) (D14)

Fig. 15. Illustrating a scenario in which relations in one order capture regularities over instances of types in one order

lower.

To see how the notion of regularity attribute is applicable to the attributes capturing relations

between types, consider that instances of a (instance of) “MobilePhoneModel” may have installed

on them only instances of the (instance of) “ProcessorModel” compatible with it. In this case, the

intension of an instance of “MobilePhoneModel” is affected by the value assigned to its “com-

patibleProcessorModel” attribute. For example, in Fig. 15 since the “IPhone5” has “A6” as “com-

patibleProcessorModel” instances of “IPhone5” must have processors of type “A6” installed on

them. Therefore, the attribute “compatibleProcessorModel” of the type “MobilePhoneModel” is

a regularity attribute that constrains the possible values for the attribute “installedProcessor” of

the type “MobilePhone”. Conversely, and following analogous reasoning, we can conclude that

the attribute “compatiblePhoneModel” of the type “ProcessorModel” is a regularity attribute that

constrains the possible values for the attribute “installedIn” of the type “Processor”.

This simple treatment of relations as attributes can be extended with a notion of relations as

object-like entities [20]. This notion was already discussed by Chen in 1976 [13], where he ob-

serves that “some people may view something (e.g. a marriage) as a relationship” (i.e. as a tuple

that relates two entities), “while other people may view it as an entity” (i.e. as something that have

its own life). Subscribing Chen’s intuition and aiming to explain the very nature of relationships,

Guarino and Guizzardi presented in [20] an ontological theory of relationships as object-like en-

tities. Following such theory, the relations can be reified giving rise to the so-called relator types.

Following [20], MLT supports the representation of relator types as regular types. The formal-

ization that we propose for attributes can also be used to establish the link between relata and

relators. Further, the relator-based approach [20] can be used to address n-ary relationships when

necessary. An example of the use of relator types in multi-level modeling with MLT can be seen

in [10] (including examples of types of relator types in the organizational structure domain).

6.2 Dynamic Classification

The MLT formalization in section 2 assumed for simplification that entities instantiate types

necessarily, effectively dealing with rigid types in a static classification setting. In this section,

we lift that restriction and discuss how dynamic classification can be addressed in MLT, account-

ing thus also for non-rigid types. Dynamic classification is key to conceptual modeling and in

particular to ontology-based conceptual modeling [21]. Supporting dynamic classification allows

the use of MLT as a basis for these kinds of conceptual models (e.g. see [12] and [10]).

By addressing dynamic classification, we want to support the notion that both individuals and

types can change qualitatively keeping their identity. Consider for example, a hierarchy of sec-

ond-order types in which the second-order type “Species” is specialized according to conservation

status into “Not Threatened”, “Endangered” and “Extinct”. Making the types “Not Threatened”,

“Endangered” and “Extinct” anti-rigid allows us to capture the fact that a particular species (say

“Giant Panda”) can change types. Ontological implications of this approach to the nature of types

are discussed in [22].

Our strategy to formalize this notion is based on the use of a world-indexed instance of relation,

represented by a ternary predicate iof(e,t,w) that holds if an entity e is instance of an entity t

(denoting a type) in a world w. Consider for example that “John” is an instance of “Student” at

world “w1” but not at “w2”, when he has graduated. In this case, we can state that iof(John,Stu-

dent,w1) and ¬iof(John,Student,w2).

This modification to the instantiation predicate requires us to adjust some axioms of MLT ac-

cordingly. Axiom A1 was modified to express that, to be considered an instance of “Individual”,

an entity must have no possible instance in any admissible world (see axiom A1’). Further, two

types are considered the same iff they have the same instances in all possible worlds (see axiom

A2’). Thus, two types whose extensions are contingently equal are not considered the same. For

example, it allows us to capture that, although there is a possible world in which all instances of

“Person” are also instances of “Student”, “Student” and “Person” are different types since an

(instance of) “Person” is not necessarily an (instance of) “Student”.

∀x, w (iof(x, Individual, w) ↔ ∀w’(world(w’) → ¬∃y (iof(y, x, w’)))) (A1’)

∀t, t’, w ((¬iof(t, Individual, w) ∧ ¬iof(t’, Individual, w)) →

((t = t’) ↔ ∀x, w’(iof(x, t, w’) ↔ iof (x, t’, w’)))) (A2’)

The characterizations of the other basic types must also be adjusted to consider possible worlds.

Thus, axiom A3’ characterizes “First-Order-Type” (or shortly “1stOT”), defining a first-order

type as an entity with at least one instance in a possible world and whose instances in all possible

worlds are instances of “Individual”. Analogously, A4’ and A5’ characterize “Second-Order

Type” (or “2ndOT”) and “Third-Order Type” (“3rdOT”). Additionally, axiom A6’ adjusts A6 to

state that, for all possible worlds, each entity in our domain of enquiry is either an instance of

“Individual”, “1stOT”, “2ndOT” or “3rdOT” (except “3rdOT” whose type is outside the scope of

the formalization).

∀t, w (iof(t, 1stOT, w) ↔ (∃y, w′ (iof(y, t, w′)) ∧ ∀x, w′′ (iof(x, t, w′′) → iof(x, Individual, w′′)))) (A3’)

∀t, w (iof(t, 2ndOT, w) ↔ (∃y, w′ (iof(y, t, w′)) ∧ ∀t′, w′′ (iof(t′, t, w′′) → iof(t′, 1stOT, w′′)))) (A4’)

∀t, w (iof(t, 3rdOT, w) ↔ (∃y, w′ (iof(y, t, w′) ∧ ∀t′, w′′ (iof(t′, t, w′′) → iof(t′, 2ndOT, w′′)))) (A5’)

∀w, x ((world(w) ∧ ¬world(x)) →

(iof(x, Individual, w) ∨ iof(x, 1stOT, w) ∨ iof(x, 2ndOT, w) ∨ iof(x, 3rdOT, w) ∨ (x = 3rdOT))) (A6’)

Since axiom A1’ defines that to be an instance of “Individual” in a world w an entity x must

not have instances in any world, we can conclude that if an entity x is an instance of “Individual”

in any world it is an instance of “Individual” in all possible worlds, i.e. instances of “Individual”

are necessarily instances of it. Thus, “Individual” is a rigid type. Analogously, using axioms A3’

to A5’ we conclude that “1stOT”, “2ndOT” and “ 3rdOT” are also rigid types, i.e., the basic types

of MLT are all rigid.

Concerning the intra- and the cross-level structural relations of MLT, they express properties

that are not contingent to the involved types. Consider for example the specialization relation

between t1 and t2: a type t1 specializes a type t2 iff in all possible worlds all instances of t1 are

also instances of t2 (see definition D1’). We can observe that, by definition, it is not admissible

for t1 to specialize t2 in a world w and not specialize it in another world w’. Thus, in contrast with

the instantiation relation, the specialization relation is not world-indexed. The same reasoning

applies to all other intra- and cross-level structural relations of MLT, namely, proper specializa-

tion, subordination, power type of and categorization. Therefore, the definitions of these relations

in the formalization that accounts for dynamic classification are most similar to the ones presented

in sections 4 and 5, with minor adjustments concerning the quantification of possible worlds (see

Definitions D1’, D2’, D3’, D4’, D5’, D6’, D7’and D8’).

∀t1, t2 (specializes(t1, t2) ↔ (∃y, w1 (iof(y, t1, w1)) ∧ ∀e, w2 (iof(e, t1, w2) → iof(e, t2, w2)))) (D1’)

∀ t1, t2 (properSpecializes(t1, t2) ↔ (specializes(t1, t2) ∧ ¬(t1 = t2))) (D2’)

∀t1, t2 (isSubordinateTo (t1, t2) ↔

(∃x, w1 (iof(x, t1, w1)) ∧ ∀t3, w2 (iof(t3, t1, w2) → ∃t4 (iof(t4, t2, w2) ∧ properSpecializes(t3, t4))))) (D3’)

∀t1, t2 (isPowertypeOf(t1, t2) ↔

(∃x, w1 (iof(x, t1, w1)) ∧ ∀t3, w2 (∀t3 iof(t3, t1, w2) ↔ specializes(t3, t2)))) (D4’)

∀t1, t2 (categorizes (t1, t2) ↔

(∃x, w1 (iof(x, t1, w1))∀t3, w2 (iof(t3, t1, w2) → properSpecializes(t3, t2)))) (D5’)

∀t1, t2 (completelyCategorizes(t1, t2) ↔

(categorizes(t1, t2) ∧ ∀w, e (iof(e, t2, w) → ∃t3 (iof(e, t3, w) ∧ iof(t3, t1, w))))) (D6’)

∀t1, t2 (disjointlyCategorizes (t1, t2) ↔ (categorizes(t1, t2) ∧

∀w, e, t3, t4 ((iof(t3, t1, w) ∧ iof(t4, t1, w) ∧ iof(e, t3, w) ∧ iof(e, t4, w)) → t3 = t4))) (D7’)

∀t1, t2 (partitions(t1, t2) ↔

(completelyCategorizes(t1, t2) ∧ disjointlyCategorizes(t1, t2))) (D8’)

Further, all the theorems presented in the previous formalization are also valid when considering

dynamic classification. The theorems T1-T4 and T7-T9 presented in sections 2 and 3 must be

properly adapted considering the use of the world-indexed instantiation relation while the theo-

rems T10 – T15 presented in section 4 can be included in this formalization without modification.

The full formalization of MLT supporting dynamic classification can be found in

https://github.com/jpalmeida/mlt-ontology.

6.3 A Note on the Identity Conditions of Types

The notion of equality of types is central to account for both Odell’s and Cardelli’s notions of

power type. For example, according to Odell’s notion, there is no instance of the “power type”

that is equal to the base type. Further, considering Cardelli’s sense, (in-)equality is key to establish

the uniqueness of the power type for a given base type, as well as the uniqueness of a base type

for a given power type. So, which notion of identity condition is adequate in the theory becomes

an important issue.

As discussed in [48], there is a spectrum of options for the identity conditions of types, with

respect to how finely they are individuated. In an “infra-coarse” account, types with the same

extension are considered identical. This is what we would call an “entirely extensional” ap-

proach.

In contrast, in a “medium-coarse” account, types “are identical just in case they necessarily

have the same extension” [48]. “This seems to transpose the identity conditions for sets into an

appropriately intensional key, and this is precisely how identity conditions for properties work in

accounts that treat them as intensions” [48]. In such accounts, intensions of types are functions

from possible worlds to sets of objects therein [32]. This is one of the approaches that Bealer [8]

uses for dealing with “intensional entities”. This is what we would call an “intensional” ap-

proach.

Finally, in a “ultra-fine” approach (also referred to as “hyperintensional” approach [48]) types

“are individuated almost as finely as the linguistic expressions that express them” [48]. According

https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fjpalmeida%2Fmlt-ontology&sa=D&sntz=1&usg=AFQjCNE8ybXMXdh-lLgKiZKk3_Kl2HE6WQ

to “hyperintensional” approaches, two types can be considered distinct even in cases they neces-

sarily have the same extension. For example, if we consider two types t and t’ such that the inten-

sion of t’ is formed by a conjunction of the intension of t with a trivially “true” statement, adopting

an “ultra-fine” approach t and t’ must be considered two distinct types.

As discussed by Bealer [8], the medium-coarse and the ultra-fine accounts have each their own

value for the intensional conception of types, with different applications. He defends that the

medium-coarse approach is ideally suited for treating the modalities (necessity, possibility, im-

possibility, contingency, etc.), and that the ultra-fine approach is valuable for dealing with inten-

tional matters (belief, desire, perception, decision, etc.). He discusses that the ultra-fine approach,

while ideally suitable for the treatment of intentional matters, “has only complicated the treatment

of the modalities” [8]. Given the scope of the present paper, we opt for the medium-coarse ap-

proach. It allows us to state the impossibility of individuals to have instances (A1) and later (in

section 6.2) to deal with types that apply contingently (or non-necessarily) to their instances (e.g.,

Student, Living Person).

In the formalization presented in section 2, while modality is not formally treated, our choice

for the medium-coarse account is reflected in how we stipulate the domain of quantification,

which includes all possible types and all their possible instances. The fact that we quantify over

all possible entities guides the interpretation of the axioms and definitions, in which quantifiers

end up having some modal importance (even if informally). For example, Axiom A2 defines that

two types are equal iff all their possible instances coincide. In other words, A2 states two types

t1 and t2 are equal iff it is inadmissible for an entity to be an instance of t1 and not an instance of

t2 (there is no possible entity that is an instance of t1 and not an instance of t2). Our choice of

language here (first-order logics instead of some sort of quantified modal logics) aims at making

the theory more accessible.

In section 6.2, we reify possible worlds, and thus, modality is addressed more explicitly in the

formalization. Again, here we have opted not to use some sort of modal logic to retain the acces-

sibility of the theory. The axiom that defines equality (A2’) states that two types are equal iff they

have the same instances in all possible worlds, clarifying that we take the approach that two types

are the same iff they are necessarily coextensional. Since the extension of a type is world-depend-

ent, it makes sense to talk about the distinction between extension (in a particular world) and

intension (across worlds) [32].

7 Related Work

7.1 Power type-based approaches

Two early attempts to address multi-level modeling, namely power types [9, 39] and materializa-

tion [44], raised from the identification of patterns to represent the relationship between a class

of categories and a class of more concrete entities. The notion of power types was adopted in the

object-oriented model community (largely influenced by [39]) and materialization has been de-

veloped in the database community. Despite the different origins, power type and materialization

are based on similar conceptualizations [5] and addressing the same concerns [17]. Both ap-

proaches establish a relationship between two types such that the instances of one are specializa-

tions (subtypes) of another.

Odell [39] defined the concept of power type informally using regular associations between a

class representing the power type and a base class. This differs from our approach because cross-

layer relations between types (is power type of, categorizes and partitions) have specialized se-

mantics. This allows us to prescribe rules for the domain models that use these relations following

the axioms in the theory.

Similarly to Odell [39], Gonzalez-Perez and Henderson-Sellers [17] use an association labeled

“partitions” between a power type and a base type (called a “partitioned type” in their terminol-

ogy). The authors illustrate their technique with a diagram in which “partitions” is modeled as a

one-to-many association between “Task” and “TaskKind”, meaning that every instance of the

partitioned type (“Task”) is linked to exactly one instance of the powertype (“TaskKind”). In the

sequel, they discuss that the “partitions association possesses instantiation semantics”, and that,

because of this, “Task” is a special instance of “TaskKind” (the most generic kind of task). How-

ever, if “Task” itself is an instance of “TaskKind”, then the “partitions” association cannot be a

one-to-many association between “Task” and “TaskKind”. This is because all instances of sub-

types of “Task” are also instances of “Task”, and thus instances of at least two “TaskKinds” (one

of which is “Task” itself). The source of the difficulty seems to lie in that their “partitions” asso-

ciation is semantically overloaded, conflating two underlying notions: (i) the fact that “TaskKind”

partitions “Task”, and (ii) the implied consequence that instances of “Task” are instances of in-

stances of “TaskKind” (which in our theory is reflected in the instance of relation between “Task”

as specialization of “Individual” and “TaskKind” as a specialization of “First-Order Type”). The

modeler is free to determine whether “Task” itself is an instance of “TaskKind” (in which case

he/she would replace (i) with the fact that “TaskKind” is a powertype of “Task”). Note that the

elements of our theory help us to identify the semantic overload, provide an explanation for the

conceptual issue in this power type based approach, and offer alternatives to express the modeler’s

intended conceptualization.

The UML 2.4.1 specification [41] attempts to cover the needs of multi-level modeling by in-

cluding a powertype association that relates a classifier (power type) to a generalization set com-

posed by the generalizations that occur between the base classifier and the instances of the

powertype. Because of its dependence on the generalization set construct, the pattern can only be

applied when specializations of the base type are explicitly modeled (otherwise there would be

no generalization set). We consider this undesirable as it would rule out simple models that are

possible in our approach, e.g., one defining “employee type” as a powertype of “employee”, with-

out forcing the modeler to define specific instances for “employee type”. While our theory neces-

sitates the existence of entities for any type, and hence necessitates the existence of instances for

“employee type”, it does not require these instances to be modeled explicitly, which is the case

of the UML because of its choice to base the power type pattern in a structure that uses generali-

zation sets.

Further, while the complete categorization relation is similar to the isCovering attribute of

GeneralizationSets of the UML metamodel, there is an important distinction. The attribute isCov-

ering refers to whether all instances of the general classifier are instances of at least one of the

specific classifiers that are explicitly modeled in the GeneralizationSet. In contrast, com-

pletelyCategorizes is a semantic notion that is independent of what is represented explicitly in a

model; when a higher-order type is related to a base type through this relation, all instances of the

base type will be instances of at least one of the types that properly specialize the base type.

A semantic mapping of UML’s isCovering attribute in terms of our theory is simple when

isCovering is true, in which case the higher-order type p completely categorizes the base type t.

However, when isCovering is false, the semantic mapping is more involved, and the model can

have two alternative interpretations: (i) p categorizes t and there are instances of p not represented

in the model (it is not possible to determine whether p completely categorizes t); or (ii) p catego-

rizes t and all instances of p are represented, but some instances of t do not instantiate any of the

instances of p (thus, we conclude that p does not completely categorize t). The lack of expressive-

ness of UML to distinguish these interpretations seems to stem from the fact that UML conflates

what we mean to capture with the categorization relation with whether the model enumerates all

instances of a higher-order type (i.e., the “power type” in UML’s terminology).7

The notion of power type introduced by Odell [39] in the object oriented community differs

from the concept coined earlier by Cardelli [9] since the latter is derived directly from the math-

ematical notion of power set while the former may be used more loosely as we discussed in section

4. The theory presented here is able to account for both definitions formally, revealing their dif-

ferences. It covers the expressiveness of both approaches through formally-defined structural

cross-level relations (power type of, categorization and partitioning). Further, it allows us to show

that a higher-order type that is related to a base type through the categorization relation is neces-

sarily a specialization of the power type of that base type. Thus, the power type of a base type is

the most abstract higher-order type related to a base type.

7 For the sake of simplicity we have assumed here that the classes are not abstract. The semantic mapping becomes

even more involved in the presence of abstract classes.

7.2 Clabject and Deep Instantiation based approaches

The concept of power type is founded on the notion that “instances of types can also be types”

[39]. Motivated by a similar observation, Atkinson and Kühne [2] coined the term clabject, em-

phasizing that every instantiable entity has both a type (or class) facet and an instance (or object)

facet which are equally valid [2]. This notion is valuable to our theory. The basic types of MLT,

except the higher order one, may be considered clabjects. For example, “Individual” is instance

of “First-Order Type” (its instance facet) and a type for all entities that are not types (its type or

class facet). (Note that, individuals in MLT (instances of “Individual”) have no class facet, and

thus should not be referred to as clabjects.)

In [2], Atkinson and Kühne argue that a multi-level modeling framework should adhere to two

fundamental principles: support for the clabject notion and strict metamodeling. Strict metamod-

eling [7] assumes that each element of a level must be an instance of an element of the level above.

Although our theory is not focused on metamodeling, we follow this principle with respect to the

instantiation relation, and every entity in our domain of enquiry is instance of exactly one of the

basic types and every entity can only be instance of entities at one order higher (all entities that

have no instances are instances of “Individual”; “Individual” and all its specializations are in-

stances of “First-Order Type”, and so on.) They also discuss that “some kind of ‘trick’ is needed

at the top level”. The ‘trick’ we used in our theory is that the highest order basic type is not

instance of anything, since entities with higher order are not considered (see axiom A6). Alterna-

tively, an infinite number of basic types may be considered at ever increasing orders, in which

case a ‘trick’ at the top of the classification scheme would not be required. We have opted instead

for a finite number of basic types to avoid necessitating the existence of an infinite number of

levels, which would be an unnecessary ontological commitment for all conceptual modeling ap-

plications we have considered so far.

Atkinson and Kühne propose in [3] the Orthogonal Classification Architecture (OCA) to ad-

dress the need of considering two different kinds of instantiation: the linguistic instantiation and

the ontological instantiation. Whereas linguistic instantiation is used to define the relations be-

tween domain entities and linguistic constructs, ontological instantiations relate domain entities

to other domain entities. For example, considering the UML class diagram having a class called

Collie and an object called Lassie, we can identify two linguistic instantiations, namely, Collie is

an (linguistic) instance of class and Lassie is an (linguistic) instance of object. We may also con-

sider an ontological instantiation since Lassie is an (ontological) instance of Collie [3]. The dis-

tinction is very important to determine the scope of our theory: we are concerned solely with

ontological instantiation as it is applied across multiple levels. For example, the instantiation re-

lation that holds between individual and first-order type as well as the one that holds between

computer and first-order type are both ontological since both are concerned with the nature of the

involved concepts and none of them is related to linguistic issues. Aspects referring to the relation

between ontological and linguistic issues are out of the scope of this work.

Atkinson and Kühne have also proposed the notion of deep instantiation [5, 6] as a means to

provide for multiple levels of classification whereby an element at some level can describe fea-

tures of elements at each level beneath that level. It is based on the idea of assigning to clabjects

and fields (attributes and slots) a potency which defines how deep the instantiation chain produced

by that clabject or field may become. When a clabject is instantiated from another clabject the

potencies of the created clabject and of its fields are given by the original clabject and fields

potencies decremented by one. Objects have potency equal to zero indicating they cannot be in-

stantiated. If the potency of a field becomes zero then a value can be assigned to that field. For

example, we could define a clabject mobile phone model with an attribute IMEI assigning a po-

tency of 2 to both the type and the attribute. Therefore, instances of mobile phone model would

be clabjects in which IMEI attribute would have potency of 1. Instances of instances of mobile

phone model have a value assigned to IMEI, since its potency would reach zero.

The authors consider that the main benefit of a deep instantiation based approach is to reduce

“accidental complexity” in domain models since it supports multi-level modeling without the

need of introducing types to the models only “because of the idiosyncrasies of a particular solution

to deep characterization” [5]. They argue that power type based solutions force the modelers to

add unneeded types to the model. For instance, considering the cited example of mobile phone

model, using power types the modeler would be forced to represent the concept of mobile phone.

Using deep instantiation, the modeler could define the mobile phone properties (e.g. IMEI) as

properties of mobile phone type having potency of 2, being free not to represent the concept of

mobile phone.

While the deep instantiation approach can reduce the number of entities represented in a model,

this strategy should be used with parsimony. Important consequences of omitting base types in

the current deep instantiation approach are that the modeler becomes unable to express whether

the instances of a higher-order type (mobile phone model in previous example) are disjoint and/or

covering types and we are also prevented from determining metaproperties (such as e.g., rigidity)

of the base type (mobile phone in this case). Further, as discussed in [21], conceptual models

should always include kinds that define the principle of identity of individuals (in the example

this type is mobile phone). If these types are omitted (and incorporated into higher-order types by

using the notion of potency), the source of the principle of identity becomes hidden.

It is worth noticing that the deep instantiation approach allows the modeler to represent the

base type if it is deemed desirable. However, if the modeler decides to represent the base type,

the approach does not provide constructs to represent the relation between it and the higher-order

type, not distinguishing thus between the different possible kinds of cross-level relations. As a

consequence, the approach “as is” does not provide mechanisms to check if the rules concerning

these relations are respected, e.g., to guarantee that all instances of the higher-order type (“Mobile

Phone Model”) specialize the base type (“Mobile Phone”). We believe that the relations and rules

we discuss here could be used to further evolve the deep instantiation approach.

In addition to having mechanisms aimed at simplifying the models by omitting base types,

some recent deep instantiation approaches [25] also support the representation of a particular kind

of regularity attribute by using a combination of the notions of attribute durability and mutability.

The durability of an attribute indicates how far the attribute spans in an instantiation tree. The

mutability of an attribute defines how often the attribute value can be changed over the instantia-

tion tree. Consider for example a class such as “MobilePhoneModel” with potency 2. An attribute

“screenSize” with durability 2 and mutability 1 will be given a value at the first instantiation (e.g.,

stating that the “Iphone5” has “screenSize” equals to 4 inches), and that value will determine the

value of “screenSize” for the instances of instances of “MobilePhoneModel” (thus, all Iphone5s

have a screen size of 4 inches). In our view, this representation captures the constraint relating an

attribute of a first-order type (“screenSize”) and a regularity attribute of a second-order type (“in-

stancesScreenSize”) as a single attribute with durability 2 and mutability 1 in a clabject with po-

tency 2. This is a useful language mechanism for this particular kind of regularity attribute, which

fully determines the value of the lower-level attribute. Unfortunately, this representation strategy

is only capable of capturing the constraints involving regularity attributes that determine the exact

value that must be assigned to attributes in the lower order. It is not applicable, for example, to

capture the constraint involving the regularity attributes “instancesMinStorageCapacity” and “in-

stancesMaxStorageCapacity” of “MobilePhoneModel”: an instance i of “MobilePhone” must

have assigned to the attribute “storageCapacity” a value equal or higher than the value assigned

to “instancesMinStorageCapacity” and equal or lower than the value assigned to “instancesMax-

StorageCapacity” of the “MobilePhoneType” instantiated by i. Thus, since the values of “in-

stancesMinStorageCapacity” and “instancesMaxStorageCapacity” are not directly reflected in the

value of a mobile phone attribute, they would be given durability and mutability of 1.

In an analysis of deep instantiation, Neumayr et al., [37] observe that the approach is unable to

capture certain domain scenarios in which a clabject is related to other clabjects at different in-

stantiation levels. For example, consider a scenario in which every instance of “MobilePhone-

Model” has a “designer” being an instance of “Person” and every instance of an instance of “Mo-

bilePhoneModel” (i.e., every instance of “MobilePhone”) has an “owner” which is also an in-

stance of “Person”. In this scenario the type “Person” should have a relation with “MobilePhone-

Model” (called “designer”) and another relation with “MobilePhone” (called “owner”). Consid-

ering that “Person” and “MobilePhone” are in the same level, the “owner” relation does not cross

level boundaries. Nevertheless, “MobilePhoneModel” is placed in one level higher, and thus, the

“designer” relation is crossing level boundaries, which is not allowed in that approach. Because

of that, the authors introduce a Dual Deep Instantiation (DDI) approach distinguishing between

source potency and target potency. An association thus becomes characterized by two potency

numbers. Thus, in the aforementioned example, the “designer” relationship between “Person” and

“MobilePhoneModel” would have both source and target potencies of 1 whereas the “owner”

relationship would be defined having source potency of 1 and target potency of 2 (meaning that

ownership relations hold between instances of “Person” and instance of instances of “Mo-

bilePhoneModel”). Another approach that allows for the representation of this kind of domain

scenario is discussed in [4]. The approach is based on the definition of the so-called “metamod-

eling spaces”, each of which defines a separate set of instantiation levels. Levels in one metamod-

eling space are independent of levels in other spaces. As a consequence, an element in a particular

metamodeling space S may be simultaneously related to elements in different levels as long as

the target elements are not in S. For example, “Person” in a space P could be related to both

“Mobile Phone” and “Mobile Phone Model” placed in different levels in another space M. Dif-

ferently from [37] and [4], our approach accommodates the domain scenario without a special

mechanism, since relations between elements at different orders are allowed. In the example con-

sidered, we would represent the omitted base type “MobilePhone” defining that “MobilePhone-

Model” partitions “MobilePhone”, capturing thus, the fact that every instance of “MobilePhone”

is instance of one instance of “MobilePhoneModel”. The “designer” relationship would be placed

between “MobilePhoneModel” and “Person” whereas the “owner” relationship would be defined

between “MobilePhone” and “Person”.

In [36], another multi-level modeling approach that applies the notion of deep instantiation is

proposed. The focus of this approach is also on reducing “unnecessary complexity”, improve

readability and simplify maintenance and extension. The approach is founded in the concepts of

m-objects and m-relationships. M-objects encapsulate different levels of abstraction that relate to

a single domain concept. Analogously, m-relationships describe “relationships between m-objects

at multiple level of abstraction”. An m-object can concretize another m-object. The concretize

relationship comprises classification, generalization and aggregation relationships between the

levels of an m-object [36]. We observe that this is a semantic overload between three relationships

of quite different ontological nature, which could affect the understandability and usability of the

approach.

Telos [34] is a knowledge representation language that supports the representation of types

having other types as instances (i.e. clabjects). Roughly 30 axioms are defined to formalize Telos’

principles for instantiation, specialization, object naming and attribute definition [30]. Telos sup-

ports multi-level modeling through its notion of type, and, similarly to MLT it accepts relations

between types in different levels. In contrast with MLT, it does not elaborate on the nature of

cross-level relations between higher-order types and base types. Further, it does not employ sys-

tematically the powertype pattern, although we consider it would be possible to extend the Telos

built-in support by using its features of user-defined constraints and rules to formally define the

cross-level structural relations proposed in MLT.

Besides the so far mentioned initiatives, many other works focusing on deep instantiation based

approaches can be found in the literature, proposing alternative formalizations for it (e.g. [46]),

exploring its uses in different contexts (e.g. [28, 29]), and proposing tools for automated support

(e.g. [1, 27]). These works focus on deep instantiation, which illustrates its wide acceptance as a

basic mechanism for multi-level modeling approaches. However, none of these approaches aim

at providing a semantic account that can be used to explain regularity attributes in deep instanti-

ation and that supports the power type pattern and its variations.

8 Final Considerations

In this paper we have presented a well-founded theory for conceptual multi-level modeling. The

theory is formally defined using first-order logic and its consistency is verified using a lightweight

formal method. Both the basic types and the structural relations defined in the theory are founded

on the basic notion of (ontological) instantiation, which is applied regularly across levels, organ-

izing the entities of the domain of enquiry in strictly stratified orders. We have shown how the

elements of the theory can be used as foundations for a domain theory: domain types instantiate

and specialize the basic types of the theory.

To verify the consistency of our theory we have used Alloy [24]. The axioms of our theory

were represented as facts and the theorems were defined as assertions in an Alloy module. It

allowed us to verify the satisfiability of our theory, to conduct some model simulations and to

verify the theorems whose informal proofs have been discussed in the paper.8

Using the structural cross-level relations defined in the theory (powertype of, categorization,

partitioning), we are able to account for the different notions of power type in the literature, as

well as to contrast and relate them. Since these relations are ultimately explained in terms of

instantiation between entities of adjacent levels, the consequence of our account of power types

is that we formally harmonize power type and clabject-based approaches.

With respect to intra-level relations, we define the “ordinary” specialization relation and a sub-

ordination relation between higher-order types of the same order. Subordination allows for the

creation of expressive multi-level models; subordination between higher-order types implies spe-

cialization between instances of the types related by subordination. An example of the usefulness

of the subordination relation is shown in the biological taxonomy domain, in which taxonomic

ranks (instances of “Second-Order Type”) are related by subordination in a sequence (with lower

ranks subordinated to higher ranks). This ensures the taxonomy at the first-order level has an

adequate structure (a taxonomic tree).

8 The full specification of the theory in Alloy can be found in https://github.com/jpalmeida/mlt-ontology

https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fjpalmeida%2Fmlt-ontology&sa=D&sntz=1&usg=AFQjCNE8ybXMXdh-lLgKiZKk3_Kl2HE6WQ

In order to facilitate the readers’ first contact with MLT, we have opted to supress two direct

extensions of the theory in the early part of this paper: (i) the support for non-rigid types, and (ii)

the generalization of the notion of order to support an infinite number of classification levels.

With respect to (i) this extension is presented in section 6.2. It allows instantiation to be contin-

gent, thereby enabling dynamic classification, which is an important feature for conceptual mod-

eling [21]. With respect to (ii), axioms A3, A4 and A5 would give way to an inductive definition

for a basic type Ti+1 based on the definition of the basic type at an immediately lower order Ti.

The “disjointness” axiom (A6) would be modified accordingly.

The whole theory presented here is built up from an ‘opaque’ notion of instantiation, i.e., using

instantiation as a primitive notion and not appealing to the ‘internals’ of intensions. The resulting

theory is thus independent of any modeling choices or ontological commitments concerning the

nature of ‘intensions’ of types. Naturally, this could be worked out in an extension of this work.

To formally discuss the nature of ‘intensions’ of types, one could either opt for using a higher-

order logics (which we avoid here intentionally since we aim at a more approachable formaliza-

tion) or to reify and treat the intensions of types as structured elements with ‘parts’ or “constitu-

ents pretty much like the linguistic expressions that we use to speak about them” [48]. The ade-

quacy of these approaches is an issue for further investigation.

It is important to stress that it is not our intention in this paper to propose a multi-level concep-

tual modeling language. Instead, we focus on the concepts that would constitute an adequate se-

mantic domain for such a language. The theory we propose can be considered a reference top-

level ontology for types, with the main purpose of clarifying key concepts and relations for multi-

level conceptualizations.

As discussed in [21], a reference ontology can be used to inform the revision and redesign of a

modeling language, first through the identification of semantic overload, construct deficit, con-

struct excess and construct redundancy, but also through the definition of modeling patterns and

semantically-motivated syntactic constraints [11]. This has been fruitful in the past in the revision

of the UML, resulting in the OntoUML profile for conceptual modeling [21]. Thus, a natural

application for this work is to inform the (re-)design of a well-founded multi-level conceptual

modeling language. Some earlier results to that extent are presented in section 4, showing: (i) how

theorems of the theory reveal useful syntactic constraints for multi-level domain models; and (ii)

how patterns of domain entities that are admissible by the theory can be reflected in modeling

patterns. We have also been able to spot a deficiency in the UML given its reliance on the con-

struct of generalization set to represent the power type pattern. Further, we have been able to

identify cases of semantic overload in the power-type based technique presented in [17], and in

the m-objects approach [36]. Recently, Recker et al. [45] reported results from a study with 528

modelers demonstrating that “users of conceptual modeling grammars perceive ontological defi-

ciencies to exist and that these deficiency perceptions are negatively associated with usefulness

and ease of use of these grammars”. This highlights the potential practical implications of our

theory.

We are currently working on an extension of the Unified Foundation Ontology (UFO) [21] to

fully incorporate the theory presented in this paper. The current version of UFO only counts with

an informal notion of higher-order universal, with no associated formalization. The theory would

serve as the top-most layer of UFO, and the typology of universals of UFO would be incorporated

as specializations of “First-Order Type”, including RigidUniversal, Anti-RigidUniversal, Cate-

gory, Kind, Role, Phase, etc. Further, “Individual” would be specialized into Endurant, Moment,

Event, Action, etc., leveraging important conceptual distinctions of UFO. The revision of UFO to

incorporate this theory will give us a sound basis to improve the formalization of ontologies based

on UFO (e.g., the core ontology for services called UFO-S [35] and the organizational ontology

called O3 [43]) since their conceptualizations span multiple levels of classification.

Acknowledgments

This research is partly funded by the Brazilian Research Funding Agencies CAPES, CNPq

(grant numbers 311313/2014-0, 485368/2013-7, 461777/2014-2) and FAPES (grant number

69382549).

References

1. Atkinson, C.; Gerbig, R.: Melanie: multi-level modeling and ontology engineering environment. In: Proc. of the 2nd

International Master Class on Model-Driven Engineering Modeling Wizards - MW ’12. New York, USA (2012)

2. Atkinson, C., Kühne, T.: Meta-level Independent Modeling. International Workshop “Model Engineering” (in con-

junction with ECOOP’2000), Cannes, France (2000)

3. Atkinson, C., Kühne, T.: Model-driven development: a metamodeling foundation. IEEE Software. 20(5), 36–41

(2003)

4. Atkinson, C., Kühne, T.: Processes and Products in a Multi-level Metamodeling Architecture. Int. Journal of Soft-

ware Engineering and Knowledge Engineering, 11(6), pp 761-784 (2001)

5. Atkinson, C., Kühne, T.: Reducing accidental complexity in domain models. Software & Systems. Modelling, 7(3),

pp 345-359. Springer-Verlag (2008)

6. Atkinson, C., Kühne, T.: The Essence of Multilevel Modeling. In: Proc. Of the 4th International Conference on the

Unified Modeling Language, pp. 19-33. Toronto, Canada (2001)

7. Atkinson, C.: Metamodelling for Distributed Object Environments. First International Enterprise Distributed Object

Computing Workshop (EDOC’97). Brisbane, Australia (1997)

8. Bealer, G.: Quality and Concept. Clarendon Press, Oxford (1982)

9. Cardelli, L.: Structural Subtyping and the Notion of Power Type. In Proc. Of the 15th ACM Symposium of Princi-

ples of Programming Languages, pp. 70-79 (1988)

10. Carvalho, V. A., Almeida, J.P.A.: A Semantic Foundation for Organizational Structures: A Multi-Level Approach.

In: Proc. of the Enterprise Computing Conference (EDOC2015). (2015)

11. Carvalho, V. A., Almeida, J.P.A., Guizzardi, G.: Using Reference Domain Ontologies to Define the Real-World

Semantics of Domain-Specific Languages. In: Proc. 26th International CAiSE Conference (CAiSE 2014), Heidel-

berg: Springer, 2014. pp. 488-502 (2014)

12. Carvalho, V. A., Almeida, J. P. A., Fonseca, C. M., Guizzardi G.: Extending the Foundations of Ontology-based

Conceptual Modeling with a Multi-Level Theory. In: 35th Intl. Conf. on Conceptual Modeling (ER 2015), pp. 119-

133 (2015)

13. Chen, P. P.: The Entity-relationship Model: Toward a Unified View. ACM Transactions on Database Systems, 1

(1), pp. 9-36. (1976)

14. Coquand, T.: Type Theory, The Stanford Encyclopedia of Philosophy (Fall 2014 Edition), Edward N. Zalta (ed.),

URL = http://plato.stanford.edu/archives/fall2014/entries/type-theory/ (2014)

15. Ereshefsky, M., Species, The Stanford Encyclopedia of Philosophy (Spring 2010 Edition), Edward N. Zalta (ed.),

URL = http://plato.stanford.edu/archives/spr2010/entries/species/ (2010)

16. Eriksson. O., Henderson-Sellers, B., Ågerfalk, P. J.: Ontological and linguistic metamodeling revisited: A language

use approach. Information and Software Technology, 55(12), pp. 2099-2124. Elsevier (2013)

17. Gonzalez-Perez, C., Henderson-Sellers, B.: A powertype-based metamodelling framework. Software & Systems.

Modelling, 5(1), 72-90. Springer-Verlag (2006)

18. Guarino, N., Welty, C.: Evaluating Ontological Decisions with OntoClean. In Communications of the ACM, 45(2),

pp.61-65. (2002)

19. Guarino, N.: The Ontological Level. In: R. Casati, B. Smith and G. White (eds.), Philosophy and the Cognitive

Science, pp. 443-456. Holder-Pivhler-Tempsky, Vienna (1994)

20. Guarino, N., Guizzardi, G.: “We Need to Discuss the Relationship”: Revisiting Relationships as Modeling Con-

structs. In: Proc. 27th International CAiSE Conference (CAiSE 2015). pp. 488-502 (2015).

21. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. University of Twente, Enschede, The

Netherlands (2005)

22. Guizzardi, G. et al.: Towards an Ontological Analysis of Powertypes. In: Proc. of the International Workshop on

Formal Ontologies for Artificial Intelligence (FOFAI 2015), 24th International Joint Conference on Artificial Intel-

ligence. (2015)

23. Henderson-Sellers, B.: On the Mathematics of Modeling, Metamodelling, Ontologies and Modelling Languages.

Springer (2012)

24. Jackson, D.: Software Abstractions: Logic, Language and Analysis. The MIT Press, (2006)

25. Kennel, B.: A Unified Framework for Multi-Level Modeling. University of Mannheim (2012)

26. Kühne, T.: Contrasting Classification with Generalisation. In: Proc. of the 6th Asia-Pacific Conference on Concep-

tual Modeling. Wellington, New Zealand (2009)

27. Lara, J. de, Guerra, E.: Deep Meta-modelling with MetaDepth. In: Proc. of the 48th International Conference,

TOOLS 2010. Málaga, Spain (2010)

28. Lara, J. de, Guerra, E., Cuadrado, J. S.: When and How to Use Multilevel Modelling. ACM Transactions on Soft-

ware Engineering and Methodology, v. 24, n. 2, p. 1–46, 23 (2014)

http://plato.stanford.edu/archives/fall2014/entries/type-theory/
http://plato.stanford.edu/archives/spr2010/entries/species/
http://www.sciencedirect.com/science/article/pii/S0950584913001547

29. Lara, J. et al.: Extending Deep Meta-Modelling for Practical Model-Driven Engineering. The Computer Journal,

(2013)

30. Jarke, M., Gallersdörfer, R., Jeusfeld, M. A., Staudt, M.: ConceptBase - A Deductive Object Base for Meta Data

Management. J. Intell. Inf. Syst. v 4(2), pp. 167-192 (1995)

31. Mayr, E., The Growth of Biological Thought: Diversity, Evolution, and Inheritance Belknap Press, (1982).

32. Montague, R.: Formal Philosophy: Selected Papers of Richard Montague. In: Thomasson, R. (Eds.). Yale University

Press (1974).

33. Mylopoulos, J.: Conceptual Modeling and Telos. In: Loucopoulos, P., Zicari, R. (Eds.), Conceptual modeling, da-

tabases and CASE, pp. 49-68, Wiley(1992)

34. Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos: Representing Knowledge About Information Sys-

tems. ACM Trans. Inf. Syst, v. 8(4), pp. 325-362 (1990)

35. Nardi, J.C., Falbo, R., Almeida, J.P.A., Guizzardi, G., Ferreira Pires, L., van Sinderen, M., Guarino, N.: Towards a

Commitment-Based Reference Ontology for Services. In: Proc. 17th IEEE International Enterprise Distributed Ob-

ject Computing Conference (EDOC 2013), IEEE Computer Society Press, pp. 175-10 (2013).

36. Neumayr, B., Grün, K., Schrefl, M.: Multi-level domain modeling with m-objects and m-relationships. In: Proc. of

the 6th Asia-Pacific Conference on Conceptual Modeling. Wellington, New Zealand (2009)

37. Neumayr, B., Jeusfeld, M. A., Schrefl, M., Schütz, C.: Dual Deep instantiation and It ConceptBase Implementation.

In: Proc. 26th International CAiSE Conference (CAiSE 2014), Heidelberg: Springer, 2014. pp. 503-517 (2014)

38. Neumayr, B., Schrefl, M., Thalhiem, B.: Modeling Techniques for Multi-Level Abstraction. In: Kaschek, R.,

Delcambre, L. (eds.). LNCS, vol. 6520, pp 68-92. Springer, Heidelberg(2011)

39. Odell, J.: Power types. In: Journal of Object-Oriented Programing, 7(2), pp. 8-12.(1994)

40. Olivé, A.: Conceptual Modeling of Information Systems. Springer (2007)

41. OMG : UML Superstructure Specification – Version 2.4.1 (2011)

42. OMG: Meta Object Facility (MOF) Core Specification - Version 2.4.1 (2013)

43. Pereira, D., Almeida, J.P.A.: Representing Organizational Structures in an Enterprise Architecture Language. In:

Proceedings of the 6th Workshop on Formal Ontologies meet Industry (FOMI 2014), Rio de Janeiro (2014).

44. Pirotte, A., Zimanyi, E., Massart, D., Yakusheva, T.: Materialization: a powerful and ubiquitous abstraction pattern.

In: Bocca, J.,Jarke, M., Zaniolo, C. (eds.) Procs. 20th Int. Conf. Very Large DataBases (VLDB ’94) pp. 630–641

(1994)

45. Recker, J., Rosemann, M., Green, P., Indulska, M.: Do Ontological Deficiencies in Modeling Grammars Matter?.

In MIS Quarterly, 35 (1): pp. 1–9. (2011)

46. Rossini, A. et al.: A formalisation of deep metamodelling. Formal Aspects of Computing, v. 26, n. 6, pp. 1115–1152

(2014)

47. Steinberg, D., Budinsky, F.: EMF: Eclipse Modeling Framework. 2nd Edition, Addison-Wesley Professional

(2008).

48. Swoyer, C., Orilia, F.: Properties. In: Zalta, E. N. (eds.). The Stanford Encyclopedia of Philosophy (Fall 2014 Edi-

tion), URL = http://plato.stanford.edu/archives/fall2014/entries/properties/ (2014)

49. W3C.: OWL 2 Web Ontology Language - Structural Specification and Functional-Style Syntax (Second Edition),

URL = https://www.w3.org/TR/2012/REC-owl2-syntax-20121211 (2012)

http://plato.stanford.edu/archives/fall2014/entries/properties/
https://www.w3.org/TR/2012/REC-owl2-syntax-20121211

