
Theoretical Foundations and Engineering 

Tools for Building Ontologies as Reference 

Conceptual Models 

Editors: Krzysztof Janowicz, Pennsylvania State University, USA; Pascal Hitzler, Wright State University, USA  

Solicited Reviews: Oscar Corcho, Universidad Politécnica de Madrid, Spain; Pascal Hitzler, Wright State University, USA 

 

Giancarlo Guizzardi
* 

Ontology and Conceptual Modeling Research Group (�EMO), Computer Science Department, Federal University 

of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil 

Abstract. Perhaps  the  most  fundamental  notion  underlying  the  desiderata  for  a  successful  Semantic  Web  is Semantic 

Interoperability. In this context, ontologies  have  been  more  and  more  recognized  as  one  of  the  enabling  technologies. 

This paper defends the view that an approach which neglects the role of ontologies as reference conceptual models cannot 

meet the requirements for full semantic interoperability. The paper starts by offering an engineering view on ontology engi-

neering, discussing the relation between ontologies as conceptual models and ontologies as codification artifacts. Furthermore, 

it discusses the importance of foundational theories and principles to the design of ontology (conceptual) modeling languages 

and models, emphasizing the fundamental role played by true ontological notions in this process. Finally, it elaborates on the 

need for proper tools to handle the complexity of ontology engineering in industrial scenarios and complex domains. These 

tools include ontological design patterns as well as well-founded computational environments to support ontology creation, 

verification and validation (via model simulation).  

Keywords: Conceptual Modeling, Foundational Ontology, Methodological and Computational Tools for Ontology Engineering 

                                                           
*
Corresponding author. E-mail: gguizzardi@inf.ufes.br.  

1. Introduction  

Perhaps  the  most  fundamental  notion  underly-

ing  the  desiderata  for  a  successful  Semantic  Web  

is Semantic Interoperability. To a large extent, the 

Semantic Web is about offering support for complex 

information services by combining information 

sources that have been designed in a concurrent and 

distributed manner. In this context, ontologies  have  

been  more  and  more  recognized  as  one  of  the  

enabling  technologies.  

In  general,  in  computer science, ontologies have 

been used either as a  reference model of consensus 

to support semantic interoperability, or  as  an  expli-

cit,  declarative  and  machine  processable  artifact  

coding  a  domain  model  to  enable  automated rea-

soning. This duality, however, points to different 

(and even conflicting) sets of quality criteria that 

should be met by the representation languages em-

ployed to construct these ontologies.  

On one hand, ontologies considered as reference 

conceptual models for semantic interoperability 

should be constructed in manners that maximize, on 

one hand, the expressivity in capturing fundamental 

aspects of the underlying domain and in making ex-

plicit the underlying ontological commitments. On 

the other hand, they should also be designed to   

maximize   conceptual   clarity   (or   pragmatic   ef-

ficiency)   to   afford   the   tasks   of   communica-

tion,   domain understanding, problem-solving and 

meaning negotiation among human users. In contrast, 

ontologies as reasoning artifacts  for  the  semantic  

web,  should  be  built  in  a  way  that  supports  de-

cidable  and  computationally  tractable automated  

reasoning. 



The first idea defended in this article can be sum-

marized in the following manner. If Ontology Engi-

neering is to become a mature engineering discipline, 

able to construct and manage artifacts in a range of 

complex domains, it must incorporate a number of 

lessons learned from other closely-related engineer-

ing disciplines. This starts with the acknowledgement 

that there is no Silver Bullet! From a language point 

of view, this means that we should not attempt to 

produce one single representation system (with asso-

ciated methodological tools). In contrast, we should 

recognize that different representation systems of 

different nature are needed in different phases of an 

ontology engineering process. This idea is articulated 

in Section 2. 

The second point I want to make is that, in order to 

meet the quality criteria outlined above for producing 

ontologies as reference conceptual models (i.e., onto-

logical expressivity and conceptual clarity), we can-

not eschew truly ontological questions. In other 

words, we need an ontology conceptual modeling 

language that assists modelers in: (i) making explicit 

the ontological commitment assumed in that concep-

tualization; (ii) producing representation structures 

that do justice to the nature of the underlying reality. 

The design of such a language can greatly benefit 

from theories produced in disciplines such as Formal 

Ontology in  Philosophy,  Cognitive  Science,  Lin-

guistics  and  Philosophical  Logics. This point is 

elaborated in Section 3.  

Finally, for us to be able to count on a systematic 

engineering discipline that can be used to establish 

full and successful semantic interoperability in hete-

rogeneous and complex real-world scenarios, we 

need proper methodological and computational tools 

to handle that complexity. This is the third topic of 

this paper which is discussed in section 4. 

These three points are non-orthogonal, in the sense 

that, in the way I have presented in this article, the 

solutions outlined in section 4 dependent on the ac-

ceptance and implementation of the views advocated 

in sections 2 and 3. For this reason, the latter sections 

can also be understood as background knowledge for 

the former. Furthermore, this accounts for a certain 

unbalance in length between these sections. 

2. An Engineering View to Ontology Engineering 

A domain ontology is a special kind of conceptual 

model, i.e. an engineering artifact with the additional 

requirement to represent a model of consensus within 

a community. This model is designed to facilitate 

individuals to share information about that domain by 

conforming to some standard set of constructs. For 

this reason, this activity should be structured in 

process paths that are analogous to the ones practiced 

in other disciplines that also support the transition 

from a representation of a conceptualization to some 

coding artifact. In this transition path, the process 

must take into account that the produced coding arti-

fact should preserve not only the real-world seman-

tics of the original representation but it should also 

typically comply with a number of non-functional 

requirements  particular to a specific computational 

environment.  

In disciplines such as Software and Information 

Systems Engineering, there is a clear distinction be-

tween Conceptual Modeling, Design and Implemen-

tation. In Conceptual Modeling, a solution-

independent specification is produced with the aim to 

make a clear and precise description of the domain 

elements. In the Design phase, this conceptual speci-

fication is transformed into a logical design specifica-

tion (e.g. a relational database schema or an object 

class model) by taking into consideration a number 

of issues ranging from architectural styles, non-

functional quality criteria to be maximized (e.g., per-

formance, adaptability), target implementation envi-

ronment, etc. The same conceptual specification can 

potentially be used to produce a number of (even 

radically) different logical designs. Finally, in the 

Implementation phase, a physical design is coded in 

one or more target languages to be then deployed in a 

computational environment. Again, from the same 

logical design, a number of different implementations 

can be produced. Design, thus, bridges Conceptual 

Modeling and Implementation.  

The same reasoning should be applied to the dis-

cipline of Ontology Engineering [1]. Firstly, in a 

conceptual modeling phase in Ontology Engineering, 

the main requirements for the resultant models (and, 

hence, for the modeling languages) are domain ap-

propriateness and comprehensibility appropriateness 

[2]. These requirements mean that on the one hand, 

the models should be truthful to the phenomena be-

ing represented. And on the other hand, it should be 

clear for users of the language to understand what 

elements of the universe of discourse are represented 

by elements of the model, as well as what problem-

solving operations are to be performed on these ele-

ments. Consequently, the features of a modeling lan-

guage that maximize these quality attributes should 

not be sacrificed in favor of issues such as decidabili-



ty and computational efficiency for automatic reason-

ing (which are design concerns, not conceptual ones). 

Secondly, as a conceptual model of reference, an 

ontology can then be used to produce several differ-

ent alternative implementations in different codifica-

tion languages (e.g., OWL DL, RDF, F-Logic, 

DLRUS, Haskell
1
, Relational Database languages, 

CASL, among many others). The choice of each of 

these languages should be made to favor a specific 

set of non-functional requirements. Moreover, within 

the solution space defined by these codification lan-

guages, we have a multitude of choices regarding, for 

instance, decidability, completeness, computational 

complexity, reasoning paradigm (e.g., closed versus 

open world, adoption of a unique name assumption 

or not), expressivity (e.g., regarding the need for 

representing modal constraints, higher-order types, 

relations of a higher arity), verification of finite satis-

fiability, among many others. The point here is that 

the choice of a particular codification language can 

only be justified as a design choice. To put it baldly, 

the question is not whether, for instance, OWL is 

good or not for representing ontologies. The question 

is whether OWL is justifiable as an adequate design 

choice in a specific design scenario. At this point, I 

would like to echo the historical report of Janis Bu-

benko regarding an analogous discussion taking 

place in the conceptual modeling community in the 

70’s between supporters of Conceptual Data Models 

(e.g. ER diagrams) and those of the Relational Data 

Model [3]. As summarized by Bubenko,“[t]oday the 

battle is settled: conceptual data models  are  gener-

ally  used  as  high-level  problem  oriented  descrip-

tions. Relational  models  are  seen  as  implementa-

tion  oriented descriptions”.     

To complete the view outlined above, between 

the phases of Ontology Conceptual Modeling and 

Ontology Codification, we need a phase of Ontology 

Design that provides methodological supports for: (i) 

systematic exploration of the solution space, hence, 

supporting reasoning with possible choices of codifi-

cation technology as well as their ability to satisfy a 

specific set of non-functional requirements; (ii) map-

ping from the conceptual to a selected codification 

language with the goal of preserving as much as 

possible the real-world semantics of the original 

model while still attempting at satisficing the non-

functional requirements at hand. 

This rationale has received much attention in the 

context of the OMG´s MDA (Model-Driven Archi-

                                                           
1 See the paper “Modeling vs. Encoding for the Semantic Web” 

by Werner Kuhn in this inaugural issue.   

tecture) initiative which aims at improving model-

reuse via separation of concerns. In that scenario, due 

to recognition of the elevated costs of producing 

high-quality domain representations, there is a clear 

understanding that these representations should be 

independent of computational concerns (hence the 

term Computational Independent Model). The idea is 

to prevent these models from becoming deprecated 

due to changes which are purely related to technolo-

gical choices. 

Finally, there is an important additional aspect 

which I would like to draw attention to and which 

directly comes to mind when thinking about refer-

ence models. The role of a domain reference model is 

to provide a frame of reference, i.e., to serve as a 

conceptual tool for mastering the complexity and 

harmonizing possibly heterogeneous viewpoints and 

terminologies regarding a domain.  Such a reference 

model is commonly used as a frame for producing 

implementations (including ones with automated 

reasoning). However, it can also be used in an off-

line manner in a multitude of other meaning negotia-

tion tasks. In other words, a Reference Conceptual 

Model has a value in itself, independent of the im-

plementations that can be derived from it.   

3. Revisiting the Ontological Level 

In this section, I focus on ontologies as Reference 

Conceptual Models. Given the nature of possible 

applications of an ontology in this sense, a concep-

tual modeling language for producing high-quality 

ontologies should be able to: (i) allow the conceptual 

modelers and domain experts to be explicit regarding 

their ontological commitments, which in turn enables 

them to expose subtle distinctions between models to 

be integrated and to minimize the chances of running 

into a False Agreement Problem [4]; (ii) support the 

user in justifying their modeling choices and provid-

ing a sound design rationale for choosing how the 

elements in the universe of discourse should be mod-

eled in terms of language elements. 

Regarding (i), in order for a conceptual modeling 

language to be able to produce truthful specifications 

of a domain conceptualization, it must offer model-

ing primitives which are able to capture the nuances 

and subtleties involving the very essence of the ele-

ments constituting that domain. As recognized in the 

Harvard Business Review report of October 2001: 

“one of the main reasons that so many online market 

makers have foundered [is that]the transactions they 



had viewed as simple and routine actually involved 

many subtle distinctions in terminology and mean-

ing”
2
. Corroborating this point, [2] demonstrates a 

number of semantic interoperability problems that 

can arise when integrating even simple lightweight 

ontologies. Additionally, [6] elaborates on cases of 

semantic overload involving concepts which are cen-

tral to a domain (e.g., the concept of Petroleum for a 

Petroleum company!) that pass undetected even with-

in the same organization. In both these cases, the 

problems are related to the inability of the modeling 

approach used in giving support for establishing pre-

cise meaning agreements. 

Regarding (ii), I would like to revisit a classifica-

tion put forth by Nicola Guarino is his seminal paper 

“The Ontological Level” [7]. As discussed there, 

Logical-Level languages (e.g., FOL) are “flat” in the 

sense that they put all predicative terms (e.g., Apple 

and Red) in the same footing; Epistemological-Level 

languages (e.g., UML, ER, OWL) provide ways for 

elaborating structures which differentiate these terms. 

For instance, in UML: (a) we can define a Class of 

Apples with an attribute color=red; or (b) we can 

define a Class of Red with an attribute type=apple. 

What an Epistemological-Level language does not 

give us is a precise criterion for explaining why 

structure (a) is better than (b). As discussed in that 

paper, structuring decisions, such as this one, should 

not be the result from heuristic considerations, but 

they should rather reflect important ontological dis-

tinctions that should be motivated and explained. For 

instance, in this case, the choice between these mod-

eling alternatives reflects a choice between sorts of 

object types of completely different nature, and 

which entails radically different consequences both 

in theoretical and practical terms [2]. 

In summary, in order to meet the desiderata in (i) 

and (ii), we need the support of a system of truly On-

tological Categories. This system should comprise a 

body of formal (i.e., domain independent) theories 

postulating ontological distinctions, as well as a rich 

axiomatization prescribing how these distinctions can 

be related. Moreover, this system of categories 

should be embedded in a language system, i.e., we 

need a modeling language with a set of constructs 

that honor these ontological distinctions.  

A language designed with the specific purpose of 

addressing these issues for the case of Structural 

Conceptual Models is the version of UML 2.0 pro-

posed in [2] and latter dubbed OntoUML. This lan-

guage reflects a system of categories postulated by an 

                                                           
2I thank Nicola Guarino for bringing this text to my attention. 

underlying reference ontology of endurants (objects), 

based on a number of theories from Formal Ontology, 

Philosophical Logics, Philosophy of Language, Lin-

guistics and Cognitive Psychology. As a result, the 

language offers a rich set of primitives capturing 

fine-grained distinctions among, for example: (i) 

part-whole relations; (ii) object types, (iii) properties; 

(iv) forms of ontological dependence, etc. In the next 

section, we refer to OntoUML to illustrate some of 

the points discussed there.  

4. The Humble Ontologist 

In his ACM Turing Award Lecture entitled “The 

Humble Programmer” [11], E. W. Dijkstra discusses 

the sheer complexity one has to deal with when pro-

gramming large computer systems. His article 

represented an open call for an acknowledgement of 

the complexity at hand and for the need of more so-

phisticated techniques to master this complexity.  

I believe that we are now in an analogous situation 

with respect to conceptual modeling, in general, and 

ontology construction, in particular. We will expe-

rience an increasing demand for building and using 

reference ontologies in subject domains in reality for 

which sophisticated ontological distinctions are de-

manded. As discussed in the previous section, we 

need ontologically sound representation languages. 

However, for the sake of scalability and separation of 

concerns, the ontology engineering practitioner 

should not be required to deal with all the intricacies 

of the theories underlying the language. In other 

words, on the one hand, we need to offer to the work-

ing ontologist, theories and modeling distinctions as 

expressive as possible. On the other hand, we need as 

much as possible to shield this practitioner from the 

complexity of these conceptual tools.  

In the sequel, I discuss three of the possible kinds 

of tools that can be used to master the inherent com-

plexity of this process.   

4.1. Ontological Design Patterns 

In software engineering, design patterns have be-

come a way to capture in a standard form a solution 

to a recurrent problem. As recognized by the com-

munity of pattern languages, patterns are actually not 

only a means for reusing expert’s knowledge. More 

than that, they define a language to talk about design, 

having become part of the area´s jargon. In other 

words, people exchange patterns as signs with specif-



ic and shared semantics within that community as 

opposed to having to repeatedly explain the situation 

that motivated their creation. 

In ontological engineering, there are obvious op-

portunities to take advantage of a similar approach. 

Due to space limitations, I will comment here on just 

two classes of these patterns, namely, modeling pat-

terns and transformation patterns. For an example of 

analysis patterns proposed to identify the scope of 

transitivity of parthood, one can refer to [2]. 

Firstly, we need patterns that can be used to 

represent domain-independent solutions to modeling 

problems that can be manifested in several domains. 

These patterns shall be motivated by formal ontolog-

ical reasons and (also because of that) I predict that 

they will hardly be identified in an approach that neg-

lects formal ontological categories. Examples of pat-

terns in this class have been proposed, for instance in 

[2], to address modeling problems such as: (i) role 

modeling with disjoint admissible types; (ii) model-

ing of material relations and their truth-makers (rela-

tional properties); (iii) separating entities from their 

constitutions; (iv) representation of qualities with 

alternative associated quality spaces; (v) harmonizing 

alternative notions of roles, among others. It is im-

portant to highlight that, in the case of all these pat-

terns, the modeling solutions proposed result from an 

ontological analysis of the problems at hand in terms 

of the categories and theories of an underlying foun-

dational ontology.  

More than collecting a number of useful Modeling 

Patterns, we should pursue the construction of ontol-

ogy modeling languages which are pattern languages. 

OntoUML is a language which has such a feature to a 

large extent. In that language, it is common that the 

choice of modeling a domain element using a par-

ticular construct causes a whole pattern to be mani-

fested [2]. This opens the possibility for an editor that 

supports the user in modeling with elements of high-

er-granularity and cohesion, i.e., instead of simply 

using isolated primitives such as classes, associations 

and attributes, the models would be constructed with 

pattern blocks instantiating formal relations from a 

foundational theory.          

Secondly, we need transformation patterns captur-

ing standard solutions to problems of mapping onto-

logically rich models to languages which are less 

expressive or have specific characteristics. A number 

of examples of patterns in this category which aim at 

supplanting the limitations of OWL have been col-

lected in ODP Portal
3
. However, other patterns in this 

                                                           
3http://ontologydesignpatterns.org/ 

class have also been proposed considering radically 

different paradigms. For instance, [8] proposes a pat-

tern which captures a solution to the problem of pre-

serving the basic semantics of mereological relations 

in traditional Object-Oriented implementations. In 

fact, there are many opportunities for employing 

standard OO Patterns such as Composite, Delegation, 

State and Observer to propose standard solutions for 

implementing ontology-related issues such as transi-

tive propagation of properties, multiple and anti-rigid 

classification, and existential dependency. Having the 

source model represented in an ontologically rich 

language provides a direct guidance for when and 

how to apply these patterns.  

4.2. Model-Driven Editors  

As previously discussed, the OntoUML metamo-

del contains: (i) elements that represent ontological 

distinctions prescribed by an underlying foundational 

ontology; (ii) constrains that govern the possible rela-

tions that can be established between these elements. 

Let us illustrate these points by using the distinction 

between the object type Kind and Roles. In a simpli-

fied view we can state that: a Kind is a type that con-

gregates all the essential properties of its instances 

and, for that reason, all instances of a Kind cannot 

cease to instantiate it without ceasing to exist; a Role, 

in contrast, represents a number of properties that 

instances of a Kind have contingently and in a rela-

tional context. A stereotypical example of this dis-

tinction can be appreciated when contrasting the 

Kind Person and the Role Student [2]. Regarding (i), 

OntoUML incorporates constructs that represent both 

of these ontological categories. Regarding (ii), the 

metamodel embeds constraints such as: a role must 

be a subtype of exactly one ultimate Kind; a role 

cannot be a supertype of a Kind. 

Because these distinctions and constraints are ex-

plicitly and declaratively defined in the metamodel, 

they can be directly implemented using metamode-

ling architectures such as the OMG´s MOF (Meta 

Object Facility). Following this strategy, [9] reports 

on an implementation of OntoUML graphical editor 

by employing a number of basic Eclipse-based 

frameworks such as the ECore (for metamodeling 

purposes), MDT (for the purpose of having automatic 

verification of OCL constraints) and GMF (for the 

purpose of building a model-based graphical inter-

face). An interesting aspect of this strategy is that, by 

incorporating ontological and semantic constraints in 

the metamodel (i.e., the abstract syntax) of the lan-



guage, it mimics a process which also takes place in 

natural language.  

As an example of the latter point, take the two sen-

tences: (i) (exactly) five mice were in the kitchen last 

night; (ii) the mouse which has eaten the cheese has 

been in turn eaten by the cat. If we have the patterns 

(exactly) five X… and the Y which is Z…, only the 

substitution of X,Y,Z by common nouns will produce 

sentences which are grammatical. To see that, one 

can try the replacement by the adjective Red in the 

sentence (i): (exactly) five red were in the kitchen last 

night. Now, the reason for why this is the case is an 

ontological one [2]. The interesting aspect here is that 

the competent user of this natural language does not 

need to know that! In other words, one can (as most 

language speakers do) abstract from the ontological 

reasons behind a grammatical constraint. 

We should pursue the same ideal in ontology con-

ceptual modeling languages. For example, one does 

not need to be fully aware of the reason why a Role 

cannot be a supertype of Kind. Actually, following 

the strategy adopted for the OntoUML tool editor, the 

user does not even have to be aware of the syntactic 

rule either: if one tries to produce a model violating 

this rule, this will be identified by the embedded 

OCL constraint checker of the tool, and the modeler 

will be promptly notified about the forbidden action.  

Another important advantage of having an ontolo-

gy language with an explicitly defined metamodel is 

the possibility of implementing multiple transforma-

tions from an ontology conceptual model to different 

codification schemes. Again, metamodel transforma-

tion is a widespread practice by the followers of 

OMG’s MDA initiative (refer to section 2). In this 

spirit, once we have a transformation model defined 

between, for example, the OntoUML and the OWL 

metamodels, every model in the first language can be 

automatically transformed into a specification in the 

second one. For example, [10] implements a trans-

formation model from OntoUML to the constraint 

language Alloy by using the ATL language (a popu-

lar implementation of the OMG´s QVT model). This 

mapping enables the creation of the model simulator 

discussed in the next section.         

4.3. Model Simulators   

Having a modeling language whose metamodel in-

corporates the ontological constraints of a founda-

tional theory directly eliminates the representation of 

ontologically non-admissible states of affair. Howev-

er, it cannot guarantee that only intended states of 

affair are represented by the domain model at hand 

[21]. This is because the admissibility of domain-

specific states of affair is a matter of factual know-

ledge (regarding the world being the way it happens 

to be), not a matter of consistent possibility.  

To illustrate this point, suppose a medical domain 

ontology representing the procedure of a transplant. 

In this domain, we have concepts such as Person, 

Transplant Surgeon, Transplant, Transplanted Organ, 

Organ Donor, Organ Donee, etc. A transplant con-

ceptual model which places Organ Donor (role) as a 

supertype of Person (kind), or one that represents the 

possibility of a Transplant (event) without partici-

pants clearly violates ontological rules. However, 

these two cases can be easily detected and proscribed 

by an editor such as the one discussed in the section 

4.2. The issue here is that in this case one can still 

produce a model which does not violate any of these 

rules but which still admits unintended states of affair 

as valid instances. One example is a state of affair in 

which the Donor, the Donee and the Transplant 

Surgeon are one and the same Person.  Please note 

that this state of affair is only considered inadmissi-

ble due to domain-specific knowledge of social and 

natural laws. Consequently, it cannot be ruled out a 

priori by a domain independent system of categories.  

Guaranteeing the exclusion of unintended states of 

affair without a computational support is a practically 

impossible task for any relevant domain. In particular, 

since many fundamental ontological distinctions are 

modal in nature [2], in order to validate a model, one 

would have to take into consideration the possible 

valid instances of that model in all possible worlds.  

In [10], an extension to the OntoUML editor was 

presented that offers a contribution to this problem. 

On the one hand, it aims at proving the satisfiability 

of a given ontology by presenting a valid instance 

(logical model) of that ontology. On the other hand, it 

attempts to exhaustively generate instances of the 

ontology in a branching-time temporal structure, thus, 

serving as a visual simulator for the possible dynam-

ics of entity creation, classification, association and 

destruction. The snapshots in this world structure 

confront a modeler with states of affair that are 

deemed admissible by the ontology´s current axioma-

tization. This enables modelers to detect unintended 

states of affair and to take the proper measures to 

rectify the model. The assumption is that the example 

world structures support a modeler in this validation 

process, especially since it reveals how states of af-

fair change in time and how they may eventually 

evolve in counterfactual scenarios. 



5. Final Considerations 

As we argue throughout this paper, one of the key 

aspects of the Semantic vision is Semantic Interope-

rability. If conceptual modeling is about the con-

struction of models of reality that promote a common 

understanding of that reality among their human 

users” [11], then successful semantic interoperability 

is about harmonizing different viewpoints reflected 

in different conceptualizations of that same reality. In 

any case, reality cannot be left out of the loop.  As a 

consequence, an approach which neglects the role of 

ontologies as reference conceptual models cannot 

meet the requirements for semantic interoperability. 

The Semantic Web vision puts forth an undoubted-

ly inspiring challenge. Moreover, it brought us a 

number of interesting results from serious and ta-

lented researchers working on the field. However, in 

that context, there has been an unbalanced focus on 

developing representation techniques to support effi-

cient reasoning. In contrast, the very task of domain 

representation, i.e., the task of constructing prin-

cipled conceptual structures that represent with truth-

fulness and clarity the underlying domain, has been 

left to the user. Another negative aspect that must be 

brought to attention regarding the Semantic Web is 

that, due to its popularity, the hype wave it has gen-

erated also brought us a lot of noise. I believe this 

seriously harmed the establishment of a clear view of 

the sheer complexity involved in the problem at hand.  

Since ontology engineering is a young discipline, 

there are many lessons to be learned from closely 

related areas such as Software Engineering, Informa-

tion Systems and Databases. One of these is that the 

quality of any implementation artifact based on a 

model is ultimately bound by the quality of that mod-

el. Another one is that the area must properly define 

its problem and solution spaces as well as to bridge 

them effectively. The latter bears strong ties with the 

topic of Ontology Education, a subject which has 

gained much interest in the international community 

recently
4
. I am afraid until we have a minimally 

agreed curriculum or body of knowledge
5
 to guide 

the education of ontologists, many of our discussions 

will still be carried out by engineers that lack true 

ontological knowledge as well as formal ontologists 

                                                           
4See the discussions on the “Ontology Summit 2010: Creating 

the Ontologists of the Future” (http://ontolog.cim3.net/cgi-

bin/wiki.pl?OntologySummit2010).   
5For a contrast, see the IEEE Guide to the Software Engineer-

ing Body of Knowledge (http://www. swebok.org/).   

that lack basic industrial experience and sensitivity to 

the need of engineering tools.            

This paper elaborates on a research program that 

addresses exactly the conceptual modeling phase of 

Ontology Engineering, focusing on the development 

of foundational theories, modeling languages and 

methods, design patterns and supporting computa-

tional environments that aim at supporting the con-

struction of ontologies as reference models. The pa-

per reflects on a limited list of items and there are 

many other fundamentally important issues regarding 

ontology engineering which I did not deal with here.  

There are still many challenges to be met before 

we can have a mature discipline of Ontology Engi-

neering. The road ahead of us is both challenging and 

exciting and, once more paraphrasing Dijkstra, we 

should do a much better ontology engineering job in 

the future, “provided that we approach the task with 

a full appreciation of its tremendous difficulty”.  

Acknowledgements. This research is supported by FAPES 
(Grant# 45444080/09) and CNPq (Grant# 481906/2009-6).  

References 

[1] Guizzardi, G., Halpin, T. Ontological Foundations for Con-

ceptual Modeling.  Applied Ontology. , v.3, p.91 - 110, 2008. 
[2] Guizzardi, G. Ontological Foundations for Structural Concep-

tual Models, Telematica Instituut Fundamental Research Se-

ries No. 15, ISBN 90-75176-81-3, The Netherlands, 2005. 
[3] Bubenko Jr., J.A., From Information Algebra to Enterprise 

Modelling and Ontologies – a Historical Perspective on Mod-

elling for Information Systems, Conceptual Modeling in In-
formation Systems Engineering, Springer-Verlag, 2007.  

[4] Guarino, N. Formal Ontology and Information Systems, Pro-

ceedings of the 1st FOIS, Trento, Italy, June 6-8. IOS Press, 
Amsterdam: pp. 3-15, 1998. 

[5] Guizzardi, G., Lopes, M. Baião, F.; Falbo, R. On the impor 

tance of truly ontological representation languages, Interna-
tional Journal of Information Systems Modeling and Design 

(IJISMD), IGI-Global, 2010. 

[6] Guarino, N. The Ontological Level, In R. Casati, B. Smith and 
G. White (eds.), Philosophy and the Cognitive Science. Hold-

er-Pivhler-Tempsky, Vienna: pp. 443-456, 1994. 

[7] Dikstra, E.W., The Humble Programmer, Communications of 
the ACM, 15:10, October 1972. 

[8] Guizzardi, G.; Falbo, R.A.; Pereira Filho, J.G. Using objects 

and Patterns to implement domain ontologies, Journal of the 
Brazilian Computer Society, ISSN 0104-6500, 8:1, July 2002. 

[9] Benevides, A.B.; Guizzardi, G. A Model-Based Tool for Con-

ceptual Modeling and Domain Ontology Engineering in On-
toUML, Proceedings of the 11th ICEIS, Milan, 2009. 

[10] Benevides, A.B.; Guizzardi, G.; Braga, B.F.B.; Almeida, 

J.P.A., Assessing Modal Aspects of OntoUML Conceptual 
Models in Alloy, Proc. of the 1st ETheCom, Gramado, 2009. 

[11] Mylopoulos, J. Conceptual modeling and Telos. In P. Louco-

poulos & R. Zicari (eds), Conceptual Modeling, Databases, 
and CASE (Chapter 2, pp. 49–68). Wiley, 1992. 


