
The role of the service concept in model-driven applications development

João Paulo Almeida, Marten van Sinderen, Luís Ferreira Pires, Dick Quartel
{almeida, sinderen, pires, quartel}@cs.utwente.nl

Centre for Telematics and Information Technology, University of Twente
PO Box 217, 7500 AE Enschede, The Netherlands

Abstract

This paper identifies two paradigms that have influenced the design of distributed applications: the middleware-
centred and the protocol-centred paradigm, and proposes a combined use of these two paradigms. This combined
use incorporates major benefits from both paradigms: the ability to reuse middleware infrastructures and the ability
to treat distributed coordination aspects as a separate object of design through the use of the service concept. A care-
ful consideration of the service concept, and its recursive application, allows us to define an appropriate and precise
notion of platform-independence that suits the needs of model-driven middleware application development.

1 Introduction

Model Driven Architecture (MDA) development is
increasingly gaining support as an approach to manage
system and software complexity in distributed applica-
tion design [3]. MDA development focuses first on the
functionality and behaviour of a distributed application,
which results in a platform-independent model (PIM)
of the application that abstracts from the technologies
and platforms that will be used to implement it. Subse-
quent steps lead to a mapping from the PIM via a plat-
form-specific model (PSM) to a platform-specific im-
plementation (PSI). The main advantages of MDA de-
velopment – software stability, software quality and
return on investment – stem from the possibility to de-
rive different PSIs (via different PSMs) from the same
PIM, and to automate to some extent the model trans-
formation process.

The concept of PIM plays a central role in MDA devel-
opment. It is therefore surprising that this concept is
itself ill-defined, in the sense that it is unclear which
(platform-independent) properties or aspects are actu-
ally modelled and which (platform-dependent) proper-
ties or aspects are abstracted from. We believe that plat-
form-independence can only be defined once a set of
target platforms is known, such that their general capa-
bilities and their irrelevant technological and engineer-
ing details can be established. This leads to the
observation that there can be several PIMs, including
various levels of PIMs, dependent on whether one
wants to consider different sets of target platforms.
Another observation is that different application
characteristics or different sets of target platforms

ferent types of (intermediate) models, design structures
or patterns, and model transformations.

The objective of this paper is to investigate what types
of models can be useful in the MDA development tra-
jectory, how these models are related, and which crite-
ria should be used for their application. As a starting
point for this, we analyse two basic approaches to dis-
tributed system design, viz. the protocol-centred (tele-
com) paradigm and the middleware-centred (distributed
computing) paradigm. We consider their application to
a distributed system of arbitrary complexity, consisting
of several distributed application or system parts that
may interact with each other and with their local user
environment. A simplified model of this is depicted in
Figure 1.

app.
part

app.
part

app.
part

Figure 1 Model of a distributed system (application)

This paper is further structured as follows: Section 2
and Section 3 present the protocol-centred paradigm
and the protocol-centred paradigm, respectively; Sec-
tion 4 compares the results of the application of these
paradigms on basis of a simple but effective running
example; Section 5 discusses the implications of the
application of the paradigms, and to this end introduces
two alternative views on a distributed system; Section 6 generally leads to different types of (intermediate)

uses the results of the previous section to propose a
combined use of the paradigms in a model-driven de-
sign trajectory, i.e., with models (PIMs and PSMs) as-
sociated with defined design milestones; and Section 7
presents our conclusions and outlines some future
work.

2 Protocol-centred paradigm

In the protocol-centred paradigm, user parts interact
locally with a service (provider). A service is decom-
posed into protocol entities and a lower level service,
which interact in order to provide the required service
to user parts. The model of the system to be built con-
sists of user parts and, for each protocol layer, a collec-
tion of protocol entities and a lower level service, as
depicted in Figure 2.

The lower level service provides physical interconnec-
tion and (reliable or unreliable) data transfer between
protocol entities. Lower level services can support arbi-
trarily complex interaction patterns, varying from con-
nectionless data transfer (e.g., ‘send and pray’) to com-
plex control facilities (e.g., handshaking with three-
party negotiation).

Protocol entities communicate with each other by ex-
changing messages, often called Protocol Data Units
(PDUs), through a lower level service. PDUs define the
syntax and semantics for unambiguous understanding
of the information exchanged between protocol entities.
The behaviour of a protocol entity defines the service
primitives between this entity and the service users, the
service primitives between the protocol entity and the
lower level service, and the relationships between these
primitives. The protocol entities cooperate in order to
provide the requested service [6].

Protocols can be defined at various layers, from the
physical layer to the application layer. An application
protocol defines distributed interactions that directly

support the establishment of information values rele-
vant to the application service users [7].

prot. ent. prot. ent. prot. ent.

lower level service

app.
part

app.
part

app.
part

user
part

user
part

user
part

service

Figure 2 Model of the system in the protocol-centred paradigm

A systematic design method based on the protocol-
centred paradigm consists of defining (i) the service to
be supported in terms of the service primitives that oc-
cur at service access points, and the relationships be-
tween service primitives; and, (ii) decomposing this
service in terms of a structure of protocol entities and a
lower level service. This resulting structure, which we
call a protocol, has to be a correct implementation of
the service. This can be assessed formally, if both the
service and protocol are specified using some formal
language.

3 Middleware-centred paradigm

In the middleware-centred paradigm, system parts in-
teract through a limited set of interaction patterns of-
fered by a middleware platform. The model of a dis-
tributed application to be built consists of the middle-
ware platform and a collection of interacting parts,
often called objects or components, as depicted in Fig-
ure 3.

There are several different types of middleware plat-
forms, each one offering different types of interaction
patterns between objects or components. The middle-
ware-centred paradigm can be further characterized
according to the types of interaction patterns supported
by the platform. Examples of these patterns are re-
quest/response, message passing and message queues.

Design methods based on the middleware-centred para-
digm often consist of partitioning the application into
application parts and defining the interconnection
aspects by defining interfaces between parts (e.g., by
using object-oriented techniques and abstracting from
distribution aspects). The available constructs to build
interfaces are constrained by the interaction patterns
supported by the targeted platform. Examples of these

constructs are operation invocation, event sources and
sinks, and message queues.

In this example, several application parts share a set of
named resources. These resources can only be used by
a single application part at a time, and hence some co-
ordination must be established in order to ensure that
there is no concurrent use of a resource. Subscribers are
assumed to be cooperative, i.e., they will not use the
resources indefinitely. There is no pre-emption of con-
trol over a resource.

app.
part

app.
part

app.
part

comp. comp. comp.

Middleware

Figure 3 Model of the system in the middleware-centred paradigm

An interesting observation with respect to the middle-
ware-centred paradigm is that it is somehow dependent
on the protocol-centred paradigm: interactions between
application parts are supported by the middleware,
which ‘transforms’ the interactions into (implicit) pro-
tocols, provides generic services that are used to make
the interactions distribution transparent and internally
uses a network infrastructure to accomplish data trans-
fer [8].

In the sequel, we present alternative solutions to the
floor-control problem based on the two paradigms, and
discuss the merits of both approaches.

4.1 Applying the middleware-centred para-
digm

The middleware-centred paradigm promotes the reuse
of the middleware infrastructure, facilitating the devel-
opment of distributed applications. Furthermore, mid-
dleware infrastructures provide facilities to define ap-
plication-level information attributes and to exchange
values of these attributes through the supported interac-
tion patterns.

The application of the middleware-centred paradigm
will lead to a number of alternative solutions, of which
we consider a few. These solutions can be basically
asymmetric or symmetric. In asymmetric solutions, an
application part plays the role of a controller, centraliz-
ing the coordination of access to shared resources.
Some other application parts play the role of subscrib-
ers. In symmetric solutions, there is no controller, and
all application parts have identical roles in the coordi-
nation.

4 Comparing the paradigms

When the interaction patterns between the application
parts match the interaction patterns provided by the
target middleware platform, a comparison of the results
of the application of both paradigms is straightforward:
the service provided by the application protocol corre-
sponds to the (implicit) service provided by the mid-
dleware infrastructure. The middleware paradigm is
preferred because the middleware infrastructure can be
easily re-used, speeding up the development process.

In this example, we assume a component middleware
that supports remote invocation. We identify the fol-
lowing asymmetric solutions:

• Callback-based. The controller is a singleton com-
ponent that has an interface with a re-
quest_permission operation. The parameters
of this operation are the identification of the re-
questing subscriber and the identification of the re-
source. Subscribers invoke this operation to register
their intention to have access to a particular re-
source. Eventually, when the resource is to be
granted to the subscriber, a grant operation of the
subscriber’s interface is invoked by the controller.

When the interaction patterns are more complex, and
do not match directly the interaction patterns provided
by a middleware platform, the comparison requires
more involvement. Therefore, we introduce our running
example, the floor-control problem, which brings into
play some complex interaction requirements.

Whe
fre
voke

• Polli
for
is_
tru
othe
resou
terfa
ure 4

We iden

• Toke
sour
scrib
avail
sour
erati
Whe
serts
For t
scrib
ring
lustr

Figure 4
control
paradigm
void grant(ResourceId); void request_permission(
SubscriberId subid,
ResourceId resid);

void free(SubscriberId subid);void grant(ResourceId);

void grant(ResourceId);

boolean is_available(
ResourceId resid);

void free(SubscriberId subid);

(a)

(b)

invocation dependency

(c)

void pass(set<ResourceId>);

void pass(set<ResourceId>);

void pass(set<ResourceId>);

component

Figure 4 Alternative solutions for the floor-control problem in the middleware-based paradigm
4.2 Following the protocol-centred para-
digm

n the subscriber wants to release the resource, a
e operation of the controller’s interface is in-
d. This solution is illustrated in Figure 4 (a).

Following the protocol-centred paradigm, a service that
interconnects application parts has to be identified: the
floor-control service. We start by identifying the ser-
vice primitives and their relationships. The service
primitives are request, granted and free, with
the resource identification as parameter. The identifica-
tion of the subscriber is implied by the identification of
the access point where the service primitive is exe-
cuted.

ng-based. The subscribers poll the controller
a certain resource by invoking the operation
available, which returns the Boolean value
e when the resource is available, and false
rwise. When the subscriber wants to release the
rce, the operation free of the controller’s in-

ce is invoked. This solution is illustrated in Fig-
 (b).

tify the following symmetric solution:
The following relations between service primitives are
informally identified: n-based. A list with the set of available re-

ces circulates among the subscribers. Each sub-
er examines the list with the set of identifiers of
able resources, removes the identifier of the re-
ce desired and forwards the list invoking an op-
on in the interface of the following subscriber.
n a subscriber wants to release a resource, it in-
 the resource identifier to be released in the list.
he sake of simplicity, we assume the set of sub-
ers is known a priori, so that we can ignore
management functionality. This solution is il-
ated in Figure 4 (c).

• Local constraint: the execution of granted even-
tually follows the execution of request (for a
given resource identification);

• Local constraint: the execution of free eventually
follows the execution of granted (for a given re-
source identification);

• Remote constraint: a resource is only granted to one
subscriber at a time.

floor-control service

user part
(subscriber)

request (ResourceId resid);
granted (ResourceId resid);
free (ResourceId resid);
occur @ SAP subscriber_id;

user part
(subscriber)

user part
(subscriber)

 illustrates alternative solutions for the floor-
problem obtained by applying the middleware

.

Figure 5 The floor-control service

The service is specified in such a way that interaction
requirements between application parts are satisfied
without unnecessarily constraining implementation
freedom. This freedom includes the structure of the
service provider (the system that eventually supports
the service) and other technology aspects such as oper-
ating systems and programming languages.

After the service is defined, it should be decomposed in
terms of a structure of protocol entities and a lower
level service. For the sake of this example, let us sup-
pose the lower level service offers reliable transfer of a
sequence of octets, which is the data transfer service
used internally by middleware platforms. The protocol
entities are responsible for encoding PDUs and deliver-
ing these to the lower level service.

Several alternative protocols are possible, such as:

• An asymmetric protocol similar to the callback-
based solution, as illustrated in Figure 6 (a).

• An asymmetric protocol similar to the polling-based
solution, as illustrated in Figure 6 (b).

• A symmetric protocol similar to the token-based
solution, as illustrated in Figure 6 (c).

5 Discussion

Interaction patterns provided by middleware infrastruc-
tures do not always match the needs for interaction be-
tween application parts, particularly when the interac-

tions are different than request/response patterns. In
this case, interactions between application parts are
often supported by an application-dependent interaction
system that consists of parts of application parts and the
middleware infrastructure in conjunction.

user part
(subscriber)

user part
(subscriber)

user part
(subscriber)

lower level service
(reliable datagram)

protocol
entity

protocol
entity

protocol
entity

user part
(subscriber)

user part
(subscriber)

lower level service
(reliable datagram)

subscriber
protocol

entity

subscriber
protocol

entity

controller
protocol

entity

(c) PDU: pass (list of resid)

(a) PDUs:
 request (subid, resid)
 granted (resid)
 free (resid)
(b) PDUs:
 is_available_req (resid)
 is_available_resp (bool)
 free (resid)

Floor-control service PDU exchange

subscriber
protocol

entity

user part
(subscriber)

Figure 6 Alternative solutions in the protocol-centred paradigm

This is apparent in our floor-control example. Solutions
obtained following the middleware-paradigm show that
the interaction functionality is scattered across applica-
tion parts, as illustrated in Figure 7.

(b)

(c)

boolean is_available(
ResourceId resid);

void free(SubscriberId subid);

void pass(set<ResourceId>);

void pass(set<ResourceId>);

void pass(set<ResourceId>);

interaction functionality

Figure 7 Interaction functionality is scattered across appli-

cation parts

app.
part

app.
part

app.
part

application service

For the asymmetric solution (b), the subscriber applica-
tion parts must continuously poll for a resource, in con-
trast with the protocol asymmetric solution (b), where
the subscriber requests the resource and the service is
responsible for “polling”. In the protocol-paradigm, the
service shields the application from the way in which
the service is implemented. Therefore, the design of the
application is not influenced by the choice of a protocol
solution (the presented protocol solutions provide the
same service). This is not the case for the middleware-
approach, where the set of interaction patterns sup-
ported by the middleware directly influence the design
of the application parts. Analogous arguments are ap-
plicable to solutions (a) and (c).

Figure 9 Focus on application-dependent interaction sys-
tem

Whether or not the design of application-dependent
interaction system is part of the design process depends
on the application requirements and on the objectives
of the designer [7]. In the following situations, interac-
tion system design should be considered:

Applying the middleware paradigm for applications
with complex interaction requirements, yields similar
results to following the protocol approach without con-
sidering the required service explicitly. As has been
pointed in [9], the definition of services should precede
or accompany, but definitely not follow, the specifica-
tion of protocols. The use of the service concept leads
to careful consideration of the interaction problem be-
ing addressed. In terms of system structure, the use of
the service concept promotes an appropriate application
of the layering principle. For that, the principles of or-
thogonality (separation of concerns) and generality [7]
should be observed when devising the service defini-
tion.

• if the relation between system parts is complex. In
this case, proper attention should be given to the de-
sign of the relation between system parts. This is
possible if this relation is made a separate object of
design, i.e., if the interaction system of the system
parts is considered separately. Consideration of the
interaction system is possible at different abstrac-
tion levels in order to cope with the complexity of
the relation. The interaction system provided by the
middleware plays an important role at lower levels
of abstraction.

• if it is easier to define a service than the architec-
tures of the system parts that interact. This may be
the case if the functionality of the system parts is
still in part unknown, or if the architectures of the
system parts are relatively complex because it must
take account of the characteristics of the means of
interconnection between the system parts.

We distinguish two alternative views on a distributed
system, namely, a view in which the interaction sys-
tems provided by the middleware platform are recog-
nized as separate objects of design (Figure 8) and a
view in which the application-dependent interaction
systems between application parts are recognized as
separate objects of design (Figure 9). In the former
view, the design of application parts is predominant,
and in the latter view, the design of the application-
dependent interaction systems shifts to the foreground.

• if it is more likely that interactions are changed than
just the contributions to interactions by individual
system parts. This is the case if several different dis-
tribution platforms are envisioned as alternatives to
support the interactions. An interaction mechanism
can only be replaced by another equivalent interac-
tion mechanism if the relevant characteristics of the
mechanism are clearly indicated in the design. This
is naturally supported with interaction system de-
sign.

app.
part

app.
part

app.
part

service
provided by the middleware platform

The design of the interaction system implies explicit
attention to design choices that concern the effective-
ness and efficiency of interactions. For example, QoS
aspects that are influenced by distribution aspects are
better addressed separately.

We observe that the middleware-paradigm leverages
the reuse of a large building block that provides an in-

Figure 8 Focus on interaction systems provided by the
middleware

teroperability architecture across programming lan-
guages, operating systems, network technologies and
the support for application data types. We argue that
interaction systems provided by the middleware are
suitable for building application interaction systems.

6 Combined use of the paradigms

6.1 Platform-independence

The term platform is used to refer to technological and
engineering details that are irrelevant to the fundamen-
tal functionality of a system (part). A platform-
independent model is a model that does not depend on,
or rely on characteristics of a particular platform. In
order to refer to platform-independent or platform-
specific models, one must define what a platform is,
i.e., one must define which technological and engineer-
ing details are irrelevant in a particular context. We
assume in this paper that platform corresponds to some
specific middleware technology, such as, e.g.,
CORBA/CCM, J2EE, .NET or Web Services.

Ideally one could strive for PIMs that are absolutely
neutral with respect to different classes of middleware
technologies. However, we foresee that at different
stages of the development trajectory, different sets of
platform-independent modelling concepts may be re-
quired for different classes of target middleware plat-
forms. Figure 10 illustrates a possible MDA design
trajectory, in which such a highly abstract and neutral
PIM is depicted as the starting point of the trajectory. In
Figure 10, the platform-independent models are defined
that facilitate the transformation to two particular
classes of middleware platforms, namely RPC-based
(object-based) and asynchronous messaging (message-

oriented) platforms, respectively.

Methodologies for MDA should clearly define the ab-
straction levels at which PIMs and PSMs have to be
defined. The choices of platforms should also be made
explicit in each step in the MDA design trajectory. Fur-
thermore, the choice of design concepts for the PIMs
should be carefully considered, taking into account the
common characteristics of the target platforms and the
complexity of the transformations that are necessary in
order to generate PSMs from PIMs.

6 Milestones in the Model-driven Design
Trajectory

In the combined use of the protocol-centred and mid-
dleware-centred paradigms, the following milestones
are defined along the design trajectory:
• Service definition. The service definition sets the

boundaries of the application interaction system to
be designed. Services are specified at a level of ab-
straction in which the supporting infrastructure is
not considered. A service specification focuses
solely on the behaviour as observed from the user of
a service. In our case, the infrastructure is the mid-
dleware platform, and therefore, service specifica-
tions are middleware-platform-independent. The
service concept defines a platform-independent
level that is also “paradigm”-independent (as in
[1]), in the sense that a service may be implemented
by a broad set of middleware platforms that support
different interaction patterns (and would be, e.g.,
positioned at the top of the trajectory of Figure 10).
Application parts that rely on the service definition
may be defined on the same level of platform-
independence.

platform selection

.

.

.
.
.
.

platform-independent
design

platform-specific
design

RPC based

Asynchronous
Messaging
based

MQSeries

JMS

CORBA JavaRMI

design

design alternatives

Figure 10 MDA design trajectory

• Platform-independent service design. The platform-
independent service design consists of the platform-
independent service logic, which is structured in
terms of service components, and an abstract-
platform definition. The choice of abstract platform
definition must consider the portability require-
ments since it will define the characteristics of the
platform upon which service components may rely.
The level of abstraction at which the platform-
independent service logic is specified depends on
the abstract platform definition. Figure 11 illustrates
the service definition and platform-independent ser-
vice design milestones.

• Abstract-platform realization. The abstract plat-
form definition is matched with a concrete platform
definition. This may be straightforward when the
selected platform conforms (directly) to the abstract
platform definition. The abstract platform definition
characterizes the level of abstraction at which plat-
form-independent service logic is specified. Con-
cepts used for the elaboration of platform-
independent models may differ from the concepts
available in target platforms, since the former con-
cepts should be generic enough to allow a mapping
to possibly different sets of the latter concepts. This
difference has to be accommodated when the path
to realisation is taken. For each concept represented
in a platform-independent model, there should be a
corresponding concept or a corresponding combina-
tion of concepts in the target platform.
When this is not the case, recursion of the applica-
tion of the service design step may be necessary,
with the abstract-platform definition functioning as
service definition for the recursion. In this recur-
sion, the functionality of the abstract-platform is
leveraged with the addition of abstract-platform

service logic, which is a platform-specific model
defined in terms of the concrete platform. Figure 12
illustrates the recursive application of the service
concept.

Platform-
independent

Service Design

Service
Logic

Abstract-
Platform

Realization

Abstract -
Platform

Service Logic

Service
Definition

conforms to

conforms to

Concrete-
Platform

Definition

available
reusable
platform

Abstract -
Platform

Definition

Figure 12 Recursive application of the service

concept

Alternatively to recursive application the service, plat-
form-specific realization may proceed with direct trans-
formation with no preservation of the border between
abstract platform and service logic. For each concept
represented in a platform-independent model, there
should be a corresponding concept or a corresponding
combination of concepts in the target platform.
Platform-
independent

Service Design

Service
Logic

Service
Definition

Abstract -
Platform

Definition

app.
part

app.
part

app.
part

app.
part

app.
part

app.
part

Service
Logic

Abstract -
Platform
Definition

conforms to

Service
Definition

Figure 11 Milestones in the design trajectory

7 Conclusions

We have argued the case for an increased role of ser-
vice specifications in the design and model-driven de-
velopment of distributed applications. A careful con-
sideration of the service concept, and its recursive ap-
plication, allows us to define an appropriate and precise
notion of platform-independence.

We have described two paradigms to approach the de-
sign of distributed applications: middleware-centred
and protocol-centred. A combined use of both para-
digms will give us the following benefits:

• reuse of middleware infrastructures;

• use of service specifications to address interaction
concerns explicitly (e.g., to tackle the complexity of
complex coordination problems);

• reuse of knowledge in application protocol method-
ologies (such as, e.g., [7]);

• an approach to target different platforms, i.e.,
through, possibly recursive, application of service
specification and design. In this approach, service
specifications provide stable reference points in the
development process.

Current research focuses on elaborating the proposed
model-driven development approach, and demonstrat-
ing its applicability through case studies. Furthermore,
we are identifying requirements for a modelling lan-
guage to support the approach. This language should
facilitate the specification of services and their designs
(at multiple abstraction levels), and have a formal basis
to develop techniques for testing or proving the cor-
rectness of service designs.

Acknowledgements

This work is partly supported by the
European Commission in context of the MODA-TEL
IST project (http://www.modatel.org/) and the
Telematica Instituut in the context of the ArCo project
(http://arco.ctit.utwente.nl/).

References

[1] C. Burt et al. Quality of Service Issues Related to
Transforming Platform Independent Models to
Platform Specific Models. Proceedings Sixth In-
ternational Conference on Enterprise Distributed
Object Computing, September 2002, 212-223.

[2] L. Ferreira Pires. Architectural Notes: a frame-
work for distributed systems development. Ph.D.
Thesis. University of Twente, The Netherlands,
1994.
http://www.cs.utwente.nl/~pires/thesi
s/

[3] Object Management Group. Model driven archi-
tecture (MDA), ormsc/01-07-01. July 2001.

[4] Object Management Group. Generic RFP tem-
plate, ab/02-04-06, April 2002.

[5] D.A.C. Quartel. Action relations. Basic design
concepts for behaviour modelling and refinement.
Ph.D. Thesis, University of Twente, Enschede,
The Netherlands, 1998.
http://www.cs.utwente.nl/~quartel/pub
lications/PhD

[6] R. Sharp. Principles of protocol design. Prentice-
Hall International Series in Computer Science,
Prentice-Hall, Great Britain, 1994.

[7] M. van Sinderen. On the Design of Application
Protocols. Ph.D. Thesis. University of Twente,
The Netherlands, March, 1995.
http://www.cs.utwente.nl/~sinderen/pu
blications/thesis.html

[8] M. van Sinderen and L. Ferreira Pires. Protocols
versus objects: can models for telecommunica-
tions and distributed processing coexist? In Pro-
ceedings Sixth IEEE Computer Society Workshop
on Future Trends of Distributed Computing Sys-
tems, October 1997, 8-13.

[9] C.A. Vissers, L. Logrippo. The importance of the
service concept in the design of data communica-
tions protocols. In Proceedings Fifth IFIP WG6.1
International Conference on Protocol Specifica-
tion, Testing and Verification, June 1985, 3-17.

http://www.modatel.org/
http://arco.ctit.utwente.nl/
http://www.cs.utwente.nl/~pires/thesis/
http://www.cs.utwente.nl/~pires/thesis/
http://www.cs.utwente.nl/~quartel/publications/PhD
http://www.cs.utwente.nl/~quartel/publications/PhD
http://www.cs.utwente.nl/~sinderen/publications/thesis.html
http://www.cs.utwente.nl/~sinderen/publications/thesis.html

	PO Box 217, 7500 AE Enschede, The Netherlands

