

The role of the RM-ODP Computational Viewpoint Concepts

in the MDA approach1

João Paulo Almeida, Marten van Sinderen, Luís Ferreira Pires

Centre for Telematics and Information Technology, University of Twente
PO Box 217, 7500 AE Enschede, The Netherlands

{almeida, sinderen, pires }@cs.utwente.nl

Abstract
An MDA design approach should be able to

accommodate designs at different levels of platform-
independence. We have proposed a design approach (in
[2] and [3]), which allows these levels to be identified. An
important feature of this approach is the notion of
abstract platform. An abstract platform is determined by
the platform characteristics that are relevant for
applications at a certain level of platform-independence,
and must be established by considering various design
goals. In this paper, we define a framework that makes it
possible to use RM-ODP concepts in our MDA design
approach. This framework proposes a recursive
application of the computational viewpoint at different
levels of platform-independence. This is obtained by
equating the RM-ODP notion of infrastructure to our
notion of abstract platform.

Keywords: Reference Model for Open Distributed
Processing (RM-ODP), Model-Driven Architecture
(MDA), platform-independence, abstract platform, design
of distributed applications

1. Introduction1

The Model-Driven Architecture (MDA) [13, 16]
represents a prominent trend in the development of
distributed applications. The concept of platform-
independence plays a central role in MDA. A common
pattern in MDA development is to define a platform-
independent model (PIM) of a distributed application, and
to apply (parameterised) transformations to this PIM to
obtain one or more platform-specific models (PSMs).
Significant benefits of this approach are that PIMs can be
reused to target different technology platforms, and that
PIMs are unlikely to be affected by platform evolution.

In our previous work [2], we have observed that the
level of platform-independence at which PIMs are
specified should be derived from application requirements
and characteristics of the potential target platforms. In
addition, in order to bridge the gap between requirements

1 This is a revised version of a paper that appeared in the

Proceedings of the 1st European Workshop on Model-Driven
Architecture with Emphasis on Industrial Applications (MDA-IA 2004),
University of Twente, The Netherlands, March 2004.

and implementation, it may be necessary to use models at
different levels of platform-independence.

In [2, 3], we have proposed a design approach that
introduces the concept of abstract platform. This concept
supports a designer in identifying the level(s) of platform-
independence at which PIMs are specified. An abstract
platform defines an acceptable platform from an
application developer’s point of view; it represents the
platform support that is assumed by the application
developer at some point in (the platform-independent
phase of) the design trajectory. Alternatively, an abstract
platform defines characteristics that must have proper
mappings onto a set of concrete target platforms, thereby
defining a level of platform-independence. Defining an
abstract platform forces a designer to address two
conflicting goals: (i) to achieve platform-independence,
and (ii) to reduce the size of the design space explored for
platform-specific realization.

Any design approach that is intended to be
successfully applied in practice should be supported by
suitable design concepts. In this paper we define a
framework that makes it possible to use RM-ODP
concepts in our MDA design approach. This is obtained
by equating the RM-ODP notion of infrastructure to our
notion of abstract platform. This framework allows a
recursive application of the Computational Viewpoint at
different levels of platform-independence.

This paper is further structured as follows: section 2
reviews the notions of platform-independence and
abstract platform as adopted in this paper, section 3
discusses the RM-ODP concepts that are of particular
relevance to our work, section 4 applies these concepts in
our MDA design trajectory, and section 5 discusses some
related work. Finally, section 6 presents some
conclusions and open issues.

2. Platform notions

Platform-independence [16] is a quality of a model that
relates to the extent to which the model abstracts from the
characteristics of particular technology platforms. For the
purpose of this paper, we assume that platform
corresponds ultimately to some specific middleware
technology, such as CORBA/CCM [14, 15], .NET, or
Web Services [21, 22], in which distributed applications
are realized.

Currently, a large number of middleware platforms are
available (a small sample of these can be found in the
latest proceedings of the ACM/USENIX Middleware
conference [7]). Different middleware platforms provide
different levels of support for applications. For example,
there are platforms that offer confidentiality for
distributed interactions, that implement transparent load-
balancing mechanisms, or that provide some capabilities
for dynamic upgrade of application components.
Platforms may also differ in the interaction patterns they
support, such as request/response, message passing,
message queues and group communication mechanisms.
As a consequence, the design of an application in terms of
a particular middleware platform is platform-specific,
since: (i) the design depends on particular technological
conventions adopted by the middleware platform; (ii) the
structure of the application depends on the set of
interaction patterns supported by the platform; and (iii)
the functionality addressed at application level depends on
the services provided by the platform.

2.1. Levels of platform-independence

Model reusability with respect to platforms can be
obtained by making these models platform-independent.
Ideally, one could strive for PIMs that are absolutely
neutral with respect to all different classes of middleware
platforms. This is possible for models in which the
characteristics of supporting infrastructure are irrelevant,
such as, e.g., conceptual domain models [5] and ODP
Enterprise Viewpoint models [10] (which can be
considered Computation Independent Models [16] in
MDA terms). However, along a development trajectory,
when system architecture is captured, different sets of
platform-independent modelling concepts may be used,
each of which is adequate only with respect to specific
classes of target middleware platforms. This leads to the
observation that there can be several PIMs, including
various levels of platform-independence, to be identified
by a designer.

When different levels of platform-independence are
necessary, they must be carefully identified. We propose
to make this identification an explicit step in MDA
development. The notion of abstract platform, as proposed
initially in [2] and elaborated in [3], supports a designer in
this step.

2.2. Abstract platform

An abstract platform is determined by the platform
characteristics that are relevant for applications at a
certain platform-independent level. For example, if a
platform-independent design contains application parts
that interact through operation invocations, then operation
invocation is a characteristic of the abstract platform.
Capabilities of a concrete platform are used during
platform-specific realization to support this characteristic

of the abstract platform. For example, if CORBA is
selected as a target platform, this characteristic can be
mapped onto CORBA operation invocations.

Characteristics of an abstract platform may be implied
by the choice of design concepts used for describing the
platform-independent model of a distributed application.
These concepts are often directly related to the adopted
modelling language. For example, the exchange of
“signals” between “agents” in SDL [11] may be
considered to define an abstract platform that supports
reliable asynchronous message exchange. These concepts
may also be specializations of concepts from the adopted
modelling language. This can be the case with UML,
which is specialized in order to suit the needs of platform-
independent modelling, e.g., as specified in the EDOC
UML Profile [18].

Instead of implying an abstract platform definition
from the adopted set of design concepts for platform-
independent modelling, it can be useful or even necessary
to define some characteristics of an abstract platform
explicitly, resulting in one or more separate and thus
reusable design artefacts. During platform-independent
modelling, a pre-defined abstract platform model may be
composed with the model of the distributed application.
For example, while UML 2.0 does not support group
communication as a primitive design concept, it is
possible to specify the behaviour of a group
communication sub-system in UML. This sub-system can
be re-used in the design of a distributed application that
requires group communication. Other examples of pre-
defined artefacts that may be included in abstract
platforms are the ODP trader [9] and the OMG pervasive
services (yet to be defined [16]).

We argue in the following sections that the RM-ODP
Computational Viewpoint concepts are useful for
specifying platform-independent designs. Our proposed
framework makes use of both the implicit and the explicit
approaches to define abstract platforms.

3. RM-ODP in application design

The ISO/ITU-T RM-ODP (Reference Model for Open
Distributed Processing) [9] provides a specification
framework for distributed systems development based on
the concept of viewpoints. For each viewpoint, concepts
and structuring rules are provided, defining a conceptual
framework for specifications from that viewpoint. The use
of different viewpoints in the design of complex systems
is an accepted technique to achieve separation of
concerns. This also has been reflected in standards such
as, e.g., IEEE 1471 [8].

The RM-ODP computational and engineering
viewpoints are relevant to the purpose of our work since
they focus on application and infrastructure concerns,
respectively.

3.1. Concepts in the computational viewpoint

The computational viewpoint is concerned with the
decomposition of a distributed application into a set of
interacting objects, abstracting from the supporting
distribution infrastructure. In contrast, the engineering
viewpoint focuses on the infrastructure required to
support distributed applications. It is concerned with
properties and mechanisms required to overcome
problems related to distribution (e.g., remoteness, partial
failures, heterogeneity) and to exploit distribution
capabilities (e.g., to achieve performance and
dependability), but that are abstracted from in
computational viewpoint specifications.

The RM-ODP relies on the concept of (distribution)
transparency, which is defined as the property of hiding
from a particular user (or developer) the potential
behaviour of some parts of a system [9]. In the context of
the computational and engineering viewpoints,
transparency is used to hide mechanisms that deal with
some aspect of distribution. An example of distribution
transparency is replication transparency, which hides the
possible replication of an object at several locations in a
distributed system. In the computational viewpoint, a
single computational object would be represented, while
this computational object may possibly correspond to
several replica objects in the engineering viewpoint. The
mechanisms necessary to ensure replica consistency and
management are addressed in the engineering viewpoint,
shielding the (computational viewpoint) designers from
the burden of developing these mechanisms. Distribution
transparency is selective in ODP; the Reference Model
includes rules for selecting transparencies. Transparencies
are constraints on the mapping from a computational
specification to a specification that uses specific ODP
functions and engineering structures to provide the
required transparency.

In the computational viewpoint, applications consist of
configurations of interacting computational objects. A
computational object is a unit of distribution characterized
by its behaviour. A computational object is encapsulated,
i.e., any change in its state can only occur as a result of an
internal action or as a result of an interaction with its
environment. An object is said to have interfaces, each of
which expose a subset of the interactions of that object.
Interaction between objects is only possible if a binding
can been established between interfaces of these objects.
The computational viewpoint supports arbitrarily complex
bindings, through the concept of binding object, which
represents the binding itself as a computational object.
The behaviour of a binding object determines the
interaction semantics they support. As with any other
object, binding objects can be qualified by quality of

service assertions that constrain their behaviour. The
computational model does not restrict the types of binding
objects, allowing various possible communication
structures between objects to be defined [9].

3.2. The RM-ODP notion of infrastructure

In [6], Blair and Stefani have equated the boundary
between the computational and the engineering
viewpoints to the distinction between application and
infrastructure: “It is important to realize that the boundary
between the two viewpoints is fluid, depending on the
level of the virtual machine offered by the system’s
infrastructure. Some systems will provide a rich and
abstract set of engineering objects whereas others will
provide a more minimal set of objects leaving more
responsibility to the applications developer.”
Specifications in the computational viewpoint are,
according to this interpretation, influenced by the level of
support provided by the infrastructure. By setting the level
of support provided by the infrastructure, one can refer to
computational concerns and engineering concerns.

Equating infrastructure to predefined middleware
platforms would lead us to the conclusion that
computational specifications are directly influenced by
the level of support provided by a selected middleware
platform. Computational specifications would therefore
be, to some extent, platform-specific. In this case, the
separation of computational and engineering concerns
would be identical to the separation between application
and middleware platform concerns. The reusability of a
computational viewpoint specification would be restricted
by its dependence on platform characteristics.
Furthermore, from the perspective of application
developers, the separation of computational and
engineering concerns would be implied by the availability
of a software infrastructure. Therefore, we conclude that
the motivation for the separation of computational and
engineering concerns is predominantly bottom-up.

Another interpretation for the infrastructure assumed
by the computational viewpoint is that of an ‘ideal
infrastructure’. In this interpretation, the motivation for
the separation of computational and engineering concerns
is predominantly based on the needs of the developer to
handle the complexity of application and infrastructure
separately, regardless of the availability of a software
infrastructure. The engineering viewpoint offers the
possibility for a designer to engineer the infrastructure
explicitly. While this interpretation is ideal from the
perspective of separation of concerns for the application
developer, it does not leverage the reuse of middleware
platforms, which would significantly improve the
efficiency of the development process.

Table 1 summarizes the implications of these
contrasting interpretations of infrastructure. We conclude
that both interpretations considered have limitations when
applied in conjunction with the MDA approach, which
inspired us to investigate an alternative.

4. RM-ODP infrastructure notion revisited

Committing to one of the previously discussed
interpretations of infrastructure is undesirable for the
adoption of computational viewpoint concepts in the
MDA. It may lead to models at a low level of platform-
independence, or it may lead to models which cannot be
realized on existing middleware platforms. We propose to
equate the term infrastructure, as used in RM-ODP, to our
notion of abstract platform. This approach can be
beneficial for the development of distributed applications,
so that a proper balance can be obtained between the
following design goals:

- designers can use the separation of application and
infrastructure concerns to cope with the complexity
of distributed application design;

- middleware platforms can be reused to improve
significantly the efficiency of distributed application
development; and

- platform-independence can be obtained as a means to
preserve investments in application development and
withstand changes in technology.

A consequence of equating infrastructure to abstract
platform is that computational viewpoint concepts can be
applied recursively at different levels of platform-
independence. The use of the same conceptual framework
for different levels of platform-independence facilitates
the definition of correctness relations or even automated
transformations.

An abstract platform is defined in terms of the bindings
supported, the transparencies supported, and the types of
quality-of-service (QoS) constraints that may be applied
to interface contracts. The use of binding objects may
provide considerable flexibility to implementations of
platform-independent models, since it is possible to

provide countless different implementations of a binding
object. In addition, there is considerable freedom in
choosing mechanisms for obtaining a required
transparency and satisfying QoS constraints.

At any point in a design trajectory, a mapping to a
platform-specific realization may be defined, as long as:
(i) the semantics for the original model is respected, as
defined by the computational language; and (ii) quality
characteristics of the realizations obtained through
mappings are acceptable.

4.1. Example: simple conference application

In order to illustrate the use of computational
viewpoint concepts along our model-driven design
trajectory, let us consider a conference service that
facilitates the interaction of users residing in different
hosts. Initially, the service designer describes the service
solely from its external perspective, as a conference
binding object, revealing its interfaces and relating
interactions that occur at these interfaces. Figure 1 shows
a snapshot of the conference application with three user
objects fulfilling the role of conference participant and a
user object fulfilling the role of conference manager.
Since characteristics of the internal structure of the
binding object are not revealed, the user objects are
specified at a high level of abstraction. The abstract
platform at this level of abstraction supports the
interaction between user objects and the conference
binding object. The interfaces are described in terms of
the ODP concepts of operation and signal.

conference
binding object

participant
interface

manager
interface

participant
interface

participant
interface

Figure 1 Snapshot of conference application

Table 1 Interpretations of infrastructure compared

Interpretation
(infrastructure equals to)

Reuse of
middleware

Separation of concerns Platform-
independence

Available middleware
platform

Yes Based on target platform Low

Required middleware
platform (ideal from
application point of view)

No explicit
consideration

Defined by designer’s needs;
motivated by complexity in
application design

High

This example reveals the flexibility of the specification
at this level of platform-independence. The conference
binding object may be further decomposed into a
centralized or distributed, symmetric or asymmetric
design, and different abstract platforms may be used to
support the interactions of the objects that implement it.
Any number of recursive decompositions of the
computational objects may be applied as necessary.

One possible way to proceed with design is shown in
Figure 2. In this design, the internal structure of the
conference binding object is revealed. The conference
binding object is refined into a multicast binding and
computational objects interconnected through this
binding. The abstract platform at this level of abstraction
supports multicast bindings as prescribed in the definition
of the service of the multicast binding object.

multicast binding object

conference
binding object

manager
interface

participant
interface

participant
interface

participant
interface

multicast
interface

multicast
interface

multicast
interface

multicast
interface

Figure 2 Revealing binding decomposition

At this point in the design trajectory, a mapping can be
used to realize this design on top of a target platform that
offers a multicast binding corresponding to that provided
by the abstract platform. The engineering structures
required to provide an adequate level of support are
provided by the concrete platform. An alternative
mapping could implement the multicast binding as a

centralized object, realizing the interactions between the
objects and the multicast binding object as distributed
interactions. However, this alternative mapping may
prove to be inadequate with respect to its quality-of-
service characteristics, e.g., since a centralized
implementation may fail to satisfy performance and
scalability requirements. This flexibility in mapping is
possible because the refinement of the conference binding
in the computational viewpoint does not commit to a
particular distribution in terms of nodes, capsules and
clusters, as would have been the case with a refinement in
the engineering viewpoint.

When the target platform does not provide the required
level of support, the design can be further detailed in an
abstract platform at a lower level of platform-
independence. The refinement depicted in Figure 3
assumes an abstract platform that only supports binary
bindings of operational interfaces. This mapping differs
from the previous design steps in that it does not consist
solely of decompositions.

conference
binding object

manager
interface

participant
interface

participant
interface

participant
interface

Figure 3 Revealing binding decomposition

The development trajectory that results from our
approach as applied to the example above is illustrated
schematically in Figure 4.

platform selection

platform-
independent

models

platform-
specific models

MQSeries-
based

JMS-basedCORBA-
based

Web
Services

based

design

alternatives

(abstract) platform π

π

π π

π π π π

Binary bindings for
operational interfaces,
no multicast (fig. 3)

Computational viewpoint,
multicast communication
bindings (fig. 2)

…

.

.

.

.

.

.

Computational viewpoint,
complex group communication
bindings (fig. 1)π

Figure 4 Models at related levels of platform-independence

4.2. Example: replication transparency

An example that reveals the role of transparencies in
the design trajectory is presented in Figure 5. In this
example, a client and a server object interact through an
operation interface. A replication transparency schema is
used to specify constraints on the availability and
performance of the server object. Two different mappings
of the source model (a) are depicted below. In Figure 5
(b), a realization is obtained by mapping the source model
directly to a platform that supports replication
transparency, namely, Fault Tolerant CORBA. The
infrastructure depicted is provided with this platform [14].
In Figure 5(c), a realization is obtained by mapping the
source model into a target model that explicitly addresses
the replication of the server object. A replication object is
introduced to execute the replication function, delegating
requests to the different replicas. For simplicity, we
consider stateless server objects, and therefore we can
omit extra interfaces required for checkpointing. A
possible realization of the application in Web Services
[21, 22] is depicted schematically in Figure 5 (d).

The list of transparencies defined in the RM-ODP is
not exhaustive. In [4] we have discussed the role of
replacement transparency in an MDA design trajectory.

5. Related work

The ITU-T X.906 | ISO/IEC 19793 Working Draft [12]
proposes the use UML profile for EDOC [18] to model
the computational viewpoint. This profile provides the
notion of recursive component collaboration which
corresponds to the notion of computational object in the
RM-ODP. However, no notion of selective transparencies
is provided in the EDOC profile. Furthermore there is no
support for the specification of QoS constraints. The
EDOC profile may be considered to define a single
implicit abstract platform: interactions in the EDOC
profile are always decomposed into asynchronous
interactions through “Flow Ports”.

In [1], Akehurst et al. have focussed on the
representation of the computational viewpoint concepts
using MDA core technologies, namely UML and UML
profiling. Putman [20] has also proposed some extensions
to UML to accommodate the use of ODP design concepts.
In this paper, we investigate the role of ODP concepts
with respect to design goals introduced by the use of
platform-independent models. Both references [1, 20] can
be seen as complementary to the framework proposed in
this paper, and the representations they propose may be
applicable to the design trajectory we have discussed.

if1 (a)

(b) (FT-CORBA)

(c)

(d) (Web Services)

SOAP
runtime

SOAP
runtime

SOAP
runtime

Client

Replication
proxy

Server
replica

Server
replica

Host
H1

Host
H2

Host
H3

Client

Server

Server
replica1

Server
replica2

Client

Replication
Proxy object

if1

if1 if1 if1 if1

Figure 5 Alternative mappings for abstract platform with replication transparency

6. Conclusions

The separation of RM-ODP computational and
engineering viewpoints is useful to distinguish between
application and infrastructure concerns. This separation
can be explored recursively along a model-driven design
trajectory, allowing a designer to introduce infrastructure
concerns progressively towards realizations on concrete
infrastructures, i.e., available middleware platforms. We
have demonstrated that the computational viewpoint
concepts can be suitable for our design approach if we
equate the RM-ODP notion of infrastructure to that of
abstract platform. An abstract platform is defined in terms
of the bindings supported, the transparencies supported,
and the types of QoS constraints that may be applied to
interface contracts. Characteristics of this abstract
platform must be established by considering the different
design goals.

There is no obvious distinction between platform-
independent and platform-specific concerns, and no
general rule to decide what is platform-independent. The
needs to reuse platforms and to handle design complexity
must drive a designer’s decision on the boundaries.
Defining an abstract platform brings attention to
balancing between: (i) platform-independent modelling,
and (ii) platform-specific realization.

The proliferation of different abstract platforms
reduces the opportunities for large-scale reuse of
platform-independent models and transformations. This
calls for agreement on a small number of abstract
platforms that are, to a great extent, application-domain-
neutral and platform-independent. Ideally, a reference
architecture with a small set of canonical abstract-
platform-elements should be used to compose abstract
platforms that suit the needs of particular projects. We
intend to define such a reference architecture, based on
concepts of the computational viewpoint of the RM-ODP.

Using a well-founded reference model (RM-ODP) to
refer to abstract platform enables agreement on the
concepts for the description of abstract platforms, and
may prove to be an initial step towards a comprehensive
framework for the definition of abstract platforms.

Acknowledgements

This work is part of the Freeband A-MUSE project.
Freeband (http://www.freeband.nl) is sponsored by the
Dutch government under contract BSIK 03025. This work
is also partly supported by the European Commission in
context of the MODA-TEL IST project
(http://www.modatel.org).

References

[1] D. Akehurst, J. Derrick, A.G. Waters. Addressing
Computational Viewpoint Design, in: Proc. 7th IEEE Intl.
Enterprise Distributed Object Computing Conference
(EDOC 2003) (IEEE Computer Society, Los Alamitos, CA,
Sept. 2003).

[2] J.P.A. Almeida, M. van Sinderen, L. Ferreira Pires and D.
Quartel, A systematic approach to platform-independent
design based on the service concept, in: Proc. 7th IEEE Intl.
Enterprise Distributed Object Computing Conference
(EDOC 2003) (IEEE Computer Society, Los Alamitos, CA,
Sept. 2003) 112-123.

[3] J.P.A. Almeida, R. Dijkman, M. van Sinderen, and L.
Ferreira Pires, On the Notion of Abstract Platform in MDA
Development, in: Proc. 8th IEEE Intl. Enterprise
Distributed Object Computing Conference (EDOC 2004)
(IEEE Computer Society, Los Alamitos, CA, to appear
Sept. 2004).

[4] J.P.A. Almeida, M. van Sinderen, L. Ferreira Pires and M.
Wegdam, Handling QoS in MDA: a discussion on
availability and dynamic reconfiguration, in: Proceedings
of the Workshop on Model Driven Architecture:
Foundations and Application (MDAFA) 2003, CTIT
Technical Report TR–CTIT–03–27, University of Twente,
The Netherlands, June 26-27, 2003, 91-96.

[5] G. Arango, Domain Analysis: from Art Form to
Engineering Discipline, in: ACM SIGSOFT Software
Engineering Notes, Vol. 14 , No. 3, May 1989, 152-159.

[6] G. Blair and J.B. Stefani. Open Distributed Processing and
Multimedia. Addison Wesley, 1997.

[7] M. Endler and D. Schmidt (Eds.). Proceedings of the
ACM/IFIP/USENIX International Middleware Conference
2003, in: Lecture Notes in Computer Science. Springer-
Verlag, Heidelberg, Volume 2672 / Jan. 2003.

[8] The Institute of Electrical and Electronics Engineers (IEEE)
Standards Board. Recommended Practice for Architectural
Description of Software-Intensive Systems (IEEE-Std-
1471- 2000), Sept 2000.

[9] ITU-T / ISO, Open Distributed Processing - Reference
Model – All Parts, ITU-T X.901-4 | ISO/IEC 10746-1 to
10746-4, Nov. 1995.

[10] ITU-T / ISO, Open Distributed Processing - Reference
Model - Enterprise Language, ITU-T X.911 | ISO/IEC
15414:2002, Oct. 2001.

[11] ITU-T, Recommendation Z.100 – CCITT Specification and
Description Language, International Telecommunications
Union (ITU), 2002.

[12] ITU-T / ISO, Use of UML for ODP system specifications,
ITU-T X.906 | ISO/IEC 19793 Working Draft, May 2004.

[13] Object Management Group, Model driven architecture
(MDA), ormsc/01-07-01, July 2001.

[14] Object Management Group, Common Object Request
Broker Architecture: Core Specification, Version 3.0,
formal/02-12-06, Dec. 2002.

[15] Object Management Group, CORBA Component Model,
v3.0, formal/02-06-65, July 2002.

[16] Object Management Group, MDA-Guide, V1.0.1, omg/03-
06-01, June 2003.

[17] Object Management Group, UML 2.0 Superstructure,
ptc/03-08-02, Aug. 2003.

[18] Object Management Group, UML Profile for Enterprise
Distributed Object Computing, ptc/02-02-05, Feb. 2002.

[19] Object Management Group, Unified Modeling Language
(UML) Specification: Infrastructure, Version 2.0, ptc/03-
09-15, Sept. 2003.

[20] J.R. Putman, Architecting with RM-ODP, Prentice Hall,
USA, 2001

[21] World Wide Web Consortium, SOAP Version 1.2 Part 1:
Messaging Framework, W3C Recommendation, June 2003,
available at http://www.w3.org/TR/soap12-part1

[22] World Wide Web Consortium, Web Services Description
Language (WSDL) 1.1, W3C Note, March 2001, available
at http://www.w3.org/TR/wsdl

