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ABSTRACT  

Ontologies are commonly used in computer science either as a reference model to support 

semantic interoperability, or as an artifact that should be efficiently represented to support 

tractable automated reasoning. This duality poses a tradeoff between expressivity and 

computational tractability that should be addressed in different phases of an ontology 

engineering process. The inadequate choice of a modeling language, disregarding the goal of 

each ontology engineering phase, can lead to serious problems in the deployment of the 

resulting model. This article discusses these issues by making use of an industrial case study 

in the domain of Oil and Gas. We make the differences between two different representations 

in this domain explicit, and highlight a number of concepts and ideas that were implicit in an 

original OWL-DL model and that became explicit by applying the methodological directives 

underlying an ontologically well-founded modeling language. 
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Introduction 

Since the word ontology was mentioned in a computer related discipline for the first time 

(Mealy, 1967), ontologies have been applied in a multitude of areas in computer science. The 

first noticeable growth of interest in the subject in mid 1990’s was motivated by the need to 

create principled representations of domain knowledge in the knowledge sharing and reuse 

community in Artificial Intelligence (AI). Nonetheless, an explosion of works related to the 

subject only happened in the past decade, highly motivated by the growing interest on the 

Semantic Web, and by the key role played by ontologies in that initiative.  

There are two common trends in the traditional use of the term ontology in computer 

science: (i) firstly, ontologies are typically regarded as an explicit representation of a shared 

conceptualization, i.e., a concrete artifact representing a model of consensus within a 

community and a universe of discourse. Moreover, in this sense of a reference model, an 

ontology is primarily aimed at supporting semantic interoperability in its various forms (e.g., 

model integration, service interoperability, knowledge harmonization, and taxonomy 

alignment); (ii) secondly, the discussion regarding representation mechanisms for the 



construction of domain ontologies is, typically, centered on computational issues, not truly 

ontological ones.  

An important aspect to be highlighted is the incongruence between these two trends. In 

order for an ontology to be able to adequately serve as a reference model, it should be 

constructed using an approach that explicitly takes foundational concepts into account; this is, 

however, typically neglected for the sake of computational complexity.  

The use of foundational concepts that take truly ontological issues seriously is becoming 

more and more accepted in the ontological engineering literature, i.e., in order to represent a 

complex domain, one should rely on engineering tools such as design patterns, computational 

environments, modeling languages and methodologies that are based on well-founded 

ontological theories in the philosophical sense (e.g., (Burek, 2006; Fielding, 2004)). 

Especially in a domain with complex concepts, relations and constraints, and with potentially 

serious risks which could be caused by interoperability problems, a supporting ontology 

engineering approach should be able to: (a) allow the conceptual modelers and domain 

experts to be explicit regarding their ontological commitments, which in turn enables them to 

expose subtle distinctions between models to be integrated and to minimize the chances of 

running into a False Agreement Problem (Guarino, 1998); (b) support the user in justifying 

their modeling choices and providing a sound design rationale for choosing how the elements 

in the universe of discourse should be modeled in terms of language elements.  

This marks a contrast to practically all languages used in the tradition of knowledge 

representation and conceptual information modeling, in general, and in the semantic web, in 

particular (e.g., RDF, OWL, F-Logic, UML, EER). Although these languages provide the 

modeler with mechanisms for building conceptual structures (e.g., taxonomies or 

partonomies), they offer no support neither for helping the modeler on choosing a particular 

structure to model elements of the subject domain nor for justifying the choice of a particular 

structure over another. Finally, once a particular structure is represented, the ontological 

commitments which are made remain, in the best case, tacit in the modelers’ mind; in the 

worst case, even the modelers and domain experts remain oblivious to these commitments. 

An example of an ontologically well-founded modeling language is the version of UML 

2.0 proposed in (Guizzardi, 2005) and, thereafter, dubbed OntoUML. This language has its 

real-world semantics defined in terms of a number of ontological theories, such as theory of 

parts, of wholes, types and instantiation, identity, dependencies, unity, etc. However, in order 

to be as explicit as possible regarding all the underlying subtleties of these theories (e.g., 

modal issues, different modes of predication, higher-order predication), this language strives 

for having its formal semantics defined in a logical system as expressively as possible. Now, 

as well understood in the field of knowledge representation, there is a clear tradeoff between 

logical expressivity and computational efficiency (Levesque & Brachman, 1987). In 

particular, any language which attempts at maximizing the explicit characterization of the 

aforementioned ontological issues risks sacrificing reasoning efficiency and computational 

tractability. In contrast, common knowledge representation and deductive database languages 

(e.g., some instances of Description Logics) have been specifically designed to afford 

efficient automated reasoning and decidability.  

In summary, ontology engineering must face the following situation: on one side, we need 

ontologically well-founded languages supported by expressive logical theories, in order to 

produce sound and clear representations of complex domains; on the other side, we need 

lightweight ontology languages supported by efficient computational algorithms. In order to 

reconcile these two sets of contradicting requirements, Guizzardi & Halpin (2008) advocated 

that two classes of languages are required to fulfill these two sets of requirements. Moreover, 

as any other engineering process, an ontology engineering process lifecycle should comprise 

phases of conceptual modeling, design, and implementation. In the first phase, a reference 



 

 

ontology is produced, aiming at representing the subject domain with truthfulness, clarity and 

expressivity, regardless of computational requirements. The main goal of these reference 

models is to help modelers to externalize their tacit knowledge about the domain, to make 

their ontological commitments explicit in order to support meaning negotiation, and to afford 

the tasks of domain communication, learning and problem solving as best as possible. The 

same reference ontology may further give rise to different lightweight ontologies in different 

languages (e.g., F-Logic, OWL-DL, RDF, Alloy, and KIF), thus satisfying different sets of 

non-functional requirements. Defining the most suitable language for codifying a reference 

ontology is then a choice to be made at the design phase, by taking both the end-application 

purpose and the tradeoff between expressivity and computational tractability into account. 

In this article, we illustrate the issues at stake in the aforementioned tradeoff by discussing 

an industrial case study in the domain of Oil and Gas Exploration and Production. However, 

since we were dealing with a pre-existing OWL-DL codified ontology, we had to reverse the 

direction of model development. Instead of producing a reference model in OntoUML which 

would then give rise to an OWL-DL codification, we had to start with the OWL-DL domain 

ontology and apply a systematic reverse engineering process to it in an attempt to reconstruct 

the proper underlying reference model in OntoUML. By doing that, we manage to show how 

much of important domain knowledge had either been lost in the OWL-DL codification or 

remained tacit in the domain experts’ minds. 

The remainder of this article is organized as follows. Section 2 briefly elaborates on the 

research assumptions and methods used in this article. Section 3 characterizes the domain and 

industrial setting in which the case study took place, namely, the domain of oil and gas 

exploration and production and in the context of a large Petroleum Organization. Section 4 

discusses the reengineering of the original lightweight ontology produced in the settings 

described in section 3. This reengineering step was conducted by transforming the original 

ontology to well-founded version represented in OntoUML. Section 5 presents the 

conclusions of the article.  

 

Research Assumptions and Methods 

In a previous work, Guizzardi (2005) proposed a formal framework for the evaluation and 

(re)design of modeling languages. The proposed framework extended the works of (Weber, 

1997) and (Gurr, 1999) to offer theoretical means to systematically analyze the suitability of 

a language to model phenomena in a given domain in reality. This analysis is conducted by 

evaluating the level of homomorphism between a language (captured in a specification of the 

modeling primitives available in the language , i.e., a metamodel) and the domain (captured 

in a domain reference ontology). As (Gurr, 1999) argues at length, the stronger the match 

between a model and the represented domain, the easier is to reason with the former. The 

easiest case is when these matches are isomorphisms. The implication of this for the human 

agent who interprets the model is that his interpretation correlates precisely and uniquely with 

a portion of reality being represented. By contrast, where the correlation is not an 

isomorphism then there may potentially be a number of different phenomena which would 

match the interpretation.  

The framework proposed in (Guizzardi, 2005) enumerates a number of properties that 

need to be reinforced in order to guarantee an isomorphism of this mapping. Two of these 

properties are Completeness and Lucidity. In a nutshell, a modeling language is complete if it 

offers modeling primitives to capture all the necessary domain distinctions. In contrast, a 

language is Lucid if, for each modeling primitive, there is no more than one interpretation in 

terms of domain distinctions. Incompleteness hinders the expressivity of the language: there 

are aspects of the subject domain which cannot be able to directly capture using the language. 

The lack of lucidity, in contrast, introduces ambiguity and hinders the clarity of the language: 



people have to bring extra-model knowledge in order to attempt to disambiguate competing 

possible interpretations of the modeling constructs. Moreover, there is a practical connection 

between these properties. If a language is incomplete, the following situations may arise: (i) 

information will be left out of the descriptions represented by the language (thus remaining 

tacit and, hence, inaccessible in a stakeholder´s mind); (ii) the modeler will semantic 

overload modeling constructs of the language in order to represent the necessary domain 

distinctions (thus rendering a non-lucid representation system). 

The case study presented in this work ultimately compares general modeling languages 

w.r.t. their suitability for supporting the conceptual modeling phase of Ontology Engineering. 

Since conceptual modeling is about representing conceptualizations of reality, this work 

argues that the underlying conceptualization a general conceptual modeling language should 

commit to is that of a Foundational Ontology (Guizzardi, 2005; Weber, 1997). OntoUML has 

been explicitly designed to have as modeling primitives those representing ontological 

distinctions prescribed by a cognitive-based Foundational Ontology. Thus, the hypothesis 

which has been tested by this case study is the following. By using a modeling language 

which is known to be incomplete w.r.t. these ontological distinctions (OWL-DL) to represent 

a domain ontology in a large and intrinsically complex domain, one is prone to produce 

conceptual problems of the types (i) and (ii) above. In contrast, by using a language which is 

complete (and, hence, more expressive), not only these problems can be made explicit, but 

they also can be addressed in satisfactory manner. 

Following (Mylopoulos, 1992), conceptual models are primarily meant to be used by 

humans in tasks of domain understanding, problem solving and communication. For this 

reason, as discussed in depth in (Guizzardi, 2007), a Reference Ontology for conceptual 

modeling languages must be one that takes human cognition and language seriously. These 

requirements motivate the use of an ontological theory such as the one underlying OntoUML 

(which is also based on a number of results from philosophy of language, cognitive 

psychology and linguistics) as opposed to a revisionary ontology such as the BWW model 

(Weber, 1997). For a detailed comparison of these two foundational ontologies with respect 

to their abilities to provide foundations for conceptual modeling languages, one should refer 

to (Guizzardi, 2005).                 

 

Characterizing the Case Study Domain and Settings 

The Oil and Gas sector is marked by projects which are technically complex, significantly 

expansive, involve several large corporations, and, frequently, cross-cut several subareas of 

the involved organizations. The success of these projects is strongly affected by how well the 

work of the involved participants (and their supporting systems) are integrated and/or 

coordinated. The importance of integration, effective cooperation and coordination in this 

sector is becoming more and more evident due to the constant increase in the number of 

participants in these projects, in particular the number of small companies to which highly 

specialized services are outsourced. Traditionally, each of the involved organizations are 

equipped with their own pool of applications and databases, which are more and more 

encapsulated into services (Papazoglou et al., 2008). This scenario poses a challenge to 

application and enterprise integration.  Current initiatives towards cooperation between 

organizations are founded on ad hoc infrastructures built on mappings between specific 

applications and databases. Moreover, there is hardly any collaboration across disciplines and 

process phases, since each of these rely on alternative conceptual structures and 

terminologies. However, due to the constant increase both in data complexity and typical 

numbers of required collaborators, a case-by-case mapping between databases, applications 



 

 

and terminological structures cannot be accounted as a viable solution for this industry (Gulla 

et al., 2006). 

With respect to decision making, as pointed out by (Gulla et al., 2006), the supporting 

processes fall short in terms of relevant and precise information. Information which is 

dispersed in multiple non-integrated databases, classified according to different 

terminologies, and represented in incompatible formats, often becomes available for decision 

making only too late or not at all. Finally, even when data becomes available, it is often 

difficult to access its real world semantics and to understand its limitations and underlying 

assumptions (Gulla et al., 2006).  

A study conducted by the Norwegian Oil Industry Association and reported by (Gulla et 

al., 2006) makes the need for better collaboration and integration between process phases, 

disciplines and companies in this sector explicit. According to this study, this is not supported 

by existing standards and, as a result, projects are typically costly, and decision making is 

often made in terms of wrong or outdated information. The strong requirements of semantic 

interoperability make the Oil and Gas domain a potentially rich domain for applying 

ontologies. Ontology-based approaches for semantic interoperability and information 

exchange involves the use of ontologies of rich and extensive domains combined with 

industry patterns and controlled vocabularies, reflecting relevant concepts within this domain. 

Following (Chum, 2007), and in pace with the aforementioned discussion, we can summarize 

the motivating factors for the use of ontologies in the oil and gas industry as follows: 

• The great data quantity generated each day, coming from diverse sources, involving 

different disciplines. Integrating different disciplines to take advantage of the real value 

of information has been a complex and costly task. 

• The existence of data in different formats, including structured databases and semi-

structured documents. To deal with the great quantity of information, as well as 

heterogeneous formats, a new approach is needed to handle information search and 

access. 

• The necessity of standardization and integration of information along the frontiers of 

systems, disciplines and organizations, to support the decision-making with the 

collaborators, to the extent that better quality data will be accessible on the opportune 

time. 

Examples of initiatives of using ontologies in the energy sector include IIP (Integrated 

Information Platform) (Sandsmark & Mehta, 2004), AKSIO (Active Knowledge Support in 

Integrated Operations) (Norheim & Fjellheim, 2006), ADI (Accelerating Development of 

ISO 15926) (Paap, 2006), and DPR (Daily Production Reports) (TietoEnator, 2006). An 

additional noteworthy effort is the O3R (Open Oilfield Ontology Repository), which aims at 

collecting public OWL ontologies in the domain of Oil and Gas in order to make them 

available to the industry as a whole.  

Most of the existing ontology-based initiatives in this area rely on semantic web 

representation languages, such as OWL and RDF. As demonstrated in (Guizzardi, 2006), the 

use of non-expressive and ontologically neutral languages such as OWL and RDF cannot 

guarantee semantic interoperability when concurrently developed models are integrated. In 

fact, (Guizzardi, 2006) shows that even when relatively simple semantic web ontologies (e.g., 

MusicBrainz, FOAF, Mogatu BDI) are integrated, the previously discussed False Agreement 

Problem can be manifested.     

The case study reported in this paper was conducted in a large Petroleum Corporation, by 

analyzing and redesigning a pre-existing ontology in the domain of Oil and Gas Exploration 

and Production, henceforth named E&P-Reservoir Ontology. Due to the extensiveness and 

complexity of this domain, only few sub domains were taken into consideration on the initial 



version of this ontology, namely, the “Reserve Assessment” sub domain, and the 

“Mechanical pump” sub domain. The knowledge acquisition process used to create the 

original E&P-Reservoir Ontology was conducted by representing business process models 

according to (Baiao et al., 2008). The original E&P-Reservoir ontology, following the same 

trend of other existing projects in the area (e.g., IIP and AKSIO), was codified in OWL-DL 

comprising 178 classes, which together contained 55 data type properties (OWL 

datatypeProperties) and 96 object properties (OWL objectProperties). 

In a nutshell, a Reservoir is composed of Production Zones and organized in Fields – 

geographical regions managed by a Business Unit and containing a number of Wells. 

Reservoirs are filled with Reservoir Rock – a substance composed of quantities of Oil, Gas 

and Water. Production of Oil and Gas from a Reservoir can occur via different lifting 

methods (e.g., natural lifting, casing’s diameter, sand production, among others) involving 

different Wells. One of these artificial lifting methods is the Mechanical Pump. The 

simultaneous production of oil, gas and water occurs in conjunction with impurities. To 

remove these impurities, facilities are adopted on the fields (both off-shore and on-shore), 

including the transfer of hydrocarbons (Oil and Gas) via Ducts to refineries for proper 

processing. The notion of Reserve Assessment refers to the process of estimating, for each 

Exploration Project and Reservoir, the profitably recoverable quantity of hydrocarbons for 

that given reservoir. The Mechanical Pump subdomain ontology, in contrast, defines a 

number of concepts regarding the methods of fluid lifting, transportation, and other activities 

that take place in a reservoir during the Production process. For a more extensive definition 

of the concepts in this domain, one may refer to The Energy Standard Resource Center 

(www.energistics.org). 

 

Reverse engineering an OntoUML version of the E&P-Reservoir Ontology 

In this section, we discuss some of the results of producing an OntoUML version of the 

original E&P-Reservoir Ontology in this domain. In particular we focus at illustrating a 

number of important concepts in this domain which were absent in the original OWL model 

and remained tacit in the domain experts’ minds, but which became explicit by the 

application of methodological directives underlying OntoUML. It is important to emphasize 

that this section does not aim at serving as an introduction to OntoUML neither as a complete 

report on the newly produced version of the E&P-Reservoir Ontology.  

 
Making the Real-World Semantics of Relationships Explicit 

Figure 1 depicts a fragment of the OWL ontology and figure 2 depicts the correspondent 

fragment transformed to OntoUML. 

The OntoUML language, with its underlying methodological directives, makes an explicit 

distinction between the so-called material and formal relationships. A formal relationship can 

be reduced to relationships between intrinsic properties of its relata. For example, a 

relationship more-dense-than between two fluids can be reduced to the relationship between 

the individual densities of the involved fluids (more-dense-than(x,y) iff the density of x is 

higher than of y’s). In contrast, material relationships cannot be reduced to relationships 

between individual properties of involved relata in this way. In order to have a material 

relationship established between two concepts C1 and C2, another entity must exist that 

makes this relationship true. For example, we can say that the Person John works for 

Company A (and not for company B) if an employment contract exists between John and 

Company A which makes this relationship true. This entity, which is the truthmaker of 

material relationships, is termed relator in OntoUML and the language determines that (for 



 

 

the case of material relationships) these relators must be explicitly represented on the models 

(Guizzardi & Wagner, 2008).  

 

Fig. 1. Representation of Fluid transportation (OWL). 

 

 
Fig. 2. Alternative Representation of Fluid transportation (OntoUML), an interpretation of 

Fluid transportation with unique Duct and Fluid. 

 

 

Fig. 3. Interpreting Fluid transportation with multiples Ducts and Fluids. 

 

The Conduct_Fluid relationship of figure 1 is an example of a material relationship. 

Therefore, this relationship only takes place (i.e., the Conduct_Fluid relationship is only 

established) between a specific duct x and a specific portion of fluid y, when there is at least a 

fluid transportation event that involves the participation of x and y. 

Besides making explicit the truthmakers of these relations, one of the major advantages of 

the explicit representation of relators is to solve an inherent ambiguity of cardinality 

constraints that exists in material relationships. Take for example the cardinality constraints 

of one-to-many represented for the relationship Conduct_Fluid in figure 1. There are several 

possible interpretations for this model which are compatible with these cardinality constraints 

but which are mutually incompatible among themselves. Two of these interpretations are 

depicted in figures 2 and 3. 

On the model of figure 2, given a fluid transportation event, we have only one duct and 

only one portion of fluid involved; both fluid and duct can participate in several 

transportation events. In contrast, on the model of figure 3, given a fluid transportation event, 

we have possibly several ducts and portions of fluid involved; a duct can be used in several 

transportation events, but only one fluid can take part on a fluid transportation. 



When comparing these two models in OntoUML we can see that the original OWL model 

collapses these two interpretations (among others) in the same representation, which have 

substantially different real-world semantics. This semantic overload can be a source of many 

interoperability problems between applications. In particular, applications that use different 

models and that attach distinct semantics to relationships such as discussed above can 

wrongly assume that they agree on the same semantics (an example of the previously 

mentioned False Agreement Problem).  

Finally, in the OntoUML models in this section, the dotted line with a filled circle on one 

of its endings represents the derivation relationship between a relator type and the material 

relationship derived from it (Guizzardi, 2005). For example, the derivation relationship Fluid 

Transportation (relator type) and Conduct_Fluid (material relationship) represents that for 

all x, y we have that: <x,y> is an instance of Conduct_Fluid iff there is an instance z of Fluid 

Transportation that mediates x and y. Mediation is a specific type of existential dependence 

relation (e.g., a particular Fluid Transportation can only exist if that particular Duct and that 

particular Fluid exist). Moreover, it also demonstrated that the cardinality constraints of a 

material relationship R derived from a relator type UR can be automatically derived from the 

corresponding mediation relationships between UR and the types related by R. In summary, a 

relator is an entity which is existentially dependent on a number of other individuals, and via 

these dependency relationships it connects (mediates) these individuals. Given that a number 

of individuals are mediated by a relator, a material relationship can be defined between them. 

As this definition makes clear, relators are ontologically prior to material relationships which 

are mere logical/linguistic constructions derived from them. To put it in a different way, 

knowing that x and y are related via R tells you very little unless you know what are the 

conditions (state of affairs) that makes this relationship between this particular tuple true 

(Guizzardi, 2005; Guizzardi & Wagner, 2008). 

 
Ontological Distinctions among Object Types 

Differently from most existing conceptual modeling and ontology representation languages, 

OntoUML explicitly represents ontological distinctions among the category of Object Types. 

Common ontological criteria motivating these distinctions are the modal (e.g., temporal) 

aspects of the instantiation/classification relations. For instance, in the revised model of 

Figure 2, by representing Duct using the stereotype 〈〈kind〉〉, one is explicitly stating that this 

type: (i) is rigid, i.e., all instances of Duct are necessarily (in the modal sense) instances of 

this type; (ii) provides a principle of identity for its instances; (iii) represents essential 

properties for all its instances, i.e., it represents those properties that its instances must have 

in all possible circumstances. In an analogous form, by representing a type (e.g., Gas 

Pipeline) as a 〈〈subKind〉〉, we are stressing that this is a rigid type and that it has additional 

essential properties that must be carried by its instances, besides those inherited by the kind it 

specializes. However, differently from this kind that supplies a principle of identity for its 

instances, instances of a subkind inherit this principle from the former. The identification of 

rigid types such as kind and subKind (but also quantity, see section 2.3) is of fundamental 

importance for conceptual modeling. The taxonomic structures involving only these 

categories of types define the backbone of a conceptual model. By the very definition of 

rigidity w.r.t. modality (temporality), this taxonomy defines a stable structure, over which 

instances will be classified in all circumstances (or during all its lifecycle).    

Figure 4 depicts a complete version of the model fragment of figure 1 illustrating the 

explicit representation of kinds and subkinds. 

 



 

 

 
Fig. 4. Specializing Fluid and Duct Kinds and Transportation Relators. 

 

The Ontological Status of Quantities  

Figures 5 and 6 represent fragments of the domain ontology that deal with the notion of 

Fluid. 

 

 
Fig. 5. The representation of Fluid and related notions in OWL. 

 

 
Fig. 6. The Representation of Fluid and related notions in OntoUML 



 

In general, quantities or amounts of matter (e.g., water, milk, sugar, sand, oil) are entities that 

are homeomerous, i.e., all of their parts are the same type as the whole. Alternatively, we can 

say that they are infinitely divisible in subparts of the same type. Homeomerousity and 

Infinite divisibility causes problems both to determine the referent of expressions referring to 

quantities and, as a consequence, also problems to specify finite cardinality constraints of 

relationships involving quantity types (Guizzardi, 2005). In OntoUML, these problems are 

avoided by defining a modeling primitive 〈〈quantity〉〉 whose semantics are defined by 

invoking the ontological notion of Quantity. In OntoUML, a type stereotyped as 〈〈quantity〉〉 

represents a type whose instances represent portions of amounts of matter which are maximal 

under the relation of topological self-connectness (Guizzardi, 2005).  

In figure 5, the type Fluid is represented as a quantity in this ontological sense. A type 

stereotyped as 〈〈quantity〉〉 is equivalent to a kind w.r.t. the rigidity property. In ontological 

terms, both kinds and quantities represent the notion of substance sortal (Guizzardi, 2005; 

Guizzardi et al., 2004). Likewise, specializations of a quantity are also represented with the 

stereotype subkind. In figure 5, these include the specific types of Fluid: Water, Oil, 

Petroleum and Gas.  

On the original ontology in OWL, the equivalence between the Oil and Petroleum 

concepts was represented by the Oil_Petroleum_synonym relationship defined between these 

concepts. This relationship is declared as being symmetric. On the original ontology, these 

concepts simply represent the general concepts of Oil or Petroleum and do not represent 

genuine types that can be instantiated. Consequently, the Oil_Petroleum_synonym 

relationship also represents a relational type that cannot be instantiated. Therefore, it does not 

make sense to characterize it as a symmetric relationship, since it functions as an instance and 

not genuinely as a type. 

In the semantics adopted on the revised model, Oil and Petroleum are quantity types, the 

instances of which are specific portions of these Fluids. Therefore, in this case, there is no 

sense in defining an Is_synonym_of relationship between Oil and Petroleum. After all, 

defined this way, since these are genuine types that can be instantiated, this relationship 

would have as instances ordered pairs formed by specific portions of Oil and Petroleum, 

which definitely does not correspond to the intended semantics of this relationship. In fact, 

the relationship Is_synonym_of is a relationship between the Oil and Petroleum types and not 

between its instances. In particular, this relationship has a stronger semantics than simply 

symmetry, being an equivalence relationship (reflexive, symmetric, transitive). 

The proper representation of an Is_synonym_of relationship between any two types of 

fluid is illustrated in figure 5. Firstly, the model makes an explicit distinction between the 

fluid type (instances of which are individual portions of fluid) and a type (instances of which 

are the concepts of Oil, Water, Gas and Petroleum themselves). Since OntoUML is an 

extension of standard UML, this can be represented as a powertype†. In a nutshell, a 

powertype is a type, instances of which are other types. On this specific model, the 

relationship between the Fluid Type powertype and Fluid defines that the subtypes of the 

latter (Oil, Water, Gas and Petroleum) are instances of the former. Once this distinction is 

made, the formal relationship of Fluid_identity‡ can be defined among the instances of Fluid 

Type. This relationship can, then, be defined as an equivalence relationship which semantics 

is characterized by the following rule: two fluid types are identical iff they possess 

necessarily (i.e., at any given circumstance) the same instances. In the OntoUML language, 

this rule is defined outside the visual syntax of the language and as part of the axiomatization 

of the resulting model (ontology). 



 

 

Finally, as a result of this modeling choice, particular instances of the Fluid_identity 

relationship can be defined. For example, in figure 5, the link (instance of a relationship) 

between Oil and Petroleum (instances of Fluid Type) is defined explicitly as an instance of 

Fluid_Identity. 

In the revised model of figure 5, in the same manner as Fluid and its subtypes, Reservoir 

Rock is explicitly represented as a quantity type. Once more, this type represents a genuine 

type instances of which are particular portions of Reservoir Rock. The 

Is_accumulated_in_Reservoir_Rock relationship in the original model of figure 4 is, hence, 

replaced by a special type of part-whole relationship (subQuantityOf) between Reservoir 

Rock and Fluid. The SubQuantityOf relationship defined as a primitive in OntoUML contains 

a formal characterization that implies: (i) a partial order (irreflexivity, asymmetry, 

transitivity) relation; (ii) An existential dependency relation, i.e., in this particular example a 

particular portion of Reservoir Rock is defined by the aggregation of the specific particular 

portions of its constituent Fluids; and (iii) Non-sharing of parts, i.e.,  each particular portion 

of fluid is part of at most one portion of Reservoir Rock. It is important to emphasize that the 

explicit representation of the semantics of this relationship eliminates an implicit ambiguity 

on the original model.  

Finally, representing Fluid as a quantity type, i.e., as a genuine type (which instances are 

individual portions of Fluid) and a rigid one (which instances are necessarily instances of that 

type) also provides information that helps to resolve cardinality constraints involving 

elements of the model. For example, in figure 1, a Duct is said to conduct one-to-many Fluids 

and a Fluid is said to be conducted by one-to-many Ducts. However, since Fluid is rigid type, 

a Fluid instance is classified under this type in all circumstances. It does not, however, have 

to participate in relations of Fluid Transportations in all these circumstances. Mutatis 

Mutandis, the same can be stated for Ducts. As consequence, the cardinality constraints in the 

relation of Conduct_fluid (and all its specializations) have been revised in figure 4 to express: 

a Duct conducts zero-to-many Fluids; a Fluid can be conducted by zero-to-many Ducts.    

 
The Containment relation to represent the spatial inclusion among physical entities: Reservoir, 

Reservoir Rock and Geographic Area 

The model on figure 5 also depicts the Reservoir and Geographic Area concepts and defines 

the formal relationship of containment (Smith et al., 2005) between Reservoir and Reservoir 

Rock and between Reservoir and Geographic Area. This relationship contains the semantic of 

spatial inclusion between two physical entities (with the spatial extension) that is also defined 

on the ontology’s axiomatization, e.g., outside the visual syntax of the model. 

On the original model of figure 4, there is only one relationship 

Is_composed_of_Water_Gas_Oil defined between the Extracted Petroleum and the Water, 

Gas and Oil concepts. On the revised ontology, this relationship is replaced by composition 

relationships (subQuantityOf). As previously discussed, the richer semantics of this 

relationship type makes important meta-properties of the relationship among these elements 

explicit in the model. As discussed in (Guizzardi, 2005; Artale & Keet, 2008; Keet & Artale, 

2008), the formal characteristics of this relationship, modeled as a partially order, existential 

dependency relation with non-sharing of parts, have important consequences both to the 

design and implementation of an information system as to the automated processes of 

reasoning and model evaluation. 

 
Making the Production Relator Explicit 

As already discussed, OntoUML makes an explicit distinction between formal and material 

relationships. The Extracts_Fluid relationship between Fluid and Well in the original model 

is an example of the latter. In this way, following the methodological directives of the 



language, the modeling process seeks to make explicit which is the appropriate relator that 

would substantiate that relationship. The conclusion would one come to is that the 

relationship Extracts_Fluid(x,y) is true iff there is a Production event involving the Well x 

from where the Fluid y is produced. The semantic investigation of this relationship makes 

explicit that the resulting fluid of this event in fact only exists after the occurrence of this 

event. In other words, the portion of the Extracted Petroleum only exists after it is produced 

from the event of production involving a well. Therefore, a mixture of water, gas and oil is 

considered Extracted Petroleum only when it is produced by an event of this kind. The 

Extract_Fluid relationship between Well and Fluid and the Is_extracted_from_Well 

relationship between Extracted Petroleum and Well on the original ontology are replaced by 

the material relationship Extracts_Extracted_Petroleum between Well and Extracted 

Petroleum and by the subQuantityOf relationships between the Extracted Petroleum portion 

and its sub portions of Water, Gas and Oil. This representation has the additional benefit of 

making clear that an event of Production has the goal of generating an Extracted Petroleum 

portion that is composed of particular portions of these Fluid types and not by directly 

extracting portions of these other types of fluid. Finally, as previously discussed, the explicit 

representation of the Production relator makes the representation of the cardinality 

constraints involving instances of Well and Extracted Petroleum precise, eliminating the 

ambiguity on the representation of the Extract_Fluid relationship on the original model. 

 
Historical Dependence and Derivation Axioms 

Figure 7 depicts a fragment of the original ontology representing, in very general terms, the 

connections between the notions of Well, Fluid and Reservoir. This model exemplifies how a 

plethora of important domain concepts can remain tacit in surface-level models. 

 

 
Fig. 7. Representing the notions of Well, Fluid, Reservoir and their connections (OWL). 

 

One important aspect of a language such as OntoUML is, besides from the possibility to 

represent subtle notions explicitly, the fact that the language systematically supports the 

modeler to make these subtle notions explicit. In this model, we start by enquiring about the 

nature of Extract_Fluid relation. Since this is a material relation, the next question is to 

uncover its founding relator. As discussed previously, for an Extract_Fluid relation to hold 

between a Well x and Fluid y, in particular, there must be a Production event in which both x 

and y participate. Moreover, we have seen that the goal of this Production event is to produce 

a portion (quantity) of Extracted Petroleum. In other words, Production as a relator mediates 

Well and Extracted Petroleum (as opposed to Well and Fluids in general). This is illustrated 

both in figures 6 and 8. 

As previously discussed, the subquantityOf relation defined in OntoUML to hold between 

portions of quantities is a type of existential dependency relation from the whole to the part. 



 

 

In other words, all parts of a quantity are essential parts of it. For instance, in figure 8, we 

have the type Reservoir Rock stereotyped as 〈〈quantity〉〉. As a consequence, once we have 

the case that specific portions of water, gas and oil are extracted from a specific portion of 

Reservoir Rock x (creating a portion of Extracted Petroleum y) that specific portion x ceases 

to exists. Indeed, the resulting portion of Extracted Petroleum y and the Reservoir Rock x 

from which y originates cannot co-exist at the same circumstances. In fact, the same event 

that creates the former is the one that destroys the latter. However, it is important to represent 

the specific connection between x and y, for instance, because some characteristics from an 

Extracted Petroleum could result from characteristics of that Reservoir Rock. Here, this 

relation between x and y is modeled by the formal relation of historical dependence 

(Thomasson, 1999): in this case, since y is historically dependent on x it means that y could 

not exist without x having existed. As containment, historical dependence is a primitive 

domain independent formal relation. Once more, the formal primitive of containment is 

employed here to represent the relation between Reservoir Rock and Reservoir.     

 

 
Fig. 8. Extracted Petroleum and its historical dependence to a Reservoir Rock 

 

In the original model of Figure 7, the Is_a_mechanism_to_extract_from_Reservoir has a 

semantics which is unclear. What is represented in this case? That a Well could be used to 

extract something (extract what?) from a Reservoir? That a Well is in fact used to extract 

something (again, what?) from a Reservoir? The first possibility is eliminated by the fact that 

in an instance level this relation is to be established between specific wells and specific 

reservoirs (as opposed to Well types and Reservoir types). Moreover, the implicit relation 

with something which is supposed to be extracted makes clear that this should be at least a 

ternary relation. When the foundation of this relation (i.e., the relator) is made explicit, 

however, it becomes clear that a Production event involves directly only a Well and a portion 

of Extracted Petroleum. The relation between that Production event (and consequently 

between the Well it is dependent of) and the Reservoir is an indirect derived one.  

Usually, the type of derivation axiom needed to define a relation such as 

suffers_extraction does not have a corresponding visual syntax in the language and, as 



consequence, must be represented as part of the axiomatization of the ontology at hand. A 

recent version of OntoUML, OntoUML-R (das Graças, 2008), allows the visual 

representation of domain axioms (rules). This is achieved by combining the original 

OntoUML with the relevant portion of the URML (UML-Based Rule Modeling Language) 

(Lukichev & Wagner, 2006) metamodels. The latter has been conceived as a version of 

standard UML which includes a syntax extension for the visual representation of derivation, 

integrity and reactive rules. Figure 9 below illustrates the visual representation of the 

Derivation Rule that defines the suffers_extraction relation. In this example, the ellipse 

termed DR: suffers_extraction represents this rule with the following semantics: let pro, pet, 

roc and res be instances respectively of Production, Extracted Petroleum, Reservoir Rock and 

Reservoir. If (pet is mediated by pro , pet is a subQuantity of roc and roc is contained in res), 

then  (res suffers_extraction of pro).     

 

 
Fig. 9. Visual Representation of a Derivation Axiom and Derived Relation in OntoUML-R 

 
Reserves as Modes  

Figure 10 represents the notions of a Reservoir’s Reserve, a Production Zone and a Reserve 

Class. A Reserve represents a quantity of Fluid which is economically viable to be extracted 

from a Reservoir. Each Reservoir is composed of several Production Zones and each of these 

are related to a number of Reserve Classes, namely, possible reserve, probable reserve, 

developed producing reserve, non developed producing reserve and developed (but) non 

producing proved reserve.  

There are several questionable decisions in this model. In this original representation, 

reservoir is a number (value), which is both associated to Reservoir and Fluid. The idea 

behind this is that if x is a Reservoir, y is a Fluid contained in x and z is the Reservoir then z 

represents the “recoverable” portion of Extracted Petroleum from x which is supposed to be 

the Fluid y contained in x. However, there is no constraints in the model that guarantee this, 

i.e., that the instance of Fluid which is related to z is the same as the one contained in x. In 

principle, a solution would be to simply have the relation between Reserve and Fluid derived 

from the relations between Reserve and Reservoir and Reservoir and Fluid as discussed in the 



 

 

previous section. The problem is that Fluid in the original ontology does not have specific 

portions of Fluid as its instances. Now, there are two important observations at this point. 

Firstly, reserve is the economically viable recoverable quantity of Petroleum, not of any 

Fluid. Thus, even if the relationship between Reserve and Fluid would make sense, it should 

in principle be defined between Reserve and (Extracted) Petroleum. However, since for the 

original ontology, there is only one instance of Petroleum (the fluid type) and reserves are 

always related to Petroleum, this relationship is simply superfluous. 

Another problematic modeling decision in Figure 10 is to relate Reserve with a Reservoir 

but to classify as a Reserve Class the Production Zones. In this model, one can only know the 

total Reserve of a Reservoir and then know in which Reserve Classes each Production Zone 

is classified. During the interviews conducted with domain experts for the process of 

evolving this ontology via its transformation to OntoUML, it became clear that the intended 

conceptualization differed radically from this model at this point. Firstly, a Reserve is not a 

single value but a composition of values for each Reserve Class, i.e., one should have a 

predication of the amount petroleum in each of these classes (the possible amount, the 

probable amount, the developed producing amount, etc.). Secondly, one should have this 

information for each Production Zone. Thirdly, a Reserve can in principle change (it can 

change one of the estimations for a specific Reserve Class) and still be considered the same 

overall estimation (same Reserve) and Production Zone can have different Reserves 

associated with it in different periods of time.      

 

 

Fig. 10. Representation of Reservoir, Reservoir Classes and Production Zones (OWL) 

 

OntoUML makes a fundamental distinction between two sorts of enduring entities, namely, 

Objects (e.g., a person, a car, a restaurant, a crowd, the moon, a forest, a portion of extracted 

petroleum) and a Moment (also known as Trope or Objectified Property). The difference 

between the two categories is made using the ontological relation of existential dependence. 

Whilst an Object can exist by itself, a Moment can only exist in another individual in the 

way, for example, that a charge in an electric conductor existentially depends on that 

conductor, that a hole in a piece of cheese depends on the latter, or that a headache 

existentially depends on a patient. An example of Moment is the category of Relator previous 

discussed: a Marriage between John and Mary can only exist if John and Mary exist. A Mode 

is another category of moment. However, whilst a Relator characterizes a relational property 

(or a set of relational properties) of individuals and hence, is existentially dependent of this 



multitude of individuals, a Mode characterizes an intrinsic property (or set of intrinsic 

properties) of one single individuals. Again, suppose that both John and Peter have headaches 

x and y, respectively. Even these two headaches instances are qualitatively indistinguishable, 

we have that x is existentially dependent on John whilst y is existentially dependent on Peter. 

Notice that x and y can have their own properties (e.g., duration, graveness) which can vary 

independently, can have different relations with other symptoms (e.g., causality), and so on. 

In figure 11 below, we use the notion of Modes in the model. Each reserve is existentially 

dependent and characterizes a single Production Zone during a period of time. A Production 

Zone can be characterized by several Reserves in different periods and a Reserve has its own 

properties which refer both an attribute value space of time (date) and a numeric value space 

in which a value is assigned corresponding to each Reserve Class.     

 

 
Fig. 11. Representation of Reserves as Modes as Reserve Classes as Attribute Functions 

assigning values in a Attribute Value Space (OntoUML) 

 

Conclusions 

An ontology engineering process is composed of phases, among them are conceptual 

modeling and implementation. During the whole process, the ontology being built must be 

made explicit by a representation language. The diverse ontology representation languages 

available in the literature contain different expressivity and different ontological 

commitments, reflecting on the specific set of available constructs in each one of them. 

Therefore, different ontology representation languages, with different characteristics, are 

suitable to be used in different phases of the ontology engineering process so as to address the 

different set of requirements which characterize each phase. In particular, conceptual 

ontology modeling languages aim primarily at improving understanding, learning, 

communication and problem solving among people in a particular domain. Therefore, these 

languages have being designed to maximize expressivity, clarity and truthfulness to the 

domain being represented. In contrast, ontology codification languages are focused on 

aspects such as computational efficiency and tractability and can be used to produce 

computationally amenable versions of an ontologically-well founded reference conceptual 

model. The inadequate use of a representation language, disregarding the goal of each 

ontology engineering phase, can lead to serious problems to database design and integration, 

to domain and systems requirements analysis within the software development processes, to 

knowledge representation and automated reasoning, and so on. 



 

 

This article presents an illustration of these issues by using an industrial case study in the 

domain of Oil and Gas Exploration and Production. The case study consists in the generation 

of a Conceptual Ontological Model for this domain from an existing domain ontology in the 

organization where the case study took place.  

The ontology representation language used to produce the redesigned model is OntoUML. 

OntoUML is a theoretically sound and highly expressive language, explicitly designed to 

have as modeling primitives, representations of the ontological distinctions prescribed by a 

Foundation Ontology. The hypothesis tested in this work is that a modeling language that is 

less expressive than OntoUML in the ontological sense (i.e., that lacks representation of these 

ontological distinctions) is prone to produce conceptual domain ontologies which are 

incomplete, ambiguous and less truthful to the portion of reality being represented. This 

hypothesis has been confirmed by our case study. The choice of OntoUML highlights a 

number of explicit concepts and ideas (tacit domain knowledge) that were implicit in the 

original model coded in OWL-DL. Moreover, the case study shows that a well-founded 

language such as OntoUML is capable of highlighting this tacit knowledge not only because 

it is able to express the underlying subtle ontological distinctions. It also demonstrates that 

the rich choice of modeling primitives offered by the language (representing these 

distinctions),  as well as the methodological support of the formal meta-properties  used 

define them (e.g., rigidity, existential dependence), forces the modeler to make the assumed 

ontological commitments explicit.  

In particular, the aspects of ontological incompletes of OWL-DL which are made explicit 

by this case study are summarized as follows: (i) The distinction between formal and material 

relations; (ii) the representation of the foundation (truth-makers) of material relations which, 

in turn, allows for eliminating the intrinsic ambiguity which arises when material relations are 

represented as simple set-theoretical associations; (iii) the distinction between rigid object 

types and contingent object types. This, in turn, allows for the identification of the model’s 

stable backbone structure, i.e., those essential types which are instantiated by their instances 

in all possible situations (in a modal sense); (iv) an ontologically-sound treatment of masses 

(quantities) and the consequent implications for conceptual modeling (e.g., the elimination of 

the intrinsic ambiguity of cardinality constraints in relationships involving quantities); (v) 

distinctions among primitive formal relations such as different kinds of parthood relations, 

containment, historical dependence, mediation, characterization. Incorporating these relations 

as primitives in the language also enables the definition of their formal meta-properties (e.g., 

reflexivity, transitivity, shareability, existential dependence) which, in turn, have notorious 

important consequences both to the design and implementation of an information system as 

well as to the automated processes of reasoning and model evaluation; (iv) the distinction 

between existentially independent enduring entities (Objects) and existentially dependent 

ones (Moments). This distinction has also important consequences for the design and 

implementation of information systems, which must reinforce that the lifecycle of 

existentially dependent entities are included in the lifecycle of their bearers. 

To cite just one example of the impact of such incompletess, in the original representation 

of Conduct_Fluid relationship, it is possible to define that a duct can conduct several fluids 

and a fluid can be conducted by several different ducts. However, the lack of the Fluid 

Transportation concept (a relator uncovered by the methodological directives of OntoUML) 

hides important information about the domain. For instance, it is not explicit in this case how 

many different fluids can be transported at the same time or even if a duct can have more than 

a fluid transportation at a time. By making these concepts explicit as well as defining a 

precise real-world semantics for the notions represented, the newly E&P-Reservoir ontology 

produced in OntoUML prevents a number of ambiguity and interoperability problems which 



would likely be carried out to subsequent activities (e.g., database design) based on this 

model. 

It is well known in many engineering disciplines (e.g., software and data engineering) that 

the benefits of using complex modeling techniques become more evident once we deal with 

complex domains and/or complex tasks. However, many of the examples currently used in 

the literature to promote the use lightweight modeling languages such as the Semantic Web 

languages are either conducted in simple domains (e.g., the pizza ontology, the travel agency 

ontology) and/or are cases worked with a focus on structuring the subject domain using a 

limited subset of possible relations (e.g., taxonomic structures). Here, the intrinsic complexity 

of the chosen domain as well as of the industrial settings poses a clear demand to a plethora 

of ontological distinctions to be used in order to make a number of subtle domain notions 

explicit.  

Despite becoming more evident in complex cases, the interoperability problems which 

can arise from the lack of expressivity of modeling languages are not limited to these cases. 

As previously mentioned, in (Guizzardi, 2006) a case study is carried out to demonstrate that 

a number of these problems occur even if simple lightweight Semantic Web ontologies are 

integrated. These case studies are in line with the Harvard Business Review report of October 

2001 which claims that “one of the main reasons that so many online market makers have 

foundered [is that] the transactions they had viewed as simple and routine actually involved 

many subtle distinctions in terminology and meaning”. Thus, we defend that the relative 

high-complexity of the techniques employed here are compensated by the improved quality 

of the resulting models w.r.t. their capacity to support the tasks of domain understanding, 

meaning negotiation and semantic interoperability. Nonetheless, we have been working on a 

number of design patterns (Guizzardi et al., 2004; Guizzardi, 2009) as well as automated tool 

support (Benevides & Guizzardi, 2009) in order to, as much as possible, shield the user of 

OntoUML from the complexity of the language.  

Finally, following the methodological principles behind OntoUML, once a conceptual 

model (ontology) is produced for a given domain, a number of specifications in different 

implementation environments can be derived from it, satisfying different sets of design (non-

functional) requirements and application scenarios. We have defined an automatic 

transformation from OntoUML models to the Alloy language (Jackson, 2006), so that 

OntoUML models can be simulated by using a visualization extension built on top of the 

Alloy Analyzer (Benevides et al., 2009). We are currently also working on defining an 

additional automatic transformation from OntoUML-R to OWL/SWRL, so as to 

automatically generate an enhanced version of the OWL-DL/SWRL codified E&P-Reservoir 

Ontology. This enhanced lightweight model, in turn, shall contemplate the domain concepts 

uncovered by the process described in this article and, due to the combination of OWL-DL 

and SWRL, afford a number of more sophisticated reasoning tasks. 
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