
The MULTI Process Challenge

João Paulo A. Almeida1, Adrian Rutle2, Manuel Wimmer3 and Thomas Kühne4

1Federal University of Espírito Santo, Vitória, Brazil
2Western Norway University of Applied Sciences, Bergen, Norway

3Johannes Kepler University Linz, Austria
4Victoria University of Wellington, New Zealand

jpalmeida@ieee.org, Adrian.Rutle@hvl.no,
manuel.wimmer@jku.at, tk@ecs.vuw.ac.nz

Abstract—This challenge is intended to allow submitters to
demonstrate the use of multi-level modeling techniques and
enable the comparison of submissions and hence frame-
work/language capabilities. The multi-level modeling com-
munity is invited to respond to this challenge with papers
describing solutions to the challenge. Authors should emphasize
the merits of their solutions according to the aspects defined
in this challenge description. The challenge follows up on the
“MULTI Bicycle Challenge” which was used in MULTI 2017
and MULTI 2018, and reuses some criteria that were estab-
lished in these previous editions. Despite the similar criteria,
the subject domain has been changed entirely and new criteria
have been added which are intended to increase opportunities
for languages and tools to exercise their capabilities.

Index Terms—Multi-level modeling, challenge, process man-
agement, MULTI workshop.

1. Introduction

Multi-level modeling (MLM) represents a significant ex-
tension to the traditional two-level object-oriented paradigm
with the potential to improve upon the utility, reliability
and complexity of models. In contrast to conventional ap-
proaches, MLM allows for an arbitrary number of classi-
fication levels and introduces further concepts that foster
expressiveness, reuse and adaptability. A key aspect of the
MLM paradigm is the use of entities that are simultane-
ously types and instances, a notion which has consequences
for conceptual modeling, language engineering and for the
development of model-based software systems.

Research into MLM has increased significantly over
the last few years, manifesting itself in lively debates in
the literature, five international workshops (MULTI 2014–
2018), a published journal theme issue (SoSyM), a special
issue for the EMISA journal, a Dagstuhl Seminar (in 2017)
[4], and an increasing number of tools and languages [3],
with different capabilities and underlying theories.

The modeling challenge described in this paper is in-
tended as a basis for demonstrating these capabilities and
enabling their comparison. It follows up on the MULTI
Bicycle Challenge which was used in MULTI 2017 [1]

and MULTI 2018 [2], and reuses some criteria that were
established in these previous editions. Despite the similar
criteria, the subject domain has been changed entirely and
new criteria have been added which are intended to increase
opportunities for languages and tools to exercise their capa-
bilities.

This challenge concerns the domain of process man-
agement [5], a domain in which one is not only interested
in particular occurrences (i.e., “processes” = “process in-
stances”, “tasks” = “task occurrences”), but also in universal
aspects of classes of occurrences (“process definitions”,
“task types”) and their relations to actor types and artifact
types. This challenge is intended to elicit submissions which
demonstrate the advantages of MLM not only but also
in comparison to traditional solutions as they have been
proposed in the context of BPMN, Workflow modelling, etc.
For example, domain-specific concepts may be defined in
their dedicated branches of a hierarchy of models without
polluting the general terminology of process management,
allowing domain-specific behaviour to be defined for each
branch of the hierarchy while allowing for the reuse of
common behaviour.

Each challenge response will be reviewed against the
following criteria: (i) Does the response address the estab-
lished domain as described in Section 2 and demonstrate the
use of multi-level features? (ii) Does it evaluate/discuss the
proposed modeling solution against the criteria presented in
Section 3? (iii) Does it discuss the merits and limitations of
an MLM technique in the context of the challenge?

Papers that clearly address the review criteria listed
above will be accepted for presentation at the workshop and
for inclusion in the workshop proceedings. Tool demonstra-
tions that are suited to show the strengths of the proposed
solution are appreciated as well. Authors are invited to
suggest further requirements that clearly demonstrate the
utility of multi-level modeling.

Challenge responses should be submitted as regular pa-
pers. Each submission must be subtitled: “A contribution
to the MULTI Process challenge”. Any artifacts (models,
implementation) produced should be made available for
review in material accompanying the paper, e.g., in a shared
repository. The proposed solution should be presented in a



paper with the following structure:
1) Introduction (presentation of the approach that is used);
2) Case analysis (analysis, interpretation, completion of

case description, any additional requirements);
3) Model presentation (step-by-step presentation of

model, including justifications for design decisions);
4) Discussion (reflecting on requirements that could not

be addressed, etc.);
5) Conclusions.

2. Case description

This multi-level modeling challenge involves represent-
ing universal properties of process types along with task
types, artifact types, actor types and their various relations
and attributes (Section 2.2), and an application of this con-
ceptualization in the scope of a particular software engi-
neering process (Section 2.3). Challenge responses should
include instances for all of the types defined, exemplifying
all attributes mentioned in the challenge description. Devia-
tions from the case as described here should be documented
in challenge responses. Challenge participants may extend
the case description in their responses but should provide a
respective rationale for the extensions.

2.1. Overview

Process management is characterized by the prescription
of rules concerning the execution of certain types of pro-
cesses, tasks, actions or activities. It therefore involves reg-
ulating and keeping track of processes, i.e, the enactments
of process types, with such process enactments often being
referred to as “process instances” in the process management
literature. For example, in the software engineering domain,
it may be necessary to keep track of the results of certain
tasks such as testing, e.g., the fact whether or not code has
been tested, etc. Further rules impose requirements on the
participation of business actors (humans, organizations) and
artifacts (equipment, documents, tools) in certain tasks and
specifies dependencies. For example, in the software engi-
neering domain: (i) testing requires prior test case design;
(ii) test case design is performed by a test case designer,
employs a requirements specification and results in a test
suite; and (iii) testing is performed by a tester, employs a
test suite and produces a test report.

In other contexts, such as the insurance domain, there
may be a need to keep track of which policy holder submit-
ted an insurance claim, when it was submitted, which claims
analyst authorized payment of the insurance premium in
response to the claim, how much was claimed, which claims
are still pending assessment, how much was paid out for a
particular claim, etc.

Submissions to the challenge should focus on the soft-
ware engineering domain. They may include the insurance
domain as well, but in the following, we are mainly using
the latter for illustrative purposes. Making sure that submit-
ted models cover both software engineering and insurance
domains is optional.

2.2. Processes, tasks, actors and artifacts

The following rules for processes, tasks, actors and
artifacts apply for the challenge:
P1) A process type (such as claim handling) is defined by

the composition of one or more task types (receive
claim, assess claim, pay premium) and their relations.

P2) Ordering constraints between task types of a process
type are established through gateways, which may be
sequencing, and-split, or-split, and-join and or-join.

P3) A process type has one initial task type (with which all
its executions begin), and one or more final task types
(with which all its executions end).

P4) Each task type is created by an actor, who will not
necessarily perform it. For example, Ben Boss created
the task type assess claim.

P5) For each task type, one may stipulate a set of actor
types whose instances are the only ones that may
perform instances of that task type. For example, in
the XSure insurance company, only a claim handling
manager or a financial officer may authorize payments.

P6) A task type may alternatively be assigned to a particular
set of actors who are authorized (e.g., John Smith and
Paul Alter may be the only actors who are allowed to
assess claims).

P7) For each task type (such as authorize payment) one
may stipulate the artifact types which are used and
produced. For example, assess claim uses a claim and
produces a claim payment decision.

P8) Task types have an expected duration (which is not
necessarily respected in particular occurrences).

P9) Critical task types are those whose instances are critical
tasks; each of the latter must be performed by a senior
actor and the artifacts they produce must be associated
with a validation task.

P10) Each process type may be enacted multiple times.
P11) Each process comprises one or more tasks.
P12) Each task has a begin date and an end date. (e.g.,

Assessing Claim 123 has begin date 01-Jan-19 and end
date 02-Jan-19).

P13) Tasks are associated with artifacts used and produced,
along with performing actors.

P14) Every artifact used or produced in a task must instan-
tiate one of the artifact types stipulated for the task
type.

P15) An actor may have more than one actor type (e.g.,
Senior Manager and Project Leader.)

P16) Likewise, an artifact may have more than one artifact
type.

P17) An actor that performs a task must be authorized for
that task. Typically, a class of actors is automatically
authorized for certain classes of tasks.

P18) Actor types may specialize other actor types, in which
case, all the rules that apply to instances of the spe-
cialized actor type must apply to instances of the
specializing actor type. For example, if a Manager is
allowed to perform tasks of a certain task type, so is a
Senior Manager.

2



P19) Artifacts, actors and all types (including process, task,
artifact and actor types) are given a set of alternative
names (e.g., to cope with internationalization require-
ments or variation in terminology).

2.3. Software engineering process

An application of the above described process manage-
ment must be defined to capture domain-specific aspects
of software engineering processes in the fictional Acme
Software Development Company1. The Acme software devel-
opment process is composed of: requirements analysis, de-
sign, coding, test case design, test design review and testing
(conforming to the constraints indicated in Figure 1, where
the bars represent an and-split and an and-join respectively).

Figure 1. The Acme software engineering process.

The following rules for the software engineering domain
apply:
S1) A requirements analysis is performed by an analyst and

produces a requirements specification.
S2) A test case design is performed by a developer or test

designer and produces test cases.2

1. As mentioned before, an additional incorporation of the insurance
domain is purely optional.

2. This requirement was found by one of the challenge submitters of
MULTI 2019 to contradict S13. We have maintained it here for the record,
along with all of the original text of the challenge. We recommend that
future responses to the challenge ignore S2 and further reference the most
up to date version of the challenge description.

S3) An occurrence of coding is performed by a developer
and produces code. It must furthermore reference one
or more programming languages employed.

S4) Code must reference the programming language(s) in
which it was written.

S5) Coding in COBOL always produces COBOL code.
S6) All COBOL code is written in COBOL.
S7) Ann Smith is a developer; she is the only one allowed

to perform coding in COBOL.
S8) Testing is performed by a tester and produces a test

report.
S9) Each tested artifact must be associated to its test report.

S10) Software engineering artifacts have a responsible actor
and a version number. This applies to requirements
specification, code, test case, test report, but also to
any future types of software engineering artifacts.

S11) Bob Brown is an analyst and tester. He has created all
task types in this software development process.

S12) The expected duration of testing is 9 days.
S13) Designing test cases is a critical task which must be

performed by a senior analyst. Test cases must be
validated by a test design review.

3. Solution presentation requirements

Submissions responding to the challenge should describe
a multi-level model conformant to the case description,
including justifications for non-trivial design decisions. In
order to foster comparability between solutions, respondents
are asked to make sure that concepts of the case description
are explicitly represented by one or more model elements.

3.1. Mandatory discussion aspects

Challenge respondents should discuss their multilevel
model solution with regard to the following aspects:

– Basic modeling constructs: Discuss the basic model-
ing constructs used in the solution.

– Levels (or other model content organization schemes
employed): Discuss the nature of “levels” in the model,
how model elements are arranged on these levels and
which relationships (such as instance-of) may feature
between elements at different levels. The nature of
levels may be captured by explicitly stating the level
segregation and the level cohesion principles used [6].

– Cross-level relationships: Discuss if and how associa-
tions and links can connect model elements at different
levels.

– Cross-level constraints: Discuss if and how constraints
can span multiple levels, especially with regard to
cross-level relationships.

– Integrity mechanisms: Discuss how the integrity of
level contents is preserved when changes to level con-
tents occur.

– Abstraction: Discuss the resulting level of abstraction
of the solution. Is it applicable to other domains? Does
it embody invariant principles of the domain(s) it covers
with minimal redundancy?

3



– Deep characterization: Discuss if and how higher
levels influence elements at lower levels with a level
distance of two or more. Such an influence may be
desired to ensure properties of lower level elements
regardless of the design choices that modelers make
at intermediate levels, including future extensions to
intermediate levels.

– Reuse: It should be possible to use the model (or parts
of it) as a foundation for a software system that is suited
for a wide range of process management requirements
and adapt (customize) it to specific circumstances.
Optionally, a submission may demonstrate how the
insurance domain can be covered by the same process
conceptualization.

3.2. Recommended discussion aspects

Respondents are invited to:
– Position their solution with respect to related work

according to the aspects listed above.
– Indicate whether there are formalisms to establish the

semantics of the MLM technique and/or tools that
support the presented solution.

– Discuss model verification or other quality assessment
mechanisms supported by the MLM technique em-
ployed.

4. Conclusions

Participants should summarize their submission and
highlight:

– Limitations of the solution.
– Key advantages and drawbacks of the presented solu-

tion with regard to the challenge.
– Key advantages and drawbacks of the presented MLM

approach that may not be evident in the solution to the
challenge but are worth mentioning.

– Key extensions of the case description and considered
discussion aspects.

Acknowledgments

We would like to thank Ulrich Frank and Tony Clark
who authored the previous MULTI challenges for estab-
lishing the format of the challenge, including some of
the general requirements and many of the discussion as-
pects. We would also like to thank Colin Atkinson for
reviewing the challenge and providing feedback. Parts of
the challenge were inspired by a model published in [7].
João Paulo A. Almeida is partly supported by CNPq
(407235/2017-5 and 312123/2017-5) and CAPES Finance
Code 001 (23038.028816/2016-41).

References

[1] “MULTI 2017: 4th International Workshop on Multi-Level Modelling,”
https://www.wi-inf.uni-duisburg-essen.de/MULTI2017/, accessed May
21, 2019.

[2] “MULTI 2018: 5th International Workshop on Multi-Level Modelling,”
https://www.wi-inf.uni-duisburg-essen.de/MULTI2018/, accessed May
21, 2019.

[3] “Multi-Level Modeling Wiki,” http://homepages.ecs.vuw.ac.nz/Groups/
MultiLevelModeling/, accessed May 21, 2019.

[4] J. P. A. Almeida, U. Frank, and T. Kühne, “Multi-Level Modelling
(Dagstuhl Seminar 17492),” Dagstuhl Reports, vol. 7, pp. 18–49, 2018.

[5] M. Dumas, W. M. van der Aalst, and A. H. ter Hofstede, Process-
aware Information Systems: Bridging People and Software Through
Process Technology. New York, NY, USA: John Wiley & Sons, Inc.,
2005.

[6] T. Kühne, “A story of levels,” in Proceedings of the MODELS 2018
Workshops co-located with the 21th ACM/IEEE International Confer-
ence on Model Driven Engineering Languages and Systems (MODELS
2018), ser. CEUR Workshop Proceedings, ISSN 1613-0073, vol. Vol-
2245, 2018, pp. 673–682.

[7] J. D. Lara and E. Guerra, “Refactoring multi-level models,” ACM
Trans. Softw. Eng. Methodol., vol. 27, no. 4, pp. 17:1–17:56, Nov.
2018. [Online]. Available: http://doi.acm.org/10.1145/3280985

4

https://www.wi-inf.uni-duisburg-essen.de/MULTI2017/
https://www.wi-inf.uni-duisburg-essen.de/MULTI2018/
http://homepages.ecs.vuw.ac.nz/Groups/MultiLevelModeling/
http://homepages.ecs.vuw.ac.nz/Groups/MultiLevelModeling/
http://doi.acm.org/10.1145/3280985

