

Supporting Ontology Development with ODEd
Paula Gomes Mian, Ricardo de Almeida Falbo

Federal University of Espírito Santo
Fernando Ferrari Avenue, 29060-900

Vitória – ES – Brazil
+55 (27) 3335-2167

{pgmian, falbo}@inf.ufes.br

ABSTRACT
Ontologies are becoming an important mechanism to build
information systems. However, ontology construction is not a
simple task. So, it is necessary to provide tools that support
ontology development. This paper presents ODEd, an ontology
editor that supports the definition of concepts and relations using
graphic representations, besides promoting automatic generation
of some classes of axioms and derivation of object frameworks
from ontologies.

Keywords
Ontologies, Domain Engineering, Ontology Editors.

1. INTRODUCTION
In contexts where knowledge has to be modeled, structured, and
interlinked, ontologies can help formalize the knowledge shared
by a group of agents [1].
However, building ontologies is not a simple task. It involves the
specification of concepts and relations that exist in the domain,
besides their definitions, properties and constrains, described as
axioms [2]. Therefore, tools for supporting ontology development
are necessary. These tools must support the definition and
modification of concepts, relations, properties, axioms, and
constraints, and must enable the inspection, browsing, and
codifying of the resulting ontologies [3].
In this paper, we present ODEd, an ontology editor that supports
the definition of concepts and relations, using graphic
representations, and promotes automatic generation of some
classes of axioms. Also, ODEd supports the derivation of object-
oriented frameworks from ontologies. In section 2 we briefly
discuss some aspects of ontologies in software development.
Section 3 discusses the ontology development process that
underlies ODEd functionalities. Section 4 presents an overview of
ODEd architecture. Sections 5 and 6 discuss an example of a
ontology generated in ODEd. Section 7 presents how ODEd
supports domain investigation, allowing ontology browsing. In
section 8 we discuss related works. Finally, in section 9 we report
our conclusion and future work.

2. ONTOLOGIES
People, organizations and software systems must communicate
between and among themselves. However, due to different needs
and backgrounds contexts, there can be widely different
viewpoints and assumptions regarding the same subject matter.
The way to solve this problem is to minimize conceptual and
terminological confusion and come to a shared understanding of
the domain of interest [4].

However, it is impossible to represent the real world, or even a
part of it, with all its details. To represent a phenomenon or part
of the world, which we call a domain, it is necessary to focus on a
limited number of concepts that are sufficient and relevant to
create an abstraction of the phenomenon at hand. Thus, a central
aspect of any modeling activity consists of developing a
conceptualization: a set of informal rules that constrain the
structure of a piece of reality, which an agent uses to isolate and
organize relevant concepts and relations [5].
According to Guarino [6], “an ontology is a logical theory
accounting for the intended meaning of a formal vocabulary, i.e.,
its ontological commitment to a particular conceptualization of
the world”. An ontology can take a variety of forms, but
necessarily it should include a vocabulary of terms, and some
specification of their meaning. This includes definitions and an
indication of how concepts are inter-related which collectively
impose a structure on the domain and constrain the possible
interpretations of terms [7]. Thus, an ontology consists of
concepts and relations, and their definitions, properties and
constrains expressed as axioms [2].
Jasper et al. [8] classified applications of ontologies in four main
categories, emphasizing that an application may integrate more
than one of these categories:

• Neutral Authoring: an ontology is developed in a single
language and it is translated into different formats and used in
multiple target applications.

• Ontology as Specification: an ontology of a given domain is
created and it provides a vocabulary for specifying
requirements for one or more target applications. In fact, the
ontology is used as a basis for software specification and
development, allowing knowledge reuse.

• Common Access to Information: an ontology is used to enable
multiple target applications (or humans) to have access to
heterogeneous sources of information that are expressed using
diverse vocabulary or inaccessible format.

• Ontology-based Search: an ontology is used for searching an
information repository for desired resources, improving
precision and reducing the overall amount of time spent in
searching.

Analyzing these scenarios, we can notice that working with
ontologies has several advantages. One of the main benefits of the
use of ontologies in software development is to reuse domain
specifications in the requirement specification phase. In
traditional Software Engineering, for each new application to be
built, a new conceptualization is developed. This reflects on how
requirements are elicited: for each new application, an elicitation
phase is accomplished almost always from scratch, focusing on all

particularities of the system at hand. This approach is extremely
expensive since requirement elicitation is a very time-consuming
activity. Experts are scarce and costly resources, and they are
essential to this activity. So they should be better used. Therefore,
it is important to share and reuse the knowledge captured [9].
In an ontology-based approach, requirement elicitation and
modeling can be accomplished in two stages. First, the general
domain knowledge should be elicited and specified as ontologies.
These ontologies are used to guide the second stage of the
requirement analysis, when the particularities of a specific
application are considered. This way, the same ontology can be
used to guide the development of several applications, diluting the
costs of the first stage and allowing knowledge sharing and reuse
[9]. In this context, ontologies can act as both a domain model
and a component in a repository of reusable artifacts. Also, it can
be used for structuring this repository.
Since the current leading paradigm in Software Engineering is the
object technology, to put ontologies in practice for developing
information systems, it is worthwhile to code the resulting
ontologies using objects. We believe that coding ontologies in
object frameworks may lead to reuse in several levels of software
development: from analysis to project and implementation.
To support ontology development and its coding in Java, we
developed ODEd, an ontology editor. Before presenting ODEd,
however, we need to describe the ontology development process
that the tool automates.

3. AN ONTOLOGY DEVELOPMENT
PROCESS
Falbo et al. [2] have proposed an ontology development process,
that encompasses the following activities, as shown in Figure 1:

• Purpose identification and requirement specification: it
concerns to clearly identify the ontology purpose and its
intended uses, that is, the competence of the ontology. To do
that, competency questions are used.

• Ontology capture: the goal is to capture the domain
conceptualization based on the ontology competence. The
relevant concepts and relations should be identified and
organized. A model using a graphical language, with a
dictionary of terms, should be used to facilitate the
communication with domain experts.

• Ontology formalization: aims to explicitly represent the
conceptualization captured in a formal language.

• Integration of existing ontologies: during the capture and/or
formalization steps, it could be necessary to integrate the
current ontology with existing ones, in order to seize
previously established conceptualizations.

• Ontology evaluation: the ontology must be evaluated to check
whether it satisfies the specification requirements. It should
also be evaluated in relation to the ontology competence and
some design quality criteria, such those proposed by Gruber
[10].

• Documentation: all the ontology development must be
documented, including purposes, requirements and motivating
scenarios, textual descriptions of the conceptualization, the
formal ontology and the adopted design criteria.

The dotted lines indicate that there is a constant interaction, albeit
weaker, between the associated steps. The filled lines show the
main workflow in the ontology building process. The box
involving the capture and formalization steps enhances the strong
interaction, and consequently iteration, between them.

Figure 1. Steps in the ontology development process.

ODEd aims to support this process. ODEd supports ontology
capture by supporting the definition of concepts and relations
using graphical representations, and it promotes automatic
generation of some classes of axioms. Also, ODEd supports
codifying the resulting ontologies in Java. To do that, it works
based on the approach defined in [9], that defines a set of
directives, design patterns and transformation rules for deriving
object frameworks from ontologies. The directives are used to
guide the mapping from the epistemological structures of the
domain ontology (concepts, relations, properties and roles) to
their counterparts in the object-oriented paradigm (classes,
associations, attributes and roles). The design patterns and
transformation rules are applied in axioms mapping. The
application of these guidelines is supported by a Java Set
framework that implements the mathematical type Set [9]. In this
phase, the following activities should be performed:

• Set-based ontology axiomatization: to derive objects from
domain ontologies, it is worthwhile to adopt a formalism that
lies at an intermediate abstraction level between first-order
logics and objects. For this purpose, a hybrid approach based
on pure first-order logic, relational theory and, predominantly,
set theory was proposed in [9]. So, the first step is to perform
the complete axiomatization of the domain ontology using this
set-based formalism.

• Class identification: starting from the sets formally defined, a
preliminary list of the classes of the object-oriented model can
be established;

• Epistemological structure translation: since the classes are
defined, relations among concepts and epistemological axioms
should be translated to the corresponding object-oriented
structures, producing an initial class diagram;

• Consolidation and ontological axioms translation: the class
diagram derived in the step above should be refined to
consider consolidation and ontological axioms.

Formal Ontology

Purpose Identification and
Requirement Specification

Ontology Capture

Ontology
Formalization

Integrating Existing
Ontologies

Evaluation and
Documentation

4. ODEd’S ARCHITECTURE
In order to support the ontology development process described
above, ODEd implements a three-layered architecture
shown in Figure 2. The ontologies are developed through the
presentation layer and they are described according to a model
defined in the domain layer. The data management layer is
responsible for the storage of the ontologies designed.

Figure 2. ODEd Architecture.

This architecture uses is a project philosophy that suggests that
the central classes, in the domain layer, are not aware of how the
ontologies are presented to the user or stored by the system. The
portion of the system that handles the graphic representation of
the ontologies (presentation layer) is independent from the rest of
the architecture and it communicates with the domain layer. The
data layer provides the basic infrastructure for the storage and the
recovery of objects in the system. Its purpose is to isolate the
impacts of the technology of data management on the editor's
architecture.
The presentation layer supports the ontology capture. In this step,
the use of a graphical representation is essential in order to
facilitate the communication between domain engineers and
experts. In ontology building, such representation is basically a
language representing a meta-ontology. So, this language must
own basic primitives to represent a domain conceptualization and,
in its simplest form, it should have notations to represent only
concepts and relations [2]. Falbo et al. [2] proposed a Graphical
Language for Expressing Ontologies (LINGO). LINGO has the
basic primitives to represent a domain conceptualization, i.e., in
its simplest form; its notations represent only concepts and
relations. Nevertheless, some types of relations have a strong
semantics and, indeed, hide a generic ontology. In such cases,
specialized notations have been proposed. This is the striking
feature of LINGO and what makes it different from other
graphical representations: any notation beyond the basic notations
for concepts and relations aims to incorporate a theory [2]. This
way, axioms can be automatically generated. These axioms
concern simply the structure of the concepts and are said
epistemological axioms (EA). Figure 3 shows the main notations
of LINGO and some of the axioms imposed by the whole-part
relation. These axioms form the core of the mereological theory as
presented in [11]. Irreflexivity (EA1), anti-symmetry (EA3) and
transitivity (EA4) axioms denote sufficient and necessary
properties for all kinds of whole-part relations. The remaining
axioms complete the theory by defining suitable ontological
distinctions.
ODEd uses LINGO as a graphic language to describe ontologies,
allowing the automatic generation of the LINGO’s notations built-
in axioms. Upon using these notations during ontology capture, an
ontology developer is also defining the group of axioms that they
represent. ODEd uses this feature to automatically generate these
types of axioms. In this way, ODEd embeds a powerful
mechanism of theories inclusion. Each relation type specifying a
generic theory has its own notation and whenever it is used,
generic ontologies are integrated automatically [2]. Besides the

epistemological axioms, other axioms can be used to represent
knowledge. These axioms can be of two types: consolidation
axioms (CA) and ontological axioms (OA) [2]. The former aims
to impose constraints that must be satisfied for a relation to be
consistently established. The latter intends to represent declarative
knowledge that is able to derive knowledge from the factual
knowledge represented in the ontology, describing domain
signification constraints.

Figure 3. LINGO’s main notations and some axioms.

UML has also been used as an ontology modeling language [12].
Therefore, ODEd’s presentation layer also supports ontology
capture using UML. However, it is necessary to emphasize that
there are some problems in using UML as an ontology modeling
language. First, an important criterion to evaluate ontology design
quality is minimum ontological commitments [10]. Based on this
principle, an ontology modeling language must embody only
notations that are necessary to express ontologies. This is not the
case of UML and majority graphical languages available. Second,
since an ontology intends to be a formal model of a domain, it is
important that the language used to describe it has formal
semantics. Again, this is not the case of the majority graphical
languages available, including UML [13]. However, we cannot
ignore that UML is a standard and its use is widely diffused.
Moreover, there are efforts to define UML semantics, such as
pUML [14]. Based on that, in ODEd, we defined a subset of UML
that plays the same role of LINGO’s notation.
As shown in Figure 4, stereotyped classes (<<Concept>>)
represent concepts. Relations are defined as labeled associations,
and properties are represented as attributes. Relations that contain
properties or relation of arity bigger than two are represented as
stereotyped associative classes (<<Relation>>). Super-type and
whole-part relations among concepts are represented as
generalization/specialization and aggregation relationships,
respectively. Here, the same approach of LINGO is adopted:
specific notations, such as aggregation, composition and
specialization, should incorporate well-defined theories. Thus, the
semantic meaning of UML modeling elements can be captured
precisely. For instance, the epistemological axioms that compose
the whole-part theory presented in Figure 3 are also automatically
generated by ODEd when the aggregation notation of UML is
used.

Presentation Domain Data concept

 relation

Aggregation

Part1 Part N

Super-type

Subtype1 SubtypeN

(EA1) ∀ x ¬partOf(x,x)
(EA2) ∀ x,y partOf(y,x) ↔ wholeOf(x,y)
(EA3) ∀ x,y partOf(y,x) → ¬ partOf(x,y)
(EA4) ∀ x,y,z partOf(z,y) ∧ partOf(y,x) → partOf(z,x)
(EA5) ∀ x,y disjoint(x,y) → ¬∃ z partOf(z,x) ∧ partOf(z,y)
(EA6) ∀ x atomic(x) → ¬∃ y partOf(y,x)

Figure 4. A Subset of UML to represent ontologies.

ODEd allows configuring what graphical representation use to
develop the ontologies. The ontology can be captured in LINGO
or UML. The objects that represent the ontology are created in the
domain layer independently of the graphical representation used
and the presentation layer may present them to the user in two
distinct forms. In spite of different graphic representations, the
ontology domain model is the same. The presentation layer
provides an interface to create the objects of the domain layer and
improves modularity by encapsulating the way the objects are
constructed and represented.

Figure 5. Ontology Description Model.

The ontologies are described in the domain layer by an
independent ontology description model presented in Figure 5.
The ontology purpose and its intended uses are identified through
competency questions. It is represented by a diagram, which
contains concepts created in or imported to the ontology.
Concepts are related by relations, hierarchy, whole-part and
conditional relationships. Whole-part relations are classified in
two kinds (aggregation and composition) as well as conditional
relations (XOR and AND). Concepts and relations may have
properties and the associations between concepts have roles and
cardinalities. These associations may have theories associated to
them. Theories are composed by axioms properties such as
atomicity, anti-symmetry and transitivity. Using the presentation

layer, the user creates objects of this model and the objects
generated do not depend on the graphical language used.
LINGO’s and UML’s notations have axioms built in and ODEd is
capable of generating these axioms. Beyond generating pre-
defined theories, the tool also allows the user to compose his/hers
own theories and apply then to relations in the ontology. This
approach to represent theories is similar to that presented in [15].
The core idea is to use a categorization that organizes axioms and
that provides a compact, intuitively accessible representation.
Axioms are classified according to axiom properties, such as anti-
reflexivity, anti-symmetry, atomicity, disjointed, exclusivity,
reflexivity, symmetry and transitivity. As shown in Figure 5, these
properties are used to compose theories associated to relations on
the ontology.
Each axiom property has a mini design pattern associated (some
of these patterns are presented in Figure 5). These patterns are
captured by classes capable to check if the axiom properties
represented by the pattern hold. For instance, the
anti_symmetry() method of the anti-symmetry
pattern is responsible for checking if a
relation is anti-symmetric. It executes the
method relation (representing an relation
among concepts) of an object obj
(representing an instance of a concept). If obj
is not returned by relation then the anti-symmetry property is
truth and relation is anti-symmetric.
Besides creating the design patterns to represent the properties
axioms, it is necessary to define how they can to compose the
theories. To do so, another design pattern was created.
There are some axioms, such those that represent theories, whose
purpose is to describe preconditions that must be satisfied, or
properties that must hold, so that a relation can be established
between two concepts.
Generally speaking, this type of axiom has the following format:
∀ x:X, y:Y relation(x,y) → (preCondition1) ∧ (preCondition 2) ∧
... ∧ (preConditionN). This generic format was mapped to the
PreCondition Pattern [9] that guarantees the evaluation of each
one of precondition before a relation can be established. This
pattern uses the Template Method pattern [16]. In this case, the
template method is the method setRelation() and the hook
methods are those responsible for evaluating the fulfillment of the
preconditions.
To support theories composition, the PreCondition Pattern
defined in [9] was modified. The hook methods are now axiom
property patterns responsible for evaluating the fulfillment of the
preconditions of the corresponding relation theory. The generic
format of the new PreCondition Pattern is: ∀ x:X, y:Y relation(x,y)
→ (axiomProperty1) ∧ (axiomProperty2) ∧ ... ∧
(axiomPropertyN).
Object frameworks generated by ODEd incorporate the new
PreCondition Pattern to compose and verify relation theories. If a
relation possesses a theory, its pre-conditions are tested before
including or removing objects.

Concept1
<<Concept>>

Conc ept2
<<Concept >>

1..*0..*

relation

relation
property

<<Relation>>

0..* 1..*
Sup er- type

<<Concept>>

S ub-type
<<Concept>>

Part
<<Concept >>

Aggregation
<<Concept>>

0..*
1..*

0..*
1..* + role

Com po si ti on

XOR AND

A ggreg at io n

Who le Pa rt

Ro le

Comp Que st ion

Axio m Prop erty

Onto logy10..* 10..*

Re la tio n

T heo ry
1..* 0 ..*1 ..* 0 ..*

Onto logyDiag ra m0..*1 0..*1

P ro perty

0 ..1

0 ..*

0 ..1

0 ..*

Cond icion a l
2 ..*

0 ..*
2 ..*

0 ..*

1

0 ..*

1

0..*

Asso cia tio n

0..*

1

0..*

1

Conce pt

0 . .*

1

0 . .*

+crea te
1 0. .*

0 ..*
+ im po r t

0 . .*

0 ..*

0 . .1

0 ..*

0 . .1

0 ..*
1

0 ..*

1

0..*

0 . .*1 ..* 0 . .*1 ..*

Hie ra rch y

1
0..*+sup ertype

1
0..*

1 ..*

0 ..*

+ su bt ype

1..*

0 ..*

T ra nsi ti vy

tra nsi ti vi ty()

An ty Sim metry

an tyS im m etry()

A t omic it y

a tom ici ty()

5. DEVELOPING AN ONTOLOGY OF
SOFTWARE QUALITY USING ODEd
To present an example of the ontology development in ODEd we
present the Quality Ontology developed in [17]. Due to
limitations of space, we present only part of this ontology.
The first step of the ontology development defined in the process
presented in section 3 is the purpose identification and
requirement specification. To support this phase, ODEd allows
the user to define competency questions. The form presented in
Figure 6 allows the user to create or remove competency
questions of the ontology. The part ontology previously described
concerns the competency questions presented in Figure 6.

Figure 6. Competency questions of the Quality Ontology.

Once the competency questions are defined, it is possible to start
the ontology capture. To support this phase ODEd supports the
graphic representation of the ontologies concepts and relations
using LINGO and UML, as discussed in section 4.

Figure 7 shows part of the Quality Ontology in LINGO. In the
quality ontology, a software quality characteristic can be
classified according to two criteria. The first one says if a quality
characteristic can be directly measured or not. A non-mensurable
characteristic must be decomposed into sub-characteristics
(represented by the roles super and sub characteristic) to be
computed by the aggregation of their sub-characteristic measures.
A mensurable characteristic can be directly quantified applying
some metric. The second classification enforces that product
characteristics should only be used to evaluate software artifacts
and process characteristics evaluate software processes. Artifact
is a concept from the Software Process Ontology [2], which were
integrated with the quality ontology been presented (see section
5.1). Product characteristics can be relevant to several artifacts.
Finally, the valuation relation indicates that a non-mensurable
quality characteristic can be valued through other quality
mensurable or not mensurable characteristics.
Since this ontology was translated to an object framework using
the approach described in section 3 [9], we used it to illustrate
ODEd functionalities.
Cardinalities are used in the diagram to show how many instances
of a concept can participate in the relation. In Figure 7, cardinality
(1,n) in the relation quantification implies that an mensurable
characteristic must be valued by, at least, one metric: (∀ a)
(mensqc(qc) → (∃ m) (quantification(qc,m)). Cardinality (1,1) still
adds that an metric evaluates only one mensurable characteristic:
(∀ m,qc1,qc2) (quantification(s,qc1) ∧ quantification(s,qc2) →
qc1 = qc2). Since cardinality (0,n) does not impose any constrain,
it is not represented. Some concepts and relations have
properties. In Figure 7, mensurable characteristic has the property
name, shown in the tree in the left size.
Although the example presented above represents only binary
relations, the formalism used is expressive enough to model
relations of any arity, including reflexive relations. Likewise,
conditional relations (AND and XOR tight relations) can also be
represented.
In Figure 8 it is presented the quality ontology captured using
UML. The same objects modeled in Figure 7 are presented here
but using a different graphical notation. A stereotyped class
QualityCharacteristic, for example, represents the
QualityCharacteristic concept and the relation relevance is
presented a class association.

Figure 7. The LINGO diagram of the Quality Ontology.

Table 1 presents some axioms of the activity ontology, indicating
their type. Axioms (EA1) to (EA4) were derived from the super-
type relation among quality characteristics. (EA5) to (EA8) are
directly derived by the usage of the whole-part relation between
quality characteristics. The axiom (OA1) is related to the
valuation relation.

Table 1. Some axioms of the Quality Ontology.

ID Axiom

EA1 (∀ qc) (nmensqc(qc) → qchar(qc))

EA2 (∀ qc) (mensqc(qc) → qchar(qc))

EA3 (∀ qc) (prodqc(qc) → qchar(qc))

EA4 (∀ qc) (procqc(qc) → qchar(qc))

EA5 (∀ qc1, qc2) (subqc(qc1, qc2) → ¬ subqc(qc2 , qc1))

EA6 (∀ qc) (mensqc (qc) ↔ ¬ (∃ qc1) (subqc(qc1, qc)))

EA7 (∀ qc1, qc2, qc3) (subqc(qc1, qc2) ∧ subqc(qc2, qc3) →
subqc(qc1 , qc3))

EA8 (∀ qc1, qc2) (disjointed(qc1, qc2) ↔ ¬ (∃ qc3)
(subqc(qc3, qc1) ∧ subcarq(qc3, qc2)))

OA1 (∀ qc, qc1) (valuation(qc, qc1) → ¬ valuation(qc1, qc))

The axiom (OA1) indicates that if quality characteristic qc1 is
valuated by a quality characteristic qc2, then qc2 cannot be
valuated by qc1. It means that the valuation relation is anti-
symmetric and the anti-symmetry property should be incorporated
to the relation theory. Figure 9 presents the theory associated to
the valuation relation in the quality ontology. This form allows the
user to associate several axioms properties to a relation. In this
example, the only property that composes the valuation theory is
anti-symmetry.
Initially, the axioms defined in relations’ theories (such the axiom
(OA1) presented above) are the only type of ontological axioms
that can be represented in ODEd. It is not defined yet how to
handle other ontological axioms that cannot be captured as
theories. This issue will be solved in the next versions of the
editor.

Figure 9. Properties of the Valuation relation.

ODEd also incorporates software agents that help the ontology
designer during the ontologies development.

Figure 10. The agent OntoBoy.

Figure 8. Representing the Quality Ontology using UML.

There are some constraints that must be satisfied during ontology
development. Thus, software agents were added to ODEd to alert
the user about eventual modeling structural mistakes or to offer
advices on how to solve them according to the user's actions.

5.1 Importing Concepts and Relations
The main purposes of the quality ontology are to promote
software quality knowledge integration in a Software Engineering
Environment (ODE) and to support the development of quality
management tools for it [13]. Therefore, this ontology must be
integrated to the software process ontology [2] used to support
software process definition and automatization in ODE.
ODEd supports ontology integration in a very simple way. It is
possible to import concepts from existing ontologies to the current
one. If more than one concept is imported and there are relations
between them, these relations are also incorporated to the
ontology. Then, these concepts can be connected to the concepts
of the current ontology.
For example, in Figure 7, the Artifact concept was imported from
the software process ontology and a relation between Artifact and
ProductQualityCharacteristic was created (relevance).
If an imported concept or relation is removed from the original
ontology, it is automatically removed from the ontology it was
imported. No kind of notification is sent to the knowledge
engineer responsible for that ontology.

It means that if the Artifact is removed form the software process
ontology, it will be removed from the quality ontology, as well as
the relevance relation and the framework of both ontologies
should be generated again to apply the modifications. Since no
notification is sent, an application could be using an old version
of the framework. Thus, a version control mechanism should be
integrated to ODEd to guarantee integrity of the generated
frameworks.

6. FROM DOMAIN ONTOLOGIES TO
OBJECT FRAMEWORKS
As pointed in section 3, for deriving object frameworks from
ontologies, Guizzardi et al. [9] defined a set of mapping
directives, design patterns and transformation rules. In its current
stage, ODEd considers the mapping directives and some design
patterns. But, since ODEd does not support axiom definition,
except those described through theories, the transformation rules
are not being treated. In the next sections, we presented how the
Ontology formalization is support by ODEd to derive the quality
ontology framework.

6.1 Mapping Directives
According to [9], concepts and relations are naturally mapped to
classes and associations in an object model, respectively.
Relations between three or more concepts (n-ary relations) and
relations with properties give rise to associative classes. Properties
of concepts and relations are mapped to attributes of the
corresponding classes.

IWho le
< <In te r face>>

IP a rt

<<In te rface>>

M ensu rab leQ ua l i tyCha racte ri sti c

se tQ uan ti fica tion (ob j : M e tri c)
ge tQ uan ti fica tion () : Se t

M e tri c

se tQ uan ti fica tion (ob j : M ensu rab leQ ua l i tyCha racte ri stic)
getQ uan t if ic at ion () : M ensu rab l eQua l ity Cha rac te ri sti c

1

1 ..*

1

1 ..*
q u a n ti fi ca tio n

Who le

NonM ensu rab leQ ua l i tyCha racte ri sti c

se tV a lua tion (ob j : Q ua l i tyCha racte ri sti c)
ge tVa lua tion () : Se t
se tS ubCharacte ri sti c(ob j : Q ua l i tyCha racte ri sti c)
ge tSubCharacte ri sti c() : Se t

Q u a l i tyCh ara cte ri sti c

n a me : S tri ng

se tNa me (n ame : S tri n g)
g e tNa me() : S tr i n g
se tV a lu a ti on (o b j : No n Me n su ra b le Q u a l i tyCh a ra cte ri stic)
g e tV a lu a ti on () : S e t
se tS u p e rCha ra cte ri sti c(o b j : No nMe n su ra b le Q u a l i tyCha ra cte ri sti c)
g e tS u p e rC ha ra cte ris ti c() : S e t

0 ..*

1 ..*

0 ..*

1 ..*

va lu a ti o n
0 ..*

1 ..*

+supe rCha racte ri sti c
0 ..*

+ subCha rac te ri sti c
1 ..*

Pa rt

A rti fact

P roductQ ual i tyCha racte ri sti c

se tRe levance (ob j : A rti fact)
ge tRe levance () : Se t 1 ..*0 ..* 1 ..*0 ..*

re le va n ce

Proc essQu al i ty Cha ra cte ri sti c
 Figure 11. The Quality Framework generated by ODEd.

In the case of the quality ontology, the classes
QualityCharacteristic and
NonMensurableCharacteristic were derived from the
corresponding concepts, as well as the associations
quantification, relevance, and valuation, as
shown in Figure 11. Properties of the concepts were mapped as
attributes of the corresponding classes, as is the case of the
property name of the concept QualityCharacteristic, which was
mapped as the attribute name in the class
QualityCharacteristic. Also, for each derived attribute,
methods to get and set values were created.
Still considering the mapping of relations, there are other issues
that must be discussed. First, since in an ontology relations are bi-
directional, the corresponding associations must be navigable in
both directions. Thus, the associations are implemented as
attributes, and there are methods in both classes to return them.
The returned type of the relation methods depends directly on the
cardinality associated to the relation [9]. For instance, since in the
scope of the quantification relation an mensurable characteristic
may be evaluated by several metrics, quantification() is
mapped to a Set variable in the class
MensurableCharacteristic and, hence, this is the type
returned by the invocation of the synonymous method on this
class. In the class Metric, the return type of the
quantification() method is an
MensurableCharacteristic, since an a metric values just
one characteristic.
Reflexive relations are also mapped as associations, and generate
a method for each association end. The name of these methods is,
instead of the relation’s name, the name of the roles played by the
concept. Whole-Part relations also are represented by the name of
its roles. In Figure 11, the aggregation relation originates methods
the subCharacteristic() and
superCharacteristic() in
NonMensurableCharacteristic and
QualityCharacteristic respectively.

Subtype-of relations among concepts can be directly mapped to
inheritance among classes. So, axioms (EA1) to (EA4) do not
require any special treatment. In our example, the subtypes of
quality characteristic give rise to the following sub-classes:
ProcessQualityCharacteristic,
ProductQualityCharacteristic,
NonMensurableCharacteristic and
MensurableCharacteristic. The class that represents the
super-type (QualityCharacteristic) is mapped to an
abstract class.

6.2 The Whole-Part Relation
Figure 3 presents the theory (mereology) embodied by a generic
whole-part relation. Notwithstanding, the underlying axioms
implied by the proposed notation are not well mapped to
aggregations in an object model, i.e., UML notation for
aggregation does not guarantee the fulfillment of the imposed
constraints of whole-part relations. To deal with this problem,
Guizzardi et al. [9] proposed the Whole-Part Pattern, shown in
Figure 12. In this pattern, the Whole class is able to guarantee to
its associated concrete classes the verification of the suitable set of
constraints before a relation between them can be established. The

interfaces IWhole and IPart must be implemented by the
concrete classes.

Figure 12. The Whole-Part pattern [9].

In the framework derived from the quality ontology (Figure 11),
the classes NonMensurableCharacteristic and
QualityCharacteristic implement interfaces IWhole
and IPart respectively. Likewise, they are related to the
handlers Aggregation and Part. The class
QualityCharacteristic has attributes of Part type and
NonMensurableCharacteristic has a object of Whole
type. As shown in the code fragment below, the access to the sub-
characteristics of a non-mensurable characteristic is made through
an attribute Aggregation. The inclusion of a new sub-
characteristic is made by including a new part in the aggregation
variable. The axioms (EA5) to (EA8) are checked when the
method setPart() is evoked.

public class NonMensurableCharacteristic

implements IWhole

{ Aggregation a = new Aggregation();

public boolean setSubCharacteristic
(QualityCharacteristic c)

{ return a.setPart(c); }

<<SetE lem ent>>

whole() : Whole

<<IWho le>>

part() : Part

<<IPart>>

Aggregation

specConstra in(IPart p) : boo lean
disjo in tness(IPart p) : boolean
setDisjo in t(IWhole w)

Com posit ion

specConstra in(IPart p) : boo lean
exclusiviness(IPart p) : boo lean

Wh o le

pa rt : S e t
w h o le : IWho le

spe cCo nstra in (IP a rt p) : bo o lean
ge tP a rt() : Se t
se tP a rt(IP a rt)
removeP art(IP a rt)

A

getB() : B
setB(IPart p)
rem oveB(IPart p)

Part

whole : Set

ge tWho le() : Set
setWho le(IWhole w)
rem oveWhole(IWhole w)

B

ge tA() : A
setA(IWhole w)
re m ov eA(IWhole w)

public Set getSubCharacteristic ()

{ return a.part(); }

}

The theory incorporated to the valuation relation in Figure 9 is
presented in the code fragment below. The class
QualityCharacteristic is related to the pattern
AntiSymmetry through the attribute s. Before setting a non-
mensurable characteristic as capable of valuing the current quality
characteristic, the valuation theory is checked. To verify the
axiom (OA1), the method
s.anti_symmetry(this,c,“valuation”) of the Anti-
Symmetry pattern is executed. This method evokes the
getValuation() method of the non-mensurable characteristic
c. If the current characteristic (this) is not in the valuation list,
then it doesn’t value c. Therefore, the axioms (OA1) holds and c
can be added to the valuation list of the current quality
characteristic.

public abstract class QualityCharacteristic

implements IWhole

{ Set valuation = new Set();

AntiSymmetry s = new AntiSymmetry();

public Set getValuation()

{ return valuation; }
public boolean setValuation

 (NonMensurableCharacteristic c)

{ boolean result = false;

if s.anti_symmetry(this,c,“valuation”)

{

result = true;

valuation.add(c);

c.setValuation (this);

}
return result;

}

}

Since the PreCondition Pattern composes the Whole-Part Pattern,
the modifications made require changes in the last pattern. Instead
of encapsulating the axioms of the generic whole-part theory, the
Whole class is now related to the axioms properties that
characterize the whole-part relation.

public abstract class Whole

{ IWhole whole;

Set part = new Set();

AntiSymmetry s = new AntiSymmetry();

AntiReflexivity r=new AntiReflexivity();

Atomicity a = new Atomicity();

Transitivity t = new Transitivity();

public boolean setPart(IPart c)

{ boolean result = false;

 if (transitivity(this,c,“getPart”)&&

 anti_symmetry(this,c,“getPart”)&&

 anti_reflexivity(this,c,“getPart”)&&

 atomicity (this,c,“getPart”)&&

 specConstrain(c))

 { result = true;

part.add(c);

(c.part()).setWhole(whole);

 }

 return result;

}

}
For this reason, the setPart() method in the Whole class
evokes the axiom properties patterns to check if the mereology
theory holds. The specConstrain() method in the
Aggregation class evokes the Disjointed pattern.

7. BROWSING ONTOLOGIES
ODEd provides automatic generation of hypertexts based on the
ontologies designed. Using these hypertexts, developers are able
to browse and search the domain’s concepts, relations and
constrains.
The language chosen to build these documents was XML [18],
because it allows defining the syntax of structured documents.
Besides, XML schema and ontologies have a common goal: to
provide vocabulary and structure for describing information to be
exchanged.
To generate the XML documents, a set of tags was defined to
represent the meta-ontology’s concepts and relations. The
ontologies’ data (concept, properties, etc.) were introduced in the
XML files, marked with theses tags.

Figure 13. Browsing the Quality Ontology.

The tutorials are presented to the user as HTML documents. In
order to do so, the editor uses XSL (eXtensible Style sheet
Language), a document transformation and formatting language
[19].
Figure 13 shows the hypertext derived from the software quality
ontology. It is possible to visualize all ontology’s concepts and
relations and their definitions and properties. From the valuation
relation, for example, the user can browse its concepts and
visualize their definition.

8. RELATED WORK
There are many ontology editors presented in the literature, such
as Ontolingua Server, OntoEdit, OILEd, JOE, Protége-2000 and
WebODE.
Ontolingua Server [20] supports ontology development and
sharing. It provides access to a library of ontologies, and allows
new ontologies to be created. Remotely distributed groups can use
their web browsers to browse, build and maintain ontologies
stored at the server.
OntoEdit [15] pursues the modeling of ontologies such that
graphical means exploited for modeling of concepts and relations
scale up to axiom specifications (using RDFS). The core idea is to
use an axiom categorization. This categorization is centered
around axiom semantic meaning rather than syntactic
representation.
OILEd [21] supports the construction of ontologies in OIL. The
editor allows the definition of concepts and relations and also
supports the definition of some pre-defined axioms. OILEd has
reasoning services that supports ontologies construction,
integration and verification.
The Java Ontology Editor (JOE) [22] was developed to help users
build and browse ontologies. It enables query formulation at
several levels of abstraction. JOE provides a graphical user
interface for editing ontologies. It uses Entity Relationship
diagrams to represent them.
Protége-2000 [23] aims to support knowledge acquisition, and to
reach interoperability with other knowledge representation
systems. It has classes, instances of these classes, slots
representing attributes of classes and instances, and facets
expressing additional information about slots. Protégé-2000
generates knowledge-acquisition forms automatically based on the
types of the slots and restrictions on their values allowing
ontology instantiation.
Ontobroker [24] provides languages to annotate web documents
with ontological information, to represent ontologies, and to
formulate queries. The tool set of Ontobroker allows users to
access information and knowledge from the web and to infer new
knowledge with an inference engine based on techniques of logic
programming. This environment is the basis for realizing the
Knowledge Acquisition Initiative (KA)2 and for developing a
knowledge management system for industrial designers in regard
to ergonomic questions.
WebODE [25] is a workbench for ontological engineering that
provides a scalable architecture for the development of other
ontology development tools and ontology-based applications.
WebODE’s ontology editor allows the collaborative edition of
ontologies at the knowledge level, supporting the
conceptualization phase of METHONTOLOGY and most of the

activities of the ontology’s life cycle (reengineering,
conceptualization, implementation, etc). It provides several
services as ontology import/export, translation of
ontologies, ontology browser, inference engine and axiom
generator. The graphical user interface allows browsing all the
relationships defined on the ontology as well as graphical-pruning
these views with respect to selected types of relationships.
Mathematical properties such as reflexive, symmetric, etc. and
other user-defined properties can be also attached to the "ad hoc"
relationships.
Most of these tools emphasize the definition of concepts and
relations, but they have none or little support to constrains
definition. The most interesting initiative is the creation of axioms
templates in OntoEdit [15] and a similar approach is provide by
WebODE [25]. OntoEdit’s approach aids the construction of
axiom classes that has similar structure, but it cannot be applied to
axioms that do not fit in its classification. This approach was
incorporated to ODEd in order to facilitate axioms definition, but
it is still necessary to define how to represent other types of
axioms as provide in WebODE [25].
Reasoning services are an important feature [21, 25] because they
can be used in ontology evaluation. Other desirable services
provided by some of these tools are the support to the cooperative
work and the automatic generation of ontology documentation in
HTML [21, 23, 25]. This last feature is addressed by ODEd but
no reasoning service is available. ODEd does not provide
functionalities for collaborative ontology development such as
versioning, integration and merging of ontologies. Also,
knowledge acquisition aspects, such those find in [23], were not
considered yet.
Despite of being an important requirement for ontology design,
only JOE and WebODE use some kind of graphic representation
[22, 25]. But the first one uses Entity Relationship models that are
not adequate to ontology development [9] and the second one
doesn’t define any special notation for the kinds of relations
supported by the editor. ODEd adopts LINGO, a graphic language
specially designed for ontology’s representation. However, ODEd
does not ignore the importance of other graphical languages
available. Therefore it also supports ontology capture using UML.
All editors previously mentioned were developed to support
ontology design in the context of Semantic Web. None of them
was developed aiming to support the development of information
systems, using frameworks. In this way, ODEd address domain
engineering.

9. CONCLUSIONS AND FUTURE WORK
In this paper, we presented ODEd, an ontology editor that
supports ontology development using graphic representations,
besides promoting automatic generation of some classes of axioms
and derivation of frameworks from ontologies.
Although most phases of ontology development process were
supported by ODEd, important activities such as ontology
integration and evaluation were not completely addressed. These
features must be considered in future versions of ODEd. We
believe that to support these activities reasoning services will be
necessary.
In the approach presented, ODEd is capable to derivate
epistemological, consolidation and ontological axioms coming

from relation theories. Other ontological axioms, which do not fit
in any category of axioms properties, could also be described in
the ontology. It is necessary to map ontological axioms to the
object model. These axioms are formalized to answer to the
competency questions of the ontology. For this type of axioms, a
set of transformation rules was defined in [9]. However, it was not
defined yet how this axioms should be represent in the editor.
Like Protégé [23], ODEd could also generate knowledge-
acquisition forms automatically based on ontology, going a step
ahead towards knowledge management.

10. ACKNOWLEDGMENTS
The authors acknowledge CAPES for the financial support to this
work.

11. REFERENCES
[1] Staab, S., Studer, R., Schnurr, H.P., Sure, Y., Knowledge

Processes and Ontologies, In: IEEE Intelligent Systems, p.
26-34, January/February 2001.

[2] Falbo, R.A., Menezes, C.S., Rocha, A.R.C., A Systematic
Approach for Building Ontologies, In: Proceedings of the
IBERAMIA’98, Lisboa, Portugal, 1998.

[3] Lassila, O., Van Harmelen, F., Horrocksm, I., Hendler, J.,
Mcguinness, D. L., The Semantic Web and its Languages, In:
IEEE Intelligent Systems, p. 67-73, November/December
2000.

[4] Uschold, M, Gruninger, M., Ontologies: principles, methods
and applications, In: Knowledge Engineering Review,
Volume 11 No 2, June 1996.

[5] Guarino, N., Understanding, building and using ontologies,
Int. Journal Human-Computer Studies, 46(2/3), February /
March 1997.

[6] Guarino, N., Formal Ontology and Information Systems, In
N. Guarino (Ed.), Formal Ontologies in Information
Systems, IOS Press, 1998.

[7] Uschold, M., Knowledge level modelling: concepts and
terminology, Knowledge Engineering Review, vol. 13, no. 1,
1998.

[8] Jasper, R., Uschold, M., A Framework for Understanding
and Classifying Ontology Applications, in Proc. of the 12th
Workshop on Knowledge Acquisition, Modeling and
Management (KAW’99), Alberta, Canada, 1999.

[9] Guizzardi, G., Falbo, R.A., Pereira Filho, J.G., Using Objects
and Patterns to Implement Domain Ontologies, In:
Proceedings of XV Simpósio Brasileiro de Engenharia de
Software, October 2001.

[10] Gruber, T.R., Towards principles for the design of ontologies
used for knowledge sharing, Int. Journal of Human-
Computer Studies, vol. 43, no. 5/6, 1995.

[11] Borst, W.N., Construction of Engineering Ontologies for
Knowledge Sharing and Reuse, PhD Thesis, University of
Twente, Enschede, The Netherlands, 1997.

[12] Cranefield, S., Purvis, M., UML as an Ontology Modelling
Language, In: Proceedings of the IJCAI-99, Workshop on
Intelligent Information, 16th International Joint Conference
on AI, Stockholm, Sweden, July 1999.

[13] Falbo, R.A., Guizzardi, G., Duarte, K.C., Natali, A.C.C.,
Developing Software for and with Reuse: An Ontological
Approach, Proceedings of the CSITeA’2002 (to appear).

[14] Evans, A., Kent, S., Core Meta-Modelling Semantics of
UML: the pUML Approach, In: 2nd International
Conference on the Unified Modeling Language, Colorado,
EUA, 1999.

[15] Staab, S., Maedche, A., Ontology Engineering beyond the
Modeling of Concepts and Relations, 14th European
Conference on Artificial Intelligence, Workshop on
Applications of Ontologies and Problem-Solving Methods,
2000.

[16] Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design
patterns: elements of reusable object-oriented software,
Addison-Wesley, 1995.

[17] Duarte, K.C., Falbo, R.A., Uma Ontologia de Qualidade de
Software, In: XIV Simpósio Brasileiro de Engenharia de
Software, WQS’2000 - Workshop de Qualidade de Software,
João Pessoa - PB, October 2000.

[18] Bray, T., Paoli, J., Sperberg-McQueen, C. M., Extensible
Markup Language (XML) 1.0, W3C Recommendation,
1998.

[19] Rabarijoana, A., Dieng, R., Corby, O., Exploitation of XML
for Corporate Knowledge Management, In: Proceedings of
EKAW’99, p. 373-378, 1999.

[20] Farquhar A., Fikes, R., Rice, J., The Ontolingua Server: a
tool for collaborative ontology Construction, Int. J. Human-
Computer Studies, 46, p. 707-727, Knowledge Systems
Laboratory, Stanford University. Stanford, CA, USA, 1997.

[21] Bechhofer, S., Horrocks, I., Goble, C., Stevens, R., OilEd: a
Reason-able Ontology Editor for the Semantic Web, In:
Working Notes of the 14th International Workshop on
Description Logics (DL-2001), p.1-9, Stanford, EUA,
August 2001.

[22] Mahalingam, K., Huhns, M.N., A Tool for Organizing Web
Information, In: IEEE Computer, p. 80-83, June 1997.

[23] Noy, N.F., Sintek, M., Decker, S., Crubézy, M., Fergerson,
R.W., Musen, M.A., Creating Semantic Web Contents with
Protégé-2000, In: IEEE Intelligent Systems, March/April
2001.

[24] Fensel, D., Decker, S., Erdmann, M., Studer. R., Ontobroker:
Or How to Enable Intelligent Access to the WWW, In:
Proceedings of the 11th Banff Knowledge Acquisition for
Knowledge-Based System Workshop, Banff, Canada, April
1998.

[25] Arpírez, J.C., Corcho, O., Fernández-López ,M., Gómez-
Pérez, A., WebODE: a Scalable Workbench for Ontological
Engineering, K-CAP’01, Canadá, 2001.

	Supporting Ontology Development with ODEd
	P
	Paula Gomes Mian, Ricardo de Almeida Falbo
	Federal University of Espírito Santo�Fernando Ferrari Avenue, 29060-900 �Vitória – ES – Brazil�+55 (27) 3335-2167
	{pgmian, falbo}@inf.ufes.br
	A
	ABSTRACT
	Ontologies are becoming an important mechanism to build information systems. However, ontology construction is not a simple task. So, it is necessary to provide tools that support ontology development. This paper presents ODEd, an ontology editor that su
	Keywords
	Ontologies, Domain Engineering, Ontology Editors.
	INTRODUCTION
	In contexts where knowledge has to be modeled, structured, and interlinked, ontologies can help formalize the knowledge shared by a group of agents [1].
	However, building ontologies is not a simple task. It involves the specification of concepts and relations that exist in the domain, besides their definitions, properties and constrains, described as axioms [2]. Therefore, tools for supporting ontology d
	In this paper, we present ODEd, an ontology editor that supports the definition of concepts and relations, using graphic representations, and promotes automatic generation of some classes of axioms. Also, ODEd supports the derivation of object-oriented f
	ONTOLOGIES
	People, organizations and software systems must communicate between and among themselves. However, due to different needs and backgrounds contexts, there can be widely different viewpoints and assumptions regarding the same subject matter. The way to sol
	However, it is impossible to represent the real world, or even a part of it, with all its details. To represent a phenomenon or part of the world, which we call a domain, it is necessary to focus on a limited number of concepts that are sufficient and re
	According to Guarino [6], “an ontology is a logical theory accounting for the intended meaning of a formal vocabulary, i.e., its ontological commitment to a particular conceptualization of the world”. An ontology can take a variety of forms, but necessar
	Jasper et al. [8] classified applications of ontologies in four main categories, emphasizing that an application may integrate more than one of these categories:
	Neutral Authoring: an ontology is developed in a single language and it is translated into different formats and used in multiple target applications.
	Ontology as Specification: an ontology of a given domain is created and it provides a vocabulary for specifying requirements for one or more target applications. In fact, the ontology is used as a basis for software specification and development, allowin
	Common Access to Information: an ontology is used to enable multiple target applications (or humans) to have access to heterogeneous sources of information that are expressed using diverse vocabulary or inaccessible format.
	Ontology-based Search: an ontology is used for searching an information repository for desired resources, improving precision and reducing the overall amount of time spent in searching.
	Analyzing these scenarios, we can notice that working with ontologies has several advantages. One of the main benefits of the use of ontologies in software development is to reuse domain specifications in the requirement specification phase. In tradition
	In an ontology-based approach, requirement elicitation and modeling can be accomplished in two stages. First, the general domain knowledge should be elicited and specified as ontologies. These ontologies are used to guide the second stage of the requirem
	Since the current leading paradigm in Software Engineering is the object technology, to put ontologies in practice for developing information systems, it is worthwhile to code the resulting ontologies using objects. We believe that coding ontologies in o
	To support ontology development and its coding in Java, we developed ODEd, an ontology editor. Before presenting ODEd, however, we need to describe the ontology development process that the tool automates.
	AN ONTOLOGY DEVELOPMENT PROCESS
	Falbo et al. [2] have proposed an ontology development process, that encompasses the following activities, as shown in Figure 1:
	Purpose identification and requirement specification: it concerns to clearly identify the ontology purpose and its intended uses, that is, the competence of the ontology. To do that, competency questions are used.
	Ontology capture: the goal is to capture the domain conceptualization based on the ontology competence. The relevant concepts and relations should be identified and organized. A model using a graphical language, with a dictionary of terms, should be used
	Ontology formalization: aims to explicitly represent the conceptualization captured in a formal language.
	Integration of existing ontologies: during the capture and/or formalization steps, it could be necessary to integrate the current ontology with existing ones, in order to seize previously established conceptualizations.
	Ontology evaluation: the ontology must be evaluated to check whether it satisfies the specification requirements. It should also be evaluated in relation to the ontology competence and some design quality criteria, such those proposed by Gruber [10].
	Documentation: all the ontology development must be documented, including purposes, requirements and motivating scenarios, textual descriptions of the conceptualization, the formal ontology and the adopted design criteria.
	The dotted lines indicate that there is a constant interaction, albeit weaker, between the associated steps. The filled lines show the main workflow in the ontology building process. The box involving the capture and formalization steps enhances the stro
	Figure 1. Steps in the ontology development process.
	ODEd aims to support this process. ODEd supports ontology capture by supporting the definition of concepts and relations using graphical representations, and it promotes automatic generation of some classes of axioms. Also, ODEd supports codifying the re
	Set-based ontology axiomatization: to derive objects from domain ontologies, it is worthwhile to adopt a formalism that lies at an intermediate abstraction level between first-order logics and objects. For this purpose, a hybrid approach based on pure fi
	Class identification: starting from the sets formally defined, a preliminary list of the classes of the object-oriented model can be established;
	Epistemological structure translation: since the classes are defined, relations among concepts and epistemological axioms should be translated to the corresponding object-oriented structures, producing an initial class diagram;
	Consolidation and ontological axioms translation: the class diagram derived in the step above should be refined to consider consolidation and ontological axioms.
	ODEd’S ARCHITECTURE
	In order to support the ontology development process described above, ODEd implements a three-layered architecture shown in Figure 2. The ontologies are developed through the presentation layer and they are described according to a model defined in the d
	Figure 2. ODEd Architecture.
	This architecture uses is a project philosophy that suggests that the central classes, in the domain layer, are not aware of how the ontologies are presented to the user or stored by the system. The portion of the system that handles the graphic represen
	The presentation layer supports the ontology capture. In this step, the use of a graphical representation is essential in order to facilitate the communication between domain engineers and experts. In ontology building, such representation is basically a
	ODEd uses LINGO as a graphic language to describe ontologies, allowing the automatic generation of the LINGO’s notations built-in axioms. Upon using these notations during ontology capture, an ontology developer is also defining the group of axioms that
	Figure 3. LINGO’s main notations and some axioms.
	UML has also been used as an ontology modeling language [12]. Therefore, ODEd’s presentation layer also supports ontology capture using UML. However, it is necessary to emphasize that there are some problems in using UML as an ontology modeling language.
	As shown in Figure 4, stereotyped classes (<<Concept>>) represent concepts. Relations are defined as labeled associations, and properties are represented as attributes. Relations that contain properties or relation of arity bigger than two are represente
	Figure 4. A Subset of UML to represent ontologies.
	ODEd allows configuring what graphical representation use to develop the ontologies. The ontology can be captured in LINGO or UML. The objects that represent the ontology are created in the domain layer independently of the graphical representation used
	Figure 5. Ontology Description Model.
	The ontologies are described in the domain layer by an independent ontology description model presented in Figure 5. The ontology purpose and its intended uses are identified through competency questions. It is represented by a diagram, which contains co
	LINGO’s and UML’s notations have axioms built in and ODEd is capable of generating these axioms. Beyond generating pre-defined theories, the tool also allows the user to compose his/hers own theories and apply then to relations in the ontology. This appr
	Each axiom property has a mini design pattern associated (some of these patterns are presented in Figure 5). These patterns are captured by classes capable to check if the axiom properties represented by the pattern hold. For instance, the anti_symmetry(
	Besides creating the design patterns to represent the properties axioms, it is necessary to define how they can to compose the theories. To do so, another design pattern was created.
	There are some axioms, such those that represent theories, whose purpose is to describe preconditions that must be satisfied, or properties that must hold, so that a relation can be established between two concepts.
	Generally speaking, this type of axiom has the following format: (x:X, y:Y relation(x,y) ((preCondition1) ((preCondition 2) (... ((preConditionN). This generic format was mapped to the PreCondition Pattern [9] that guarantees the evaluation of each o
	To support theories composition, the PreCondition Pattern defined in [9] was modified. The hook methods are now axiom property patterns responsible for evaluating the fulfillment of the preconditions of the corresponding relation theory. The generic form
	Object frameworks generated by ODEd incorporate the new PreCondition Pattern to compose and verify relation theories. If a relation possesses a theory, its pre-conditions are tested before including or removing objects.
	DEVELOPING AN ONTOLOGY OF SOFTWARE QUALITY USING ODEd
	To present an example of the ontology development in ODEd we present the Quality Ontology developed in [17]. Due to limitations of space, we present only part of this ontology.
	The first step of the ontology development defined in the process presented in section 3 is the purpose identification and requirement specification. To support this phase, ODEd allows the user to define competency questions. The form presented in Figure
	Figure 6. Competency questions of the Quality Ontology.
	Once the competency questions are defined, it is possible to start the ontology capture. To support this phase ODEd supports the graphic representation of the ontologies concepts and relations using LINGO and UML, as discussed in section 4.
	Figure 7 shows part of the Quality Ontology in LINGO. In the quality ontology, a software quality characteristic can be classified according to two criteria. The first one says if a quality characteristic can be directly measured or not. A non-mensurable
	Since this ontology was translated to an object framework using the approach described in section 3 [9], we used it to illustrate ODEd functionalities.
	Cardinalities are used in the diagram to show how many instances of a concept can participate in the relation. In Figure 7, cardinality (1,n) in the relation quantification implies that an mensurable characteristic must be valued by, at least, one metric
	Although the example presented above represents only binary relations, the formalism used is expressive enough to model relations of any arity, including reflexive relations. Likewise, conditional relations (AND and XOR tight relations) can also be repre
	In Figure 8 it is presented the quality ontology captured using UML. The same objects modeled in Figure 7 are presented here but using a different graphical notation. A stereotyped class QualityCharacteristic, for example, represents the QualityCharacter
	Table 1 presents some axioms of the activity ontology, indicating their type. Axioms (EA1) to (EA4) were derived from the super-type relation among quality characteristics. (EA5) to (EA8) are directly derived by the usage of the whole-part relation betwe
	Table 1. Some axioms of the Quality Ontology.
	ID
	EA1
	EA2
	EA3
	EA4
	EA5
	EA6
	EA7
	EA8
	OA1
	The axiom (OA1) indicates that if quality characteristic qc1 is valuated by a quality characteristic qc2, then qc2 cannot be valuated by qc1. It means that the valuation relation is anti-symmetric and the anti-symmetry property should be incorporated to
	Initially, the axioms defined in relations’ theories (such the axiom (OA1) presented above) are the only type of ontological axioms that can be represented in ODEd. It is not defined yet how to handle other ontological axioms that cannot be captured as t
	Figure 9. Properties of the Valuation relation.
	ODEd also incorporates software agents that help the ontology designer during the ontologies development.
	Figure 10. The agent OntoBoy.
	There are some constraints that must be satisfied during ontology development. Thus, software agents were added to ODEd to alert the user about eventual modeling structural mistakes or to offer advices on how to solve them according to the user's actions
	Importing Concepts and Relations

	The main purposes of the quality ontology are to promote software quality knowledge integration in a Software Engineering Environment (ODE) and to support the development of quality management tools for it [13]. Therefore, this ontology must be integrate
	ODEd supports ontology integration in a very simple way. It is possible to import concepts from existing ontologies to the current one. If more than one concept is imported and there are relations between them, these relations are also incorporated to th
	For example, in Figure 7, the Artifact concept was imported from the software process ontology and a relation between Artifact and ProductQualityCharacteristic was created (relevance).
	If an imported concept or relation is removed from the original ontology, it is automatically removed from the ontology it was imported. No kind of notification is sent to the knowledge engineer responsible for that ontology.
	It means that if the Artifact is removed form the software process ontology, it will be removed from the quality ontology, as well as the relevance relation and the framework of both ontologies should be generated again to apply the modifications. Since
	FROM DOMAIN ONTOLOGIES TO OBJECT FRAMEWORKS
	As pointed in section 3, for deriving object frameworks from ontologies, Guizzardi et al. [9] defined a set of mapping directives, design patterns and transformation rules. In its current stage, ODEd considers the mapping directives and some design patte
	Mapping Directives

	According to [9], concepts and relations are naturally mapped to classes and associations in an object model, respectively. Relations between three or more concepts (n-ary relations) and relations with properties give rise to associative classes. Propert
	In the case of the quality ontology, the classes QualityCharacteristic and NonMensurableCharacteristic were derived from the corresponding concepts, as well as the associations quantification, relevance, and valuation, as shown in Figure 11. Properties o
	Still considering the mapping of relations, there are other issues that must be discussed. First, since in an ontology relations are bi-directional, the corresponding associations must be navigable in both directions. Thus, the associations are implement
	Reflexive relations are also mapped as associations, and generate a method for each association end. The name of these methods is, instead of the relation’s name, the name of the roles played by the concept. Whole-Part relations also are represented by t
	Subtype-of relations among concepts can be directly mapped to inheritance among classes. So, axioms (EA1) to (EA4) do not require any special treatment. In our example, the subtypes of quality characteristic give rise to the following sub-classes: Proces
	The Whole-Part Relation

	Figure 3 presents the theory (mereology) embodied by a generic whole-part relation. Notwithstanding, the underlying axioms implied by the proposed notation are not well mapped to aggregations in an object model, i.e., UML notation for aggregation does no
	Figure 12. The Whole-Part pattern [9].
	In the framework derived from the quality ontology (Figure 11), the classes NonMensurableCharacteristic and QualityCharacteristic implement interfaces IWhole and IPart respectively. Likewise, they are related to the handlers Aggregation and Part. The cla
	public class NonMensurableCharacteristic implements IWhole
	{ Aggregation a = new Aggregation();
	public boolean setSubCharacteristic (QualityCharacteristic c)
	{ return a.setPart(c); }
	public Set getSubCharacteristic ()
	{ return a.part(); }
	}
	The theory incorporated to the valuation relation in Figure 9 is presented in the code fragment below. The class QualityCharacteristic is related to the pattern AntiSymmetry through the attribute s. Before setting a non-mensurable characteristic as capab
	public abstract class QualityCharacteristic implements IWhole
	{ Set valuation = new Set();
	AntiSymmetry s = new AntiSymmetry();
	public Set getValuation()
	{ return valuation; }
	public boolean setValuation
	(NonMensurableCharacteristic c)
	{ boolean result = false;
	if s.anti_symmetry(this,c,“valuation”)
	{
	result = true;
	valuation.add(c);
	c.setValuation (this);
	}
	return result;
	}
	}
	Since the PreCondition Pattern composes the Whole-Part Pattern, the modifications made require changes in the last pattern. Instead of encapsulating the axioms of the generic whole-part theory, the Whole?class is now related to the axioms properties that
	public abstract class Whole
	{ IWhole whole;
	Set part = new Set();
	AntiSymmetry s = new AntiSymmetry();
	AntiReflexivity r=new AntiReflexivity();
	Atomicity a = new Atomicity();
	Transitivity t = new Transitivity();
	public boolean setPart(IPart c)
	{ boolean result = false;
	if (transitivity(this,c,“getPart”)&&
	anti_symmetry(this,c,“getPart”)&&
	anti_reflexivity(this,c,“getPart”)&&
	atomicity (this,c,“getPart”)&&
	specConstrain(c))
	{ result = true;
	part.add(c);
	(c.part()).setWhole(whole);
	}
	return result;
	}
	}
	For this reason, the setPart() method in the Whole class evokes the axiom properties patterns to check if the mereology theory holds. The specConstrain() method in the Aggregation class evokes the Disjointed pattern.
	BROWSING ONTOLOGIES
	ODEd provides automatic generation of hypertexts based on the ontologies designed. Using these hypertexts, developers are able to browse and search the domain’s concepts, relations and constrains.
	The language chosen to build these documents was XML [18], because it allows defining the syntax of structured documents. Besides, XML schema and ontologies have a common goal: to provide vocabulary and structure for describing information to be exchange
	To generate the XML documents, a set of tags was defined to represent the meta-ontology’s concepts and relations. The ontologies’ data (concept, properties, etc.) were introduced in the XML files, marked with theses tags.
	Figure 13. Browsing the Quality Ontology.
	The tutorials are presented to the user as HTML documents. In order to do so, the editor uses XSL (eXtensible Style sheet Language), a document transformation and formatting language [19].
	Figure 13 shows the hypertext derived from the software quality ontology. It is possible to visualize all ontology’s concepts and relations and their definitions and properties. From the valuation relation, for example, the user can browse its concepts a
	RELATED WORK
	There are many ontology editors presented in the literature, such as Ontolingua Server, OntoEdit, OILEd, JOE, Protége-2000 and WebODE.
	Ontolingua Server [20] supports ontology development and sharing. It provides access to a library of ontologies, and allows new ontologies to be created. Remotely distributed groups can use their web browsers to browse, build and maintain ontologies stor
	OntoEdit [15] pursues the modeling of ontologies such that graphical means exploited for modeling of concepts and relations scale up to axiom specifications (using RDFS). The core idea is to use an axiom categorization. This categorization is centered ar
	OILEd [21] supports the construction of ontologies in OIL. The editor allows the definition of concepts and relations and also supports the definition of some pre-defined axioms. OILEd has reasoning services that supports ontologies construction, integra
	The Java Ontology Editor (JOE) [22] was developed to help users build and browse ontologies. It enables query formulation at several levels of abstraction. JOE provides a graphical user interface for editing ontologies. It uses Entity Relationship diagra
	Protége-2000 [23] aims to support knowledge acquisition, and to reach interoperability with other knowledge representation systems. It has classes, instances of these classes, slots representing attributes of classes and instances, and facets expressing
	Ontobroker [24] provides languages to annotate web documents with ontological information, to represent ontologies, and to formulate queries. The tool set of Ontobroker allows users to access information and knowledge from the web and to infer new knowle
	WebODE [25] is a workbench for ontological engineering that provides a scalable architecture for the development of other ontology development tools and ontology-based applications. WebODE’s ontology editor allows the collaborative edition of ontologies
	Most of these tools emphasize the definition of concepts and relations, but they have none or little support to constrains definition. The most interesting initiative is the creation of axioms templates in OntoEdit [15] and a similar approach is provide
	Reasoning services are an important feature [21, 25] because they can be used in ontology evaluation. Other desirable services provided by some of these tools are the support to the cooperative work and the automatic generation of ontology documentation
	Despite of being an important requirement for ontology design, only JOE and WebODE use some kind of graphic representation [22, 25]. But the first one uses Entity Relationship models that are not adequate to ontology development [9] and the second one do
	All editors previously mentioned were developed to support ontology design in the context of Semantic Web. None of them was developed aiming to support the development of information systems, using frameworks. In this way, ODEd address domain engineering
	CONCLUSIONS AND FUTURE WORK
	In this paper, we presented ODEd, an ontology editor that supports ontology development using graphic representations, besides promoting automatic generation of some classes of axioms and derivation of frameworks from ontologies.
	Although most phases of ontology development process were supported by ODEd, important activities such as ontology integration and evaluation were not completely addressed. These features must be considered in future versions of ODEd. We believe that to
	In the approach presented, ODEd is capable to derivate epistemological, consolidation and ontological axioms coming from relation theories. Other ontological axioms, which do not fit in any category of axioms properties, could also be described in the on
	Like Protégé [23], ODEd could also generate knowledge-acquisition forms automatically based on ontology, going a step ahead towards knowledge management.
	ACKNOWLEDGMENTS
	The authors acknowledge CAPES for the financial support to this work.
	REFERENCES
	Staab, S., Studer, R., Schnurr, H.P., Sure, Y., Knowledge Processes and Ontologies, In: IEEE Intelligent Systems, p. 26-34, January/February 2001.
	Falbo, R.A., Menezes, C.S., Rocha, A.R.C., A Systematic Approach for Building Ontologies, In: Proceedings of the IBERAMIA’98, Lisboa, Portugal, 1998.
	Lassila, O., Van Harmelen, F., Horrocksm, I., Hendler, J., Mcguinness, D. L., The Semantic Web and its Languages, In: IEEE Intelligent Systems, p. 67-73, November/December 2000.
	Uschold, M, Gruninger, M., Ontologies: principles, methods and applications, In: Knowledge Engineering Review, Volume 11 No 2, June 1996.
	Guarino, N., Understanding, building and using ontologies, Int. Journal Human-Computer Studies, 46(2/3), February / March 1997.
	Guarino, N., Formal Ontology and Information Systems, In N. Guarino (Ed.), Formal Ontologies in Information Systems, IOS Press, 1998.
	Uschold, M., Knowledge level modelling: concepts and terminology, Knowledge Engineering Review, vol. 13, no. 1, 1998.
	Jasper, R., Uschold, M., A Framework for Understanding and Classifying Ontology Applications, in Proc. of the 12th Workshop on Knowledge Acquisition, Modeling and Management (KAW’99), Alberta, Canada, 1999.
	Guizzardi, G., Falbo, R.A., Pereira Filho, J.G., Using Objects and Patterns to Implement Domain Ontologies, In: Proceedings of XV Simpósio Brasileiro de Engenharia de Software, October 2001.
	Gruber, T.R., Towards principles for the design of ontologies used for knowledge sharing, Int. Journal of Human-Computer Studies, vol. 43, no. 5/6, 1995.
	Borst, W.N., Construction of Engineering Ontologies for Knowledge Sharing and Reuse, PhD Thesis, University of Twente, Enschede, The Netherlands, 1997.
	Cranefield, S., Purvis, M., UML as an Ontology Modelling Language, In: Proceedings of the IJCAI-99, Workshop on Intelligent Information, 16th International Joint Conference on AI, Stockholm, Sweden, July 1999.
	Falbo, R.A., Guizzardi, G., Duarte, K.C., Natali, A.C.C., Developing Software for and with Reuse: An Ontological Approach, Proceedings of the CSITeA’2002 (to appear).
	Evans, A., Kent, S., Core Meta-Modelling Semantics of UML: the pUML Approach, In: 2nd International Conference on the Unified Modeling Language, Colorado, EUA, 1999.
	Staab, S., Maedche, A., Ontology Engineering beyond the Modeling of Concepts and Relations, 14th European Conference on Artificial Intelligence, Workshop on Applications of Ontologies and Problem-Solving Methods, 2000.
	Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design patterns: elements of reusable object-oriented software, Addison-Wesley, 1995.
	Duarte, K.C., Falbo, R.A., Uma Ontologia de Qualidade de Software, In: XIV Simpósio Brasileiro de Engenharia de Software, WQS’2000 - Workshop de Qualidade de Software, João Pessoa - PB, October 2000.
	Bray, T., Paoli, J., Sperberg-McQueen, C. M., Extensible Markup Language (XML) 1.0, W3C Recommendation, 1998.
	Rabarijoana, A., Dieng, R., Corby, O., Exploitation of XML for Corporate Knowledge Management, In: Proceedings of EKAW’99, p. 373-378, 1999.
	Farquhar A., Fikes, R., Rice, J., The Ontolingua Server: a tool for collaborative ontology Construction, Int. J. Human-Computer Studies, 46, p. 707-727, Knowledge Systems Laboratory, Stanford University. Stanford, CA, USA, 1997.
	Bechhofer, S., Horrocks, I., Goble, C., Stevens, R., OilEd: a Reason-able Ontology Editor for the Semantic Web, In: Working Notes of the 14th International Workshop on Description Logics (DL-2001), p.1-9, Stanford, EUA, August 2001.
	Mahalingam, K., Huhns, M.N., A Tool for Organizing Web Information, In: IEEE Computer, p. 80-83, June 1997.
	Noy, N.F., Sintek, M., Decker, S., Crubézy, M., Fergerson, R.W., Musen, M.A., Creating Semantic Web Contents with Protégé-2000, In: IEEE Intelligent Systems, March/April 2001.
	Fensel, D., Decker, S., Erdmann, M., Studer. R., Ontobroker: Or How to Enable Intelligent Access to the WWW, In: Proceedings of the 11th Banff Knowledge Acquisition for Knowledge-Based System Workshop, Banff, Canada, April 1998.
	Arpírez, J.C., Corcho, O., Fernández-López ,M., Gómez-Pérez, A., WebODE: a Scalable Workbench for Ontological Engineering, K-CAP’01, Canadá, 2001.

