
From Awareness Requirements to Adaptive Systems: a Control-Theoretic Approach

Vı́tor E. Silva Souza, John Mylopoulos

Department of Information Engineering and Computer Science

University of Trento, Italy

{vitorsouza, jm}@disi.unitn.it

Abstract—Several proposals for the design of adaptive sys-
tems rely on some kind of feedback loop that monitors the
system output and adapts in case of failure. Roadmap papers
in the area advocate the need to make such feedback loops
first class entities in adaptive systems design. We go further by
adopting a Requirements Engineering perspective that is not
only based on feedback loops but also applies other concepts
from Control Theory to the design of adaptive systems. Our
plans include a framework that reasons over requirements
at runtime to provide adaptivity to a system proper. In this
position paper, we argue for a control-theoretic view for
adaptive systems and outline our long-term research agenda,
briefly presenting work that we have already accomplished and
discussing our plans for the future.

Keywords-requirements; awareness; adaptive systems; feed-
back loop; control theory

I. INTRODUCTION

With the increasing complexity of software systems,

software engineering researchers and practitioners are now

looking into self-adaptivity as a way to lower costs for the

management of complex systems. Several proposals for the

design of adaptive systems include some kind of feedback

loop (e.g., the MAPE feedback loop [1]) that monitors the

system’s performance and triggers adaptation actions in case

of failure.

In the book published after the Dagstuhl Seminar 08031

on “Software Engineering for Self-Adaptive Systems” [2],

Brun et al. [3] notice that “while [some] research projects

realized feedback systems, the actual feedback loops were

hidden or abstracted. [...] With the proliferation of adap-

tive software systems1 it is imperative to develop theories,

methods and tools around feedback loops.” Furthermore,

Andersson et al. [4] consider that “a major challenge is

to accommodate a systematic engineering approach that

integrates both control-loop approaches with decentralized

agents inspired approaches.”

In our research, we take a Requirements Engineering

(RE) perspective, starting with the question: what are the

requirements that lead to feedback loop functionality? This

question has led us to proposing a new class of requirements,

called Awareness Requirements, which talk about the run-

time status of other requirements [5].

1Throughout this position paper, we use the term “adaptive software
system” to refer to systems that have mechanisms for monitoring, diagnosis
and self-adaptation. Others call such systems “self-adaptive”.

Furthermore, given that feedback loops are a central ele-

ment of control systems [3], we began to explore techniques

from Control Theory that could be useful in the design

of systems that use feedback loops as a mechanism for

adaptation. We again applied our requirements engineering

perspective and proposed that System Identification — the

process of determining the rules that govern a system’s

dynamic behavior — should be conducted during the mod-

eling of an adaptive system’s requirements, using qualitative

information to deal with uncertainty [6].

The final goal we have envisioned for this research is a

framework that uses the information gathered during Aware-

ness Requirements elicitation and System Identification at

runtime, adapting the target system in case its requirements

are not satisfied. Moreover, we propose to develop a sys-

tematic process that starts with Awareness Requirements and

goes all the way to a running adaptive system based on this

framework, preferably with tool support.

In this paper we present our position on a requirements-

based control-theoretic approach for the modeling, design

and implementation of adaptive systems. First, section II

explains our view of adaptive systems as control systems;

then, section III outlines our long-term research proposal,

summarizing what we have accomplished thus far and

discussing future directions; finally, section IV closes the

paper.

II. CONTROL-THEORETIC VIEW OF ADAPTIVE SYSTEMS

In our research, we assume the architecture for the design

of an adaptive system uses one or more feedback loops

to implement adaptivity. In other words, we see adaptive

systems as feedback control systems.

A. Control Systems

Figure 1 shows a simplified view of a control system,

adapted from [7]. In this kind of system, the reference input

is “the desired value of the measured outputs”2, while the

measured output is “a measurable characteristic of the target

system”. For instance, consider a (simplified view of a) car’s

cruise control mechanism, which is a classic example of a

control system. Its purpose is to maintain the car at some

constant speed SI . In this example, SI is the reference input,

2this and the following quotes were taken from [7], §1.1



Figure 1. Simplified block diagram of a control system based on [7].

whereas the actual speed of the car SO , which can be read

from the car’s speedometer, is the measured output.

Given this information, the controller “computes values

of the control input based on current and past values of

control error.” The control error is “the difference between

the reference input and the measured output,” while the

control input is “a parameter that affects the behavior of

the target system and can be adjusted dynamically.” Back

to the example, the control error E can be calculated as

E = SI −SO, leading to a straightforward definition for the

control input: if E > 0, the controller (the cruise control

system) should inject more fuel in the engine to speed up

the vehicle (the target system). Analogously, if E < 0, less

fuel should be injected. The idea is to keep SO as close as

possible to SI at all times.

Finally, the disturbance input “are factors that affect the

measured output but for which there is no governing control

input.” In other words, these are taken from the context

in which the system executes. Neither the system nor the

controller have any control over these values. For the cruise

control system, the inclination of the road and the direction

and strength of the wind are examples of disturbance inputs,

as they can have an influence on the measured speed SO.

B. Adaptive Systems as Control Systems

Our view of an adaptive system as a control system

is represented in figure 2 and described in the following

paragraphs. For system requirements, we adopt a Goal-

Oriented approach which uses as modeling primitives con-

cepts such as goals, softgoals, quality constraints and domain

assumptions [8]. It is important to note, however, that our

proposal starts at the late requirements phase (see, e.g., [9]),

focusing on the requirements of the software system instead

of the goals of the different agents that interact with it.

As a (classic) example to illustrate the definitions that fol-

low, consider a meeting scheduler system3 with goals such

as Collect timetables from participants, Find available rooms

and Choose schedule; domain assumptions like Participants

use the system calendar for their work schedule; softgoals

such as Good participation in meetings, which are more

3We recognize the meeting scheduler is a very simple system and we
have selected it for illustration purposes only. We are currently working on
a larger case study to demonstrate the validity of our approach.

Figure 2. View of an adaptive system as a control system.

precisely defined by quality constraints like At least 90% of

participants attend the scheduled meeting. A complete goal

model for this example can be found in [6].

Reference input: in an adaptive system, the reference

input consists of the system requirements. This includes not

only “vanilla” requirements such as the system’s goals and

assumptions, but also adaptivity requirements. In section III

we argue that Awareness Requirements and the information

collected during System Identification are part of the sys-

tem’s adaptivity requirements.

Measured output: if requirements are the reference input,

the measured output should then consist of indicators of

requirements convergence. In other words, we would like

to measure, at runtime, if functional requirements are being

met (e.g., are users able to successfully Find available rooms

for their meetings? What is the success rate for this goal?)

and what are the degrees of satisfaction of non-functional

requirements (e.g., what is the participation percentage for

each scheduled meeting? Is it above 90%? What is the

success rate for this quality constraint?). Such indicators

are usually of Boolean nature (i.e., satisfied: true/false) and

measures in other domains (e.g., the response time of a

task or the success rate of a goal, both numeric) can be

mapped to Boolean by a function that maps each value of

the domain to satisfied/unsatisfied (in the case of numeric

values, a threshold usually provides such mapping).

Following standard Goal-Oriented Requirements Engi-

neering (GORE) approaches, we associate to every leaf-

level goal one or more tasks through which the goal can

be satisfied, and to leaf-level softgoals a quality constraint

(“metric”) for measuring the degree of satisfaction of the

softgoal. A specification for a given goal model consists of

a set of tasks, quality constraints and domain assumptions

such that assuming that domain assumptions hold true, if

tasks are executed and quality constraints hold, then all

root-level goals are fulfilled. Of course, this is an optimistic

view of the world. The tasks that are part of a specification

may actually not be carried out during any one execution,

or may not have the expected effects because of a fault.

Also, quality constraints may be satisfied approximately,

rather than fully. And domain assumptions may not hold in

particular circumstances. For example, we assume all Par-

ticipants use the system calendar in the meeting scheduler



system, but is that really the case at runtime? This is useful

information to monitor for when trying to satisfy the goal

Collect timetables.

In section III, we defend our position that the evaluation

of Awareness Requirements at runtime can provide such

indicators of requirements convergence.

Control error: given the above reference input and mea-

sured output, the control error consists of a set of require-

ments (be they goals, quality constraints or even domain

assumptions) that were not satisfied either individually (i.e.,

during a single execution of the system) or in an aggregate

way (average success rate). Negative answers to questions

presented previously (Are user able to successfully use the

system? Is participation above 90%? Are 95% of all meeting

participants using the timetable database?) are examples of

requirements divergence.

Control input: given the information on the control error,

the control input consists, of course, of the adaptivity ac-

tions, which might include reconciliation of system behavior

and compensation to avoid inconsistent system states. In

section III, we advocate that the information obtained from

System Identification [6] is very useful for determining the

control input.

Disturbance input: the factors that can be measured

but that neither the target system nor the adaptivity frame-

work have any control over are called context information.

However, unlike the disturbance input in control systems

(figure 1), context information in adaptive systems (figure

2) are provided as input not only to the target system, but

also to the adaptivity framework. The reason for this is

that the controller itself can be context-sensitive, selecting

appropriate adaptivity actions depending on the context. At

this time we have not addressed this issue with the necessary

depth and regard the impact of contexts in our approach as

future work.

It is with this control-theoretic view that we propose a sys-

tematic approach for the modeling, design and development

of adaptive systems, based on feedback loops. We discuss

this next.

III. THE APPROACH

The long-term objectives of our research consist of devel-

oping:

• A systematic process that covers requirements engi-

neering, design and implementation of adaptive systems

based on a control-theoretic perspective;

• A framework that implements generic adaptivity actions

on any instrumentable software system, given suitable

requirements models;

• A CASE tool that guides requirements engineers

through the steps of the aforementioned process that

are related to adaptivity requirements. In other words,

the tool would help create the proper models that are

required as input for the adaptivity framework.

Figure 3 illustrates the proposed software development

process for adaptive systems. In the following we discuss

different aspects of this process.

A. “Vanilla” and “Adaptive” Software System Development

Figure 3 divides the software development process in two

tracks: “Vanilla” Requirements Engineering, Design and

Coding is at the top, while Requirements Engineering for

Adaptive Systems can be found at the bottom. This separation

of concerns is merely conceptual, not processual, i.e., the

adaptive part of RE is, of course, highly dependent on the

(partial or final) results of the “vanilla” RE activity and they

are not parallel, independent subprocesses, as the diagram

might suggest.

The “vanilla” software development process is concerned

with modeling the requirements, designing the architecture

and coding the target system in the usual way, i.e., indepen-

dently of aspects related to adaptivity capabilities that the

target system is supposed to have. For these activities, we

do not prescribe any specific process or methodology.

However, we do impose a few constraints on this process,

all related to our proposals on RE for Adaptive Systems,

discussed in the next subsections. These constraints are:

• Our framework is goal-oriented and expects as output

of the “vanilla” RE phase a goal model of the system’s

requirements. In particular, we have been basing our

implementations on the RE ontology of Jureta et al.

[8];

• In order for the feedback loop implemented in the adap-

tivity framework to perform run-time reasoning over the

requirements model, the target system should log (in

a medium accessible by the framework) information

about the execution of system requirements. If trace-

ability links were formalized during the development

process, instrumentation techniques could be used to

provide such logging;

• Finally, to adapt the target system, the adaptivity

framework should be able to manipulate parameters

of the system, which should also provide some call-

back functions such as abort(R), initiate(R),

retry(R), etc., where R is a requirement.

It is important to note that the process described in this

section does not support legacy systems. Adding adaptivity

capabilities to existing systems for which models and/or

source code are not available is considered future work in

the context of this research.

Given that the “vanilla” software development process has

provided the required artifacts described above, we propose

a systematic process for the inclusion of adaptivity features

in the system-to-be. This process is composed of three

main activities: Awareness Requirements Elicitation, System

Identification and Adaptation Strategy Selection.



Figure 3. Overview of a software development process for an adaptive system.

B. Awareness Requirements Elicitation

As we have seen in section II, the feedback loop begins

with the measurement of system output or, in the case of

adaptive systems, the indicators of requirements conver-

gence. In essence, we would like to know if requirements

have been satisfied, denied, canceled, etc. For this reason we

have proposed a new type of requirement called Awareness

Requirement [5].

Awareness Requirements (AwReqs) are requirements that

talk about the success, failure or any other possible change

of state of other requirements — goals, quality constraints,

domain assumptions and AwReqs themselves. Considering

the meeting scheduler, examples of AwReqs could be:

• Domain assumption Participants use the system calen-

dar should always be true (in terms of requirements

states, it should never fail);

• Quality constraint At least 90% of participants attend

should have 75% success rate;

• Considering one week periods, the success rate of

goal Collect timetables should not decrease three times

consecutively.

AwReqs can, thus, refer to requirements at the instance

level (a single execution), at an aggregate level (success

rates) and even monitor trends in success rates of require-

ments. In [5], AwReqs are characterized with more detail

and the tasks of elicitation and formalization of this new

type of requirement are discussed. As validation, we show

that AwReqs can be monitored at runtime.

Awareness Requirements provide the indicators of require-

ments convergence needed by the feedback loop to calculate

the control error (requirements divergence). The next step,

then, is to find out how we can make the measured output

as close as possible to the reference input. In other words,

what could be done to help the system meet its requirements

after AwReq failures?

C. System Identification

To answer the previous question, we go back to control

systems. Take the car’s cruise control example once again:

knowing the type of fuel and the engine characteristics

(torque, horsepower, etc.) you can calculate with high pre-

cision how fuel injection affects the car’s speed, given

the environment conditions (weight of car, inclination of

road, wind speed, etc.). In Control Theory, the process of

determining the equations that govern this kind of system

behavior is called System Identification.

However, for complex socio-technical systems4 deployed

in environments with high uncertainty, such white box

models (in which all the variables are known and can be

calculated) are overly complex or even impossible to obtain.

For this reason, we propose the identification of qualitative

relations between indicators of requirement convergence and

target system parameters that can be tuned at runtime [6].

For example, suppose there is an Awareness Requirement

on the meeting scheduler that says goal Find available

rooms should never fail and that information on the target

system’s log indicates this AwReq has failed. In this case, the

adaptivity framework should know which parameter can be

modified in order to improve the chances of requirements

convergence with respect to this specific indicator. If the

meeting scheduler has a parameter RfM which indicates

the number of Rooms for Meetings available to the system,

4Systems which “include in their architecture and operation organiza-
tional and human actors along with software and hardware ones” [10]



increasing this parameter could be considered an adaptivity

action here. Likewise, if the goal Find available rooms

is OR-decomposed into subgoals Find local rooms, Call

partner institution and Call hotels and convention centers,

selecting partner instead of local or hotel instead of partner

would also help. These same changes might also have impact

on other indicators (e.g., the cost of the scheduling) and all

the available information should be taken into consideration

by the adaptivity framework when deciding the adaptivity

actions that should be executed.

In [6], we propose a language for modeling qualitative

information on the relation between changes in parameters

and the measured output of the system, and a systematic

process for conducting System Identification for adaptive

systems. We believe this information is fundamental for

determining the control input in a feedback loop-based

adaptive system and is currently missing from requirements

models.

D. Adaptation Strategy Selection

Given indications that the system’s requirements are being

satisfied or not (evaluation of the Awareness Requirements)

and information on how to improve these indicators in case

of failure (result of System Identification), the missing piece

of our adaptivity requirements specification is the exact

actions the target system should execute in order to adapt

itself. This is called the adaptation strategy and it is our

current work in the context of this research.

The adaptation strategy can be divided in two parts: com-

pensation and reconciliation. Compensation means bringing

the system back to a consistent state, i.e., in case the tasks

executed when the failure was detected left any inconsis-

tencies behind, the feedback loop compensates for their

actions. Here, we intend to follow the model of database

long lived transactions [11] as done by Wang et al. [12]:

the requirements engineer attaches compensation actions

to specific elements of the goal model, representing what

has to be done in case that specific element is part of a

configuration that has failed.

Reconciliation refers to reconciling the system’s run-time

behavior and its requirements [13]. Given the information

modeled during System Identification, two reconciliation

mechanisms can be derived and are considered the default

adaptation strategies by the adaptivity framework:

• Parameter tuning: if there are parameters that can be

modified to improve requirements conformance (given

the specific requirement that failed), analyze the infor-

mation about these parameters (i.e., how changing them

affects other measured outputs) and choose the best

course of action, possibly following some generic sys-

tem policies (e.g., “aggressive”, “conservative”, etc.).

We have not yet devised a precise algorithm for this

end;

• Abort: if there are no parameters that affect the given

indicator or if all the parameters that affect it cannot

be further tuned (they are at their minimum/maximum

values), tell the target system to gracefully fail or

degrade performance. The abort strategy is the last

resort and it could also be used in case the parameter

tuning strategy runs into conflicting courses of action

and cannot solve the conflict.

Other reconciliation strategies can be obtained from re-

lated work in the area of adaptive systems. For instance,

proposals such as [14] and [15] divide requirements into

crisp and fuzzy/relaxed. Inspired by such ideas, we could

derive a good enough strategy that consists on relaxing

some satisfaction criteria for requirements. For example,

quality constraint At least 90% of participants attend could

be relaxed and deemed satisfied if the average participation

is between 85% and 90%.

At this point, our research could also possibly benefit

from ideas from other fields of computer science that

deal with adaptive systems, such as “fault-tolerant comput-

ing, distributed systems, biologically inspired computing,

distributed artificial intelligence, integrated management,

robotics, knowledge-based systems, machine learning,” etc.

[16]. Ideas from these and other fields could inspire differ-

ent adaptation strategies and enhancements on our current

adaptivity requirements specification.

E. Adaptivity Framework and CASE Tool

The process that we have presented and advocate for the

development of adaptive systems should be supported by

two software artifacts: the adaptivity framework and a CASE

tools for adaptive systems modeling, analysis and design.

The CASE tools would assist the requirements engineer in

producing the adaptivity requirements specification, whereas

the framework would be responsible for reading such spec-

ification, analyzing the target system’s log and executing

adaptation actions following the strategies that have been

selected.

Parts of this tool suite have been developed for the

execution of experiments to validate the ideas presented

on our previous works [5], [6]. Nonetheless, we intend to

develop a complete tools suite that would allow a developer

to start with Awareness Requirements and go all the way to

a running adaptive system.

IV. CONCLUSIONS

It has been recognized by the research community (e.g.,

SEAMS [17]) that ideas from Control Systems should be

adopted for the development of adaptive systems. In this

position paper, we have argued for a Requirements Engi-

neering perspective for the design of feedback loop-based

adaptive systems and provided an overview of our devel-

opment approach. In this approach, “vanilla” goal-oriented

requirements specifications are augmented with Awareness



Requirements and information produced during System Iden-

tification. Then an adaptivity framework is responsible for

analyzing this information and follow adaptation strategies

to adapt the target system at runtime.

This is on-going research and we see already opportunities

for future work on several questions. For instance:

• Control systems can use negative and positive feedback

[3]. What is the role of positive feedback in adaptive

systems?

• Our proposal adds reactive adaptation capabilities to

systems, but an even more useful feature would be to

prevent failures altogether instead of reconciling after

they occur. Predictive or probabilistic reasoning could

be useful here;

• As mentioned in section II-B, our research focuses on

system models, whereas other proposals (e.g., [18])

work with autonomous agents with their own require-

ments. In this context, a possible adaptation strategy

would be a change in the delegation of responsibility

over a requirement that has failed to be satisfied;

• What is the role of contexts in our models? We have

mentioned context information in figure 2, but our

approach does not properly address this input. Adaptive

systems could have different Awareness Requirements

or indicator–parameter relation depending on context.

Existing work on contextual requirements (e.g., [19],

[20]) would be the baseline here;

• How could our approach help on requirements evolu-

tion? After the system has been running for some time,

could we benefit from information on what adaptations

were needed (and which ones couldn’t be performed

and resulted in the abort strategy being selected) to

help developers evolve the system’s requirements?

• As mentioned in section III-A, how could we adapt this

approach to deal with legacy systems, i.e., systems for

which models and/or source code are not available?

We hope this paper will help foster discussion on the sub-

ject, which (in the spirit of feedback loops) will ultimately

lead to the improvement of the ideas contained herein.

REFERENCES

[1] J. O. Kephart and D. M. Chess, “The vision of autonomic
computing,” Computer, vol. 36, no. 1, pp. 41–50, 2003.

[2] B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi,
and J. Magee, Eds., Software Engineering for Self-Adaptive

Systems, ser. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, vol. 5525.

[3] Y. Brun, G. Marzo Serugendo, C. Gacek, H. Giese, H. Kienle,
M. Litoiu, H. Müller, M. Pezzè, and M. Shaw, Engineering
Self-Adaptive Systems through Feedback Loops. Berlin,
Heidelberg: Springer-Verlag, 2009, vol. 5525/2009, pp. 48–
70.

[4] J. Andersson, R. de Lemos, S. Malek, and D. Weyns, Model-
ing Dimensions of Self-Adaptive Software Systems. Berlin,
Heidelberg: Springer-Verlag, 2009, vol. 5525/2009, pp. 27–
47.

[5] V. E. S. Souza, A. Lapouchnian, W. N. Robinson, and J. My-
lopoulos, “Awareness Requirements for Adaptive Systems,” in
SEAMS ’11: 6th International Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems. Honolulu,
USA: ACM, 2011.

[6] V. E. S. Souza, A. Lapouchnian, and J. Mylopoulos, “System
Identification for Adaptive Systems: a Requirements Engi-
neering Perspective,” in ER ’11: 30th International Confer-
ence on Conceptual Modeling (to appear), 2011.

[7] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury,
Feedback Control of Computing Systems. John Wiley &
Sons, 2004.

[8] I. J. Jureta, J. Mylopoulos, and S. Faulkner, “Revisiting the
Core Ontology and Problem in Requirements Engineering,” in
RE ’08: 16th IEEE International Requirements Engineering
Conference. Barcelona, Spain: IEEE, 2008, pp. 71–80.

[9] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. My-
lopoulos, “Tropos: An Agent-Oriented Software Development
Methodology,” Autonomous Agents and Multi-Agent Systems,
vol. 8, no. 3, pp. 203–236, 2004.

[10] V. Bryl, “Supporting the design of socio-technical systems by
exploring and evaluating design alternatives,” Ph.D. disserta-
tion, Università degli Studi di Trento, Trento, Italy, March
2009.

[11] H. Garcia-Molina and K. Salem, “Sagas,” in COMAD
’87: The 1987 ACM SIGMOD international conference
on Management of data, ser. SIGMOD ’87. New York,
NY, USA: ACM, 1987, pp. 249–259. [Online]. Available:
http://doi.acm.org/10.1145/38713.38742

[12] Y. Wang, S. A. McIlraith, Y. Yu, and J. Mylopoulos, “Mon-
itoring and diagnosing software requirements,” Automated
Software Engineering, vol. 16, pp. 3–35, March 2009.

[13] M. S. Feather, S. Fickas, A. Van Lamsweerde, and C. Ponsard,
“Reconciling System Requirements and Runtime Behavior,”
in IWSSD ’98: 9th international workshop on Software spec-
ification and design, Washington, DC, USA, 1998, p. 50.

[14] L. Baresi, L. Pasquale, and P. Spoletini, “Fuzzy goals for
requirements-driven adaptation,” IEEE International Confer-
ence on Requirements Engineering, pp. 125–134, 2010.

[15] J. Whittle, P. Sawyer, N. Bencomo, B. H. Cheng, and
J.-M. Bruel, “RELAX: Incorporating Uncertainty into the
Specification of Self-Adaptive Systems,” in RE ’09: 17th

IEEE International Requirements Engineering Conference.
Atlanta, USA: IEEE, 2009, pp. 79–88.

[16] B. Cheng et al., “Software Engineering for Self-Adaptive
Systems: A Research Roadmap,” Software Engineering for
Self-Adaptive Systems, vol. 5525/2009, pp. 1–26, 2009.



[17] SEAMS ’11: Proceeding of the 6th International Symposium
on Software Engineering for Adaptive and Self-Managing
Systems. New York, NY, USA: ACM, 2011.

[18] F. Dalpiaz, P. Giorgini, and J. Mylopoulos, “An Architecture
for Requirements-Driven Self-reconfiguration,” in CAiSE ’09:
21st International Conference on Advanced Information Sys-
tems Engineering, vol. 5565/2009, 2009, pp. 246–260.

[19] R. Ali, F. Dalpiaz, and P. Giorgini, “A goal-based framework
for contextual requirements modeling and analysis,” Requir.
Eng., vol. 15, pp. 439–458, November 2010. [Online].
Available: http://dx.doi.org/10.1007/s00766-010-0110-z

[20] A. Lapouchnian and J. Mylopoulos, “Modeling domain vari-
ability in requirements engineering with contexts,” in ER
’09: 28th International Conference on Conceptual Modeling.
Gramado, Brazil: Springer, Nov. 2009, pp. 115–130.


