
A Requirements-Based Approach for the Design of Adaptive Systems

Vı́tor E. Silva Souza

Department of Information Engineering and Computer Science - University of Trento

Via Sommarive, 14 - Trento, Italy - 38123

vitorsouza@disi.unitn.it

Abstract—Complexity is now one of the major challenges
for the IT industry [1]. Systems might become too complex
to be managed by humans and, thus, will have to be self-
managed: Self-configure themselves for operation, self-protect
from attacks, self-heal from errors and self-tune for optimal
performance [2]. (Self-)Adaptive systems evaluate their own
behavior and change it when the evaluation indicates that it
is not accomplishing the software’s purpose or when better
functionality and performance are possible [3].

To that end, we need to monitor the behavior of the
running system and compare it to an explicit formulation
of requirements and domain assumptions [4]. Feedback loops
(e.g., the MAPE loop [2]) constitute an architectural solution
for this and, as proposed by past research [5], should be a
first class citizen in the design of such systems. We advocate
that adaptive systems should be designed this way from as
early as Requirements Engineering and that reasoning over
requirements is fundamental for run-time adaptation.

We therefore propose an approach for the design of adap-
tive systems based on requirements and inspired in control
theory [6]. Our proposal is goal-oriented and targets software-
intensive socio-technical systems [7], in an attempt to integrate
control-loop approaches with decentralized agents inspired
approaches [8]. Our final objective is a set of extensions to
state-of-the-art goal-oriented modeling languages that allow
practitioners to clearly specify the requirements of adaptive
systems and a run-time framework that helps developers
implement such requirements. In this 2-page abstract paper,
we summarize this approach.

I. BACKGROUND AND RELATED WORK

Our proposal is based on Goal-oriented Requirements

Engineering (GORE), which has some of its most well-

known approaches summarized in [9]. Our research, how-

ever, is not based on any specific approach, but on the main

concepts that most of them present: Goals, softgoals, quality

constraints and domain assumptions [10]. We assume the

existence of one or more goal models whose leaf-level goals

(tasks or plans) can be traced back from implemented, run-

time components of the system.

Among the many architectural solutions for adaptation,

our approach is based on feedback loops. The main idea

of feedback control is to use measurements of a system’s

outputs to achieve externally specified goals (specified as

reference input) [6]. A more detailed control-theoretic view

of adaptive systems as feedback control systems in the

context of our research is provided in a position paper [11].

Combining requirements and feedback loops invariably

leads to requirements monitoring. There has been prelimi-

nary work on run-time monitoring of requirements confor-

mance [12] and reconciliation of run-time behavior based

on requirements [13]. Our proposal is based on the system

being able to monitor its own requirements at runtime.

There are several different proposals for the design of

adaptive systems. Many of them focus on the architectural

aspects of system development, such as the dynamic plan-

ning system approach of [3], the Rainbow framework [14],

the three-layered reference architecture of [15], etc. Our

work differs from these by focusing on requirements.

Other proposals also focus on requirements for adaptive

systems. KAOS-based proposals (e.g., [16], [17]) use linear

temporal logic to specify requirements, which can be too

heavy a formalism in many situations. RELAX [18] is based

on SHALL statements and fuzzy branching temporal logic,

which is also more complex than the approach we propose.

Tropos-based proposals (e.g., [19], [20]) use the Belief-

Desire-Intention model as reference architecture whereas our

focus in on the feedback loop architecture. Some approaches

(e.g., [21]) provide adaptivity only to changes in the en-

vironment (context), missing an important aspect which is

adapting to requirements failures. By considering domain

assumptions as part of the requirements, our proposal can

also adapt to environment changes.

Moreover, a fundamental difference from our approach

and the state-of-the-art in goal-based adaptive systems de-

sign is the fact that goals are not necessarily treated as

invariants that must always be achieved. Instead, we accept

the fact that the system may fail in achieving any of its initial

requirements and, by considering feedback loops as first

class citizens in the language, provide a way of specifying

the level of criticality of each goal as constraints on their

success/failure and assigning adaptation actions to be carried

out when the system does not fulfill these constraints. This

approach is summarized next.

II. APPROACH, RESULTS AND CONTRIBUTIONS

The first step of the approach is the elicitation of Aware-

ness Requirements (AwReqs), which are requirements that

talk about the states assumed by other requirements — such

as their success or failure — at runtime [22]. AwReqs consti-

tute the requirements for the feedback loops that implement



the adaptive capabilities of the system. In other words, they

represent undesirable situations to which stakeholders would

like the system to adapt, in case they happen.

For instance, in a Computer-aided Ambulance Dispatch

(CAD) system [23], “goal Register call should never fail”

(labeled AR15) and “quality constraint Ambulances arrive in

8 min should have 75% success rate” (AR3) are examples

of AwReqs. Note how the former refers to single instances

of requirements, whereas the latter refers to the whole

requirement class in an aggregate way. AwReqs can also

refer to other AwReqs, e.g., “AR1 should succeed 90% of

the time” (meta-AwReq AR2). At runtime, the elements of

the goal model are represented as classes and instances of

these classes are created every time a user starts pursuing a

requirement or when they are bound to be verified. Their

state (succeeded, failed, etc.) is then monitored by the

infrastructure presented in [22].

AwReqs can be used as indicators of requirements con-

vergence at runtime. If they fail, a possible adaptation

strategy is to search the solution space to identify a new

configuration (i.e., values for system parameters) in a way

that would improve the necessary indicators. As in control

systems, to know the effect each parameter change has on

indicators we conduct System Identification for the adaptive

system [24], identifying (a) parameters that can be changed

at runtime — OR-refinements (variation points), already

present in systems with high variability, and control variables

(abstractions over large/repetitive variation points) — and (b)

qualitative information about their relation to the satisfiabil-

ity of AwReqs at runtime — using differential relations.

In the CAD system, parameter Level of Automation (LoA),

with values manual, semi-automatic and automatic, can af-

fect the time taken for an ambulance to arrive, thus affecting

AwReq AR3. We represent the fact that increasing the level

of automation hinders the success of AR3 (dispatches done

using a manual process are usually better) by stating the

derivative of an imaginary function AR3 = f(LoA) is neg-
ative: ∆(AR3/LoA) < 0. Parameters can also be numeric

(e.g., Number of Staff Members) and, in that case, qualitative

landmark values can specify boundaries for relations when

they are not applicable in the default interval [−∞,∞].
To “close the feedback loop”, in a recently submitted

paper [25], we propose a framework within which failure

of monitored AwReqs lead to new behaviors that consist of

selecting new values for the system parameters. Inspired

by control theoretic concepts recast in qualitative terms,

the framework’s controller parses the goal model, including

indicators, parameters and their relations, in order to know

the desired output and the space of possible behaviors for

getting it. Furthermore, the framework is extensible in order

to accommodate different levels of precision, which allows

the adaptation mechanisms to improve along with the evolu-

tion of the model. For instance, in case of a failure in AR3,

the framework chooses one or more parameters (e.g., LoA),

changes their values (e.g., automatic −→ semi-automatic)

and re-evaluates the indicator (did the next ambulance arrive

within 8 min?), iterating when the problem persists.

In some cases, however, adaptation can come not from

exploring the solution space, but instead the problem space,

i.e., the requirements themselves. For this reason, we pro-

pose the elicitation and modeling of Evolution Require-

ments (EvoReqs) [26] which consist of specific changes to

be carried out on the requirements model (again, at the

instance and/or class levels), under specific circumstances.

EvoReqs are specified using a set of primitive operations

to be performed over the elements of the model. Each

operation is associated with application-specific actions to

be implemented in the system. Furthermore, they can be

combined using patterns in order to compose adaptation

strategies (e.g., “Retry”, “Delegate”, “Relax”, etc.).

Such patterns are then associated with specific AwReqs

in the model and can be used at runtime by an Event-

Condition-Action-based process in order to direct the system

on how to adapt. This process coordinates the different

applicable strategies, choosing which one to apply and

checking if the problem they attempt to remedy has been

solved. In the CAD system, for example, goal Register

call is satisfied by the successful execution of tasks Input

emergency information and Detect caller location. When

AR15 fails, possible adaptation strategies are to retry the

goal or to relax it by disabling caller location detection.

Along with our proposals we have presented initial val-

idation results obtained by the execution of simulations

that mimic the behavior of real systems in specific failure

scenarios, verifying that the adaptation framework responds

appropriately. To fully evaluate the approach, however, we

plan to run similar scenarios in real systems, preferably with

the participation of industry partners as stakeholders. The

modeling language should also be evaluated through surveys

with requirements engineering practitioners.

In summary, the contributions of this research are: (a)

New types of requirements (AwReqs [22] and EvoReqs

[26]) that specify the requirements for a feedback control

loop that implements adaptivity for a target system; (b) A

systematic process for conducting System Identification [24]

and a framework that reconfigures the system based on in-

dicator/parameter qualitative information [25]; and (c) Tools

to facilitate the design (CASE tool) and implementation

(framework) of adaptive systems using this approach (source

code available at github.com/vitorsouza/Zanshin). Some of

these contributions are currently work-in-progress.

ACKNOWLEDGMENT

This work has been partially supported by the

ERC advanced grant 267856 “Lucretius: Foundations

for Software Evolution” (April 2011 – March 2016,

http://www.lucretius.eu).



REFERENCES

[1] P. Horn, “Autonomic Computing: IBM’s Per-
spective on the State of Information Technology,
http://www.research.ibm.com/autonomic/manifesto/,”
October 2001.

[2] J. O. Kephart and D. M. Chess, “The vision of autonomic
computing,” Computer, vol. 36, no. 1, pp. 41–50, 2003.

[3] R. Laddaga and P. Robertson, “Self Adaptive Software: A
Position Paper,” in Proc. of the 2004 International Workshop
on Self-* Properties in Complex Information Systems, 2004.

[4] P. Oreizy et al., “An Architecture-Based Approach to Self-
Adaptive Software,” IEEE Intelligent Systems, vol. 14, no. 3,
pp. 54–62, 1999.

[5] B. H. C. Cheng et al., “Software Engineering for Self-
Adaptive Systems: A Research Roadmap,” in Software En-
gineering for Self-Adaptive Systems, ser. Lecture Notes in
Computer Science, B. H. C. Cheng, R. de Lemos, H. Giese,
P. Inverardi, and J. Magee, Eds. Springer, 2009, vol. 5525,
pp. 1–26.

[6] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury,
Feedback Control of Computing Systems, 1st ed. Wiley,
2004.

[7] V. Bryl, “Supporting the Design of Socio-Technical Systems
by Exploring and Evaluating Design Alternatives,” PhD The-
sis, University of Trento, 2009.

[8] J. Andersson, R. de Lemos, S. Malek, and D. Weyns, “Mod-
eling Dimensions of Self-Adaptive Software Systems,” in
Software Engineering for Self-Adaptive Systems, ser. Lecture
Notes in Computer Science, B. H. C. Cheng, R. de Lemos,
H. Giese, P. Inverardi, and J. Magee, Eds. Springer, 2009,
vol. 5525, pp. 27–47.

[9] A. Lapouchnian, “Goal-Oriented Requirements
Engineering: An Overview of the Current Research,”
University of Toronto, Canada (available online:
http://www.cs.toronto.edu/˜alexei/pub/Lapouchnian-
Depth.pdf), Tech. Rep., 2005.

[10] I. Jureta, J. Mylopoulos, and S. Faulkner, “Revisiting the
Core Ontology and Problem in Requirements Engineering,”
in Proc. of the 16th IEEE International Requirements Engi-
neering Conference. IEEE, 2008, pp. 71–80.

[11] V. E. S. Souza and J. Mylopoulos, “From Awareness Require-
ments to Adaptive Systems: a Control-Theoretic Approach,”
in Proc. of the 2nd International Workshop on Require-
ments@Run.Time. IEEE, 2011, pp. 9–15.

[12] B. H. C. Cheng and J. M. Atlee, “Research Directions in Re-
quirements Engineering,” in Future of Software Engineering
(FOSE ’07). IEEE, 2007, pp. 285–303.

[13] M. Feather, S. Fickas, A. van Lamsweerde, and C. Ponsard,
“Reconciling system requirements and runtime behavior,”
in Proc. of the 9th International Workshop on Software
Specification and Design. IEEE, 1998, pp. 50–59.

[14] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and
P. Steenkiste, “Rainbow: Architecture-Based Self-Adaptation
with Reusable Infrastructure,” Computer, vol. 37, no. 10, pp.
46–54, 2004.

[15] J. Kramer and J. Magee, “Self-Managed Systems: an Archi-
tectural Challenge,” in Future of Software Engineering (FOSE
’07). IEEE, 2007, pp. 259–268.

[16] G. Brown, B. H. C. Cheng, H. Goldsby, and J. Zhang, “Goal-
oriented Specification of Adaptation Requirements Engineer-
ing in Adaptive Systems,” in Proc. of the 2006 International
Workshop on Self-adaptation and Self-managing Systems.
ACM, 2006, pp. 23–29.

[17] L. Baresi, L. Pasquale, and P. Spoletini, “Fuzzy Goals for
Requirements-driven Adaptation,” in Proc. of the 18th IEEE
International Requirements Engineering Conference. IEEE,
2010, pp. 125–134.

[18] J. Whittle, P. Sawyer, N. Bencomo, B. H. C. Cheng, and
J.-M. Bruel, “RELAX: Incorporating Uncertainty into the
Specification of Self-Adaptive Systems,” in Proc. of the 17th

IEEE International Requirements Engineering Conference.
IEEE, 2009, pp. 79–88.

[19] M. Morandini, L. Penserini, and A. Perini, “Towards Goal-
Oriented Development of Self-Adaptive Systems,” in Proc.
of the 2008 International Workshop on Software Engineering
for Adaptive and Self-managing Systems. ACM, 2008, pp.
9–16.

[20] F. Dalpiaz, P. Giorgini, and J. Mylopoulos, “Adaptive socio-
technical systems: a requirements-based approach,” Require-
ments Engineering, pp. 1–24, 2012.

[21] N. A. Qureshi and A. Perini, “Engineering Adaptive Require-
ments,” in Proc. of the 2009 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems. IEEE,
2009, pp. 126–131.

[22] V. E. S. Souza, A. Lapouchnian, W. N. Robinson, and J. My-
lopoulos, “Awareness Requirements for Adaptive Systems,”
in Proc. of the 6th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems. ACM,
2011, pp. 60–69.

[23] V. E. S. Souza, “An Experiment on the Development of
an Adaptive System based on the LAS-CAD,” University
of Trento (available at: http://disi.unitn.it/˜vitorsouza/a-cad/),
Tech. Rep., 2012.

[24] V. E. S. Souza, A. Lapouchnian, and J. Mylopoulos, “System
Identification for Adaptive Software Systems: a Requirements
Engineering Perspective,” in Conceptual Modeling – ER
2011, ser. Lecture Notes in Computer Science, M. Jeusfeld,
L. Delcambre, and T.-W. Ling, Eds. Springer, 2011, vol.
6998, pp. 346–361.

[25] ——, “Requirements-driven Qualitative Adaptation,” in sub-
mitted for publication (under review), 2012.

[26] ——, “(Requirement) Evolution Requirements for Adaptive
Systems,” in Proc. of the 7th International Symposium on
Software Engineering for Adaptive and Self-Managing Sys-
tems (to appear), 2012.


