Supporting Ontology Axiomatization and Evaluation in ODEd

Vitor Estévao Silva Souza, Ricardo de Almeida Falbo
Computer Science Department, Federal University of Espirito Santo
Av. Fernando Ferrari, CEP 29060-900, Vitéria — ES, Brazil
vitorsouzabr@yahoo.com.br, falbo@inf.ufes.br

Abstract

Recently, we have seen an increasing interest in ontologies as artifacts to represent knowledge and as critical
elements in knowledge management, requirements engineering and several other application areas. In Domain-
Oriented Software Development Environments, ontologies are used as domain models that can be used to guide
requirements engineering. Thus, in this kind of environment, tools supporting ontology development are necessary.
In the context of ODE (Ontology-based software Development Environment), we developed ODEd, an ontology
editor. The initial version of ODEd, however, offered limited support for defining axioms and for ontology
evaluation. In order to overcome such limitations, we improved ODEd adding an axiom editor to it. In this paper we
discuss how this axiom editor supports axiom definition and ontology evaluation using an inference engine.

1. Introduction

As pointed by Brewster and O’Hara [1], recently, we have seen an explosion of interest in ontologies as artifacts to
represent human knowledge in several areas of Computer Science, such as Knowledge Management, Semantic Web
and Software Engineering, among others. In Software Engineering, ontologies are useful as domain models [2], for
structuring Software Development Environment (SDE) [3], and for improving learning software organizations [4].

An important goal of using ontologies in Software Engineering is to describe domain knowledge to support software
development in that domain. In this case, ontologies can be used: (i) for establishing a shared conceptualization about
the domain, (ii) as a basis for software specification and development, allowing knowledge reuse, and (iii) for
searching information repositories for desired resources, improving precision and reducing the overall amount of
time spent in searching. All these uses of ontologies match with the purposes of Domain-Oriented Software
Development Environments (DOSDESs) [5]. DOSDEs are a special class of SDEs that uses domain knowledge to
guide software developers across the several phases of the software process. DOSDEs organize the application
domain knowledge facilitating problem understanding during system development [5]. In this way, DOSDEs can use
ontologies as a model that makes explicit the basic conceptualization of the domain.

But building ontologies is not a simple task. It involves the specification of concepts and relations that exist in the
domain, besides their definitions, properties and constraints, described as axioms [6]. Therefore, tools supporting
ontology development are necessary. These tools must support definition of concepts, relations, properties, and
constraints, and must enable the inspection, browsing, and coding of the resulting ontologies [7].

In order to support ontology development in a software engineering environment called ODE (Ontology-based
software Development Engineering) [8], we developed ODEd [9], an ontology editor. The main goal of ODEd was
to support domain orientation in ODE, turning it into a DOSDE. In its initial version, ODEd allowed the definition of
concepts, relations and properties, using graphic representations, and the description of some pre-defined classes of
axioms, such as transitivity and symmetry. Also ODEd supported the derivation of object frameworks and hypertexts
from ontologies.

However, ODEd presented some problems, most of them concerning ontology axiomatization. To deal with those
problems, we built AXE, an Axiom Editor integrated to ODEd, which allows defining axioms in a general way. AxE
has an inference engine integrated to it, to better support ontology evaluation.

In this paper we present AXE. Section 2 briefly discusses some aspects of the use of ontologies in DOSDEs and
presents SABIO [6,10], the ontology development process that underlies ODEd functionalities. Section 3 presents an
overview of the first version of ODEd and points some of the problems detected. Section 4 presents AXE, discussing
how it treats ontology axiomatization and evaluation. In section 5, we discuss related works. Finally, section 6
reports our conclusion and future work.

2. Ontologies and Domain Oriented Software Development Environments

To represent a phenomenon or part of the world, which we call a domain, it is necessary to focus on a limited
number of concepts that are sufficient and relevant to create an abstraction of the phenomenon at hand. Thus, a
central aspect of any modeling activity, including various Software Engineering activities, consists of developing a
conceptualization [11]. An ontology is an explicit specification of a shared conceptualization. In this context, a
conceptualization refers to an abstract model of how people think about things, usually restricted to a particular
subject area. An explicit specification means that concepts and relations of this abstract model are given explicit
terms and definitions [12].

According to Guarino [13], “an ontology refers to an engineering artifact, constituted by a specific vocabulary used
to describe a certain reality, plus a set of explicit assumptions regarding the intended meaning of the vocabulary
words. This set of assumptions has usually the form of a first-order logical theory, where vocabulary words appear as
unary or binary predicate names, respectively called concepts and relations. In the simplest case, an ontology
describes a hierarchy of concepts related by subsumption relationships; in more sophisticated cases, suitable axioms
are added in order to express other relationships between concepts and to constrain their intended interpretation”.

One of the main benefits of the use of ontologies in Software Engineering is to reuse domain specifications. In
traditional Software Engineering, for each new application to be built, a new conceptualization is developed. In an
ontology-based approach, requirement elicitation and modeling can be accomplished in two stages. First, the general
domain knowledge can be elicited and specified as ontologies. These ontologies are used to guide the second stage of
the requirement analysis, when the particularities of a specific application are considered. This way, the same
ontology can be used to guide the development of several applications [6]. In fact, in a more general way, ontologies
can be useful for developers understand the application domain in which the system being built will take place. This
is the basic premise for Domain-Oriented Software Development Environments (DOSDES) [5]. DOSDEs extend the
traditional notion of Software Development Environment (SDE) by introducing into it domain knowledge (in the
form of domain ontologies) to guide software developers through the several software development phases [5].

A DOSDE, like any other SDE, should have a repository storing all the information related to the software projects,
and a set of tools to support the activities of the software process. On the other hand, this new class of SDE requires
two additional features: representation of domain knowledge and use of this knowledge during software development
[5]. Thus, we need to integrate an ontology editor into a DOSDE, in order to support ontology development and use
in it. Ideally, this ontology editor should support an ontology-based domain engineering approach, allowing the
development of ontologies and their use in some software process activities.

Falbo et al. [2] proposed an ontological approach to domain engineering that considers ontology development
(domain analysis), its mapping to object models (infrastructure specification) and Java frameworks development
(infrastructure implementation). This approach seems to be very useful for DOSDEs, because it deals with ontology
development and latter use as object frameworks.

To perform the ontology development process, a method for building domain ontologies called SABIO (Systematic
Approach for Building Ontologies) [10] is suggested. SABIO encompasses the following activities [6, 10], shown in
Figure 1:

Specification
y

Purpose Identification and Requirement'J

Evaluation and Ontology Capture Integrating Exﬁting Ontologies
Documentation

Ontology Formalization

Formal Ontology

Figure 1: SABIO’s development process

e Purpose identification and requirement specification: concerns to clearly identify the ontology purpose and
its intended uses, i.e. the competence of the ontology. To do that, competency questions should be used.
Competency questions are the questions that the ontology should be able to answer [14];

e Ontology capture: the goal is to capture the domain conceptualization based on the ontology competence.
Relevant concepts and relations should be identified and organized. A model using a graphical language and
a dictionary of terms should be used to aid communication with domain experts. Also, constraints should be
written down as axioms, in this phase written in natural language;

e Ontology formalization: aims to explicitly represent the conceptualization captured in a formal language.
When a logical formalism is adopted, concepts, relations and properties should be mapped to predicates,
and formal axioms can be written as sentences using these predicates (what we call axiomatization);

e Integration of existing ontologies: during ontology capture or formalization, it could be necessary to
integrate the current ontology with existing ones, in order to use previously established conceptualizations;

e Ontology evaluation: the ontology must be evaluated to check whether it satisfies the specification
requirements. Since SABIO advocates the use of competency questions to capture the ontology
requirements, one of the most important checks to be done is to verify if the ontology is able to answer the
competency questions. To automate this evaluation process, during ontology formalization, it is interesting
to choose a formal language that is supported by an inference engine. This way, we can formalize the
competency questions and pose them as questions to be answered by the ontology;

e Documentation: all the ontology development process must be documented, including purposes,
requirements and motivating scenarios, textual descriptions of the conceptualization, the formal ontology
and the adopted evaluation criteria.

Once we have the ontology, an object framework can be generated from it. This framework can be added to the
DOSDE repository as a domain-oriented reusable artifact, and can be reused later in activities such as design and
implementation. The ontology-based domain engineering approach [2] proposes a set of directives, design patterns
and transformation rules for deriving Java frameworks from ontologies. These directives are used to guide the
mapping from the epistemological structures of the domain ontology (concepts, relations and properties) to their
counterparts in the object-oriented paradigm (classes, associations and attributes, respectively), and to implement
them as Java classes.

Finally, as pointed by Oliveira et al. [5], the use of a DOSDE introduces a change in the software development
process. In several activities of the software process (such as requirements analysis, design, and so on), a sub-activity
called domain investigation should be introduced, specifically targeted to take advantage of the knowledge available.
Domain investigation concerns studying the application domain and to support this task, it is worthwhile to generate
hypertexts from the ontologies.

ODEd partially supports the ontology-based domain engineering approach described above. In the next section, we
present it, focusing on its initial version. Based on the problems detected in this initial version, we improved ODEd,
adding to it an axiom editor that is presented in section 4.

3. ODEd: An Ontology Editor for making ODE a DOSDE

ODEd was developed to support domain engineering in ODE (Ontology-based software Development Environment)
[3, 8], so that ODE could evolve to a Domain Oriented Software Development Environment (DOSDE). To do this,
ODEd partially supports the ontology-based domain engineering approach discussed in section 2. This section
presents briefly the main features of the first version of ODEd and present some of the problems detected when using
it. To better clarify how ODEd supports ontology development, we also present part of the activity ontology [6],
which is used as an example. As shown in figure 2, some concepts of this ontology are activity, artifact and resource.
An activity can be decomposed into sub-activities and can be preceded by other activities. Activities produce and
consume artifacts. Finally, to be accomplished, activities require resources, including human, software and hardware
resources.

Several constraints should be taken into account in this context, deriving some axioms. For example:

Al. The precedence relation is transitive, then if al is preactivity of a2 and a2 is preactivity of a3, then al is
also preactivity of a3: v'(al,a2, a3) preActivity (al, a2) » preActivity (a2, a3) — preActivity(al, a3);

A2. If a is preactivity of b and al is part of a, then al is also preactivity of b: V' (a, b, al) preActivity(a, b) A
subActivity (al, a) — preActivity(al,b);

Concerning ontology development, the first version of ODEd [9] supported the following activities of SABIO:

e Purpose identification and requirement specification: ODEd allowed the definition of informal competency
questions, that is, competency questions in natural language. These competency questions were used only
for documentation purposes;

e Ontology capture: during ontology capture, the use of a graphical representation is essential in order to
facilitate the communication between domain engineers and experts. Thus, ODEd supported the definition
of concepts, relations and properties using a graphical language (LINGO [6] or UML [9]). Figure 2 shows
part of a software activity ontology, written in UML. ODEd also supported a limited way to define
constraints, only allowing the description of those imposed by relations, called association axioms.
Association axioms allow the classification of relations as being reflexible, irreflexible, symmetric, anti-
symmetric, atomic, disjointed, exclusive and transitive;

e Ontology formalization: the first version of ODEd did not directly treat ontology formalization, since only
the predefined types of association axioms could be defined. However, for this type of axioms, an
axiomatization was automatically provided. In this version, axiom Al, described above, could be formalized,
but axiom A2 could not;

e Integration of existing ontologies: ODEd supported ontology integration in a very simple way. It was
possible to import concepts from existing ontologies to the current one. If more than one concept was
imported and there was a relation between them, that relation was also imported to the ontology;

e Ontology evaluation: the first version of ODEd did not directly support ontology evaluation. The ontology
engineer could instantiate the ontology and try to manually check if the ontology was answering the
competency questions;

e Documentation: although ODEd stored several ontology development information, such as competency
questions and ontology diagrams, it did not generate any documents.

As pointed in section 2, after developing an ontology as a domain model, it is useful to map this model to a reusable
framework (domain design and implementation). ODEd automatically generates object frameworks from ontologies
in Java [9], considering also the association axioms.

Finally, to support domain investigation, ODEd provides automatic generation of hypertexts based on the ontologies
designed. Using these hypertexts, developers can browse and search the domain concepts, relations, properties and
constraints to learn about them [9].

& ODEM| - Software Activity Ontology

Ontology Diagrams Axioms Window
@ 2 Software Activity (l [| -
B Activity [asPredct
Bl Artifact 5 0.
&l HardwareResao| ||— -
Concept== —B—eanswmes—b=—
&l HumanResourg || [~ 0. g ==Concept=>
El Resource i 0 Activity Artifact
Bl SoftwareResoy || —T _
B consumes r 0.
B hasPreActivity | [
B uses o hasSubActivity
==Concept==
Resource
==Concept-= ==Cohcepts= ==Concepts=
HumanResource | [SoftwareResource | |HardwareResource
Press F1for help.

Figure 2: Software Activity Ontology in ODEd

Although most phases of ontology development process were supported by ODEd, there were many aspects to be
improved, such as [9]:

e ODEd should support the definition of formal competency questions. This feature is related to ontology
evaluation; once competency questions are formalized, they can be used to evaluate if the ontology satisfies
its requirements. To support these features, ODEd should support an ontology language, and reasoning
services are necessary;

e Only certain types of axioms could be captured in ODEd. Other axioms which did not fit in these categories
were not treated. So, it is important to improve axiomatization in ODEd, allowing free definition of axioms.
To do that, ODEd should support an ontology language;

e Ontology evaluation was not properly supported. Formalizing competency questions and axioms, ontology
evaluation can also be improved.

Based on this improvement opportunities, we developed AXE (Axiom Editor), an axiom editor integrated to ODEd,
which is presented in the following section.

4. AxE: ODEd’s Axiom Editor

In order to better support axiom definition and ontology evaluation, the ontology must be formalized using an
ontology specification language. In 2002, when we started developing AXE, the W3C Ontology Web Language
(OWL) was still a working draft and was strongly based on DAML+OIL [15]. Hence, the latter was chosen as the
ontology specification language for AXE. DAML+OIL is a semantic markup language for Web resources. It builds
on earlier W3C standards such as RDF and RDF Schema, and extends these languages with richer modelling

primitives. DAML+OIL provides modelling primitives commonly found in frame-based languages. However,
DAML+OIL did not have enough expression power to represent axioms in a general way. For example, an axiom
such as the axiom A2 presented in section 3 cannot be written in DAML+ OIL. Thus, another language was needed
to complement it, and we chose KIF [16] for that purpose.

KIF (Knowledge Interchange Format) is a formal language for the interchange of knowledge among disparate
computer programs [16]. It is not intended for internal representation of knowledge, therefore the ontology and the
axioms are stored as objects in the system and converted to DAML+OIL and KIF for the interchange with the
inference engine (this is further detailed later). KIF has declarative semantics and provides for the expression of
arbitrary sentences in predicate calculus, thus complementing DAML+OIL for our purposes.

Before discussing how axioms are treated in AXE, we need to first present how ontologies are internally represented
in ODEd. Figure 3 shows partially the current ODEd’s meta-ontology model. This meta-ontology model was
proposed as part of the improvement efforts done in ODEd, in which we aimed to make it compatible with UML
meta-model specification. In other words, the current ODEd’s meta-ontology model can be seen as an UML light
weight extension. With this approach, we uniformly treat all models in ODE (including ontologies), allowing reuse
and facilitating integration.

The ontology purpose and its intended uses are identified through competency questions. An ontology is represented
by a set of ontology diagrams, which contains concepts. Concepts are related through relationships that can be
associations or generalizations. The latter denotes subsumption relationships, while the former can be relations or
whole-part relations, which in turn can be of two types: aggregation or composition. Concepts and relations may
have properties and, in an association, concepts have roles and cardinalities (association ends).

Making the ontology meta-model compatible with the UML meta-model imposes a bit more of complexity to the
design of the system. The relationship between the Ontology and its Diagrams is represented by the association
between Model and Diagram. Similarly, Ontology and CompetencyQuestion are associated at the superclass level:
Model and ModelElement. The same thing happens to all the other classes in the ontology meta-model (which are
color-filled for emphasys): their relations with Ontology, OntologyDiagram and among themselves are modeled at
the UML meta-model.

Although the axioms are written in KIF, ODEd also converts them to an internal model, following the structure
presented in Figure 4. An axiom is modeled as a tree, having an operator as root, which is the central operator of the
axiom. Operators have symbols as arguments. A symbol can be an operator or an operand. Operands can be
variables, concepts, instances of concepts or undefined concepts. Operators can be logical connectives, relations or
undefined relations, which are like relations but do not specify which concepts it associates (they are used to create
axiom templates).

Axiom Templates are a special kind of axiom that defines general association axioms, such as those treated in the first
version of ODEd (symmetry, transitivity, and so on). Axiom templates can use only undefined relations and
connectives as operators and undefined concepts and variables as operands. In the case of symmetry, for example, it
can be defined by the following axiom template: (C1 R C2) <=> (C2 R C1), where C1 and C2 are undefined
concepts and R is an undefined relation. When this axiom template is linked to a specific association in the ontology,
a new axiom is automatically generated, substituting the undefined relation R by the association, and the undefined
concepts C1 and C2 by the corresponding concepts of the association.

To aid writing axioms, AXE provides an easy-to-use graphical interface, shown in Figure 5. On the left side of the
window, we can see the concepts, relations, instances and variables that can be used for defining an axiom. In the
bottom part, there are buttons for easy access to common KIF and DAML+OIL operators. In the top-right, the
description field can be used to supply the axiom with a description in natural language, while the axiom
formalization field is where the KIF sentence is formed. Finally, the infix/prefix radio buttons determine in which
notation the axiom is being written.

Model Diagram | 0..* ModelElement
(from Artifact) < @—————— (from Artifact)|<_>———— (from UML)
1 0..* 0..*
Ontology OntologyDiagram

Axiom CompetencyQuestion Relationship |+parent GeneralizableElement Instance Feature
(from UML) (from UML) (from UML) | | (from UML)
1
0..1 0..1]
+child 1 1 * 0..*
0.5 g
Classifier | gt
Association Generalization (from UML) Y —
(from UML) (from UML) 1 9y
™ %
‘ ‘ StructuralFeature
WholePartRelation Relation Concept (from UML)
4& 2.* | AssociationEnd
‘ (from UML) 0.*
: — &role
Aggregation Composition &multiplicity Property

Figure 3: ODEd’s meta-ontology model

Once the ontology is formally axiomatized, it is possible to support ontology evaluation by integrating an inference
engine into the axiom editor. For this purpose, JTP [17] was chosen and integrated to AXE, because it is able to parse
DAML+OIL ontologies and KIF statements, and also because it is an open source project written in Java, thus, being
seamlessly integrated to AXE.

Figure 6 shows AXE’s query interface. On the top text area, the domain engineer writes the query, which consists of
an axiom with open variables. The axiom editor (Figure 5) can be used to formulate the query. JTP’s response — the
concepts that fit in the open variables — is returned in the bottom text area.

By formulating queries the domain engineer can check an ontology. However, there is a more appropriate way to do
this: by formalizing the competency questions. In this case, first, each competency question must be formalized. That
is, we have to define an axiom representing the competency question. This is the reason why competency questions
are linked to axioms in Figure 3. Those axioms must have at least one open variable as an operand, and are said to be
queries. Next, these queries can be submitted to the inference engine. If all the queries return satisfactory results,
then we can say that the ontology is answering all the competency questions, hence fulfilling its requirements.

Axiom AxiomTemplate | 0..* 0..x | Association
(from Ontology) <} (from UML)
0 * ' 0.1
! 2 Symbol
ymbo
+argument 0..1 | OntologyInstance
4 (from Ontology)
+root\ ‘ ‘ "
Quantifier 0.1 0..*| Operator Operand |0..* 0.1 Concept
0..* (from Ontology)
XOR
0. 0.* — 0. %7 boR
/ 0.1 0..1 0..1| UndefinedConcept
. {XOR} Relation
Connective
(from Ontology) 0.1 Variabl
- ariable
0..1
Quantification UndefinedRelation 1%

0.*

Figure 4: Axiom representation in AXE

£ ODEd: Axiom Editor

Concepts: Description:

|Aclhﬂty - | |Sub-activities of a pre-activity of activity £ are also pre-activities of Z.

[Axiom formalization: i Infix) Prefix

ity oded.damlhasSubActivity ™0 and (Yz oded.daml:hasPreActivity ™)) == {7z

el oded.damlhasPreActivity 24)

hasPreactiity ¥ |

]

Instances:

| DomaimEngineering ¥ |

Operators
1412
P e =]]
ariahles:
| not || | I

forall exists |

7% M

(5 | [»] L row

and | | or

‘ OK H Cancel |

Figure 5: Writing axioms in AXE

& ODEd: Inference Mechanism

Queny:
foded.daml:hasPreActivity oded.daml:EequirementElicitation ?p)

| Edt || Query

Answer:
Cluery succeeded.
Solution #1:

?p=oded.damlPlanning
Solution #2:

?p=oded.damlScopeDefinition I
Solution #3: |

i =noded damlBiskAnalisvs >

Figure 6: Querying an ontology in AXE

As told before, one of the main goals of the ontology-based domain engineering approach implemented in ODEd is
to reuse the domain knowledge throughout the software development process, in activities such as requirement
analysis, design and implementation. ODEd generates two artifacts that can be reused: one of them is the ontology
itself, which can be the basis for requirement analysis and for domain investigation, as discussed in section 3; the
other one is a framework of Java classes derived from the ontology.

As discussed in section 3, ODEd supports the derivation of Java frameworks from ontologies. This derivation maps
concepts to classes, properties to attributes, and relations to bi-directional associations (and corresponding methods).
Since an inference engine has been integrated to ODEd to provide the ability to work with axioms, it was also
integrated to the generated frameworks with the same purpose, allowing the developers to reuse all of the domain
knowledge modeled during domain engineering. This is done by making a call to the inference engine whenever a
method that corresponds to a relation in the ontology is called, to check whether this relation participates in any
axioms registered within the ontology. If it does, we should translate the axioms into method calls that will change
the result of the method that was called in the first place.

Axiom A2 (Section 2), for example, is written in infix KIF as follows:: ((?A hasPreActivity ?B) and (?B
hasSubActivity ?B1)) => (?A hasPreActivity ?B1). When the activity ontology is derived to Java
classes, the class Activity, representing the homonymous concept from the ontology, would have a
getPreActivities() method that returns a set of pre-activities from an activity a. When this method is applied in
an object x, it will check the inference engine for axioms related to the hasPreActivity relation and will find the
one above. Then, it will convert the axiom to method calls. First, it will convert the first part of the axiom and obtain
all pre-activities of x by calling X.getPreActivities() (with checks to prevent eternal loops). Then, for each
object returned from that, it will apply the second part of the axiom and call getSubActivities(). The objects
returned from those calls are added to the actual set of pre-activities of x, which is finally returned to the user.

Although this feature has been developed, it requires thorough analysis and testing to verify if integrating an
inference engine in domain objects that are to be used by software developers is really a good idea. Things like
performance, increased complexity and inference engine lock-in should be considered beforehand. As we didn’t have
time in our research, this should be considered future work.

5. Related Work

There are many ontology editors described in the literature, such as OntoEdit, OILEd and Protége-2000. OntoEdit
[18] pursues an approach where graphical means exploited for concepts and relations modeling scale up to axiom
specifications in RDF(S), XML, DAML+OIL, F-Logic and SQL Scheme. Regarding ontology evaluation, it provides
axiom editing and it has an inference engine attached to support ontology validation, consistency checking and even
debugging.

OILEd [19] supports the construction of ontologies in OIL. The editor allows the definition of concepts and relations
and also supports the definition of some pre-defined axioms. OILEd has reasoning services that supports ontologies
construction, integration and verification. Ontologies are formalized using Description Logics, and OILEd has a DL
Classifier (SHF and SHQ) integrated to provide subsumption consistency checking.

Protégé-2000 [20] aims to support knowledge acquisition, and to reach interoperability with other knowledge
representation systems. It generates knowledge acquisition forms automatically based on the types of the slots and
restrictions on their values, allowing ontology instantiation. It also allows axiom creation using Protégé Axiom
Language (PAL), which is very similar to KIF. There is also a PAL Constraints Verifier.

As we can see, ODEd is in line with most ontology editors by using standards for ontology formalization, providing
axiom editing and integrating an inference engine. Some editors cited above do have a few functionalities that are
lacking in ODEd. However, ODEd exceeds the other editors when applied to domain engineering as part of the
software development process. It has some features that are specific for this purpose, such as the generation of Java
frameworks integrated to the inference engine, allowing carrying domain knowledge to further stages of the software
process.

In fact, all editors previously mentioned were developed to support ontology design in the context of the Semantic
Web. None of them was developed aiming to support evolving a Software Development Environment (SDE) to a
Domain-Oriented SDE (DOSDE). An exception is the domain theory editor of the meta-environment TABA [5].
TABA, as a meta-environment, generates DOSDEs using the ontologies defined in the domain theory editor. This
editor allows defining concepts, relations and properties of an ontology. This editor also allows entering axioms in
pre-defined Prolog files. When the meta-environment generates a DOSDE, each concept becomes a class in the
DOSDE. But this editor is not graphical, does not support axiom edition nor ontology evaluation, and its class
generation is too simple. ODEd, as discussed in this paper, goes a step ahead in supporting ontology building and
mapping to object frameworks in the context of a SDE.

6. Conclusions

In this paper, we presented an evolution of ODEd, an ontology editor developed in the context of a software
development environment, focusing on the support to ontology axiomatization and evaluation offered by its axiom
editor AxE.

By integrating AXE to ODEd, we provided the ability to define axioms in a general way, allowing expressing more
complex axioms than in the first version of ODEd. The use of axiom templates, in turn, preserved the original
approach adopted, since we can still pre-define some classes of association axioms, such as symmetry and
transitivity. The languages chosen for representing axioms in AXE (DAML+OIL and KIF) have great expression
power. Integrating an inference engine to AXE, we also improved ODEd’s capability of evaluating ontologies. This

integration was also extended to the generated object framework, automatically carrying the domain knowledge to
future stages of the software process.

However, there is a lot of room for improvement in ODEd. At this moment, the following can be noticed:

e Only binary relations are supported;

e There is no support for distributed/collaborative ontology development;

e Java framework derivation research, as explained at the end of section 4;

e There are several improvements to be implemented on its user interface, especially concerning diagram
drawing;

e We are studying the possibility of changing the ontology representation language to a more powerful one,
such as OWL DL. But it depends on the availability of ontology inference engines. As pointed by Franconi
[21], it is not possible to build a complete inference engine for OWL Full yet. However, some existing
description logics systems can be used as inference engines for OWL Lite and OWL DL.

7. Acknowledgments

This work was accomplished with the support of CNPq, an entity of the Brazilian Government reverted to scientific
and technological development.

8. References

[1] C. Brewster, K. O’Hara. “Knowledge Representation with Ontologies: The Present and Future”, IEEE Intelligent
Systems, pp. 72-73, January/February 2004.

[2] R.A. Falbo, G. Guizzardi, K.C. Duarte. “An Ontological Approach to Domain Engineering”. Proceedings of
the 14th International Conference on Software Engineering and Knowledge Engineering, SEKE'2002, pp. 351- 358,
Ischia, Italy, 2002.

[3] R.A. Falbo, F.B. Ruy, J. Pezzin, R. Dal Moro, “Ontologias e Ambientes de Desenvolvimento de Software
Semanticos”, 4th Ibero-American Symposium on Software Engineering and Knowledge Engineering, JIISIC’2004,
Madrid, Spain, November 2004.

[4] H. Holz, G. Melnik, “Research on Learning Software Organizations - Past, Present, and Future”, Advances
in Learning Software Organizations (Proceedings of the 6th International Workshop on Learning Software
Organizations - LS0'2004), Melnik G. and Holz, H. (Eds.): LNCS 3096, pp. 1-6, 2004.

[5] K.M. Oliveira, F. Zlot, A.R. Rocha, G.H. Travassos, C. Galotta, C.S. Menezes, “Domain-oriented software
development environments”, The Journal of Systems and Software 72, pp. 145-161, 2004.

[6] R.A. Falbo, C.S. Menezes, A.R.C. Rocha. “A Systematic Approach for Building Ontologies”. Proceedings
of the 6th Ibero-American Conference on Artificial Intelligence, Lisbon, Portugal, Lecture Notes in Computer
Science, vol. 1484, 1998.

[7] O. Lassila, F. Van Harmelen, 1. Horrocksm, J. Hendler, D.L. Mcguinness. “The Semantic Web and its
Languages”. IEEE Intelligent Systems, pp. 67-73, November/December 2000.

[8] R.A. Falbo, A.C.C. Natali, P.G. Mian, G. Bertollo, F.B. Ruy, “ODE: Ontology-based software
Development Environment”. Proceedings of the 1X Argentine Congress on Computer Science, CACIC’2003, pp.
1124 - 1135, La Plata, Argentina, 2003.

[9] P.G. Mian, R.A. Falbo, “Supporting Ontology Development with ODEd”, Journal of the Brazilian
Computer Science, vol. 9, no. 2, pp 57-76, November 2003.

[10] R.A. Falbo, “Experiences in Using a Method for Building Domain Ontologies”, Proceedings of the
International Conference on Software Engineering and Knowledge Engineering — SEKE’2004, Ontology in Action
Workshop, 2004.

[11] N. Guarino. “Understanding, building and using ontologies”. Int. Journal Human-Computer Studies, 46(2/3),
February / March 1997.

[12] M. Gruninger, J. Lee, Ontology Applications and Design, Communications of the ACM, vol. 45, no. 2, p.
39-41, February 2002.

[13] N. Guarino. “Formal Ontology and Information Systems”. In N. Guarino (Ed.), Formal Ontologies in
Information Systems, 10S Press, 1998.

[14] M. Grininger, M.S., Fox. “Methodology for the Design and Evaluation of Ontologies”. Technical Report,
University of Toronto, 1995.

[15] D. Connolly, F. van Harmelen, I. Horrocks, D.L. McGuinness, P.F. Patel-Schneider, L.A. Stein.
“DAML+OIL (March 2001) Reference Description”, December, 2001.

[16] M.E. Genesreth, R.E. Fikes. “Knowledge Interchange Format, Version 3.0 Reference Manual”. Technical
Report Logic-921, Computer Science Department, Stanford University, 1992.

[17] R. Fikes, J. Jenkins, G. Frank. “JTP: A System Architecture and Component Library for Hybrid Reasoning.:
Proceedings of the Seventh World Multiconference on Systemics, Cybernetics, and Informatics. Orlando, Florida,
USA. July 27 - 30, 2003.

[18] S. Staab, A. Maedche. “Ontology Engineering beyond the Modeling of Concepts and Relations”. 14"
European Conference on Artificial Intelligence, Workshop on Applications of Ontologies and Problem-Solving
Methods, 2000.

[19] S. Bechhofer, I. Horrocks, C. Goble, R. Stevens. “OilEd: a Reason-able Ontology Editor for the Semantic
Web”. Working Notes of the 14th International Workshop on Description Logics (DL-2001), pp.1-9, USA, August
2001.

[20] N.F. Noy, M. Sintek, S. Decker, M. Crubézy, R.W. Fergerson, M.A. Musen. “Creating Semantic Web
Contents with Protégé-2000”, IEEE Intelligent Systems, March/April 2001.

[21] E. Franconi. “Using Ontologies”, IEEE Intelligent Systems, pp.76-77, January/February 2004.

	Introduction
	Ontologies and Domain Oriented Software Development Environm
	ODEd: An Ontology Editor for making ODE a DOSDE
	AxE: ODEd’s Axiom Editor
	Related Work
	Conclusions
	Acknowledgments
	References

