S-FrameWeb: a Framework-Based Design Method for
Web Engineering with Semantic Web Support

Vitor Estévio Silva Souza!, Thiago Wotikoski Lourengo',
Ricardo de Almeida Falbo!, Giancarlo Guizzardi'?

! Universidade Federal do Espirito Santo, Av. Fernando Ferrari, 514
29075-910 Vitéria — ES, Brazil
? Laboratory for Applied Ontology, Polo Tecnologico, Via Solteri, 38
38100 Trento, Italy
{vitorsouza, twotikoski} @gmail.com, falbo @inf.ufes.br, guizzardi @loa-cnr.it

Abstract. The Web Engineering area is evolving fast. Many methods and
frameworks to support Web Information Systems (WISs) development have
already been proposed. Particularly, the use of frameworks and container-based
architectures is state-of-the-practice. Motivated by this scenario, we have
proposed a method for designing framework-based WISs called FrameWeb.
However, we should consider that the Semantic Web has been gaining
momentum in the last few years. The idea is that the information on the Web
should be available in machine-processable formats so that software agents
could reason with it. This paper presents an extension to FrameWeb, called S-
FrameWeb, that aims to support the development of Semantic WISs.

Keywords: Web Engineering, Web Information Systems, Frameworks,
Semantic Web.

1 Introduction

The Semantic Web is being considered the future of the World Wide Web (WWW).
Coined by Berners-Lee [1], the term represents an evolution of the current WWW,
referred by some as the “Syntactic Web”. In the latter, information is presented in a
way that is accessible only to human beings, whereas in the former data is presented
both in human-readable and machine-processable formats, in order to promote the
development of software agents that would help users carry their tasks on the Web.

However, for Berners-Lee's vision to become a reality, Web authors and developers
must add semantic annotations to their Web Applications. This is neither an easy nor
a small task and support from tools and methods is needed.

Methods already exist for the development of Web Information Systems (WISs),
such as WAE [2], OOWS [3] and OOHDM [4]. In this context, we proposed a method
for the design of WISs that are based on frameworks, called FrameWeb (Framework-
Based Design Method for Web Engineering) [5]. FrameWeb proposes a basic

architecture for developing WISs, a set of activities and a UML profile for a set of
design models that brings concepts used by some categories of frameworks. The idea
is that the use of FrameWeb would further improve team productivity by using a
modeling language that would allow designers to produce diagrams that represent
framework concepts, and developers (maybe, in the future, CASE tools) to directly
translate these diagrams to code [5].

To help developers build WISs with semantic annotations, we decided to work on
an extension of FrameWeb, called S-FrameWeb. The idea is to incorporate into the
method activities and guidelines that drive the developer in the definition of the
semantics of the WISs, resulting in a “Semantic Web-enabled” application.

This paper presents S-FrameWeb, and it is organized as follows: section 2 discusses
some issues concerning WebE and the Semantic Web and briefly presents FrameWeb.
Section 3 presents S-FrameWeb and how it proposes to build “Semantic Web-
enabled” applications. Section 4 discusses related work. Finally, section 5 presents our
conclusions and potential future work.

2 Web Engineering and the Semantic Web

Web Engineering (WebE) has been defined as “the establishment and use of
engineering principles and disciplined approaches to the development, deployment
and maintenance of Web-based Applications” [6]. WebE was conceived at a time
when Web Applications (WebApps) were developed in an ad-hoc manner, without a
methodology or software process to support developers. Nowadays, however, there are
many methods, such as WAE [2], OOWS [3] and OOHDM [4], that are being used.

Also, technologies for codifying WebApps have evolved. The use of frameworks to
support the construction of complex Web Information Systems (WISs) is state-of-the-
practice. Container-based architectures, such as the most recent version of the Java
Enterprise Edition [7] standard, also borrow many concepts from these frameworks.
Both frameworks and container-based architectures promote the reuse of a commonly
used application infrastructure and improve productivity.

There are many different frameworks available for coding WISs. However, it is
possible to separate them into few categories organized by purpose [5]. Table 1 lists
four of these categories: Front Controller [8], Decorator, Object/Relational (O/R)
Mapping [9] and Dependency Injection frameworks [10]. Other kinds of frameworks
include: Aspect-Oriented Programming frameworks, Authentication & Authorization
frameworks, Search engines, etc.

Table 1. Frameworks that form a commonly used infrastructure for Web Applications.

Framework Purpose

Front Controller Also known as MVC frameworks, defines an architecture
that separates the functionality of a WebApp from its
presentation based on the Model-View-Controller pattern [11].

Framework Purpose

Decorator Based on the Decorator design pattern [11], automates the
task of making every web page of the site have the same layout
(header, footer, navigation bar, colors, images, etc).

Object/Relational (O/R) Provides automatic and transparent persistence of objects to
Mapping tables of a RDBMS using meta-data that describe the mapping
between both worlds [9].

Dependency Injection Allows the developer to program to interfaces [10] and
specify the concrete dependencies in a configuration file. The
idea is that classes that depend on services from different tiers
would declare an association with an interface instead of the
concrete implementation. This facilitates, for instance, the
replacement of the real service class with a mock object for unit
testing.

These frameworks can substantially change the architecture and the components
that must be developed for a WIS. That motivated the proposition of the Framework-
based Design Method for Web Engineering (FrameWeb). The interested reader should
refer to [5] and [12] for detailed information. FrameWeb proposes:

¢ A standard architecture for Web Applications that integrates with those
frameworks by separating their concerns into different packages;

¢ A UML profile suited for the construction of four kinds of design models
that represent framework components from different packages: Domain
Model, Persistence Model, Navigation Model and Application Model [12];

¢ Although FrameWeb does not prescribe a software process, allowing
organizations to use the process that suits them best, it suggests that use
cases and class diagrams are used during requirement analysis.

FrameWeb's standard architecture divides the system into three main tiers, as
shown in Figure 1. The Presentation Logic tier contains elements related to Web-
based user interfaces. The controller package gathers the action classes that
integrate with the Front Controller framework, while the view package contains Web
pages, style sheets, images and other files related with the exhibition of information.

The Business Logic tier also contains two packages: bomain and Application. The
former includes classes that represent domain concepts modeled during requirement
analysis. The latter comprises classes that implement functionalities represented as
use cases during that same stage.

The last tier regards Data Access. The pPersistence package contains classes that
communicate with the Object/Relational (O/R) Mapping framework to create,
retrieve, update and delete domain objects from the persistence store. FrameWeb
suggest the use of the Data Access Object pattern [8] for this package.

The dependency associations in figure 1 show how these packages interact. User
stimuli come from view components and reach the controller classes by means of
the MVC framework. The action classes in Controller call methods from
Application classes, which manipulate Domain objects and also depends on the

Persistence Of these objects. Associations stereotyped as <<weak>> represent loose
coupling. For instance, the packages in the Presentation tier do not create and
manipulate domain objects directly, but use them to display data or pass them around
as parameters, using a domain-driven approach’.

f--- ssweakrr
i
— ! _Iv
View Domain <_____<_<_\'\LE_|8K>>
]
]
]
’T‘ < < wEEke” N :
- I
| ; i !
| - i !
_IV e — | — !
Controller L - Application - Persistence
Presentation Logic Business Logic Data Arccess Logic

Fig. 1. FrameWeb's standard architecture for WIS [5].

To model classes and other components that belong to the different packages of the
standard architecture, FrameWeb uses UML's lightweight extension mechanism to
create a profile for designing four different kinds of diagrams [12] during system
design, which are summarized in Table 1. All of them are based on UML's class
diagram, but represent components from different packages that integrate with
different frameworks. Interested readers should refer to [12] for further details.

Table 2. Diagrams built during the design of a WIS using FrameWeb.

Diagram Purpose

Domain Model Represents domain classes modeled during analysis, complemented
with platform-dependent information (attribute types, association
navigabilities, etc.) and O/R mappings (which are more easily
represented in this model instead of the Persistence Model because the
attributes are modeled here).

Guides the implementation of classes from the Domain package and
also the configuration of the O/R framework.

Persistence Model Shows DAO classes that are responsible for the persistence of
domain objects and the existence of specific queries to the database.
Every domain class that requires persistence should have a DAO
interface and an implementation for each persistence technology used.
Guides the codification of the DAOs, which belong to the
Persistence package, and the creation of specific database queries
on the O/R framework.

1 In this context, the domain-driven approach (referred to as model-driven approach by the
framework's documentation) consists of using an instance of a domain class as wrapper for its
attributes when they are passed as parameters.

Diagram Purpose

Navigation Model Displays components from the presentation tier, such as web pages,
HTML forms, templates, binary files and action classes, and their
relationships among themselves.

Guides the implementation of action classes (Controller
package), other view components (View package) and the
configuration of the Front Controller framework.

Application Models the interfaces and classes that implement use case
Model functionalities and the dependency chain from the action classes
(which depend on them) until the DAOs (which they depend on).
Guides the codification of classes from the Application package
and the configuration of the Dependency Injection framework.

FrameWeb provides a way for modeling WIS that is suited for those based on
frameworks. There is no indication, however, on how to provide semantic annotations
that could make the WIS available for Semantic Web agents to reason with it.
Reasoning means that software agents are able to understand the information
presented by Web pages and take sensible actions according to a goal that was
previously given. The most usual way for agents to understand the contents of a
website is by semantically annotating the pages using formal knowledge
representation structures, such as ontologies.

An ontology is an engineering artifact used to describe a certain reality, plus a set
of explicit assumptions regarding the intended meaning of its vocabulary words [13].
Along with ontology representation languages such as OWL [14], they are able to
describe information from a website in formal structures with well-defined inference
procedures that allow software agents to perform tasks such as consistency checking,
establish relation between terms, systematic classification and infer information from
explicitly defined information in this structure.

If the ontology is built (using one of many methodologies for their construction
[15]) and given the availability of tools such as OILEd* and Protégé’, the annotation
of static Web pages with OWL has become a straightforward task.

However, few websites are composed strictly by static pages. What is commonly
seen is Web pages being dynamically generated by software retrieving information
on-the-fly from data repositories such as relational databases. These data-intensive
websites have the advantage of separating data and layout, but also have limitations
such as being invisible to search engines and not being comprehensible by software
agents [16]. Thus, an automated way of annotating dynamic Web pages is needed.

One way to do that is, when a Web page is requested at the Web server, it must
recognize if the request comes from a human agent or a software agent. In the latter
case, instead of generating a HTML human-readable Web page, the server should
return a document written in an ontology specification language (e.g. OWL)
containing meta-data about the information that would be conveyed in the page.

2 http://oiled.man.ac.uk/
3 http://protege.stanford.edu/

Although the solution seems appropriate, many aspects still need to be addressed,
such as: how are the agents supposed to find the Web page? How will they know the
correct way to interact with it? For instance, how will they know how to fill in an
input form to submit to a specific request?

Hepp [17] advocates that semantic annotation of static or dynamic data is not
enough and that the original vision of the Semantic Web can only be achieved by the
utilization of Semantic Web Services. A Web Service is “a software system designed
to support interoperable machine-to-machine interaction over a network™ [18]. Web
Services provide a nice way for software agents to interact with other systems,
requesting services and processing their results.

Many researchs are now directed to the use of Web Services on the Semantic Web.
Semantic Web Services are formed by adding semantic annotations to Web Services
so they become interpretable by software agents. Meta-data about the service are
written in a markup language, describing its properties and capacities, the interface
for its execution, its requirements and the consequences of its use [19]. Many tasks are
expected to be automated with this, including service discovery, invocation,
interoperation, selection, composition and monitoring [20].

3 Semantic FrameWeb

The main goal of S-FrameWeb is to make WISs “Semantic Web-enabled”. This
should be accomplished by the Front Controller framework, which identifies if
requests come from human or software agents. In the former case, the usual Web page
is presented, while in the latter, an OWL document is returned.

To fulfill its purpose, S-FrameWeb adds three new steps to FrameWeb's software
process: domain analysis, ontology design and ontology implementation. A suggested
software process is shown in figure 2. These steps are further discussed next.

3.1 Domain Analysis

To bring a WIS to the Semantic Web it is imperative to formally describe its domain.
As stated in section 2, the most usual way of doing this is by constructing an ontology.
S-FrameWeb indicates the inclusion of a Domain Analysis activity in the software
process for the development of a domain ontology (we don't use the term “domain
model” to avoid confusion with FrameWeb's Domain Model).

Domain Analysis is “the activity of identifying the objects and operations of a class
of similar systems in a particular problem domain” [21, 22]. When a software is built,
the purpose is to solve a problem from a given domain of expertise, such as medicine,
sales or car manufacturing. If the domain is analyzed prior to the analysis of the
problem, the knowledge that is formalized about the domain can be reused when
another problem from the same domain needs a software solution [22].

Daornain Ontolog Application-specific Conceptual Model FrameWeh's Domain Model

M L v N tommm - a N

Darmain Reguirement

1
I
1
I
i
' Analysis Analysis
I
I
1
I
1
I

Fig. 2. The software process suggested by S-FrameWeb.

For a diagrammatic representation of the ontology, S-FrameWeb uses OMG's*
Ontology Definition Metamodel (ODM) [23], “a language for modeling Semantic
Web ontologies in the context of MDA” [24]. ODM defines an ontology UML profile
that allows developers to represent ontologies in UML class diagrams.

The output of Domain Analysis is an ontology that represents concepts from the
problem domain. The ontology's diagram can be reused in the Requirement Analysis
phase to produce the application's conceptual model, which will later be refined and
become FrameWeb's Domain Model (FDM) during system design.

Table 3 summarizes the evolution of the models throughout the software process.

Table 3. Models produced by the software process suggested by S-FrameWeb

Activity Artifact What the model represents

Domain Domain Ontology Concepts from the domain to which the

Analysis software is being built. Modeled in ODM, but
converted to OWL for deployment.

Requirement Conceptual Model Concepts that are specific to the problem

Analysis being solved. Modeled in ODM.

System FrameWeb's Domain Same as above plus OR mappings. Modeled

Design Model (FDM) using S-FrameWeb's UML profile.

Coding OWL code OWL representation of FDM, without OR
mappings.

Figure 3 shows the conceptual model for a very simple culinary recipes WIS called
“Cookbook”. This application includes the registry of recipes and a simple search
feature. After the domain of culinary was analyzed and an ontology modeled, the
conceptual model was built in ODM using only the classes that were required for this
particular application.

The stereotype <<ontClass>> indicates domain classes, <<ObjectProperty>>
models associations between domain classes, <<DataType>> represents XML data
types and <<DatatypeProperty>> models associations between classes and data types.

4 Object Management Group — http://www.omg.org/ontology/

The reader accustomed with UML conceptual models may notice that associations
are represented as classes in ODM. This is because in OWL, associations are
independent from classes and, for instance, can form their own subsumption hierarchy.
More on ODM's semantics can be found at [23].

<< DataTypePropentys > SALMIHEESRE < <DataTvpePropertys =
- - i Recipe i
SFrmii < <domain: > i < <domainz > servings
- < <domain> > +name : name
< <ranges > 1
g <range> > < <rangex
<<DataTypes > << 0bjectiPropertys » <<DataType > >
String recipe int
<< damainz >
1."
<< ObjectProperty> > < <0ntClass > > . = <DataTypePropery: =
measure < <domain> > Recipeingredient < <domain> >
*
1 -
< <range> > < <domains > < <ranges
<< 0ntClasss = << OhbjectProperty> > < <DataTypes >
Measure ingredient float
- <<domain> > +name : name
< <ranges >
1 < <DatatypeProperys »
name

<=<0OntClasss >
Ingredient - < <domain> > +receita: Recipe

- < <domain> > +ingrediente : Ingredient

- < <domain: > +medida : Measura

- <<range> > +string : String

- < <domain> > +name : name

Fig. 3. The conceptual model for the Cookbook application.

3.2 Ontology Design

During the design phase of the software process, FrameWeb prescribes the
construction of a Domain Model (referred to as FDM), which shows classes that
represent concepts from the problem domain and their object/relational mappings.

S-FrameWeb proposes an extension to this diagram, mixing both FrameWeb's and
ODM's UML profiles to build FDM. Based on the conceptual model, the designer
should simplify ODM's syntax and add the OR mappings. Figure 4 shows the FDM
for the Cookbook application. We can see that <<bataType>> elements were replaced
by class attributes (this should happen only in simple cases — for instance, when they
do not participate in a subsumption hierarchy or when the datatype is not structured)
and that some mappings were included ({not null} and {cascade=all} [12]).

3.3 Ontology Implementation

Finally, at the coding phase, the domain ontology and the FDM should be coded in
OWL and deployed into the WIS. In this context, “deploy” means placing the OWL

file in a predetermined location so the Front Controller framework can read it.
Because the models are represented in ODM, their codification in OWL are
straightforward (ODM proposes graphical representations for OWL constructs) and, in
the near future, probably this can be automated by CASE tools.

1" << oniclasss >
< <domainz =", Recipelngredient

{cascade=all}

<<ontclasss » < <ChjectProperys »
Recipe <<rangez > recipe

- amount : float {not null}

- name : String {not nuily |1

- directions : 5tring - -
- senings | int
: < <domainz > .
< <domains >
< <OhjectPrapetys »
<<ranges > measure
< < ObjectPropertys »
ingredient
1
<<0OntClass> > <<OntCIe_155>> 1
Measure Ingredient
P <<ranges >
- narme : String {not null} - narne @ 5tring {not nully a

Fig. 4. S-FrameWeb's Domain Model for the Cookbook application.

During the execution of the WIS, the Front Controller provides an infrastructure
that identifies when the request comes from a software agent, reads both ontology's
and FDM's OWL files and responds to the request based on the execution of an action
and reasoning over the ontologies. Since existing Front Controller frameworks do not
have this infrastructure, a prototype of it was developed and is detailed next.

3.4 Front Controller Infrastructure

To experiment S-FrameWeb in practice, we have extended the Struts® framework® to
recognize software agents requests and respond with an OWL document, containing
the same information it would be returned by that page, but codified as OWL
instances. Together with the OWL files for the domain ontology and the FDM,
software agents can reason about the data that resulted from the request.

Figure 5 shows this extension and how it integrates with the framework. The
client's web browser issues a request for an action to the framework. Before the action
gets executed, the controller automatically dispatches the request through a stack of
interceptors, following the pipes and filters architectural style. This is an expected
behavior of Struts*> and most of the framework's features are implemented as
interceptors (e.g., to have it manage a file upload, use the fileUpload interceptor).

An “OWL Interceptor” was developed and configured as first interceptor of the
stack. When the request is passing through the stack, the OWL Interceptor verifies if a
specific parameter was sent by the agent in the request (e.g. owl=true), indicating that
the action should return an “OWL Result”. If so, it creates a pre-result listener that
will deviate successful requests to another custom-made component that is
responsible for producing this result, which we call the “OWL Result Class”. Since

5 http://struts.apache.org/2.x/

this result should be based on the application ontology, it was necessary to use an
ontology parser. For this purpose, we chose the Jena Ontology API, a framework that
provides a programmatic environment for many ontology languages, including OWL.

Action class

Ii_-ll
| o B
Client (Web
Browser)

Fig. 5. S-FrameWeb's Front Controller framework extension for the Semantic Web.

Using Jena and Java's reflection API, the OWL Result Class obtains all accessor
methods (JavaBeans-standardized getProperty() methods) of the Action class that
return a domain object or a collection of domain objects. These methods represent
domain information that is available to the client (they are called by the result page to
display information to the user on human-readable interfaces). They are called and
their result is translated into OWL instances, which are returned to the client in the
form of an OWL document.

4 Related Work

As the acceptance of the Semantic Web idea grows, more methods for the
development of “Semantic Web-enabled” WebApps are proposed.

The approach which is more in-line with our objectives is the Semantic
Hypermedia Design Method (SHDM) [25]. SHDM is a model-driven approach for the
design of Semantic WebApps based on OOHDM [4]. SHDM proposes five steps:
Requirement Gathering, Conceptual Design, Navigational Design, Abstract Interface
Design and Implementation.

Requirements are gathered in the form of scenarios, user interaction diagrams and
design patterns. The next phase produces a UML-based conceptual model, which is
enriched with navigational constructs in the following step. The last two steps concern
interface design and codification, respectively.

SHDM is a comprehensive approach, integrating the conceptual model with the
data storage and user-defined templates at the implementation level to provide a
model-driven solution to WebApps development. Being model-driven facilitates the
task of displaying agent-oriented information, since the conceptual model is easily
represented in OWL.

While the approach is very well suited to content-based WebApps, WIS which are
more centered in providing functionalities (services) are not as well represented by
SHDM. The proposal of FrameWeb was strongly motivated by the current scenario
where developers are more and more choosing framework or container-based

architectures to create applications for the Web. S-FrameWeb builds on top of
FrameWeb to provide semantics to these functionality-based WebApps.

5 Conclusions and Future Work

S-FrameWeb suggests a software process that facilitates the development of Semantic
WISs by automating certain tasks concerning the generation of semantic annotations
on dynamic Web pages. However, the following limitations have already been
identified and are bound to future work:
¢ Software agents must know how to find the Web pages. Pages that are
linked by others can be found by search engines, but that is not the case with
the ones that represent the request for a service. The research on Web Service
discovery could provide some insight on this issue;
¢ Agents must speak a common language to understand Web pages. If an

instance of “table” is returned, how will the agent know if it's a “piece of
296

LLINT3

furniture”, “a systematic arrangement of data usually in rows and columns
or any other meaning? The use of top-level ontologies, such as Dolce’,
should be considered for this matter;

¢ Works in the area of Semantic Web Services [19, 20, 26] suggest another
way to deal with the issue of annotation of WISs. S-FrameWeb should be
implemented to use Web Services in the future to compare both approaches;

o The infrastructure prototype was developed for the Struts® framework and
currently has some limitations that have to be addressed. Other frameworks
should be extended so S-FrameWeb can be used in different platforms.

Acknowledgments. This work was accomplished with the financial aid of CAPES, an
entity of the Brazilian Gov't dedicated to scientific and technological development.

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American (2001) n.
284, p. 34-43

2. Conallen, J.: Building Web Applications with UML. 2nd edn. Addison-Wesley (2002)

3. Fons, J.; Valderas, P.; Ruiz, M.; Rojas, G.; Pastor, O: OOWS: A Method to Develop Web
Applications from Web-Oriented Conceptual Models. Proceedings of the 7th World
Multiconference on Systemics, Cybernetics and Informatics (SCI), Orlando, USA (2003)

4. Schwabe, D., Rossi, G.: An Object Oriented Approach to Web-Based Application Design.
Theory and Practice of Object Systems 4 (4). Wiley and Sons (1998)

5. Souza, V. E. S., Falbo, R. A.: FrameWeb: A Framework-based Design Method for Web
Engineering. Proceedings of the Euro American Conference on Telematics and Information
Systems, Faro, Algarve, Portugal (2007)

6 Merriam-Webster Online Dictionary (http://www.m-w.com)
7 More about Dolce at http://wonderweb.semanticweb.org/deliverables/documents/D18.pdf

6. Murugesan, S., Deshpande, Y., Hansen, S., Ginige, A.: Web Engineering: A New Discipline
for Development of Web-based Systems. Proceedings of the First ICSE Workshop on Web
Engineering. IEEE, Australia (1999)

7. Shannon, B.: Java™ Platform, Enterprise Edition (Java EE) Specification, v5. Sun
Microsystems (2006)

8. Alur, D., Crupi, J., Malks, D.: Core J2EE Patterns: Best Practices and Design Strategies.
Prentice Hall / Sun Microsystems Press (2001)

9. Bauer, C., King, G.: Hibernate in Action. 1st edn. Manning (2004)

10. Fowler, M.: Inversion of Control Containers and the Dependency Injection Pattern
(http://www.martinfowler.com/articles/injection.html). Captured on July 19th (2006)

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley (1994)

12. Souza, V. E. S., Falbo, R. A.: A Language for Modeling Framework-based Web
Information Systems. Proceedings of the 12th International Workshop on Exploring
Modeling Methods in System Analysis and Design. Trondheim, Norway (2007)

13. Guarino, N.: Formal Ontology and Information Systems. Proceedings of the Ist
International Conference on Formal Ontologies in Information Systems. IOS Press. Trento,
Italy (1998) p. 3-15.

14. W3C: OWL Web Ontology Language Guide, fev. 2004 (http://www.w3.org/TR/owl-
guide/). Captured on: November 13th (2006)

15. Gomez-Perez, A., Corcho, O., Fernandez-Lopez, M.: Ontological Engineering. Springer
(2005)

16. Stojanovic, L., Stojanovic, N., Volz, R.: Migrating data-intensive Web Sites into the
Semantic Web. Proceedings of the 2002 ACM symposium on Applied computing. ACM.
Madrid, Spain (2002) p. 1100-1107

17. Hepp, M.: Semantic Web and semantic Web services - Father and Son or Indivisible
Twins? IEEE Internet Computing. IEEE (2006) v. 10, n. 2, p. 85-88

18. W3C: W3C Glossary and Dictionary (http://www.w3.0rg/2003/glossary/). Captured on:
January 23" (2007)

19. Mcllraith, S. A., Son, T. C., Zeng, H.: Semantic Web Services. Intelligent Systems. [EEE
(2001) v. 16, n. 2, p. 46-53

20. Narayanan, S., Mcllraith, S. A.: Simulation, Verification and Automated Composition of
Web Services. Proceedings of the 11th international conference on World Wide Web. ACM.
Hawaii, USA (2002) p. 77-88

21. Neighbors, J. M.: Software Construction Using Components. Ph.D. Thesis. Department of
Information and Computer Science, University of California, Irvine (1981)

22. Falbo R. A., Guizzardi, G., Duarte, K. C. : An Ontological Approach to Domain
Engineering. Proceedings of the 14th International Conference on Software Engineering
and Knowledge Engineering (SEKE'2002). Ischia, Italy (2002). pp. 351- 358

23. OMG: Ontology Definition Metamodel Specification (http://www.omg.org/cgi-
bin/doc?ad/06-05-01.pdf). Captured on: January 29" (2007)

24. buri¢, D.: MDA-based Ontology Infrastructure. Computer Science and Information
Systems. ComSIS Consortium (2004) vol. 1, issue 1

25. Lima, F., Schwabe, D.: Application Modeling for the Semantic Web. First Latin American
Web Conference (LA-Web). IEEE-CS Press. Santiago, Chile (2003)

26. Trastour, D., Bartolini, C., Preist, C.: Semantic Web Support for the Business-to-Business
E-Commerce Lifecycle. Proceedings of the 11th International World Wide Web Conference
(WWW 2002). Hawaii, USA (2002)

	1 Introduction
	2 Web Engineering and the Semantic Web
	3 Semantic FrameWeb
	3.1 Domain Analysis
	3.2 Ontology Design
	3.3 Ontology Implementation
	3.4 Front Controller Infrastructure

	4 Related Work
	5 Conclusions and Future Work
	1.Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientiﬁc American (2001) n. 284, p. 34-43
	2.Conallen, J.: Building Web Applications with UML. 2nd edn. Addison-Wesley (2002)
	3.Fons, J.; Valderas, P.; Ruiz, M.; Rojas, G.; Pastor, O: OOWS: A Method to Develop Web Applications from Web-Oriented Conceptual Models. Proceedings of the 7th World Multiconference on Systemics, Cybernetics and Informatics (SCI), Orlando, USA (2003)
	4.Schwabe, D., Rossi, G.: An Object Oriented Approach to Web-Based Application Design. Theory and Practice of Object Systems 4 (4). Wiley and Sons (1998)
	5.Souza, V. E. S., Falbo, R. A.: FrameWeb: A Framework-based Design Method for Web Engineering. Proceedings of the Euro American Conference on Telematics and Information Systems, Faro, Algarve, Portugal (2007)
	6.Murugesan, S., Deshpande, Y., Hansen, S., Ginige, A.: Web Engineering: A New Discipline for Development of Web-based Systems. Proceedings of the First ICSE Workshop on Web Engineering. IEEE, Australia (1999)
	7.Shannon, B.: JavaTM Platform, Enterprise Edition (Java EE) Specification, v5. Sun Microsystems (2006)
	8.Alur, D., Crupi, J., Malks, D.: Core J2EE Patterns: Best Practices and Design Strategies. Prentice Hall / Sun Microsystems Press (2001)
	9.Bauer, C., King, G.: Hibernate in Action. 1st edn. Manning (2004)
	10.Fowler, M.: Inversion of Control Containers and the Dependency Injection Pattern (http://www.martinfowler.com/articles/injection.html). Captured on July 19th (2006)
	11.Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley (1994)
	12.Souza, V. E. S., Falbo, R. A.: A Language for Modeling Framework-based Web Information Systems. Proceedings of the 12th International Workshop on Exploring Modeling Methods in System Analysis and Design. Trondheim, Norway (2007)
	13.Guarino, N.: Formal Ontology and Information Systems. Proceedings of the 1st International Conference on Formal Ontologies in Information Systems. IOS Press. Trento, Italy (1998) p. 3-15.
	14.W3C: OWL Web Ontology Language Guide, fev. 2004 (http://www.w3.org/TR/owl-guide/). Captured on: November 13th (2006)
	15.Gomez-Perez, A., Corcho, O., Fernandez-Lopez, M.: Ontological Engineering. Springer (2005)
	16.Stojanovic, L., Stojanovic, N., Volz, R.: Migrating data-intensive Web Sites into the Semantic Web. Proceedings of the 2002 ACM symposium on Applied computing. ACM. Madrid, Spain (2002) p. 1100-1107
	17.Hepp, M.: Semantic Web and semantic Web services - Father and Son or Indivisible Twins? IEEE Internet Computing. IEEE (2006) v. 10, n. 2, p. 85-88
	18.W3C: W3C Glossary and Dictionary (http://www.w3.org/2003/glossary/). Captured on: January 23rd (2007)
	19.McIlraith, S. A., Son, T. C., Zeng, H.: Semantic Web Services. Intelligent Systems. IEEE (2001) v. 16, n. 2, p. 46-53
	20.Narayanan, S., McIlraith, S. A.: Simulation, Verification and Automated Composition of Web Services. Proceedings of the 11th international conference on World Wide Web. ACM. Hawaii, USA (2002) p. 77-88
	21.Neighbors, J. M.: Software Construction Using Components. Ph.D. Thesis. Department of Information and Computer Science, University of California, Irvine (1981)
	22.Falbo R. A., Guizzardi, G., Duarte, K. C. : An Ontological Approach to Domain Engineering. Proceedings of the 14th International Conference on Software Engineering and Knowledge Engineering (SEKE'2002). Ischia, Italy (2002). pp. 351- 358
	23.OMG: Ontology Definition Metamodel Specification (http://www.omg.org/cgi-bin/doc?ad/06-05-01.pdf). Captured on: January 29th (2007)
	24.Đurić, D.: MDA-based Ontology Infrastructure. Computer Science and Information Systems. ComSIS Consortium (2004) vol. 1, issue 1
	25.Lima, F., Schwabe, D.: Application Modeling for the Semantic Web. First Latin American Web Conference (LA-Web). IEEE-CS Press. Santiago, Chile (2003)
	26.Trastour, D., Bartolini, C., Preist, C.: Semantic Web Support for the Business-to-Business E-Commerce Lifecycle. Proceedings of the 11th International World Wide Web Conference (WWW 2002). Hawaii, USA (2002)

