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Abstract. Control Theory and feedback control in particular have been
steadily gaining momentum in software engineering for adaptive systems.
Feedback controllers work by continuously measuring system outputs,
comparing them with reference targets and adjusting control inputs if
there is a mismatch. In Control Theory, quantifying the effects of control
input on measured output is a process known as system identification.
This process usually relies either on detailed and complex system models
or on system observation. In this paper, we adopt a Requirements En-
gineering perspective and ideas from Qualitative Reasoning to propose
a language and a systematic system identification method for adaptive
software systems that can be applied at the requirements level, with the
system not yet developed and its behavior not completely known.

1 Introduction

In Control Theory (e.g., [8]), system identification is the process of determining
the equations that govern the dynamic behavior of a system. White box models
describe a system from first principles, e.g., a model for a physical process that
consists of Newton equations. In most cases, such models are overly complicated
or even impossible to obtain due to the complex nature of many systems and
processes (natural or artificial).

A much more common approach is therefore to start from partial knowledge
of the behavior of the system and its external influences (inputs), and try to
determine a mathematical relation between inputs and outputs without going
into the details of what is actually happening inside the system. Two types of
models are built using this approach:

1. Gray box models: although the peculiarities of system internals are not en-
tirely known, a certain model based on both insight into the system and ex-
perimental data is constructed. This model, however, comes with a number
of free parameters (control variables) which can be estimated using system
identification. Thus, parameter estimation is an important activity here;

2. Black box models: no prior model is available here, so everything has to be
constructed from scratch, through observation and experimentation. Most
system identification algorithms are of this type.



We are interested in employing this control-theoretic framework for the de-
sign of adaptive software systems. In this paper, we adopt a Requirements En-
gineering (RE) perspective and assume that a goal-based requirements model is
available for the system. At the requirements level, the system is not yet imple-
mented and its behavior is not completely known. With this incomplete informa-
tion, we are unable to fully identify how system configuration parameters affect
outputs. Thus, quantitative approaches cannot be applied. Therefore, we base
our approach on ideas from Qualitative Reasoning [10] and propose a systematic
way of identifying target outputs and system configuration parameters as well as
qualitative relations between these parameters and measured outputs, all using
models. Our proposed technique is both qualitative and flexible in the sense that
it can accommodate multiple levels of precision in specifications depending on
available information.

According to our proposal, the output of system identification for a software
system is an extended and parametrized requirements model. Each assignment
of parameter values represents a different behavior (configuration) that the sys-
tem might adapt to fulfill its requirements. Some of the parameters (“variation
points”) come directly from the model. For instance, for a meeting scheduling
system that needs to collect timetables from all participants when a meeting is
scheduled, there is a choice of collecting these directly from meeting participants
(e.g., through email) or from a central repository of timetables. The behaviors
are also determined by a set of control variables that influence system execu-
tion, its success rate, performance, or quality of service. For instance, the “Collect
timetables” goal is influenced by a parameter “From how Many” (FhM) that de-
termines from what percentage of the participants we need to collect timetables
before the goal is deemed to have been fulfilled. If we need to collect from all,
i.e., FhM = 100, then the success rate for the goal may be low and its completion
time may be high, compared to the FhM = 80 setting.

The main objective of this paper is to propose a systematic process for con-
ducting system identification. This process requires some new concepts, notably
the notion of differential relations between control variables and indicators (mon-
itored variables). We illustrate the proposed process with an example and vali-
date the proposal with experiments on it.

The rest of the paper is structured as follows: section 2 summarizes research
results used as the baseline in our proposal; section 3 presents a language for the
modeling of qualitative information on the relation between system parameters
and output; section 4 describes a systematic process for system identification
using that language; section 5 discusses the validation of the proposal; section 6
compares it to related work; section 7 describes future research directions; and,
finally, section 8 concludes the paper.

2 Research Baseline

The following sub-sections briefly present research results on top of which we
build our proposal: Goal-Oriented RE (§2.1) and Qualitative Reasoning (§2.2).



2.1 Goal-Oriented Requirements Engineering (GORE)

Goal-oriented approaches to RE model requirements in terms of goals, softgoals,
quality constraints (QCs) and domain assumptions (DAs) [9]. As running exam-
ple for this paper, figure 1 shows a goal model for a Meeting Scheduler system.
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Fig. 1. Goal model for a Meeting Scheduler system.

In our example, the main goal of the system is to Schedule meeting. Goals
can be decomposed using Boolean decompositions with obvious semantics. For
instance, to Schedule meeting, one has to Characterize meeting, Collect timeta-
bles, Find available rooms and Choose schedule. On the other hand, to Collect
timetables, it is enough either to Email participants, Call participants or to Col-
lect from system calendar. Goals are decomposed until they reach a level of
granularity where there are tasks an actor (human or system) can perform to
fulfill them.

Softgoals are special types of goals that represent non-functional require-
ments (qualities) that do not have clear-cut satisfaction criteria. Goals and tasks
contribute to the satisfaction of softgoals through positive or negative contribu-
tion links. Softgoals need to be refined into quality constraints (QCs) which
offer concrete metrics for measuring how well the system is fulfilling a softgoal
[9]. For example, Good participation is a desired quality for our system, receiv-
ing positive contribution from Schedule manually and negative from Let system
schedule. A clear-cut satisfaction criteria for this softgoal is specified by the QC
At least 90% of participants attend.



Goal models may also contain domain assumptions (DAs), which are state-
ments that we assume to be true in order for the system to work. In the example,
we assume there are Local rooms available in order to Find local rooms. If the
assumption turns out to be false, its parent goal will not be satisfied.

Finally, figure 1 also illustrates system parameters that were identified
for the meeting scheduler example. Monitored and controlled parameters have
long been proposed as a way to implement reconciliation for adaptive systems at
runtime [5]. However, in our proposal these are intentional parameters which are
introduced much earlier in the development process, at the level of requirements.
The example shows five control variables as black diamonds connected to other
elements of the model.

OR-decompositions in goal models also represent intentional variability in the
system. Choosing a different path at such variation points has been proposed as
a way to configure systems [13] or to reconcile the behavior of adaptive systems
at runtime in previous works such as [19]. In figure 1 we label the three existing
OR-decompositions as VP1, VP2 and VP3 in order to be able to reference them
in our language.

In section 3.1 we discuss in more depth the role of such parameters in our
proposal.

2.2 Qualitative Reasoning

The key feature of qualitative reasoning (QR) methods (e.g., [10]) is that while
frequently there is not enough information to construct quantitative models,
qualitative models can cope with uncertain and incomplete knowledge about
systems. They do not require assumptions beyond what is known. Most QR
approaches can be seen as having two types of abstraction.

Domain abstraction abstracts the real domain values of variables into a finite
number of ordered symbols that describe qualitative values, landmarks, that are
behaviorally significant. Landmarks can be numeric or symbolic and can include
the values such as 0 and oo. A qualitative variable value is either a landmark
or an interval between adjacent landmarks. The finite, totally ordered set of all
the possible qualitative values of a variable is called its quantity space.

Qualitative functional abstraction, which gives the ability to represent incom-
pletely known functional relationships between quantities, complements domain
abstraction in QR. E.g., signs (+,—,0) can be used to describe and reason about
the direction of change in variables — one can state that there exists some mono-
tonically increasing function relating two quantities, without elaborating further.
Merging qualitative information frequently results in ambiguity, such as when
combining positive and negative influences without knowing their magnitudes.
Ranges of techniques and notations are available within QR, their applicability
depending on the precision of the available information. E.g., one can reason
about orders of magnitude, if they are known, possibly resolving said ambiguity.



3 Parameters and Qualitative Differential Relations

In this section, we further discuss system parameters and indicators of system
output, as well as propose a language based on qualitative modeling [10] to
augment our (goal-oriented) requirements model with information that captures
the relationships among the these parameters in a qualitative way.

3.1 System Parameters and Indicators

As previously discussed, our proposal consists of a language and a systematic
process to identify and model qualitative relations between configuration param-
eters and measured outputs of the system. Given our Requirements Engineering
perspective, we propose to augment goal models of system requirements by rec-
ognizing variation points and control variables (collectively called parameters)
and identifying indicators (of system output).

Variation points (VPs) are the OR-decompositions already present in the
goal model. As we have mentioned in §2.1, selecting a different path at a VP at
runtime is one way of reconfiguring the system in order to adapt to failures. Our
proposal adds labels to VPs in the goal model (e.g., VP1, VP2 and VP3 in figure
1) in order to refer to them when modeling qualitative relations (see §3.3).

In this paper we introduce control variables (CVs), which represent another
powerful mechanism for system (re)configuration. CVs are part of the system in-
put. They can be applied to goals, tasks, and domain assumptions (DAs) and are
used as abstractions over goal/domain model fragments. In particular, CVs are
derived from families of related, but slightly different goal/task or DA alterna-
tives, as in figure 2, where the goals Collect timetables from 10% of participants,
Collect timetables from 20% of participants, etc. are shown as alternative ways
to achieve the parent Collect timetables goal.

Collect
timetables
R
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Fig. 2. Using a CV as an abstraction over families of subtrees.

Here, we identify variations that differ in some value (usually, but not nec-
essarily numeric) and abstract that value as a parameter to be attached to the
appropriate goal model element as a CV (e.g., the FhM, From how Many variable
in figure 2). Figure 1 shows more examples of CVs, such as: RF (required fields



when characterizing a meeting), RfM (number of rooms for meeting available —
note that this CV applies to a DA), etc.

The benefits of having CVs include the ability to represent large number of
model variations in a compact way as well as the ability to concisely analyze how
changes in CV values affect the system’s success rate and/or quality of service
when, e.g., scheduling meetings. As any parameter in software design, a CV needs
to be taken into consideration (i.e., propagated) when refining the goal model
element that it applies to and later when designing and implementing the system.
In this proposal, we are interested in analyzing the effect of values of CVs on
system output and thus omit the details of CV refinement and implementation.

Finally, indicators are essential to control systems as these are monitored
system output values that feedback loops need to compare to the output targets
in order to calculate the control error and to determine how the system’s control
input needs to be adjusted. Indicators are similar to gauge variables, proposed
by van Lamsweerde in [11].

Indicators need to be measurable quantities. In goal models, quality con-
straints (QCs) as well as the success rates for hard goals and tasks can be used
as indicators. Since the number of potential indicators is large, we need to se-
lect as indicators the important values that the adaptive system should strive
to achieve. Awareness Requirements (AwRegs) [18] are requirements that talk
about the success or failure of other requirements, e.g., “ Find available rooms
should never fail” or “Schedules produced in less than a day should succeed 75%
of the time”. AwRegs are formalized and come with a monitoring infrastructure.
They can be attached to QCs, hard goals, etc. (i.e., potential indicators) and
capture the reference input of the system as well as specify the target success
rates or other requirements about them. In our system identification approach
(84), we use AwReqs as the indicators in goal models. In the next sub-sections,
however, we use cost and speed to refer to the QCs attached to softgoals Low
cost and Fast scheduling, respectively.

Given the above definitions for system parameters and indicators and tak-
ing the Find local room goal of figure 1 as an example, we would like to model
information such as: “upon increasing the value of RfM, the success rate of Find
local room also increases” and “at VP2, when choosing Call hotels and convention
centers over Call partner institutions, your cost will increase”. This kind of in-
formation is very important for a feedback controller in its task of deciding how
to adapt the system to fulfill its requirements.

In the remainder of the section we describe the qualitative approach for
capturing and analyzing this information. Our approach does not differentiate
between control variables and variation points and, thus, we hereafter refer to
them generally as system parameters or simply parameters.

3.2 Numeric Parameters

Numeric parameters, such as Rooms for Meetings (RfM), From how Many (FhM)
and Mazimum Conflicts Allowed (MCA) (see figure 1), can assume any integer or
real value at runtime. There could be, however, some domain-related constraints,



e.g., RfM can obviously assume only positive integer values, FhM ranges between
0% and 100%, etc.

Changing the value of a numeric parameter affects many aspects of sys-
tem performance, which, as explained in the previous sub-section, are measured
through indicators. Taking the parameter RfM as an example, and assuming the
success rate of Find local room is affected by changes in RfM, we could define
this indicator as a function of the parameter (clearly a simplification):

success rate of Find local room = f(RfM) (1)

We could then say how changes in RfM affect the success rate of the goal by
declaring if the derivative of f is positive or negative. Using Leibniz’s notation:

A(success rate of Find local room)
ARfM

Relation 2 tells us that if we increase the value of RfM, the success rate of Find
local room also increases. Of course, the analogous decrease-decrease relation is
also inferred. The Ay/Ax notation is used instead of dy/dx because RfM, as
previously mentioned, assumes only discrete values. Furthermore, in practice we
use a simplified linearized notation to improve writability:

>0 (2)

A ((success rate of Find local room)/RfM) > 0 (3)

Suppose there is a limit to which this relation holds: after a given number,
adding more rooms will not help with the success rate of Find local room. For
this case, we use the concept of landmark values (see §2.2) and specify an inter-
val in which the relation between the parameter and the indicator holds. Since
we are dealing with qualitative information, we might not know exactly how
many rooms are enough, so we define a landmark value called enoughRooms:
A ((success rate of Find local room)/RfM) [0,enoughRooms] > 0. Although
specifying this interval intuitively tells us that adding extra rooms after there are
already enough of them available does not change the success rate of the goal, one
could formalize this information, making it explicit: A ((success rate of Find
local room)/Rf M) [enoughRooms, co] = 0.

This gives us the general form for differential relations in our proposal, shown
in (4), where A can be replaced with d in case of a continuous parameter, the
interval [a, b] is optional, with default value [—o0, 00|, (op) should be substituted
by a comparison operator (>, >, <, <, = or #) and C is any constant, not just
zero as in previous examples.

A (indicator /parameter) [a,b] (op) C (4)

Non-zero values for C' are useful for expressing different rates of change.
When facing a decision on how to improve an indicator I, given the information
A(I/Py) > 0 and A(I/P2) > 0 the controller will arbitrarily choose to either
increase Py or Py; on the other hand, A (I/P;) > 2 and A (I/Pz) > 7 could help
it choose P; in case I needs to be increased by a larger factor.



If we replace the constant C' by a function g(parameter), we will be able to
represent nonlinear relations between indicators and parameters, for instance,
A(cost/RfM) =2 x RfM (cost increases by the square of the increase of RfM).
However, linear approximations greatly simplify the kind of modeling we are
proposing and are enough for our objectives. Moreover, it is very hard to obtain
such precise qualitative values before the system is in operation.

3.3 Enumerated Parameters

In addition to numeric parameters, parameters that constrain their possible val-
ues to specific enumerated sets are also possible. Variation points are clear ex-
amples of this type of parameter, as their possible values are constrained to the
set of paths in the OR-decomposition. Control variables, however, can also be
of enumerated type (in effect, as discussed in section 3.1, control variables are
abstractions over families of goal models in an OR-decomposition).

Figure 1 shows five enumerated parameters elicited for the meeting scheduler,
two enumerated control variables and three variation points:

— Required fields (RF) in the task Characterize meeting can assume the values:
participants list only, short description required or full description required;

— View private appointments (VPA) in the task Collect from system calendar
can be either yes or no.

— At Collect timetables, VP1 can assume values Email participants, Call par-
ticipants or Collect automatically;

— At Find available rooms, VP2 can assume values Find local rooms, Call part-
ner institution or Call hotels and convention centers;

— At Choose schedule, VP3 can assume values Schedule manually or Let system
schedule.

Unlike numeric parameters, the meaning of “increase” and “decrease” is not
defined for enumerated types. However, we use a similar syntax to specify how
changing from one value («) to another (3) affects a system indicator:

A (indicator /parameter) {aq — B1,a2 = Ba,...,an — Bn} {op) C  (5)

By performing pair-wise comparisons of enumerated values, stakeholders can
specify how changes in an enumerated parameter affect the system. For example,
the relations below show how changes in VP2 affect, respectively, the indicators
cost and speed (both increase if you do the changes listed between curly brackets).

A (cost/V P2) {local — partner,local — hotel, partner — hotel} >0 (6)
A (speed/V P2) {partner — local, hotel — local, partner — hotel} >0 (7)

Often, however, an order among enumerated values w.r.t. different indicators
can be established. For instance, analyzing the pair-wise comparisons shown in



relations 6 and 7, we conclude that w.r.t. cost, local = partner =< hotel, while
for speed partner < hotel < local. Depending on the size of the set of values
for an enumerated parameter, listing all pair-wise comparisons using the syntax
specified in (5) may be tedious and verbose. If it is possible to specify a total
order for the set, doing so and using the general syntax presented for numeric
parameters in equation (4) can simplify elicitation and modeling.

3.4 Extrapolations

Differential relations always involve one indicator, but may involve more than
one parameter. For example, “increasing” VP1 and VP3 (considering the order of
the alternatives in variation points to be based on their position in the model,
ascending left-to-right) contributes positively to indicator Irs = Fast schedul-
ing both separately — A (Ips/VP1) > 0 and A(Ips/VP3) > 0 — and in
combination — A (Ips/{VP1,VP3}) > 0.

When we are not given any relation that differentially relate two parame-
ters P; and P> to a single indicator I, we may still be able to extrapolate such
a relation on the basis of simple linearity assumptions. E.g., if we know that
A(I/Py) > 0 and A(I/P;) > 0, it would be reasonable to extrapolate the re-
lation A(I/{Pi, P,}) > 0. More generally, our extrapolation rule assumes that
homogeneous impact is additive (figure 3). Note that in cases where P; and P,
have opposite effects on I, nothing can be extrapolated because of the qualitative
nature of our relations.

f(P,+P,) = 14x

indicator

Fig. 3. Combining the effects of different CVs on the same indicator.

Generalizing, given a set of parameters {Py, Pa,..., P}, if Vi € {1,...,n},
A(I/P;)[as,bi] (op) C;, our extrapolation rule has as follows:

A/ P Payoo PoY) () anbi] {op) € (®)
i=0 i=0
If it is known that two parameters cannot be assumed to have such a com-
bined effect, this should be explicitly stated, e.g., A (I/{P, P»}) <0.
From differential calculus we extrapolate on the concept of the second deriva-
tive. If y = f(x), we can say that y grows linearly if f/(z) > 0 and f”(z) = 0 (it



“has constant speed”). However, if we have f”(x) > 0, then y’s rate of growth
also increases with the value of x (it “accelerates”). Qualitative information on
second derivatives can be modeled in our language using the following notation:
A?(I/P)[a,b] (op) C. Thus, if we say that A? (I/P;) > 0 and A? (I/P,) =0,
the controller may conclude that P; is probably a better choice than P, for large
values. Other concepts, such as inflection and saddle points, mazxima and min-
ima, etc. could also be borrowed, although we believe that knowing information
on such points in a I = f(P) relation without knowing the exact function f(P)
is very unlikely.

4 System Identification Process

In this section, we describe a systematic process for system identification. Pro-
cess Input: a requirements model G (such as the one in figure 1). Process Out-
put: a parametrized specification of the system behavior S = {G,I, P, R (I, P)},
where G is the goal model, I is the set of indicators identified by AwRegs in the
model, P is the set of parameters, and R (I, P) is the set of relations between
indicators and parameters. At runtime, a feedback-loop controller receives S as
input in order to adapt the system pro-actively or in case of failures.

The following are the steps of the process. They can be applied iteratively,
gradually enriching the model with each iteration.

Step 1. Identify indicators: Introduce AwRegs into the goal model G
specifying target success rates for QCs, hard goals or tasks. Output: the set of
indicators 1.

Step 2. Identify parameters: Identify possible variations in the goal model
affecting the indicators, which, therefore, can be manipulated to adjust the per-
formance of the system. These are captured by control variables and variation
points (see §3.1). Output: the set of parameters P.

Step 3. Identify differential relations: For each indicator from the set
I the requirements engineer asks: which parameters from P does this indicator
depend on? Alternatively, iterate through set P and ask, for each parameter,
which indicator in I is affected by it. Either way, one should end up with a
many-to-many association between the sets. There are heuristics that help in
answering these questions:

Heuristic 1: if provided, softgoal contribution links capture these dependen-
cies for wariation points. E.g., in figure 1, the choices in VP1 contribute to the
softgoal Fast scheduling and thus VP1 affects the success rate of Schedules pro-
duced in less than a day, a QC derived from that softgoal. Any AwReg-derived
indicator involving that QC is therefore also affected.

Heuristic 2: another heuristic for deriving potential parameter-indicator re-
lations is to link indicators to parameters that appear in the subtrees of the
nodes the indicators are associated with. The rationale for this is the fact that
parameters in a subtree rooted at some goal G, which models how G is achieved,
change the subtree, thus potentially affecting the indicators associated with the



goal. E.g., the parameter RfM is below the goal Find available rooms in the tree
and thus can be (and actually is) affecting its success rate, an indicator.

Heuristic 8: yet another way to identify potential parameter-indicator rela-
tions is to look at the non-functional concerns that these parameters/indicators
address and to match the ones with the same concern. [18] describes how NFRs
such as robustness, criticality, etc. lead to the introduction of AwRegs into goal
models. The already-mentioned softgoal contributions explicitly link wvariation
points with NFRs. Similar analysis should be done for control variables.

The modeling of the parameter-indicator relations is done using the language
of section 3. Output: R (I, P), the initial set of relations between indicators and
parameters.

Step 4. Refine relations: The initial set of parameter-indicator relations
produced in Step 3 should be refined by comparing and combining those that
refer to the same indicator. When comparing two relations, say A (I;/RfM) > 0
and A(I;/VP2) > 0 (where I might represent (success rate of Find local
roomy)), the modeler can investigate whether either of these adaptation strategies
is better than the other and by how much. This may result in the model being
refined into, e.g., A(I1/RfM) > A(I;/V P2), which would help the controller
facing the choice between these alternatives. The analysis of whether selecting
an alternative makes the value of an indicator match its reference input is to be
addressed in future work.

Combining relations also refers to what has been discussed in section 3.4: if a
positive change in both parameters results in a positive change in the indicator,
should we expect the default behavior in which A (l/{RfM,VP2}) > 0 or
should we explicitly specify that this is not the case? Such questions should be
asked for any set of relations that refer to the same indicator.

Note that when combining relations to analyze alternatives, care must be
taken to only look at the parameters/indicators relevant in the current system
configuration. E.g., in figure 1, the parameter View Private Appointments (VPA)
cannot affect any indicator if the value of VP1 is not Collect automatically. Out-
put: R (I, P), the updated set of relations between indicators and parameters.

5 Validation

To validate our proposal, we applied the system identification process described
in section 4 to the meeting scheduler example presented throughout this paper,
identifying 9 indicators (in the form of AwRegs), 8 system parameters (5 control
variables and 3 variation points as shown in figure 1) and a total of 24 differential
relations among the identified indicators and parameters.

For instance, one of the identified indicators refers to the goal Find avail-
able rooms as a critical requirement that should never fail, which is modeled
in AwReq AR5: NeverFail (G-FindAvailRooms). During parameter identifica-
tion, Rooms for Meeting (RfM) and VP2 were identified, along with other pa-
rameters that are not relevant to AR5. In the next phase, two relations were
identified: A(AR5/RfM) > 0 (increasing the number of local rooms helps),



A(AR5/V P2) > 0 (changing from local — partner — hotel helps). During re-
finement, analyzing RfM and VP2 in combination provided A (AR5/ {Rf M,V P2})
= A(AR5/V P2) (increasing the number of local rooms and then not using them
does not make sense) and A (AR5/RfM) = A(AR5/V P2) (changing RfM or VP2
is equally effective).

Then, we developed a simulation that reads the above system information
as well as events reporting AwReq failures (which could be provided by the
framework we have presented in [18]) in order to identify possible adaptivity
actions that could be taken by the controller during reconciliation. For example,
when an event representing the failure of AR5 is received during the simulation,
the program replies with the choices of parameter changes that have positive
effect on AR5 based on the above qualitative relations:

* AwReq AR5 has failed! To reconcile, the controller could:
- Current value of VP2 = local. Change it to one of: [partner, hotell
- Current value of RfM = 3. Increase it.
- Note: VP2 and RfM should not be changed in combination.

With the information given by the differential relations, the program was
able to identify available alternatives to adapt the system in case of failure.
More sophisticated algorithms to analyze all the possibilities and select the best
course of action (considering also the effect on NFRs, for example) are in our
future plans for developing a complete framework for system adaptivity based on
feedback loops. We are also currently working on a larger controlled experiment,
conducting system identification on the London Ambulance System [6].

6 Related Work

There is growing interest in Control Theory-based approaches for adaptive sys-
tems and many of the proposed approaches include some form of system identi-
fication stage, in which the adaptive capabilities of the system are elicited and
modeled. In [7], modeling is done by representing system and environment ac-
tions as well as fluents that express properties of the environment. In GAAM
[17], measurable/quantifiable properties of the system are modeled as attributes,
a preference matriz specifies the order of preference of adaptation actions to-
wards goals (similarly to what we proposed in section 3.3) and an aspiration
level matriz determines the desired levels of attributes of each goal. Our work
differs from these by providing qualitative information on the relation between
system parameters and run-time indicators.

In [14], Letier & van Lamsweerde augment KAOS with a probabilistic layer
in order to allow for the specification of partial degrees of goal satisfaction,
thus quantifying the impact of alternative designs in high-level system goals.
In the approach, domain-specific quality variables (QVs) associated with goals
are modeled and objective functions (OFs) define domain-specific, goal-related
quantities to be maximized or minimized. Proposed heuristics for identifying QVs
and OFs could be useful in the elicitation of control variables in our approach.



However, unlike our work, their models do not contain a clear relation between
these variables and indicators measured in the target system.

Approaches such as i* [16], the work by Elahi & Yu [4] and other propos-
als on design-time trade-off analysis can be adapted to provide information for
run-time adaptivity (i.e., removing the need for stakeholder intervention in the
analysis). For instance, contribution links in i* can provide qualitative relations
between wvariation points and indicators, although they lack the means of dif-
ferentiating between links with the same label (e.g., see Call participants and
Email participants in figure 1). GRL [1] could be used for this purpose, if car-
dinal contribution values (1, 2, ...) were changed to ordinal ones (1%, 274 ...),
thus providing a graphical representation of enumerated value orders (§3.3). Our
proposal provides such run-time trade-off information with a syntax that is more
concise (control parameters abstract what would have to be represented as large
goal sub-trees), uniform (can relate any system parameter to indicators) and
flexible (the precision of the specification depends on the available information).

The proposal by Brake et al. [2] automates the discovery of software tuning
parameters at the code level using reverse engineering techniques. A taxonomy
of parameters and patterns to aid in their automatic identification provides some
sort of qualitative relation among parameters, which may be “tunable” or just
observed. While their work targets existing and legacy software, our proposal
takes a Requirements Engineering perspective and, thus, can refer to higher
level parameters, such as the success rate of a functional requirement or a quality
constraint imposed over a non-functional one.

Finally, our proposal clearly differs from quantitative approaches (e.g., [1, 3,
11, 15]) in that we are using qualitative information, based on the premise that
quantitative estimates at requirements time are usually unreliable [4] (assuming
a domain with high uncertainty or incomplete knowledge of the behavior of
the system-to-be). Our approach allows the modeler to start with minimum
information available and add more as further details about the system become
available (either by elicitation or through run-time analysis once the system is
executing).

7 Discussion and Future Work

In this paper so far, we have overlooked an important modeling dimension, con-
textual variability. In this section, we sketch how it can be taken into consid-
eration in the system identification process of section 4. We then discuss other
research directions that we plan to pursue in the future.

Properties of the environment can affect the requirements for and the opera-
tion of a system, but, unlike the parameters we have discussed previously (CVs
and VPs), context parameters cannot be directly manipulated, only monitored.
Contexts are abstractions of such properties [12]. For instance, the type of a
meeting can be viewed as a context for the meeting scheduling system, as can
be the importance of a meeting organizer within the company. From the point
of view of Control Theory, context most closely corresponds to a disturbance



input that cannot be manipulated, but influences the output and thus must be
accounted for. Contexts are organized using (possibly many) inheritance hierar-
chies that refine general contexts (e.g., Regular meeting) into more specific ones
(Mandatory meeting or Information session) with descendants inheriting the
properties of their ancestors. Each hierarchy structures contexts along a context
dimension — some variable aspect of the domain (e.g., meeting importance) —
with leaf-level elements directly monitorable. Multiple inheritance is supported.

In [12], (soft)goals and contribution links are identified as context-dependent
goal model elements. Contextual annotations capture the effects of contexts on
these elements and thus on software requirements by stating in which contexts
the elements are visible. Unless explicitly overridden, the effects of ancestor con-
texts are inherited by their descendants. So, by default, the requirements for
Regular meeting are inherited by Mandatory meeting.

As discussed in [12], varying properties of the environment can have sig-
nificant effect on goal models — namely, goal/task/softgoal addition/removal,
changes in VP choices and different evaluations of these choices w.r.t. softgoals.
Given a context-parametrized (i.e., with contextual annotations) goal model, the
algorithm for producing contezt-specific versions of it for particular sets of ac-
tive contexts is also described. It removes model elements invisible in the current
context. The goal modeling notation presented here is more complex compared
to the notation of [12], thus requiring a modified algorithm. The additional el-
ements — DAs, QCs, AwRegs, and CVs — are all context-dependent, i.e., can
change from context to context. E.g., the success rate for the goal Find available
rooms can be set to 95% in a Regular meeting context and to 70% in a less
important Information session context by using the appropriate AwRegs. Each
AwReq will be visible in its respective context. Similarly, variations in possible
values for VPs/CVs can be represented by different VP /CV variants, each visible
in their appropriate context(s).

Clearly, these goal model variations need to be reflected in the system identi-
fication process. When we do it in the particular context ¢, we produce the model
S. ={G.,I., P.,R. (I, P.)}, where G, is context-specific goal model (a subset
of the context-parametrized goal model G) generated by the modified algorithm
from [12]. Then, I. C I and P, C P since some of the indicators and parameters
may not be visible in ¢. Moreover, R. — the set of relations between the relevant
parameters and indicators in C' — should be restricted to the elements of I. and
P. (ie., r(i,p) € R. =i € I. A\p € P.). While being a necessary condition, this
expression does not define the relations in R.. It is up to the modeler to identify
which relations exist in the particular contexts and how they are defined using
the language of section 3. Once a relationship r (i,p) € R, is defined for the
context ¢, it also applies for all the descendant contexts of ¢ unless overridden
and provided that both ¢ and p exist in the descendant contexts.

A complete analysis of the role of contextual information on the system iden-
tification process as well as validating the ideas briefly discussed above is subject
of future work. Other possible future work also include investigating: means of es-
timating during RE whether a particular behavior change will match the desired



targets for the system’s output; the effect indicators can have on one another and
how to model such a qualitative relation during system identification; what other
methods and concepts from the Control Theory body of knowledge could be ap-
plied in our approach; how does this approach affect traditional Requirements
Engineering activities (e.g., stakeholder negotiation during requirements elicita-
tion); how can our proposal contribute to requirements evolution (i.e., changing
the goal model because it does not properly represent current stakeholder re-
quirements, despite the system’s adaptive capabilities); etc.

Finally, the full potential of the proposal presented in this paper will be re-
alized in the next steps of our research, which includes the development of a
framework that implements adaptivity in a target system using feedback loops.
With AwRegs [18] and qualitative relations in the requirement model, it is now
possible to develop such a framework that will provide reconciliation (attempt to
satisfy the requirements after failures) and compensation (resolve any inconsis-
tencies that failures might produce) at runtime. Once we have developed such a
framework, more experiments are needed to assess to what extent this approach
helps in designing adaptive systems as opposed to traditional GORE methods.

In particular, we are currently working on different strategies for reconcilia-
tion. With the information that is added to the models by using the approach
proposed in this paper, two basic strategies to be executed when a failure is
detected are: parameter tuning — if there are any parameters that could be
modified in order to reconcile, analyze the qualitative information available and
select the best course of action w.r.t. other indicators — and abort — if there
are no parameters or the ones that exist have already been tried, tell the target
system to gracefully fail or degrade performance. Other reconciliation strategies
can be devised by analyzing existing proposals in the area of adaptive systems
and other fields of computer science, such as fault-tolerant computing, artificial
intelligence, distributed systems, etc.

8 Conclusion

In this paper, we argue that current requirements models lack an essential in-
formation needed by feedback loop controllers in order to adapt their target
systems: how changes in parameters affect relevant monitored indicators. We
propose a systematic approach for System Identification and, by taking a RE
perspective, we use ideas from Qualitative Reasoning to cope with uncertain
and incomplete knowledge about systems. Our language allows modeling of
parameter-indicator relations varying precision, based on available information.
We also briefly discuss the role of contextual information on this process and
conduct experiments to validate our ideas.
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