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t. Control Theory and feedba
k 
ontrol in parti
ular have beensteadily gaining momentum in software engineering for adaptive systems.Feedba
k 
ontrollers work by 
ontinuously measuring system outputs,
omparing them with referen
e targets and adjusting 
ontrol inputs ifthere is a mismat
h. In Control Theory, quantifying the e�e
ts of 
ontrolinput on measured output is a pro
ess known as system identi�
ation.This pro
ess usually relies either on detailed and 
omplex system modelsor on system observation. In this paper, we adopt a Requirements En-gineering perspe
tive and ideas from Qualitative Reasoning to proposea language and a systemati
 system identi�
ation method for adaptivesoftware systems that 
an be applied at the requirements level, with thesystem not yet developed and its behavior not 
ompletely known.1 Introdu
tionIn Control Theory (e.g., [8℄), system identi�
ation is the pro
ess of determiningthe equations that govern the dynami
 behavior of a system. White box modelsdes
ribe a system from �rst prin
iples, e.g., a model for a physi
al pro
ess that
onsists of Newton equations. In most 
ases, su
h models are overly 
ompli
atedor even impossible to obtain due to the 
omplex nature of many systems andpro
esses (natural or arti�
ial).A mu
h more 
ommon approa
h is therefore to start from partial knowledgeof the behavior of the system and its external in�uen
es (inputs), and try todetermine a mathemati
al relation between inputs and outputs without goinginto the details of what is a
tually happening inside the system. Two types ofmodels are built using this approa
h:1. Gray box models: although the pe
uliarities of system internals are not en-tirely known, a 
ertain model based on both insight into the system and ex-perimental data is 
onstru
ted. This model, however, 
omes with a numberof free parameters (
ontrol variables) whi
h 
an be estimated using systemidenti�
ation. Thus, parameter estimation is an important a
tivity here;2. Bla
k box models: no prior model is available here, so everything has to be
onstru
ted from s
rat
h, through observation and experimentation. Mostsystem identi�
ation algorithms are of this type.



We are interested in employing this 
ontrol-theoreti
 framework for the de-sign of adaptive software systems. In this paper, we adopt a Requirements En-gineering (RE) perspe
tive and assume that a goal-based requirements model isavailable for the system. At the requirements level, the system is not yet imple-mented and its behavior is not 
ompletely known. With this in
omplete informa-tion, we are unable to fully identify how system 
on�guration parameters a�e
toutputs. Thus, quantitative approa
hes 
annot be applied. Therefore, we baseour approa
h on ideas from Qualitative Reasoning [10℄ and propose a systemati
way of identifying target outputs and system 
on�guration parameters as well asqualitative relations between these parameters and measured outputs, all usingmodels. Our proposed te
hnique is both qualitative and �exible in the sense thatit 
an a

ommodate multiple levels of pre
ision in spe
i�
ations depending onavailable information.A

ording to our proposal, the output of system identi�
ation for a softwaresystem is an extended and parametrized requirements model. Ea
h assignmentof parameter values represents a di�erent behavior (
on�guration) that the sys-tem might adapt to ful�ll its requirements. Some of the parameters (�variationpoints�) 
ome dire
tly from the model. For instan
e, for a meeting s
hedulingsystem that needs to 
olle
t timetables from all parti
ipants when a meeting iss
heduled, there is a 
hoi
e of 
olle
ting these dire
tly from meeting parti
ipants(e.g., through email) or from a 
entral repository of timetables. The behaviorsare also determined by a set of 
ontrol variables that in�uen
e system exe
u-tion, its su

ess rate, performan
e, or quality of servi
e. For instan
e, the �Colle
ttimetables� goal is in�uen
ed by a parameter �From how Many� (FhM) that de-termines from what per
entage of the parti
ipants we need to 
olle
t timetablesbefore the goal is deemed to have been ful�lled. If we need to 
olle
t from all,i.e., FhM = 100, then the su

ess rate for the goal may be low and its 
ompletiontime may be high, 
ompared to the FhM = 80 setting.The main obje
tive of this paper is to propose a systemati
 pro
ess for 
on-du
ting system identi�
ation. This pro
ess requires some new 
on
epts, notablythe notion of di�erential relations between 
ontrol variables and indi
ators (mon-itored variables). We illustrate the proposed pro
ess with an example and vali-date the proposal with experiments on it.The rest of the paper is stru
tured as follows: se
tion 2 summarizes resear
hresults used as the baseline in our proposal; se
tion 3 presents a language for themodeling of qualitative information on the relation between system parametersand output; se
tion 4 des
ribes a systemati
 pro
ess for system identi�
ationusing that language; se
tion 5 dis
usses the validation of the proposal; se
tion 6
ompares it to related work; se
tion 7 des
ribes future resear
h dire
tions; and,�nally, se
tion 8 
on
ludes the paper.2 Resear
h BaselineThe following sub-se
tions brie�y present resear
h results on top of whi
h webuild our proposal: Goal-Oriented RE (�2.1) and Qualitative Reasoning (�2.2).



2.1 Goal-Oriented Requirements Engineering (GORE)Goal-oriented approa
hes to RE model requirements in terms of goals, softgoals,quality 
onstraints (QCs) and domain assumptions (DAs) [9℄. As running exam-ple for this paper, �gure 1 shows a goal model for a Meeting S
heduler system.

Fig. 1. Goal model for a Meeting S
heduler system.In our example, the main goal of the system is to S
hedule meeting. Goals
an be de
omposed using Boolean de
ompositions with obvious semanti
s. Forinstan
e, to S
hedule meeting, one has to Chara
terize meeting, Colle
t timeta-bles, Find available rooms and Choose s
hedule. On the other hand, to Colle
ttimetables, it is enough either to Email parti
ipants, Call parti
ipants or to Col-le
t from system 
alendar. Goals are de
omposed until they rea
h a level ofgranularity where there are tasks an a
tor (human or system) 
an perform toful�ll them.Softgoals are spe
ial types of goals that represent non-fun
tional require-ments (qualities) that do not have 
lear-
ut satisfa
tion 
riteria. Goals and tasks
ontribute to the satisfa
tion of softgoals through positive or negative 
ontribu-tion links. Softgoals need to be re�ned into quality 
onstraints (QCs) whi
ho�er 
on
rete metri
s for measuring how well the system is ful�lling a softgoal[9℄. For example, Good parti
ipation is a desired quality for our system, re
eiv-ing positive 
ontribution from S
hedule manually and negative from Let systems
hedule. A 
lear-
ut satisfa
tion 
riteria for this softgoal is spe
i�ed by the QCAt least 90% of parti
ipants attend.



Goal models may also 
ontain domain assumptions (DAs), whi
h are state-ments that we assume to be true in order for the system to work. In the example,we assume there are Lo
al rooms available in order to Find lo
al rooms. If theassumption turns out to be false, its parent goal will not be satis�ed.Finally, �gure 1 also illustrates system parameters that were identi�edfor the meeting s
heduler example. Monitored and 
ontrolled parameters havelong been proposed as a way to implement re
on
iliation for adaptive systems atruntime [5℄. However, in our proposal these are intentional parameters whi
h areintrodu
ed mu
h earlier in the development pro
ess, at the level of requirements.The example shows �ve 
ontrol variables as bla
k diamonds 
onne
ted to otherelements of the model.OR-de
ompositions in goal models also represent intentional variability in thesystem. Choosing a di�erent path at su
h variation points has been proposed asa way to 
on�gure systems [13℄ or to re
on
ile the behavior of adaptive systemsat runtime in previous works su
h as [19℄. In �gure 1 we label the three existingOR-de
ompositions as VP1, VP2 and VP3 in order to be able to referen
e themin our language.In se
tion 3.1 we dis
uss in more depth the role of su
h parameters in ourproposal.2.2 Qualitative ReasoningThe key feature of qualitative reasoning (QR) methods (e.g., [10℄) is that whilefrequently there is not enough information to 
onstru
t quantitative models,qualitative models 
an 
ope with un
ertain and in
omplete knowledge aboutsystems. They do not require assumptions beyond what is known. Most QRapproa
hes 
an be seen as having two types of abstra
tion.Domain abstra
tion abstra
ts the real domain values of variables into a �nitenumber of ordered symbols that des
ribe qualitative values, landmarks, that arebehaviorally signi�
ant. Landmarks 
an be numeri
 or symboli
 and 
an in
ludethe values su
h as 0 and ±∞. A qualitative variable value is either a landmarkor an interval between adja
ent landmarks. The �nite, totally ordered set of allthe possible qualitative values of a variable is 
alled its quantity spa
e.Qualitative fun
tional abstra
tion, whi
h gives the ability to represent in
om-pletely known fun
tional relationships between quantities, 
omplements domainabstra
tion in QR. E.g., signs (+,−,0) 
an be used to des
ribe and reason aboutthe dire
tion of 
hange in variables � one 
an state that there exists some mono-toni
ally in
reasing fun
tion relating two quantities, without elaborating further.Merging qualitative information frequently results in ambiguity, su
h as when
ombining positive and negative in�uen
es without knowing their magnitudes.Ranges of te
hniques and notations are available within QR, their appli
abilitydepending on the pre
ision of the available information. E.g., one 
an reasonabout orders of magnitude, if they are known, possibly resolving said ambiguity.



3 Parameters and Qualitative Di�erential RelationsIn this se
tion, we further dis
uss system parameters and indi
ators of systemoutput, as well as propose a language based on qualitative modeling [10℄ toaugment our (goal-oriented) requirements model with information that 
apturesthe relationships among the these parameters in a qualitative way.3.1 System Parameters and Indi
atorsAs previously dis
ussed, our proposal 
onsists of a language and a systemati
pro
ess to identify and model qualitative relations between 
on�guration param-eters and measured outputs of the system. Given our Requirements Engineeringperspe
tive, we propose to augment goal models of system requirements by re
-ognizing variation points and 
ontrol variables (
olle
tively 
alled parameters)and identifying indi
ators (of system output).Variation points (VPs) are the OR-de
ompositions already present in thegoal model. As we have mentioned in �2.1, sele
ting a di�erent path at a VP atruntime is one way of re
on�guring the system in order to adapt to failures. Ourproposal adds labels to VPs in the goal model (e.g., VP1, VP2 and VP3 in �gure1) in order to refer to them when modeling qualitative relations (see �3.3).In this paper we introdu
e 
ontrol variables (CVs), whi
h represent anotherpowerful me
hanism for system (re)
on�guration. CVs are part of the system in-put. They 
an be applied to goals, tasks, and domain assumptions (DAs) and areused as abstra
tions over goal/domain model fragments. In parti
ular, CVs arederived from families of related, but slightly di�erent goal/task or DA alterna-tives, as in �gure 2, where the goals Colle
t timetables from 10% of parti
ipants,Colle
t timetables from 20% of parti
ipants, et
. are shown as alternative waysto a
hieve the parent Colle
t timetables goal.
Fig. 2. Using a CV as an abstra
tion over families of subtrees.Here, we identify variations that di�er in some value (usually, but not ne
-essarily numeri
) and abstra
t that value as a parameter to be atta
hed to theappropriate goal model element as a CV (e.g., the FhM, From how Many variablein �gure 2). Figure 1 shows more examples of CVs, su
h as: RF (required �elds



when 
hara
terizing a meeting), RfM (number of rooms for meeting available �note that this CV applies to a DA), et
.The bene�ts of having CVs in
lude the ability to represent large number ofmodel variations in a 
ompa
t way as well as the ability to 
on
isely analyze how
hanges in CV values a�e
t the system's su

ess rate and/or quality of servi
ewhen, e.g., s
heduling meetings. As any parameter in software design, a CV needsto be taken into 
onsideration (i.e., propagated) when re�ning the goal modelelement that it applies to and later when designing and implementing the system.In this proposal, we are interested in analyzing the e�e
t of values of CVs onsystem output and thus omit the details of CV re�nement and implementation.Finally, indi
ators are essential to 
ontrol systems as these are monitoredsystem output values that feedba
k loops need to 
ompare to the output targetsin order to 
al
ulate the 
ontrol error and to determine how the system's 
ontrolinput needs to be adjusted. Indi
ators are similar to gauge variables, proposedby van Lamsweerde in [11℄.Indi
ators need to be measurable quantities. In goal models, quality 
on-straints (QCs) as well as the su

ess rates for hard goals and tasks 
an be usedas indi
ators. Sin
e the number of potential indi
ators is large, we need to se-le
t as indi
ators the important values that the adaptive system should striveto a
hieve. Awareness Requirements (AwReqs) [18℄ are requirements that talkabout the su

ess or failure of other requirements, e.g., �Find available roomsshould never fail� or �S
hedules produ
ed in less than a day should su

eed 75%of the time�. AwReqs are formalized and 
ome with a monitoring infrastru
ture.They 
an be atta
hed to QCs, hard goals, et
. (i.e., potential indi
ators) and
apture the referen
e input of the system as well as spe
ify the target su

essrates or other requirements about them. In our system identi�
ation approa
h(�4), we use AwReqs as the indi
ators in goal models. In the next sub-se
tions,however, we use cost and speed to refer to the QCs atta
hed to softgoals Low
ost and Fast s
heduling, respe
tively.Given the above de�nitions for system parameters and indi
ators and tak-ing the Find lo
al room goal of �gure 1 as an example, we would like to modelinformation su
h as: �upon in
reasing the value of RfM, the su

ess rate of Findlo
al room also in
reases� and �at VP2, when 
hoosing Call hotels and 
onvention
enters over Call partner institutions, your 
ost will in
rease�. This kind of in-formation is very important for a feedba
k 
ontroller in its task of de
iding howto adapt the system to ful�ll its requirements.In the remainder of the se
tion we des
ribe the qualitative approa
h for
apturing and analyzing this information. Our approa
h does not di�erentiatebetween 
ontrol variables and variation points and, thus, we hereafter refer tothem generally as system parameters or simply parameters .3.2 Numeri
 ParametersNumeri
 parameters, su
h as Rooms for Meetings (RfM), From how Many (FhM)and Maximum Con�i
ts Allowed (MCA) (see �gure 1), 
an assume any integer orreal value at runtime. There 
ould be, however, some domain-related 
onstraints,



e.g., RfM 
an obviously assume only positive integer values, FhM ranges between0% and 100%, et
.Changing the value of a numeri
 parameter a�e
ts many aspe
ts of sys-tem performan
e, whi
h, as explained in the previous sub-se
tion, are measuredthrough indi
ators. Taking the parameter RfM as an example, and assuming thesu

ess rate of Find lo
al room is a�e
ted by 
hanges in RfM, we 
ould de�nethis indi
ator as a fun
tion of the parameter (
learly a simpli�
ation):
success rate of F ind local room = f(RfM) (1)We 
ould then say how 
hanges in RfM a�e
t the su

ess rate of the goal byde
laring if the derivative of f is positive or negative. Using Leibniz's notation:
∆〈success rate of F ind local room〉

∆RfM
> 0 (2)Relation 2 tells us that if we in
rease the value of RfM, the su

ess rate of Findlo
al room also in
reases. Of 
ourse, the analogous de
rease-de
rease relation isalso inferred. The ∆y/∆x notation is used instead of dy/dx be
ause RfM, aspreviously mentioned, assumes only dis
rete values. Furthermore, in pra
ti
e weuse a simpli�ed linearized notation to improve writability:

∆ (〈success rate of F ind local room〉/RfM) > 0 (3)Suppose there is a limit to whi
h this relation holds: after a given number,adding more rooms will not help with the su

ess rate of Find lo
al room. Forthis 
ase, we use the 
on
ept of landmark values (see �2.2) and spe
ify an inter-val in whi
h the relation between the parameter and the indi
ator holds. Sin
ewe are dealing with qualitative information, we might not know exa
tly howmany rooms are enough, so we de�ne a landmark value 
alled enoughRooms:
∆ (〈success rate of F ind local room〉/RfM) [0, enoughRooms] > 0. Althoughspe
ifying this interval intuitively tells us that adding extra rooms after there arealready enough of them available does not 
hange the su

ess rate of the goal, one
ould formalize this information, making it expli
it: ∆ (〈success rate of F ind
local room〉/RfM) [enoughRooms,∞] = 0.This gives us the general form for di�erential relations in our proposal, shownin (4), where ∆ 
an be repla
ed with d in 
ase of a 
ontinuous parameter, theinterval [a, b] is optional, with default value [−∞,∞], 〈op〉 should be substitutedby a 
omparison operator (>, ≥, <, ≤, = or 6=) and C is any 
onstant, not justzero as in previous examples.

∆ (indicator/parameter) [a, b] 〈op〉 C (4)Non-zero values for C are useful for expressing di�erent rates of 
hange.When fa
ing a de
ision on how to improve an indi
ator I, given the information
∆ (I/P1) > 0 and ∆ (I/P2) > 0 the 
ontroller will arbitrarily 
hoose to eitherin
rease P1 or P2; on the other hand, ∆ (I/P1) > 2 and ∆ (I/P2) > 7 
ould helpit 
hoose P2 in 
ase I needs to be in
reased by a larger fa
tor.



If we repla
e the 
onstant C by a fun
tion g(parameter), we will be able torepresent nonlinear relations between indi
ators and parameters, for instan
e,
∆ (cost/RfM) = 2×RfM (
ost in
reases by the square of the in
rease of RfM).However, linear approximations greatly simplify the kind of modeling we areproposing and are enough for our obje
tives. Moreover, it is very hard to obtainsu
h pre
ise qualitative values before the system is in operation.3.3 Enumerated ParametersIn addition to numeri
 parameters, parameters that 
onstrain their possible val-ues to spe
i�
 enumerated sets are also possible. Variation points are 
lear ex-amples of this type of parameter, as their possible values are 
onstrained to theset of paths in the OR-de
omposition. Control variables, however, 
an also beof enumerated type (in e�e
t, as dis
ussed in se
tion 3.1, 
ontrol variables areabstra
tions over families of goal models in an OR-de
omposition).Figure 1 shows �ve enumerated parameters eli
ited for the meeting s
heduler,two enumerated 
ontrol variables and three variation points :� Required �elds (RF) in the task Chara
terize meeting 
an assume the values:parti
ipants list only, short des
ription required or full des
ription required ;� View private appointments (VPA) in the task Colle
t from system 
alendar
an be either yes or no.� At Colle
t timetables, VP1 
an assume values Email parti
ipants, Call par-ti
ipants or Colle
t automati
ally ;� At Find available rooms, VP2 
an assume values Find lo
al rooms, Call part-ner institution or Call hotels and 
onvention 
enters ;� At Choose s
hedule, VP3 
an assume values S
hedule manually or Let systems
hedule.Unlike numeri
 parameters, the meaning of �in
rease� and �de
rease� is notde�ned for enumerated types. However, we use a similar syntax to spe
ify how
hanging from one value (α) to another (β) a�e
ts a system indi
ator:

∆ (indicator/parameter) {α1 → β1, α2 → β2, . . . , αn → βn} 〈op〉 C (5)By performing pair-wise 
omparisons of enumerated values, stakeholders 
anspe
ify how 
hanges in an enumerated parameter a�e
t the system. For example,the relations below show how 
hanges in VP2 a�e
t, respe
tively, the indi
ators
ost and speed (both in
rease if you do the 
hanges listed between 
urly bra
kets).
∆ (cost/V P2) {local → partner, local → hotel, partner → hotel} > 0 (6)

∆ (speed/V P2) {partner → local, hotel → local, partner → hotel} > 0 (7)Often, however, an order among enumerated values w.r.t. di�erent indi
ators
an be established. For instan
e, analyzing the pair-wise 
omparisons shown in



relations 6 and 7, we 
on
lude that w.r.t. 
ost, local � partner � hotel, whilefor speed partner � hotel � local. Depending on the size of the set of valuesfor an enumerated parameter, listing all pair-wise 
omparisons using the syntaxspe
i�ed in (5) may be tedious and verbose. If it is possible to spe
ify a totalorder for the set, doing so and using the general syntax presented for numeri
parameters in equation (4) 
an simplify eli
itation and modeling.3.4 ExtrapolationsDi�erential relations always involve one indi
ator, but may involve more thanone parameter. For example, �in
reasing� VP1 and VP3 (
onsidering the order ofthe alternatives in variation points to be based on their position in the model,as
ending left-to-right) 
ontributes positively to indi
ator IFS = Fast s
hedul-ing both separately � ∆ (IFS/V P1) > 0 and ∆ (IFS/V P3) > 0 � and in
ombination � ∆ (IFS/ {V P1, V P3}) > 0.When we are not given any relation that di�erentially relate two parame-ters P1 and P2 to a single indi
ator I, we may still be able to extrapolate su
ha relation on the basis of simple linearity assumptions. E.g., if we know that
∆(I/P1) > 0 and ∆(I/P2) > 0, it would be reasonable to extrapolate the re-lation ∆(I/ {P1, P2}) > 0. More generally, our extrapolation rule assumes thathomogeneous impa
t is additive (�gure 3). Note that in 
ases where P1 and P2have opposite e�e
ts on I, nothing 
an be extrapolated be
ause of the qualitativenature of our relations.

Fig. 3. Combining the e�e
ts of di�erent CVs on the same indi
ator.Generalizing, given a set of parameters {P1, P2, . . . , Pn}, if ∀i ∈ {1, . . . , n} ,
∆ (I/Pi) [ai, bi] 〈op〉 Ci, our extrapolation rule has as follows:

∆ (I/ {P1, P2, . . . , Pn})

n⋂

i=0

[ai, bi] 〈op〉

n∑

i=0

Ci (8)If it is known that two parameters 
annot be assumed to have su
h a 
om-bined e�e
t, this should be expli
itly stated, e.g., ∆ (I/ {P1, P2}) < 0.From di�erential 
al
ulus we extrapolate on the 
on
ept of the se
ond deriva-tive. If y = f(x), we 
an say that y grows linearly if f ′(x) > 0 and f ′′(x) = 0 (it



�has 
onstant speed�). However, if we have f ′′(x) > 0, then y's rate of growthalso in
reases with the value of x (it �a

elerates�). Qualitative information onse
ond derivatives 
an be modeled in our language using the following notation:
∆2 (I/P ) [a, b] 〈op〉 C. Thus, if we say that ∆2 (I/P1) > 0 and ∆2 (I/P2) = 0,the 
ontroller may 
on
lude that P1 is probably a better 
hoi
e than P2 for largevalues. Other 
on
epts, su
h as in�e
tion and saddle points, maxima and min-ima, et
. 
ould also be borrowed, although we believe that knowing informationon su
h points in a I = f(P ) relation without knowing the exa
t fun
tion f(P )is very unlikely.4 System Identi�
ation Pro
essIn this se
tion, we des
ribe a systemati
 pro
ess for system identi�
ation. Pro-
ess Input: a requirements model G (su
h as the one in �gure 1). Pro
ess Out-put: a parametrized spe
i�
ation of the system behavior S = {G, I, P,R (I, P )},where G is the goal model, I is the set of indi
ators identi�ed by AwReqs in themodel, P is the set of parameters, and R (I, P ) is the set of relations betweenindi
ators and parameters. At runtime, a feedba
k-loop 
ontroller re
eives S asinput in order to adapt the system pro-a
tively or in 
ase of failures.The following are the steps of the pro
ess. They 
an be applied iteratively,gradually enri
hing the model with ea
h iteration.Step 1. Identify indi
ators: Introdu
e AwReqs into the goal model Gspe
ifying target su

ess rates for QCs, hard goals or tasks. Output: the set ofindi
ators I.Step 2. Identify parameters: Identify possible variations in the goal modela�e
ting the indi
ators, whi
h, therefore, 
an be manipulated to adjust the per-forman
e of the system. These are 
aptured by 
ontrol variables and variationpoints (see �3.1). Output: the set of parameters P .Step 3. Identify di�erential relations: For ea
h indi
ator from the set
I the requirements engineer asks: whi
h parameters from P does this indi
atordepend on? Alternatively, iterate through set P and ask, for ea
h parameter,whi
h indi
ator in I is a�e
ted by it. Either way, one should end up with amany-to-many asso
iation between the sets. There are heuristi
s that help inanswering these questions:Heuristi
 1 : if provided, softgoal 
ontribution links 
apture these dependen-
ies for variation points. E.g., in �gure 1, the 
hoi
es in VP1 
ontribute to thesoftgoal Fast s
heduling and thus VP1 a�e
ts the su

ess rate of S
hedules pro-du
ed in less than a day, a QC derived from that softgoal. Any AwReq-derivedindi
ator involving that QC is therefore also a�e
ted.Heuristi
 2: another heuristi
 for deriving potential parameter-indi
ator re-lations is to link indi
ators to parameters that appear in the subtrees of thenodes the indi
ators are asso
iated with. The rationale for this is the fa
t thatparameters in a subtree rooted at some goal G, whi
h models how G is a
hieved,
hange the subtree, thus potentially a�e
ting the indi
ators asso
iated with the



goal. E.g., the parameter RfM is below the goal Find available rooms in the treeand thus 
an be (and a
tually is) a�e
ting its su

ess rate, an indi
ator.Heuristi
 3 : yet another way to identify potential parameter-indi
ator rela-tions is to look at the non-fun
tional 
on
erns that these parameters/indi
atorsaddress and to mat
h the ones with the same 
on
ern. [18℄ des
ribes how NFRssu
h as robustness, 
riti
ality, et
. lead to the introdu
tion of AwReqs into goalmodels. The already-mentioned softgoal 
ontributions expli
itly link variationpoints with NFRs. Similar analysis should be done for 
ontrol variables.The modeling of the parameter-indi
ator relations is done using the languageof se
tion 3. Output: R (I, P ), the initial set of relations between indi
ators andparameters.Step 4. Re�ne relations: The initial set of parameter-indi
ator relationsprodu
ed in Step 3 should be re�ned by 
omparing and 
ombining those thatrefer to the same indi
ator. When 
omparing two relations, say∆ (I1/RfM) > 0and ∆ (I1/V P2) > 0 (where I1 might represent 〈success rate of F ind local
room〉), the modeler 
an investigate whether either of these adaptation strategiesis better than the other and by how mu
h. This may result in the model beingre�ned into, e.g., ∆ (I1/RfM) > ∆ (I1/V P2), whi
h would help the 
ontrollerfa
ing the 
hoi
e between these alternatives. The analysis of whether sele
tingan alternative makes the value of an indi
ator mat
h its referen
e input is to beaddressed in future work.Combining relations also refers to what has been dis
ussed in se
tion 3.4: if apositive 
hange in both parameters results in a positive 
hange in the indi
ator,should we expe
t the default behavior in whi
h ∆ (I1/ {RfM, V P2}) > 0 orshould we expli
itly spe
ify that this is not the 
ase? Su
h questions should beasked for any set of relations that refer to the same indi
ator.Note that when 
ombining relations to analyze alternatives, 
are must betaken to only look at the parameters/indi
ators relevant in the 
urrent system
on�guration. E.g., in �gure 1, the parameter View Private Appointments (VPA)
annot a�e
t any indi
ator if the value of VP1 is not Colle
t automati
ally. Out-put: R (I, P ), the updated set of relations between indi
ators and parameters.5 ValidationTo validate our proposal, we applied the system identi�
ation pro
ess des
ribedin se
tion 4 to the meeting s
heduler example presented throughout this paper,identifying 9 indi
ators (in the form of AwReqs), 8 system parameters (5 
ontrolvariables and 3 variation points as shown in �gure 1) and a total of 24 di�erentialrelations among the identi�ed indi
ators and parameters.For instan
e, one of the identi�ed indi
ators refers to the goal Find avail-able rooms as a 
riti
al requirement that should never fail, whi
h is modeledin AwReq AR5: NeverFail(G-FindAvailRooms). During parameter identi�
a-tion, Rooms for Meeting (RfM) and VP2 were identi�ed, along with other pa-rameters that are not relevant to AR5. In the next phase, two relations wereidenti�ed: ∆ (AR5/RfM) > 0 (in
reasing the number of lo
al rooms helps),



∆ (AR5/V P2) > 0 (
hanging from local → partner → hotel helps). During re-�nement, analyzing RfM and VP2 in 
ombination provided∆ (AR5/ {RfM, V P2})
= ∆ (AR5/V P2) (in
reasing the number of lo
al rooms and then not using themdoes not make sense) and∆ (AR5/RfM) = ∆ (AR5/V P2) (
hanging RfM or VP2is equally e�e
tive).Then, we developed a simulation that reads the above system informationas well as events reporting AwReq failures (whi
h 
ould be provided by theframework we have presented in [18℄) in order to identify possible adaptivitya
tions that 
ould be taken by the 
ontroller during re
on
iliation. For example,when an event representing the failure of AR5 is re
eived during the simulation,the program replies with the 
hoi
es of parameter 
hanges that have positivee�e
t on AR5 based on the above qualitative relations:* AwReq AR5 has failed! To re
on
ile, the 
ontroller 
ould:- Current value of VP2 = lo
al. Change it to one of: [partner, hotel℄- Current value of RfM = 3. In
rease it.- Note: VP2 and RfM should not be 
hanged in 
ombination.With the information given by the di�erential relations, the program wasable to identify available alternatives to adapt the system in 
ase of failure.More sophisti
ated algorithms to analyze all the possibilities and sele
t the best
ourse of a
tion (
onsidering also the e�e
t on NFRs, for example) are in ourfuture plans for developing a 
omplete framework for system adaptivity based onfeedba
k loops. We are also 
urrently working on a larger 
ontrolled experiment,
ondu
ting system identi�
ation on the London Ambulan
e System [6℄.6 Related WorkThere is growing interest in Control Theory-based approa
hes for adaptive sys-tems and many of the proposed approa
hes in
lude some form of system identi-�
ation stage, in whi
h the adaptive 
apabilities of the system are eli
ited andmodeled. In [7℄, modeling is done by representing system and environment a
-tions as well as �uents that express properties of the environment. In GAAM[17℄, measurable/quanti�able properties of the system are modeled as attributes,a preferen
e matrix spe
i�es the order of preferen
e of adaptation a
tions to-wards goals (similarly to what we proposed in se
tion 3.3) and an aspirationlevel matrix determines the desired levels of attributes of ea
h goal. Our workdi�ers from these by providing qualitative information on the relation betweensystem parameters and run-time indi
ators.In [14℄, Letier & van Lamsweerde augment KAOS with a probabilisti
 layerin order to allow for the spe
i�
ation of partial degrees of goal satisfa
tion,thus quantifying the impa
t of alternative designs in high-level system goals.In the approa
h, domain-spe
i�
 quality variables (QVs) asso
iated with goalsare modeled and obje
tive fun
tions (OFs) de�ne domain-spe
i�
, goal-relatedquantities to be maximized or minimized. Proposed heuristi
s for identifying QVsand OFs 
ould be useful in the eli
itation of 
ontrol variables in our approa
h.



However, unlike our work, their models do not 
ontain a 
lear relation betweenthese variables and indi
ators measured in the target system.Approa
hes su
h as i* [16℄, the work by Elahi & Yu [4℄ and other propos-als on design-time trade-o� analysis 
an be adapted to provide information forrun-time adaptivity (i.e., removing the need for stakeholder intervention in theanalysis). For instan
e, 
ontribution links in i* 
an provide qualitative relationsbetween variation points and indi
ators, although they la
k the means of dif-ferentiating between links with the same label (e.g., see Call parti
ipants andEmail parti
ipants in �gure 1). GRL [1℄ 
ould be used for this purpose, if 
ar-dinal 
ontribution values (1, 2, ...) were 
hanged to ordinal ones (1st, 2nd, ...),thus providing a graphi
al representation of enumerated value orders (�3.3). Ourproposal provides su
h run-time trade-o� information with a syntax that is more
on
ise (
ontrol parameters abstra
t what would have to be represented as largegoal sub-trees), uniform (
an relate any system parameter to indi
ators) and�exible (the pre
ision of the spe
i�
ation depends on the available information).The proposal by Brake et al. [2℄ automates the dis
overy of software tuningparameters at the 
ode level using reverse engineering te
hniques. A taxonomyof parameters and patterns to aid in their automati
 identi�
ation provides somesort of qualitative relation among parameters, whi
h may be �tunable� or justobserved. While their work targets existing and lega
y software, our proposaltakes a Requirements Engineering perspe
tive and, thus, 
an refer to higherlevel parameters, su
h as the su

ess rate of a fun
tional requirement or a quality
onstraint imposed over a non-fun
tional one.Finally, our proposal 
learly di�ers from quantitative approa
hes (e.g., [1, 3,11, 15℄) in that we are using qualitative information, based on the premise thatquantitative estimates at requirements time are usually unreliable [4℄ (assuminga domain with high un
ertainty or in
omplete knowledge of the behavior ofthe system-to-be). Our approa
h allows the modeler to start with minimuminformation available and add more as further details about the system be
omeavailable (either by eli
itation or through run-time analysis on
e the system isexe
uting).7 Dis
ussion and Future WorkIn this paper so far, we have overlooked an important modeling dimension, 
on-textual variability. In this se
tion, we sket
h how it 
an be taken into 
onsid-eration in the system identi�
ation pro
ess of se
tion 4. We then dis
uss otherresear
h dire
tions that we plan to pursue in the future.Properties of the environment 
an a�e
t the requirements for and the opera-tion of a system, but, unlike the parameters we have dis
ussed previously (CVsand VPs), 
ontext parameters 
annot be dire
tly manipulated, only monitored.Contexts are abstra
tions of su
h properties [12℄. For instan
e, the type of ameeting 
an be viewed as a 
ontext for the meeting s
heduling system, as 
anbe the importan
e of a meeting organizer within the 
ompany. From the pointof view of Control Theory, 
ontext most 
losely 
orresponds to a disturban
e



input that 
annot be manipulated, but in�uen
es the output and thus must bea

ounted for. Contexts are organized using (possibly many) inheritan
e hierar-
hies that re�ne general 
ontexts (e.g., Regular meeting) into more spe
i�
 ones(Mandatory meeting or Information session) with des
endants inheriting theproperties of their an
estors. Ea
h hierar
hy stru
tures 
ontexts along a 
ontextdimension � some variable aspe
t of the domain (e.g., meeting importan
e) �with leaf-level elements dire
tly monitorable. Multiple inheritan
e is supported.In [12℄, (soft)goals and 
ontribution links are identi�ed as 
ontext-dependentgoal model elements. Contextual annotations 
apture the e�e
ts of 
ontexts onthese elements and thus on software requirements by stating in whi
h 
ontextsthe elements are visible. Unless expli
itly overridden, the e�e
ts of an
estor 
on-texts are inherited by their des
endants. So, by default, the requirements forRegular meeting are inherited by Mandatory meeting.As dis
ussed in [12℄, varying properties of the environment 
an have sig-ni�
ant e�e
t on goal models � namely, goal/task/softgoal addition/removal,
hanges in VP 
hoi
es and di�erent evaluations of these 
hoi
es w.r.t. softgoals.Given a 
ontext-parametrized (i.e., with 
ontextual annotations) goal model, thealgorithm for produ
ing 
ontext-spe
i�
 versions of it for parti
ular sets of a
-tive 
ontexts is also des
ribed. It removes model elements invisible in the 
urrent
ontext. The goal modeling notation presented here is more 
omplex 
omparedto the notation of [12℄, thus requiring a modi�ed algorithm. The additional el-ements � DAs, QCs, AwReqs, and CVs � are all 
ontext-dependent, i.e., 
an
hange from 
ontext to 
ontext. E.g., the su

ess rate for the goal Find availablerooms 
an be set to 95% in a Regular meeting 
ontext and to 70% in a lessimportant Information session 
ontext by using the appropriate AwReqs. Ea
hAwReq will be visible in its respe
tive 
ontext. Similarly, variations in possiblevalues for VPs/CVs 
an be represented by di�erent VP/CV variants, ea
h visiblein their appropriate 
ontext(s).Clearly, these goal model variations need to be re�e
ted in the system identi-�
ation pro
ess. When we do it in the parti
ular 
ontext c, we produ
e the model
Sc = {Gc, Ic, Pc, Rc (Ic, Pc)}, where Gc is 
ontext-spe
i�
 goal model (a subsetof the 
ontext-parametrized goal model G) generated by the modi�ed algorithmfrom [12℄. Then, Ic ⊆ I and Pc ⊆ P sin
e some of the indi
ators and parametersmay not be visible in c. Moreover, Rc � the set of relations between the relevantparameters and indi
ators in C � should be restri
ted to the elements of Ic and
Pc (i.e., r (i, p) ∈ Rc ⇒ i ∈ Ic ∧ p ∈ Pc). While being a ne
essary 
ondition, thisexpression does not de�ne the relations in Rc. It is up to the modeler to identifywhi
h relations exist in the parti
ular 
ontexts and how they are de�ned usingthe language of se
tion 3. On
e a relationship r (i, p) ∈ Rc is de�ned for the
ontext c, it also applies for all the des
endant 
ontexts of c unless overriddenand provided that both i and p exist in the des
endant 
ontexts.A 
omplete analysis of the role of 
ontextual information on the system iden-ti�
ation pro
ess as well as validating the ideas brie�y dis
ussed above is subje
tof future work. Other possible future work also in
lude investigating: means of es-timating during RE whether a parti
ular behavior 
hange will mat
h the desired



targets for the system's output; the e�e
t indi
ators 
an have on one another andhow to model su
h a qualitative relation during system identi�
ation; what othermethods and 
on
epts from the Control Theory body of knowledge 
ould be ap-plied in our approa
h; how does this approa
h a�e
t traditional RequirementsEngineering a
tivities (e.g., stakeholder negotiation during requirements eli
ita-tion); how 
an our proposal 
ontribute to requirements evolution (i.e., 
hangingthe goal model be
ause it does not properly represent 
urrent stakeholder re-quirements, despite the system's adaptive 
apabilities); et
.Finally, the full potential of the proposal presented in this paper will be re-alized in the next steps of our resear
h, whi
h in
ludes the development of aframework that implements adaptivity in a target system using feedba
k loops.With AwReqs [18℄ and qualitative relations in the requirement model, it is nowpossible to develop su
h a framework that will provide re
on
iliation (attempt tosatisfy the requirements after failures) and 
ompensation (resolve any in
onsis-ten
ies that failures might produ
e) at runtime. On
e we have developed su
h aframework, more experiments are needed to assess to what extent this approa
hhelps in designing adaptive systems as opposed to traditional GORE methods.In parti
ular, we are 
urrently working on di�erent strategies for re
on
ilia-tion. With the information that is added to the models by using the approa
hproposed in this paper, two basi
 strategies to be exe
uted when a failure isdete
ted are: parameter tuning � if there are any parameters that 
ould bemodi�ed in order to re
on
ile, analyze the qualitative information available andsele
t the best 
ourse of a
tion w.r.t. other indi
ators � and abort � if thereare no parameters or the ones that exist have already been tried, tell the targetsystem to gra
efully fail or degrade performan
e. Other re
on
iliation strategies
an be devised by analyzing existing proposals in the area of adaptive systemsand other �elds of 
omputer s
ien
e, su
h as fault-tolerant 
omputing, arti�
ialintelligen
e, distributed systems, et
.8 Con
lusionIn this paper, we argue that 
urrent requirements models la
k an essential in-formation needed by feedba
k loop 
ontrollers in order to adapt their targetsystems: how 
hanges in parameters a�e
t relevant monitored indi
ators. Wepropose a systemati
 approa
h for System Identi�
ation and, by taking a REperspe
tive, we use ideas from Qualitative Reasoning to 
ope with un
ertainand in
omplete knowledge about systems. Our language allows modeling ofparameter-indi
ator relations varying pre
ision, based on available information.We also brie�y dis
uss the role of 
ontextual information on this pro
ess and
ondu
t experiments to validate our ideas.Referen
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