A UML Profile for Modeling Framework-based Web
Information Systems

Vitor Estévio Silva Souza', Ricardo de Almeida Falbo', Giancarlo Guizzardi'?

! Universidade Federal do Espirito Santo, Av. Fernando Ferrari, 514
29075-910 Vitéria — ES, Brazil
? Laboratory for Applied Ontology, Polo Tecnologico, Via Solteri, 38
38100 Trento, Italy
vitorsouza @gmail.com, falbo @inf.ufes.br, guizzardi @loa-cnr.it

Abstract. The rapid evolution of the area of Web Engineering has motivated the
proposal of several methods and frameworks for the development of Web
Information Systems (WISs). In particular, it is becoming more and more
common to use container-based architectures and frameworks when it comes to
their development. Following this idea, we have proposed a method for
designing framework-based WISs, called FrameWeb. and, in this paper, we
present FrameWeb's UML profile for modeling framework components in
design models.

Keywords: Web Engineering, Web Information Systems, Frameworks,
Modeling Language, UML profile.

1 Introduction

Web Engineering (WebE) can be defined as “the establishment and use of engineering
principles and disciplined approaches to the development, deployment and
maintenance of Web-based Applications” [1]. What started with the ad-hoc
development of simple web pages now congregates many methods for the design of
Web Information Systems (WISs), such as WAE [2] and OOWS [3].

Also, new technologies for coding WISs have rapidly evolved. Frameworks for the
solution of infrastructure issues were developed and entire architectures providing
containers for user components became standards. For example, the most recent
version of Java EE [4] borrows many concepts from existing frameworks. These
technologies provide a large code base that can be reused, improving productivity.

This scenario motivated the proposition of FrameWeb [5]: a Framework-Based
Design Method for Web Engineering. FrameWeb proposes a basic architecture for
developing WISs and a UML profile for a set of design models that brings concepts
used by some categories of frameworks. The use of FrameWeb can further improve
team productivity by allowing designers to produce diagrams that represent

framework concepts, and developers (maybe, in the future, CASE tools) to quickly
and directly translate these diagrams to code.

The objective of this paper is to present FrameWeb's modeling profile. It is
organized as follows: section 2 talks about the area of Web Engineering and what has
motivated the authors for the creation of this UML profile. This section also
summarizes the key points of FrameWeb's design method. Section 3 details
FrameWeb's modeling profile, which is the focus of this paper; section 4 compares
FrameWeb's profile to others; finally, section 5 concludes and lists future work.

2 Web Engineering

Web sites evolved from static pages to complex information systems. In this process,
many frameworks (artifacts of code that provide components ready for reuse by
inheritance, composition or configuration) were created to help Web developers speed
up the development of Web applications.

These frameworks substantially change the kind of components that are built
during coding. Classes that inherit from other classes in the framework, configuration
files and others are now source code artifacts that must be written by developers. In
particular, three kinds of frameworks have the most impact on this change: Front
Controller, Object/Relational Mapping and Dependency Injection frameworks.

Front Controller [6] frameworks, also known as MVC frameworks for being based
on the well-known Model-View-Controller architectural pattern [7], separate the
functionality of a WebApp from its presentation. With proper configuration, the
developer is given the task of creating action classes that will respond to client
requests and redirect the response to a user interface (UI) component. In FrameWeb,
action classes, Ul components and their interaction (which guides the configuration of
the framework) are modeled in the Navigation Model, presented in section 3.3.

Object/Relational Mapping (ORM) frameworks provide automatic and transparent
persistence of objects to tables of a Relational Database, using meta-data that describe
the mapping between both worlds [8]. A mapping is written for each persistent class
and the ORM framework does the rest of the job. In FrameWeb, these mappings are
presented in the Domain Model (section 3.1), while the classes that perform the
persistence are modeled in the Persistence Model (section 3.2).

Dependency Injection (DI) frameworks allow the developer to program to
interfaces [9, 7] and specify the concrete dependencies in a configuration file. The
idea is that classes that depend on services from different tiers would declare an
association with an interface instead of the concrete implementation. This facilitates,
for instance, the replacement of the real service class with a mock object for unit
testing. When an object is created, the DI framework wires all required dependencies
automatically, based on a configuration file. In FrameWeb, the dependency relations
between different tiers are represented in the Application Model (section 3.4).

A detailed description of these and other kinds of frameworks can be found at [5].

Our personal experience with the use of frameworks for the construction of WISs
has motivated the proposal of the Framework-Based Design Method for Web
Engineering (FrameWeb) [5]. The method has two main propositions:

¢ A standard architecture for WISs that integrates with the frameworks
described earlier by separating their concerns into different packages;
¢ A UML profile suited for the construction of four kinds of design models
that represent framework components from different packages: Domain
Model, Persistence Model, Navigation Model and Application Model.
FrameWeb's standard architecture separates different frameworks concerns into
three layers. At the Presentation layer (View and Controller packages), UI
components and action classes integrate with the Front Controller framework, calling
services from a Business layer, which contains service classes (Application
package) and domain classes (Domain package). The latter, in turn, are mapped by
the ORM framework and persisted by classes that belong to the Data Access layer
(Persistence package). Class dependencies that cross a layer's boundaries are
taken care of by the DI framework.
For a detailed description of the method, the interested reader should refer to [5]. In
the next section, we focus on FrameWeb's modeling profile, used during design to
produce diagrams that depict coding artifacts that belong to these different layers.

3 FrameWeb's Modeling Profile

To model classes and other components, FrameWeb defines a UML profile using
standard extension mechanisms for designing four different kinds of diagrams during
system design: Domain Model, Persistence Model, Navigation Model and Application
Model. All of them are based on UML's class diagram, but represent components
from different layers that integrate with different frameworks.

Throughout the next subsections we detail these four models using as examples
diagrams produced for a collaborative learning environment called JSchool',
developed by the local Java User Group® using FrameWeb. JSchool contains a core
subsystem, which is responsible for user registration, login, system configuration and
allowing users to send messages to the administrators and view other users' profiles.
JSchool also includes a group module, which contains features for creating, managing,
searching, joining and participating in groups.

Figure 1 shows the conceptual model for the core and group modules.
Collaborators are registered with name, e-mail, password, institution, contact
information and picture. Groups have names, descriptions, keywords and
configurations such as if the group is open or public. Other classes complement these
two, representing invitations to participate in a group, confirmation of a user's e-mail
address, a user membership and role in a group and requests from a user to create a
group or participate in a group.

1 http://jschool.dev.java.net
2 Espirito Santo Java User Group (ESJUG) — http://esjug.dev.java.net

-

— - subgrougs
Collaborator Grouplnvitation
- name 0.1 | - ernail i 1 Group
- email - code - name
- institution - invitationDate - description
- address - keywords
:}f[\ﬁghones 1 - ;EEEE - supergroup
~ menld) o 1| EmailConfirmation ~ real
- wahoold - email - creationDate
- jabberld - code
- gendler 1
- imerests
B p_aisword GroupParticipation
- picture - merber " _ b
- registrationDate - manager mermbers
- updateDate 1 - Qraups) _ creator .
- deactivationDate - entryDate
- lastAccessDare
1
- Reguest
- solicitor * "
- requesiDate
- reason
I |
GroupCreati quest Group hipRequest

Fig. 1. Conceptual model for the core and group modules of JSchool.

3.1 Domain Model

The Domain Model is a UML class diagram that represents classes of objects from
the problem domain and their Object/Relational (OR) mappings. This diagram should
be used by developers to guide the codification of classes from the Domain package.

Designers should use the conceptual model built during Requirement Analysis and
add platform-specific details and the OR mappings. Platform-specific details include
attribute types, association navigabilities, etc. The OR mappings will guide the
developers on how to configure the ORM framework to persist these entities.

Although this configuration is more related to persistence, it is represented in the
Domain Model because the classes that should be mapped and their attributes are
represented in this diagram.

Table 1 describes some possible OR mappings for the Domain Model. For each
mapping, the table presents which lightweight extension mechanism was used and
what are the possible values or syntax for its use. None of the mappings are
mandatory and most of them have sensible defaults in order to lessen the amount of
information on the model. These default values are shown in the possible values
column in boldface or in parenthesis.

The Domain Model for the core and group modules of JSchool is shown in figure
2. According to the default values, all classes are persistent and class and attribute
names are used as table and column names respectively. None of the classes have ID
or version attributes because they are inherited from a utility package.

Attributes have received mappings such as nullability and size. Date attributes such
as invitationDate entryDate and requestDate were mapped as date-only
precision, while the remaining dates will be stored as timestamps. All three
collections (navigable association endings with multiplicity “many”’) were configured

to be sorted naturally (will be implemented in the programming language, Java), to be
fetched lazily (only when used for the first time) and to cascade all operations (e.g. if

a group is deleted, all of its subgroups are automatically deleted).

Table 1. Possible OR mappings for the Domain Model.

Mapping Extension Possible Values
If the class is persistent, transient or mapped (not Class <<persistent>>
persistent itself, but its properties are persistent if <<transient>>
. . stereotype
another class inherits them) <<mapped>>
Name of the table in which objects of a class will be Class table=name
persisted constraint (default: class' name)
. . . . Attribute <<persistent>>
If an attribute is persistent or transient .
stereotype <<transient>>
. L . Attribute null
If an attribute can be null when the object is persisted .
constraint not null
Date/time precision: store only the date, only the time Attribute precision = (date |
or both (timestamp) constraint time | timestamp)
. . . Attribute .
If the attribute is the primary-key of the table <<id>>
stereotype
How the ID attribute should be generated: Attribute generation = (auto |
automatically, obtained in a table, use of IDENTITY . table | identity |
constraint
column, use of SEQUENCE column or none sequence | none)
. column=name
Name of the column in which an attribute will be Attribute
. . (defaults to the
persisted constraint . \
attribute's name)
Size of the column in which an attribute will be Attribute .
. . size=value
persisted constraint
Inheritance mapping strategy: one table for each class Inheritance <<union>>
using UNION, one table for each class using JOIN or <<join>>
- L stereotype .
single table for the entire hierarchy <<single-table>>
Type of collection which implements the association: ~ Association collection = (bag |
bag, list, set or map constraint list | set | map)
Order of an association's collection: natural ordering _ order = (natural |
. . Association
(implemented in code) or order by columns . column names [asc |
. . constraint
(ascending or descending) desc])
. . o o cascade = (none |
Cascading of operations through the association: Association . (
. . . . persist | merge |
nothing, persists, merges, deletions, refreshs or all constraint
remove | refresh | all)
. . Association fetch = (lazy |
Association fetching strategy: lazy or eager. .
constraint eager)

Collaborator

Grouplnvitation

- name : String {not null, size=50}
- email : 5tring {not null, size=100}
- institution : 5tring {size= 100}

- email : String {size=100}
- code : 5tring {not null, size=328&}
- imvitationDate . Date {not null, precision=date}

{order = natural;
fetch = lazy,
cascade = all}

- subgroups

Group

- name : 5tring {nat null, size=50}
- description © String {size=200}

- address : String {size=200}

- telephones : 5tring {size=200}
- icgld : String {size=50} - n n 1
- msnid : String {size=100} 0.1 EmailConfirmation

- ahoold : String {size=50} - emall : String {size=100}

- jabberld : String {size=100} - code : String {not null, size=36}
- gender : Character 1
- interests : String {size=200}

- password : char[] {not null, size=20}
- picture : Serializable {size=256KB}
- registrationDate : Date {not null}

- updateDate . Date {not null}

- deactivationDate : Date

- lastaccessDate : Date {not null}

- keywards ; String {size =100}
- open : Boalean {not null}

- public : Boalean {nat null}

- real : Boolean {not null}

- creationDate : Date {not null}

- supergroup

GroupParticipation

- manager : Boolean {not null}
- creator © Boalean {not null}
- entryDate : Date {not null, precision=date}

- member " |- aroups

* |- members

1 ! g’cdrfl;jaﬂze‘\;ural, {order = natural;
[solicitor o fetch = lazy,
cascade = all} cascade = all}

Request

- requestCate : Date {not null, precision=date}
- reason : String {not null, size=50}

%

| GroupCreati H Gr i |
110

Fig. 2. Domain Model for the core and group modules of JSchool.

3.2 Persistence Model

FrameWeb indicates the use of the Data Access Object (DAO) pattern [6] for the
construction of the Data Access layer. The Persistence Model is a UML class diagram
that represents the DAO classes responsible for the persistence of domain objects.
This diagram is used by developers for codifying classes from the Persistence
package.

For each domain class that needs to be persisted, the Persistence Model should
present one DAO interface and one or more DAO classes, meaning that different
persistence technologies can be implemented in the same system. Base DAO interface
and implementation can be presented to reduce the amount of diagram elements in the
Model: all DAO interfaces/classes automatically extend the base DAO interface/class,
without the need to explicitly show it. Implementing common methods such as
save (), delete () and retrieveById () in the base DAO can reduce the amount of
modeling that has to be done.

Besides those basic methods, DAOs should also have methods to retrieve objects
using specific queries. Also, it is assumed that the interface declares all methods
presented by the DAO class to relief the designer of repeating them on the diagram.
Thus, basically the Persistence Model represents the “query methods” and does not
require any UML extension for such a task. For instance, to authenticate a
collaborator's password we need to retrieve the collaborator object given his/her email.
Therefore, the method retrieveByEmail (email: String) : Collaborator is
modeled for the CollaboratorDAO implementation.

3.3 Navigation Model

The Navigation Model is a UML class diagram that represents the different
components that form the Presentation Logic tier, such as Web pages, HTML forms
and action classes. Table 2 shows the stereotypes used by the different components
that can be represented in a Navigation Model. This model is used by developers to
guide the codification of classes from the View and Controller packages.

Table 2. Stereotypes for classes in the Navigational Model

Stereotype What it represents

none An action class. Class to which the Front Controller framework delegates
the action execution.

<<page>> A static or dynamic Web page.

<<template>> A template of a Web page. The templates are processed by a template
engine that returns an HTML output for the browser.

<<form>> A HTML input form.

<<binary>> Any binary file that could be downloaded (an image, a report, a file, etc.).

Dependency associations among these components dictate the control flow when
an action is executed. When directed toward an action class, it means that data is
coming from pages or forms and are being set at the action class. Analogously, when
directed outward an action class, it means that data from that class is being displayed
in some page or template. Homonymous attributes in pages, forms and action classes
indicate the information being exchanged.

The designer is free to chose the granularity of the action class: one for each use
case scenario, one for each use case, and so on. Since an action class can implement
many actions with different methods and each of them can produce different
outcomes, constraints at the dependency associations indicate which method/result is
being modeled, when needed.

Figure 3 shows the Navigation Model for the “Send Message to Administrators”
use case. The web: :index page and web: :home template represent the pages to
which visitors and registered users, respectively, have access. These pages can request
the action's input (a form to be filled and submitted), which results in the displaying
of the sendMessageAdministration template. This template contains an input
form that sends the name, email and body of message to the action that, after
executed, displays the messageSent template, if successful. When a registered user
requests the input form, the action retrieves its name and e-mail and automatically fills
those input fields. That is why the template has name and email as attributes.

At the time FrameWeb was being conceived, a question arose as to whether UML's
sequence diagram would be better suited for the Navigation Model than the class
diagram. The issue was discussed with the first group of developers which used
FrameWeb in its early stages to build a WIS. Two main reasons contributed to the
choice of the class diagram: (a) it provides a better visualization of the inner structure

of action classes, forms and templates; and (b) it models page — form composition
with a more appropriate notation (UML's composition association). In spite of this,
FrameWeb does not suggest sequence diagrams should be avoided, but simply
recognizes that class diagrams are better suited for the Navigation Model.

I < <farms >
<<template > » frmSendMessageAdministration
sendMessageAdministration 1 <<temp|age>:
- name : textfield messagesen
- hame : 5tring - email : textfield - ernail ; string
- email : tring - horky © textarea
/N

I
{result = input} '
I
I
|

<<templates > . ! A\
- {method = linput}
webzhome |77 TECR | SendMessageToAdministrationAction
- name : 5tring |
- il string - -----
<<page> > _ emai -
webzindex |- _{Te_tr_m_d_ _ _\n_pin_}_ - body : String {result = success}

- message : 5tring

Fig. 3. Navigation Model for the use case “Send Message to Administrators” (JSchool core)

3.4 Application Model

The Application Model is a UML class diagram that represents service classes, which
are responsible for the implementation of use cases. This diagram is used for guiding
the codification of classes from the Application package and the configuration of
the dependencies between Controller, Application and Persistence packages.
As with action classes, the designer should chose the granularity of the service
classes and display, for each of them, one interface and one implementation. The
Application Model displays, then, all action classes and their dependencies with the
service interface, the methods of the service class that implement the use case
scenarios and DAO interfaces and the dependencies that service classes have on them.
Figure 4 shows part of the Application Model of JSchool's core module, showing
the service class for the “Configure System” use case and its dependencies. The
action class (tagged with the controller: : namespace) depends on the service class
for the execution of the use case. The service class, in turn, depends on the DAO
classes for Collaborator and Group, as it needs to access data of both classes.

controllerz:ConfigureSystemAction |

persistencezCollaboratorDAO persistencezGroupDAQ
ConfigureSystemService

ConfigureSystemsServicelmpl

+ installSystermiorgMode : int, name : String, email : String, password : String, groupMame : String, groupDesc : String) @ woid
+ configuresystemiorgMode ;@ int, accourmExp © Darte, invitationExp @ Date, requestExp @ int, pageSize @ int, emailPeriod © int © void

Fig. 4. Part of an Application Model of the core module of JSchool.

4 Related Work

There are several Web Engineering methods that define modeling languages and
profiles for Web-specific purposes.

Conallen [2] proposes a UML profile named Web Application Extensions (WAE).
WAE extends UML to provide Web-specific constructs for modeling WISs, including
a new model called User Experience (UX) Model, which defines guidelines for
modeling layout and navigation. Models like the navigation diagram, the class
diagram and the component diagram (the last two specific for the web tier) use WAE
to represent Web components such as screens, server pages, client pages, forms, links
and many more. FrameWeb's modeling profile is quite similar to WAE, as both extend
UML for the creation of diagrams that represent web-related elements. However, as
FrameWeb is based on frameworks, its stereotypes and constraints are different from
those proposed by WAE. Also, we prefer to use dependency associations to represent
the relations among web components instead of regular associations, which represent,
in other contexts, a direct relation between components and can confuse developers
accustomed to this other meaning. This explains why FrameWeb is not an extension
of WAE, but a new profile altogether.

OOWS (Object Oriented Web Solution) [3] uses UML for most of its models,
making use of its extension mechanisms. But it also proposes extensions that are not
standard, which can make things difficult for developers that do not have CASE tools
specifically designed for the method. On the other hand, its navigation model defines
specific indexing and filtering mechanisms that make it easier to model these kinds of
structures, which are quite common in the Web environment.

The UML-based Web Engineering (UWE) [10] also defines a UML profile
specifically for Web components using standard extensions mechanism, but also
offering a few non-standard extensions. As with WAE, it doesn't define specific
extensions for framework-related components either.

FrameWeb uses only lightweight extension mechanisms, being easily supported by
most CASE tools that support UML.

Other proposals, such as WebML [11], define a modeling language that is not
UML-based. As intuitive as their graphical representations might be, not being based
on UML is a big disadvantage for reasons of developer's acceptance and tool support.

Given all of the options available, FrameWeb comes in as a good choice when it
comes to architectures that are based on the use of frameworks. In this case, which is
very common for the development of WISs, FrameWeb's profile provides models that
are directed towards the frameworks' architectures, allowing for quick understanding
of the implementation. During two software projects developed to informally
experiment the method and its modeling profile, developer feedback indicated that
FrameWeb is easy to learn and use, noting some difficulty only on Navigation
Models.

5 Conclusions and Future Work

This paper presented a detailed view of the UML profile proposed by FrameWeb, a
design method suited for the development of framework-based Web Information
Systems. The profile aims at depicting framework-related components, easing the
transition from design models to coding. Using lightweight extensions of UML makes
the language more familiar to UML developers.

Future work has already started on the experimentation of the method with many
different frameworks, to verify if different framework implementations also fit in the
categories summarized in section 2. Other opportunities lie in developing a CASE
tool to produce FrameWeb's design models and developing automatic code generation
tools (feature that is present in other approaches, such as OOWS and UWE).

Although two software projects have already been conducted to informally evaluate
the method [5] and modeling profile, systematic evaluations could be proposed to
reach conclusions that have more scientific value.

Acknowledgments. This work was accomplished with the financial support of
CAPES, an entity of the Brazilian Government reverted to scientific and technological
development.

References

1. Murugesan, S., Deshpande, Y., Hansen, S., Ginige, A.: Web Engineering: A New Discipline
for Development of Web-based Systems. Proceedings. of. the First ICSE Workshop on Web
Engineering. IEEE, Australia (1999)

2. Conallen, J.: Building Web Applications with UML. 2nd edn. Addison-Wesley (2002).

3. Fons, J., Valderas, P., Ruiz, M., Rojas, G., Pastor, O.: OOWS: A Method to Develop Web
Applications from Web-Oriented Conceptual Models. Proceedings of the 7th World
Multiconference on Systemics, Cybernetics and Informatics. Orlando, FL. — USA (2003)

4. Shannon, B.: JavaTM Platform, Enterprise Edition (Java EE) Specification, v5. Sun
Microsystems (2006)

5. Souza, V. E. S., Falbo, R. A.: FrameWeb: A Framework-based Design Method for Web
Engineering. Proceedings of the Euro American Conference on Telematics and Information
Systems (EATIS 2007). Faro, Portugal (2007)

6. Alur, D., Crupi, J., Malks, D.: Core J2EE Patterns: Best Practices and Design Strategies.
Prentice Hall / Sun Microsystems Press (2001)

7. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley (1994)

8. Bauer, C., King, G.: Hibernate in Action. 1st edn. Manning (2004)

9. Schmidt, D.: Programming Principles in Java: Architectures and Interfaces
(http://www.cis.ksu.edu/~schmidt/CIS200/). Chapter 9. Capture on February 14th (2007)

10. Koch, N., Baumeister, H., Hennicker, R., Mandel, L.: Extending UML to Model Navigation
and Presentation in Web Applications. Proceedings of Modelling Web Applications in the
UML Workshop (2000)

11. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language: a modeling language for
designing Web sites. Computer Networks. Elsevier (2000) v. 33, n. 1-6, p. 137-157

	1 Introduction
	2 Web Engineering
	3 FrameWeb's Modeling Profile
	3.1 Domain Model
	3.2 Persistence Model
	3.3 Navigation Model
	3.4 Application Model

	4 Related Work
	5 Conclusions and Future Work
	1.Murugesan, S., Deshpande, Y., Hansen, S., Ginige, A.: Web Engineering: A New Discipline for Development of Web-based Systems. Proceedings. of. the First ICSE Workshop on Web Engineering. IEEE, Australia (1999)
	2.Conallen, J.: Building Web Applications with UML. 2nd edn. Addison-Wesley (2002).
	3.Fons, J., Valderas, P., Ruiz, M., Rojas, G., Pastor, O.: OOWS: A Method to Develop Web Applications from Web-Oriented Conceptual Models. Proceedings of the 7th World Multiconference on Systemics, Cybernetics and Informatics. Orlando, FL – USA (2003)
	4.Shannon, B.: JavaTM Platform, Enterprise Edition (Java EE) Specification, v5. Sun Microsystems (2006)
	5.Souza, V. E. S., Falbo, R. A.: FrameWeb: A Framework-based Design Method for Web Engineering. Proceedings of the Euro American Conference on Telematics and Information Systems (EATIS 2007). Faro, Portugal (2007)
	6.Alur, D., Crupi, J., Malks, D.: Core J2EE Patterns: Best Practices and Design Strategies. Prentice Hall / Sun Microsystems Press (2001)
	7.Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley (1994)
	8.Bauer, C., King, G.: Hibernate in Action. 1st edn. Manning (2004)
	9.Schmidt, D.: Programming Principles in Java: Architectures and Interfaces (http://www.cis.ksu.edu/~schmidt/CIS200/). Chapter 9. Capture on February 14th (2007)
	10.Koch, N., Baumeister, H., Hennicker, R., Mandel, L.: Extending UML to Model Navigation and Presentation in Web Applications. Proceedings of Modelling Web Applications in the UML Workshop (2000)
	11.Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language: a modeling language for designing Web sites. Computer Networks. Elsevier (2000) v. 33, n. 1-6, p. 137-157

