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Abstract It is often the case that stakeholders want to

strengthen/weaken or otherwise change their require-

ments for a system-to-be when certain conditions ap-

ply at runtime. For example, stakeholders may decide

that if requirement R is violated more than N times in

a week, it should be relaxed to a less demanding one

R-. Such evolution requirements play an important role

in the lifetime of a software system in that they de�ne

possible changes to requirements, along with the con-

ditions under which these changes apply. In this paper

we focus on this family of requirements, how to model

them and how to operationalize them at runtime. In

addition, we evaluate our proposal with a case study

adopted from the literature.

Keywords Requirements engineering; modeling;

evolution; requirements; adaptive systems

1 Introduction

Adaptation and evolution are related concepts. In Biol-

ogy, individuals adapt to better �t their environment,

while species evolve when enough of their individual

members adapt to a particular new trait. In the �eld

of Software Engineering, Meir Lehman (1979), proposed

that software evolution and maintenance processes change

a software system in accordance with laws, much like

physical laws prescribing physical phenomena. Adap-

tive and autonomic systems, on the other hand, include

in their architecture mechanisms through which they

can change their behavior at runtime in order to bet-
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ter ful�ll their requirements (Kephart and Chess, 2003,

Cheng et al, 2009a, Brun et al, 2009, Andersson et al,

2009).

Support for adaptation and evolution is especially

important in Requirements Engineering (hereafter RE)

since change in software systems is frequently triggered

by change in stakeholder requirements (Zowghi and Of-

fen, 1997). With this motivation, our research has stud-

ied di�erent scenarios for requirements evolution, striv-

ing to develop adaptation and evolution mechanisms

that support these scenarios. For example, Ernst et al

(2011a, 2012) explore the case where unanticipated changes

occur to the requirements of an operational system,

such as a new law coming into e�ect, or stakeholders

wanting additional functionality.

In this paper, we are focusing on requirements that

cause the evolution of other requirements. For instance,

such as requirement evR1 = �If requirement R fails

more than N times in a row, replace it with R−�, or
even evR2 = �After January 1st 2014, replace R with

R+�. Here, both requirements evR1 and evR2 consist of

a condition-action rule where the action involves chang-

ing (strengthening, weakening, abandoning, ...) another

requirement. We call such requirements evolution re-

quirements (EvoReqs for short). The main objective of

this paper is to circumscribe and characterize such re-

quirements and o�er a prototype implementation for

a software evolution mechanism that operationalizes

EvoReqs. EvoReqs allow us to not only specify what

other requirements need to change, but also when other

strategies should be used, such as �retry after some

time� or �abort current execution�.

Notice that this is a big change with respect to pre-

vious works, which consider as evolution only unantic-

ipated changes that, therefore, are not able to be mod-

eled, let alone developed, a priori, e.g., (Bennett and
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Rajlich, 2000, Ernst et al, 2011a). However, by de�ning

requirements evolution as any change in the system's

original requirements, be it anticipated or not, it follows

immediately that evolving requirements is one way of

adapting to system failures at runtime. Of course, for

these evolutions to be done automatically, all involved

requirements (in the previous example, R, R− and R+)

must have already been implemented.

Our approach is goal-oriented in the sense that re-

quirements are modeled as goals that can be re�ned

and correlated to each other, while EvoReqs are mod-

eled as Event-Condition-Action (ECA) rules that are

activated when an event occurs and a guard condition

holds. The action component of an ECA rule consists of

a sequence of primitive operations on a goal model (that

evolve the goal model in accordance with stakeholder

wishes). Each operation results in a primitive change

to a goal model, e.g., removes/adds a goal at the class

or instance level, changes the state of a goal instance, or

undoes the e�ects of all executed actions for an aborted

execution. Moreover, such operations can be combined

using patterns in order to compose macro-level evolu-

tion strategies, such as the aforementioned Retry and

Abort cases.

Our proposal is illustrated using the classic example

of the Meeting Scheduler, improving on what has been

presented in (Souza et al, 2011a). However, we vali-

date our proposal with a larger experiment, in which

an Adaptive Computer-aided Ambulance Dispatch (A-

CAD) is designed using our approach and is then exe-

cuted through simulations to see how reasonable its evo-

lution is. Its requirements were based on the well-known

London Ambulance Service Computer-Aided Despatch

(LAS-CAD) failure report (Finkelstein, 1993) and some

of the publications that analyzed the case, e.g., (Kramer

andWolf, 1996). For the simulations, we have developed

a framework that operationalizes EvoReqs at runtime,

called Zanshin.

This is an extended version of the paper (Souza et al,

2012a), titled �(Requirement) Evolution Requirements

for Adaptive Systems� that appears in the Proceed-

ings of the 7th International Symposium on Software

Engineering for Adaptive and Self-Managing Systems

(SEAMS'12).

The rest of the paper is organized as follows: Sec-

tion 2 presents the baseline for our research, namely

Goal-Oriented Requirements Engineering, and introduces

the running example; Section 3 summarizes our earlier

proposals for the design of adaptive systems based on

feedback loops; Section 4 focuses on EvoReqs, showing

how to specify them in the system requirements and

how they can be used to compose adaptation strategies,

including recon�guration; Section 5 details the opera-

tionalization of EvoReqs at runtime through an ECA-

based process that executes adaptation strategies in re-

sponse to failures; Section 6 describes the experiments

conducted with the A-CAD, starting from its design as

an adaptive system using our proposal until the execu-

tion of simulations that demonstrate how its require-

ments evolve at runtime; Section 7 compares our ap-

proach to related work in the �elds of software adap-

tation and evolution; Section 8 discusses the work pre-

sented in this paper, pointing out some of its limitations

and opportunities for improvement; �nally, Section 9

concludes.

2 Goal-Oriented Requirements Engineering

Goal-Oriented Requirements Engineering is founded on

the premise that the requirements stakeholders want to

ful�ll through a new system are goals (desired states-of-

a�airs), not functions that determine the functionality

of the new system. Such goals need to be modeled and

analyzed and through a systematic re�nement process

can lead to a functional speci�cation for the system-to-

be (Dardenne et al, 1993).

In our work, we use as primitives for building goal

models the concepts included in the requirements on-

tology proposed in (Jureta et al, 2008). Apart from

goal, the ontology includes tasks (aka actions or func-

tions) that operationalize goals. As well, our modeling

framework includes softgoals, that are non-functional

requirements such as security and usability. Softgoals

are in turn operationalized by quality constraints, such

as �There will be no more than 5 security breaches

per year�. Finally, our framework includes domain as-

sumptions that have to hold for a speci�cation to ful�ll

requirements. For instance, we may generate through

re�nement a speci�cation that ful�lls the goal Sched-

ule meeting through the execution of two tasks: Collect

timetables and Find time slot. But for this plan to work,

we need a domain assumption Enough meeting rooms

available without which our plan may or may not work.

For our running example, shown in Figure 1, we

start with the system's main goal, Schedule meeting, we

re�ne the model by decomposing the goal into sub-goals

(e.g., Use local room is decomposed in two sub-goals,

Find a local room and Book room) and by operational-

izing them into tasks and domain assumptions (e.g.,

Collect automatically is operationalized by domain as-

sumption Participants use the system calendar and task

Collect from system calendar).

A task operationalization is a requirement on an

agent (human or software, not represented in the model)

whereas a domain assumption operationalization is a

requirement on the environment (it is assumed to be
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Fig. 1 Goal model representing the requirements speci�cation for a Meeting Scheduler.

true). Moreover, some non-functional requirements are

also represented as softgoals, operationalized by quality

constraints, giving them clear-cut criteria for satisfac-

tion and avoiding a vague speci�cation.

Re�nements are of two types: AND or OR, carry-

ing obvious Boolean semantics. OR-re�nements allow

us to expand the space of alternatives for goal sat-

isfaction, adding variability to the speci�cation. Vari-

ability is very important for adaptive systems, given

that a possible means of adaptation is to explore the

solution space for a suitable alternative (Souza et al,

2011a). Variability in requirements and goals has been

explored in other works, e.g., (Lapouchnian and My-

lopoulos, 2009).

Figure 1 also represents Awareness Requirements

(AwReqs),Variation Points and Control Variables, which

consist of new elements proposed in our past research

on the design of adaptive systems based on a feedback

loop architecture. This research is summarized next.

3 Feedback-Based Adaptation

Past research (Andersson et al, 2009, Brun et al, 2009,

Cheng et al, 2009a) has pointed out the need for system-

atic software engineering approaches for developing self-

adaptive systems based on ideas from control engineer-

ing with focus on explicitly speci�ed feedback loops,

which provide a generic mechanism for self-adaptation.

Our research adopts a RE perspective, which motivated

the question: what are the requirements that lead to

feedback loop functionality? This question has led us

to propose a new class of requirements, called Aware-

ness Requirements (AwReqs), which talk about the run-

time status of other requirements, such as their success

or failure (Souza et al, 2011b).

Furthermore, given that feedback loops are a cen-

tral element of control systems (Brun et al, 2009), we

began to explore techniques from Control Theory that

could be useful in the design of systems that use feed-

back loops as a mechanism for adaptation. We again

applied our RE perspective and proposed that System

Identi�cation � the process of determining the rules

that govern a system's dynamic behavior � should be

conducted during the modeling of an adaptive system's

requirements, using qualitative information to deal with

uncertainty (Souza et al, 2011a).

The goal model shown earlier in Figure 1 is, in fact,

the result of applying our systematic system identi�-

cation process, which starts with AwReqs elicitation.

AwReqs represent noteworthy situations where stake-

holders may want the system to adapt. They also indi-

cate how critical each requirement is by specifying the

degree of failure that can be tolerated. In other words,

AwReqs are used as indicators of requirements conver-

gence at runtime (one could, however, adapt the pro-

cess to use other kinds of indicators). Since AwReqs can
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impose constraints on the success and failure of other

requirements, they enforce our RE perspective at run-

time by describing the desired behavior of the system

in terms of its requirement models.

In our running example, ten AwReqs were identi�ed

(labeled AR1�AR10 ) and represented in the model us-

ing their proposed graphical syntax and patterns. For

example, since Characterize meeting is very important

(you cannot really do much without basic information

on the meeting to schedule), AR1 prescribes that it

should never fail. A not-so-critical requirement is Good

participation, so AR6 enforces a 75% success rate on

its quality constraint. AwReqs can also talk about the

trend of a requirement's success rate, e.g., AR3 : the

success rate of Collect timetables should not decrease

twice in a row, considering week periods.

At runtime, the elements of the goal model are rep-

resented as classes, being instantiated every time a user

(or the system itself) starts pursuing a requirement (in

the case of goals and tasks) or when they are bound

to be veri�ed (in the case of domain assumptions and

quality constraints). Furthermore, the framework sends

messages to these instances when there is a change

of state (e.g. when they fail or succeed). Therefore,

AwReqs can refer to requirements at the instance level

(e.g., a single instance should not change its state to

Failed, like AR1 ) or at the class (aggregate) level (e.g.,

75% of the instances created in a speci�ed period of

time should be in the state Satis�ed, like AR6 ).

It can be inferred from the above description that,

in our approach, requirements (or domain assumptions)

are not necessarily treated as invariants that must al-

ways be achieved (or should always be true). Instead,

we accept the fact that the system may fail in achiev-

ing any of its initial requirements (or assumptions could

turn out to be false) and, by considering feedback loops

as �rst class citizens in the language, provide a way of

specifying the level of criticality of each requirement

and monitor the system to be aware of their failures.

More details on this monitoring infrastructure and a list

of AwReq patterns and their speci�cation in an OCL-

based language can be found in (Souza et al, 2011b).

The next step in the process consists of identifying

parameters that, when changed, can have an e�ect on

the relevant indicators. Parameters can be of two types.

Variation Points consist of OR-re�nements which are

already present in high variability systems and just need

to be labeled. According to Semmak et al (2008), this

concept originally came from the �eld of feature mod-

eling (Griss et al, 1998). For instance, in the Meeting

Scheduler, the value of VP1 speci�es if timetables will be

obtained by phone, via e-mail or automatically in the

system's calendar. Figure 1 shows �ve variation points

(VP1�VP5). The OR-re�nement of goal Manage meeting

was not considered a VP because it does not represent

variants for the same purpose, but instead two possible

outcomes for meetings: they are either canceled before-

hand or, at their speci�ed time, the secretary con�rms

if they occurred or not.

Control Variables are abstractions over large / repet-

itive variation points, e.g., FhM represents From how

Many participants (a percentage) the system should

collect timetables before considering the goal Collect

timetables satis�ed, abstracting over the (repetitive)

OR-re�nements that would have to be added in order

to represent such variability. Other variables identi�ed

for the Meeting Scheduler are:

� Required �elds (RF, attached to Characterize meet-

ing) is an enumerated variable that can assume the

values: participants list only, short description re-

quired or full description required ;

� Maximum Con�icts Allowed (MCA, attached to Let

system schedule) forces the system to choose a date

in which the number of scheduling con�icts does not

surpasses the value speci�ed in this variable;

� View private appointments (VPA, attached to Collect

from system calendar) can be either yes or no;

� Rooms for Meetings (RfM, attached to Local rooms

available) indicate the number of rooms that the

organization has made available for its employees

to conduct meetings.

Having identi�ed the parameters whose change can

a�ect the indicators (represented by the AwReqs), the

next step of the process is to model the nature of this

e�ect using di�erential relations. For instance, ∆ (AR8

/RfM) [0,maxRooms] > 0 represents the fact that,

by increasing the number of Rooms for Meetings, the

domain assumption Local rooms available will be sat-

is�ed more often. The numbers between square brack-

ets indicate the interval in which this relation is valid

(maxRooms represents a qualitative value that should,

eventually, be replaced by a precise number).

After modeling the e�ect of each indicator�parameter

pair individually, a �nal re�nement step analyzes the ef-

fects of the same indicators in combination to decide if

they are cumulative and if they can be ordered (from

greatest to smallest e�ect). More details on this process

can be found in (Souza et al, 2011a).

Given the speci�cation that results from this model,

when AwReqs fail at runtime, a possible adaptation

strategy is to perform recon�guration, i.e., to change

parameter values in order to improve the failing indica-

tors, guided by the information represented in di�eren-

tial relations. In a recent paper (Souza et al, 2012b), we

propose a framework that searches the solution space
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for the best values to assign to system parameters, re-

con�guring the system to adapt.

However, in this paper we focus on a di�erent kind

of strategy, one based on changing the requirements

model � i.e., the problem space � as speci�ed by Evo-

lution Requirements. Unlike recon�guration, which rea-

sons over the model to try and �nd the best parameter

values, EvoReqs prescribe speci�c requirement evolu-

tions when certain situations present themselves, as il-

lustrated in Section 1. We present this new family of

requirements next.

4 Evolution Requirements

Evolution requirements specify changes to other require-

ments when certain conditions apply. For instance, sup-

pose the stakeholders provide the following requirements:

� If the meeting organizer fails to Characterize meet-

ing (AR1 ), she should retry after a few seconds;

� If there is a negative trend on the success rate of Col-

lect timetables for two consecutive weeks (AR3 ), we

can tolerate this at most once per trimester, relax-

ing the constraint to three weeks in a row;

� If local rooms are often unavailable (AR8 ), the Meet-

ing Scheduler software cannot autonomously create

new rooms (i.e., increase RfM). This task should be

delegated to the management;

� If we realize that the domain assumption Partici-

pants use the system calendar is not true, replace

it with a task that will enforce the usage of the sys-

tem calendar.

We propose to represent these requirements by means

of sequence of operations over goal model elements, in a

way that can be exploited at runtime by an adaptation

framework, which, acting like a controller in a control

system, sends adaptation instructions to the target sys-

tem. We call them Evolution Requirements (EvoReqs).

EvoReqs and AwReqs (cf. �3) complement one an-

other, allowing analysts to specify the requirements for

a feedback loop that operationalizes adaptation at run-

time: AwReqs indicate the situations that require adap-

tation and EvoReqs prescribe what to do in these situa-

tions. It is important to note, however, that EvoReqs are

not the only way to adapt to AwReq failures (we brie�y

discussed recon�guration in the previous section). Anal-

ogously, AwReq failures are not the only event that can

trigger EvoReqs (the framework proposed herein can be

adapted to respond to, e.g., scheduled events).

The following subsections present EvoReqs, starting

with low-level operations on requirements (4.1), then

Fig. 2 Conceptual architecture for a run-time adaptation frame-
work.

de�ning patterns to represent common adaptation strate-

gies using these operations (4.2) and how this frame-

work can accommodate recon�guration as one possible

strategy (4.3).

4.1 EvoReq Operations

Figure 2 shows a conceptual architecture for a run-

time adaptation framework. The Monitor component

has been proposed in (Souza et al, 2011b) and includes

an instrumentation phase which augments the target

system with logging capabilities. Here, the term tar-

get system is used as in Control Theory, i.e., the base

system around which one de�nes a feedback loop (e.g.,

see (Hellerstein et al, 2004)). By analyzing the require-

ments (goal model with AwReqs, parameters, etc.) and

the log entries, this component is able to conclude if

and when certain AwReqs have failed.

These failures should then trigger an Adapt com-

ponent that decides which requirement evolution oper-

ations the target system should execute (this decision

process is further discussed in Section 5). These oper-

ations are obtained from the speci�cation of EvoReqs,

which are also part of the requirements depicted in Fig-

ure 2. EvoReqs, thus, are speci�ed as a sequence of

primitive operations which have an e�ect on the tar-

get system (TS) and/or on the adaptation framework

(AF) itself, e�ectively telling them how to change (or,

using a more evolutionary term, �mutate�) the require-

ments model in order to adapt. The existing operations

and their respective e�ects are shown in Table 1 (the

set of operations could be extended if necessary).

As can be seen in the table, adaptation instruc-

tions have arguments which can refer to, among other

things, system actors (A), requirements classes (upper-

case R) or instances (lower-case r) and system parame-

ters (p) and their values (v). Actors can be provided by

any diagram that models external entities that interact

with the system, e.g., i? Strategic Dependency mod-

els (Yu et al, 2011). Requirements classes/instances are
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Table 1 Requirement evolution operations and their e�ect on the target system (TS) and/or the adaptation framework (AF).

Instruction E�ect

abort(ar) TS should �fail gracefully�, which could range from just showing an error message to shutting the
entire system down, depending on the system and the AwReq ar that failed.

apply-config(C, L) TS should change from its current con�guration to the speci�ed con�guration C. Argument L

indicates if the change should occur at the class level (for future executions) and/or at the instance
level (for the current execution).

change-param([R|r], p, v) TS should change the parameter p to the value v for either all future executions of requirement R
or the requirement instance r currently being executed

copy-data(r, r') TS should copy the data associated with performative requirement instance r (e.g., data provided
by the user) to instance r'.

disable(R), suspend(r) TS should stop trying to satisfy requirement instance r in the current execution, or requirement R
from now on. If r (or R) is an AwReq, AF should stop evaluating it.

enable(R), resume(r) TS should resume trying to satisfy requirement instance r in the current execution, or requirement
R from now on. If r (or R) is an AwReq, AF should resume evaluating it.

find-config(algo, ar) AF should execute algorithm algo to �nd a new con�guration for the target system with the
purpose of recon�guring it. Other than the AwReq instance ar that failed, AF should provide to
this algorithm the system's current con�guration and the system's requirements model.

initiate(r) TS should initialize the components related to r and start pursuing the satisfaction of this require-
ment instance. If r is an AwReq instance, AF should immediately evaluate it.

new-instance(R) AF should create a new instance of requirement R.

rollback(r) TS should undo any partial changes that might have been e�ected while the satisfaction of performa-
tive requirement instance r was being pursued and which would leave the system in an inconsistent
state, as in, e.g., Sagas (Garcia-Molina and Salem, 1987).

send-warning(A, ar) TS should warn actor A (human or system) about the failure of AwReq instance ar

terminate(r) TS should terminate any component related to r and stop pursuing the satisfaction of this require-
ment instance. If r is an AwReq instance, AF should no longer consider its evaluation.

wait(t) AF should wait for the amount of time t before continuing with the next operation. TS is also
informed of the wait in case changes in the user interface are in order during the waiting time.

wait-for-fix(ar) TS should wait for a certain condition that indicates that the problem causing the failure of AwReq
ar has been �xed.

provided by the monitoring component (Souza et al,

2011b), which represents the elements of the require-

ments model as UML classes each extending the appro-

priate class from the diagram shown in Figure 3. As

mentioned in Section 3, run-time instances of these el-

ements (such as the various meetings being scheduled)

are then represented as objects that instantiate these

classes. Finally, parameters are elicited during system

identi�cation, as also explained in Section 3.

Instructions apply-config and find-config also

refer to con�gurations (C) and algorithms (algo), which

will be further explained in Section 4.3.

Below, we show the speci�cation of one of the exam-

ples presented earlier in this section: retry a goal when

it fails.

t' = new -instance(T_CharactMeet);
copy -data(t, t');
terminate(t);
rollback(t);
wait(5s);
initiate(t');

Here, t represents an instance of task Characterize

meeting, referred to by the instance of AwReq AR1 that

Fig. 3 Class model for requirements in GORE, adapted from
(Souza et al, 2011b).

failed. The framework then creates another instance of

the task, tells the target system to copy the data from

the execution session of the failed task to the one of the
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new task, to terminate the failing components and roll-

back any partial changes made by them. After 5s, the

framework �nally instructs the target system to initi-

ate the new task, thus accomplishing �retry after a few

seconds�.

Although evolution operations are generic, their ef-

fects on the target system are application-speci�c. For

example, instructing the system to try a requirement

again could mean, depending on the system and the

requirement, retrying some operations autonomously

or showing a message to the user explaining that she

should repeat the actions she has just performed. There-

fore, in order to be able to carry out these operations,

the target system is supposed to implement an Evolu-

tion API that receives all operations of Table 1, for each

requirement in the system's model. Obviously, as with

any other requirement in a speci�cation, each operation�

requirement pair can be implemented on an as-needed

basis.

Revisiting the previous example, copy-data should

tell the Meeting Scheduler to copy the data related to

the task that failed (e.g., information on the meeting

that has already been �lled in the system) to a new

user session, terminate closes the screen that was being

used by the meeting organizer to characterize the meet-

ing, rollback deletes any partial changes that might

have been saved, wait shows a message asking the user

to wait for 5s and, �nally, initiate should open a new

screen associated with the new user session so the meet-

ing organizer can try again. All this behavior is speci�c

to the Meeting Scheduler and the task at hand and the

way it will be implemented depends highly on the tech-

nologies chosen during its architectural design.

4.2 Adaptation Strategies as Patterns

The operations of Table 1 allow us to describe di�erent

adaptation strategies in response to AwReqs failures us-

ing EvoReqs. However, many EvoReqs might have sim-

ilar structures, such as �wait t seconds and try again,

with or without copying data�. Therefore, to facilitate

their elicitation and modeling, we propose the de�nition

of patterns1 that represent common adaptation strate-

gies. Table 2 shows the speci�cation for some EvoReq

patterns.

A strategy is de�ned by a name, a list of arguments

that it accepts (with optional default values) and an

1Here, we use the term pattern in its more general sense:
�a form or model proposed for imitation� or �something de-
signed or used as a model for making things� (cf. http://www.

merriam-webster.com/dictionary/pattern). The reader should
not confuse it with design pattern, a more common use for this
word in Software Engineering.

Fig. 4 Graphical representation of an adaptation strategy in re-
sponse to an AwReq failure.

algorithm (composed of JavaTM-style pseudo-code and

evolution operations) to be carried out when the strat-

egy is selected. For instance, Retry is de�ned with two

parameters: copy, of Boolean type and with default

value true; and time, of long integer type and no de-

fault value (which makes it mandatory when this pat-

tern is used).

Moreover, strategies are usually associated to fail-

ures of AwReqs and, therefore, we can also refer to

the instance of the AwReq that failed using the key-

word awreq in the pseudo-code. In other words, awreq

is an implicit parameter that is available in all strat-

egy de�nitions. Taking the Retry strategy again as an

example, we can see that the failed AwReq 's target is

assigned to variable r in the �rst line of the pseudo-

code. Consequently, assuming that time is represented

in milliseconds, the example from Section 4.1 could be

more concisely expressed as Retry(5000).

It is important to note, however, that the list in Ta-

ble 2 is not intended to be exhaustive and new strategies

can be created as needed. For instance, one could take

inspiration from the design patterns for adaptation cat-

aloged by Ramirez and Cheng (2010). After strategies

have been elicited and represented as patterns, they can

be associated with AwReqs and added to the require-

ments speci�cation.2 The use of patterns also allows

us to add adaptation strategies to the goal model, as

shown in Figure 4. This portion of the Meeting Sched-

uler's model shows the Retry(5000) pattern associated

with failures of AwReq AR1.

4.3 Recon�guration

According to Wang and Mylopoulos (2009), a system

con�guration is �a set of tasks from a goal model which,

when executed successfully in some order, lead to the

2Note that, for consistency reasons, even a very simple
EvoReq like aborting (which consists of a single operation) is
represented as a strategy through the use of the pattern Abort.
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Table 2 Some EvoReq patterns and their speci�cations based on the evolution operations of Table 1.

Abort() {
abort(awreq);

}

Delegate(a : Actor) {
send -warning(a, awreq);
wait -for -fix(awreq);

}

RelaxDisableChild(r : Requirement = awreq.target; level : Level = INSTANCE; child : Requirement
) {

if ((level == CLASS) || (level == BOTH)) {
disable(child.class);

}

if ((level == INSTANCE) || (level == BOTH)) {
suspend(r);
terminate(child);
if (child.class = PerformativeRequirement) rollback(child);
suspend(child);
resume(r);

}
}

Replace(r : Requirement = awreq.target; copy : boolean = true; level : Level = INSTANCE; r' :
Requirement) {

R = r.class;
R' = r'.class;
if ((level == CLASS) || (level == BOTH)) {

disable(R);
enable(R');

}

if ((level == INSTANCE) || (level == BOTH)) {
if (R = PerformativeRequirement) && (R' = PerformativeRequirement) && (copy) copy -data(r, r

');
terminate(r);
if (R = PerformativeRequirement) rollback(r);
suspend(r);
initiate(r');

}
}

Retry(copy: boolean = true; time: long) {
r = awreq.target; R = r.class;
r' = new -instance(R);
if (copy) copy -data(r, r');
terminate(r); rollback(r);
wait(time);
initiate(r');

}

StrengthenEnableChild(r : Requirement = awreq.target; level : Level = INSTANCE; child :
Requirement) {

if ((level == CLASS) || (level == BOTH)) {
enable(child.class);

}

if ((level == INSTANCE) || (level == BOTH)) {
suspend(r);
resume(child);
initiate(child);
resume(r);

}
}

Warning(a : Actor) {
send -warning(a, awreq);

}



Requirements-Driven Software Evolution 9

satisfaction of the root goal�. We add to this de�nition

the values assigned to each control variable elicited dur-

ing system identi�cation (cf. � 3). Recon�guration, then,

is the act of replacing the current con�guration of the

system with a new one in order to adapt.

As mentioned before, EvoReqs are the focus of this

work and we have proposed a recon�guration frame-

work in a separate publication (Souza et al, 2012b).

However, the EvoReqs framework proposed herein was

designed in a way to facilitate the integration with one

or more recon�guration components. This is done by

consideringReconfiguration a type of adaptation strat-

egy. EvoReqs can, thus, be used to specify that stake-

holders would like to use recon�guration, in one of two

ways:

1. If stakeholders wish to apply a speci�c recon�gu-

ration for a given failure, instructions like change-

param, enable/disable and initiate/terminate

can be used to describe the precise changes in re-

quirements at class and/or instance level;

2. Instead, if there is no speci�c way to recon�gure,

a recon�guration algorithm that is able to compare

the di�erent alternatives should be executed using

the find-config instruction, after which apply-

config is called to inform the target system about

the new con�guration.

Below, we show the pattern that describes the adap-

tation strategy of option 2. The strategy receives as ar-

guments an algorithm to �nd the new con�guration,

the AwReq that failed and thus triggered the strategy

and the level at which the changes should be applied:

class (future executions), instance (current execution)

or both.

Reconfigure(algo: FindConfigAlgorithm , ar:
AwReq , level: Level = INSTANCE) {

C' = find -config(algo , ar)
apply -config(C', level)

}

The state-of-the-art on goal-based adaptive systems

provides several algorithms that are capable of �nd-

ing a new system con�guration. Wang and Mylopoulos

(2009) propose algorithms that suggest a new con�gu-

ration without the component that has been diagnosed

as responsible for the failure; Nakagawa et al (2011) de-

veloped a compiler that generates architectural con�g-

urations by performing con�ict analysis on KAOS goal

models (van Lamsweerde, 2009); Fu et al (2010) use re-

con�guration to repair systems based on an elaborate

state-machine diagram that represents the life-cycle of

goal instances at runtime; Peng et al (2010) assign pref-

erence rankings to softgoals (which can be dynamically

changed at runtime) and determine the best con�gu-

ration using a SAT solver; Khan et al (2008) apply

Case-Based Reasoning to the problem of determining

the best con�guration; Dalpiaz et al (2012) propose an

algorithm that �nds all valid variants to satisfy a goal

and compares them based on their cost and bene�t.

Moreover, in (Dalpiaz et al, 2010), recon�guration is

discussed in terms of interaction among autonomous,

heterogeneous agents based on commitments.

Note that di�erent recon�guration algorithms may

require di�erent information from the model. For in-

stance, (Wang and Mylopoulos, 2009) requires a goal

model and a diagnosis pointing to the failing compo-

nent, whereas (Peng et al, 2010) needs the preference

rankings of softgoals. Analysts should provide the re-

quired information accordingly.

5 The Zanshin Framework

To operationalize EvoReq adaptation strategies at run-

time in response to AwReq failures, we have developed

a prototype framework called Zanshin (named after a

term used in the Japanese martial arts that refers to a

state of awareness). Zanshin receives noti�cations from

the monitoring component about AwReq failures and

executes an adaptation process that is explained in sub-

Section 5.1. Then, sub-Section 5.2 presents more details

on the framework's implementation.

5.1 The Adaptation Process

Using the language described in Section 4, requirements

engineers can specify stakeholders' EvoReqs in a pre-

cise way (based on clearly-de�ned primitive operations)

that can also be exploited at runtime by an adapta-

tion framework (e.g., Figure 2). However, more than

one EvoReq can be associated to each requirement di-

vergence, which prompts the need for a process that

coordinates their execution.

Here, we propose a process based on ECA rules for

the execution of adaptation strategies in response to

system failures. This process is summarized in the algo-

rithm shown in Figure 5, which manipulates instances

of the classes represented in the class model of Figure 6.

The process is triggered by AwReq evaluations, in-

dependent of the AwReq instance's �nal state (Success,

Failed or Canceled). For instance, let us recall one of the

examples in the beginning of Section 4: say the weekly

success rate of Collect timetables has decreased twice

in a row, causing the failure of AR3 and starting the

ECA process.

The algorithm begins by obtaining the adaptation

session that corresponds to the class of said AwReq , cre-

ating a new one if needed (line 2). As shown in Figure 6,
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1 processEvent(ar : AwReq) {
2 session = findOrCreateSession(ar.class);
3 session.addEvent(ar);
4 solved = ar.condition.evaluate(session);
5 if (solved) break;
6
7 ar.selectedStrategy = null;
8 for each s in ar.strategies {
9 appl = s.condition.evaluate(session);
10 if (appl) {
11 ar.selectedStrategy = s;
12 break;
13 }
14 }
15
16 if (ar.selectedStrategy == null)
17 ar.selectedStrategy = ABORT;
18
19 ar.selectedStrategy.execute(session);
20 ar.condition.evaluate(session);
21 }� �
Fig. 5 Algorithm for responding to AwReq failures.

Fig. 6 Entities involved in the ECA-based adaptation process.

an adaptation session consists of a series of events, re-

ferring to AwReq evaluations. This time-line of events

can be later used to check if a strategy is applicable

or if the problem has been solved (i.e., if the adap-

tation has been successful). Active sessions are stored

in a repository (e.g., a hash table indexed by AwReq

classes attached to the user session) which is managed

by the findOrCreateSession() procedure. In the ex-

ample, assuming it is the �rst time AR3 fails, a new

session will be created for it.

Then, the process adds the current AwReq 's eval-

uation as an event to the active session, immediately

evaluates if the problem has been solved � this is done

by considering the AwReq 's resolution condition, which

analyzes the session's event time-line � and stops the

process if the answer is a�rmative (3�5). For example,

the trivial case is considering the problem solved if the

(next) AwReq evaluates to success, but this abstract

class can be extended to provide di�erent kinds of res-

olution conditions, including, e.g., involving a human-

in-the-loop to con�rm if the problem has indeed been

solved, organizing conditions into AND/OR-re�nement

trees (like in a goal model), etc. For the running exam-

ple, let us say that AR3 has been associated with the

aforementioned simple resolution condition. Since the

AwReq 's state is Failed, the session is not considered

solved and the algorithm continues.

If the current AwReq evaluation does not solve the

issue, the process continues to search for an applicable

adaptation strategy to execute in order to try and solve

it (7�14). It does so by going through the list of strate-

gies associated with the AwReq that failed in their pre-

de�ned order (e.g., preference order established by the

stakeholders) and evaluating their applicability condi-

tions, breaking from the loop once an applicable strat-

egy has been found. As with ResolutionCondition,

ApplicabilityCondition is also abstract and should

be extended to provide speci�c kinds of evaluations. For

instance, apply a strategy �at most N times per ses-

sion/time period�, �at most in X% of the failures/ex-

ecutions�, �only during speci�ed periods of the day�,

AND/OR-re�nements, etc. (patterns can be useful here).

Some conditions might even need to refer to some domain-

speci�c properties or contextual information. If no ap-

plicable strategy is found, the process falls back to the

Abort strategy (16�17).

Back to the running example, imagine now that the

Meeting Scheduler designers have associated two strate-

gies to AR3. First, relax it by replacing AR3 with

AR3', which veri�es if the success rate has decreased

not in two, but in three consecutive weeks (i.e., not

TrendDecrease(G_CollectTime, 7d, 3)). This strat-

egy is associated with a condition that constraints its

applicability to at most once a trimester. Second, the

Warning strategy is also associated with AR3, send-

ing a message to the IT support sta� so they can take

corrective action. To this strategy a simple applicabil-

ity condition is associated, which always returns true.

Therefore, if this is the �rst time AR3 fails in the past

three months, it will be relaxed to AR3', otherwise the

Warning strategy will be selected.

After the strategy is selected, it is executed and the

session is given another chance to evaluate its resolution

(sometimes we would like to consider the issue solved

after applying a speci�c strategy, independent of future

AwReq evaluations, e.g. when we use Abort). When an

adaptation session is considered resolved, it should be

terminated, which marks it as no longer being active.

At this point, future AwReq evaluations would compose

new adaptation sessions. Instead, if the algorithm ends

without solving the problem, the framework will con-

tinue to work on it when it receives another AwReq eval-

uation and retrieves the same adaptation session, which

is still active. Some adaptation strategies can force a re-

evaluation of the AwReq when executed, which guaran-

tees the continuity of the adaptation process.



Requirements-Driven Software Evolution 11

For the AR3 example, the session would remain

active until another month has passed and AR3' is

checked again. If the success rate increases, then AR3'

will be satis�ed, triggering another call to processEvent(),

which would �nd AR3 's session and, according to the

resolution condition, consider it solved and terminate it.

If the rate decreases one more time, though, the Warn-

ing strategy is used and the session remains active until

the following week. In Section 6, when we discuss the

experiments with an ambulance dispatch system (A-

CAD), this adaptation process is depicted once again

with another example.

As this example illustrated, information on resolu-

tion and applicability conditions should be present in

the requirements speci�cation in order for the adapta-

tion framework to use this process. We do not propose

any particular syntax for the inclusion of this infor-

mation in the speci�cation (as will be shown later, in

our experiments we have used a simple tabular nota-

tion). Furthermore, the ECA-based process is only one

possible solution for the coordination and execution of

adaptation strategies in response to AwReq failures at

runtime. It can be replaced or combined with other pro-

cesses that use EvoReqs and any extra speci�cation nec-

essary (e.g. applicability and resolution conditions) to:

(a) select the best strategy to apply; (b) execute it; (c)

check if the problem has been solved; (d) loop back to

the start if it has not.

5.2 Implementation

To demonstrate the value EvoReqs can bring to the de-

velopment of adaptive systems, we have developed the

Zanshin framework together with a simulation compo-

nent as the target system that mimics failure situations

that could occur at runtime. In what follows, we pro-

vide more detail on the framework implementation. Sec-

tion 6 describes experiments with the A-CAD and how

it was simulated in Zanshin.

The framework was implemented as OSGi bundles

(Core, Logging, Monitoring, Adaptation and Simula-

tion) and their source code is available for download

(http://github.com/vitorsouza/Zanshin). The Core

bundle exposes four service interfaces, based on the con-

ceptual architecture shown in Figure 2, each of which

implemented by a di�erent bundle:

� Monitoring Service: monitors the log provided by

the target system and detects changes of state in

AwReq instances, submitting these to the Adapta-

tion Service. This component is further described in

(Souza et al, 2011b);

� Adaptation Service: implements the ECA-based adap-

tation process described in Figure 5 (�5.1), ana-

lyzing the requirements speci�cation and deciding

which adaptation strategy to execute next;

� Target System Controller Service: implemented by

the Simulation bundle, serves as a bridge between

the adaptation framework and the target system, by

implementing the operations of Table 1, which are

called by the executed adaptation strategies;

� Repository Service: implemented by the Core bun-

dle itself, stores the instances of the requirements

models that are used by the other services.

Requirements models are speci�ed using Eclipse Mod-

eling Framework (EMF) meta-models: the Core compo-

nent provides the basic GORE classes (cf. Figure 3) and

the classes involved in the ECA-based process (cf. Fig-

ure 6). These meta-models are extended by the Simula-

tion bundle to provide classes representing the require-

ments of the target system. For example, for the Meet-

ing Scheduler there would be one EMF class for each

requirement of the goal model shown earlier in Figure 1,

extending the appropriate GORE/ECA classes.

Finally, the target system' requirements speci�ca-

tion can be written as an EMF model, to be read by

the framework, represented in memory as JavaTM ob-

jects (using EMF's API) and stored in the Repository

Service when the target system is executed. This way,

the EMF model represents the requirements at the class

level, whereas the objects stored in the Repository Ser-

vice for each execution represent the requirements at

the instance level.

At runtime, when the Monitoring Service detects

an AwReq has changed state, it noti�es the Adapta-

tion Service, which executes the adaptation process de-

scribed earlier in Section 5.1. When the adaptation strat-

egy is chosen and executed, EvoReq operations are sent

to the Target System Controller Service, which is re-

sponsible for adapting the target system. An example

of this entire process is illustrated in the next section.

6 Experiments

An important aspect of any research proposal is valida-

tion. Hevner et al (2004) describe �ve categories of eval-

uation methods in Design Science: Observational, An-

alytical, Experimental, Testing and Descriptive. Meth-

ods range from simple description of scenarios up to

full-�edge case studies which are conducted in business

environments. In the previous section, we have used de-

scriptive methods � in the form of scenarios and in-

formed argument � to illustrate the usefulness of our

approach. In this section, we describe the application



12 Souza et al

of experimental methods of evaluation � in particular,

controlled experiments and simulations � that have

been conducted using a larger experiment.

6.1 The A-CAD System

In order to provide initial validation of our proposed

approach, we have conducted an experiment on the de-

sign of an Adaptive Computer-aided Ambulance Dis-

patch (A-CAD) system and its simulation at runtime

using the Zanshin framework. The A-CAD was based

on the report on the failure of the London Ambulance

Service Computer Aided Despatch (LAS-CAD) System

(Finkelstein, 1993). This case study was �rst presented

at the 8th International Workshop on Software Speci�-

cation and Design (Finkelstein and Dowell, 1996) and

became an exemplar in the Software Engineering com-

munity, being further analyzed in other venues such as

the European Journal of Information Systems (Beynon-

Davies, 1995), the Journal of the Brazilian Computer

Society (Breitman et al, 1999), ACM SIGSOFT Soft-

ware Engineering Notes (Kramer and Wolf, 1996), etc.

Being a real system and having so much available in-

formation � due to its failure and subsequent inquiry

� makes the LAS-CAD a good choice for validation

of new research proposals. In the case of our research

on adaptive systems, this is especially true, given that

the success of the LAS-CAD �would depend on the near

100% accuracy and reliability of the technology in its to-

tality. Anything less could result in serious disruption to

LAS operations� (Finkelstein, 1993). An adaptive CAD

system could try and avoid the �serious disruptions� in

its operations through adaptation3.

In a technical report (Souza, 2012), we describe in

detail the requirements elicitation process (both early

and late requirements) and the application of our ap-

proach for the design of adaptive systems, including

the identi�cation of sixteen Awareness Requirements

(AR1�AR16 ), �ve variation points (VP1�VP5), four con-

trol variables (NoC / Number of Calls, NoSM / Num-

ber of Sta� Members, MST / Minimum Search Time,

LoA / Level of Automation) and over thirty di�erential

3Note, however, that is not our intention to prove that the
LAS would not have failed if it had been built as an adaptive
system using our proposal. Many of the analyses conducted over
the failure indicate that the procurement and the development
processes were �awed, producing a bad quality system in gen-
eral. Hence, if adaptation mechanisms had been developed to
work with the LAS, there is no guarantee these would have been
properly developed and have good quality and would therefore
also be prone to failure. Our objectives here are to learn from
the problems detected in the LAS in order to identify critical re-
quirements and use those to develop a new system which would,
in theory, be designed properly and have good quality in general.

relations between indicators and parameters. Figure 7

shows the �nal (GORE-based) requirements speci�ca-

tion for the A-CAD.

Analyzing the failure report and the di�erent pub-

lications mentioned above, we have identi�ed several

failures which were considered as possible causes for the

LAS-CAD demise, such as system misusage, transmis-

sion problems, unreliable software, call �ooding, slow

response speed, problems with the use of Mobile Data

Terminals (MDTs), etc. Then, AwReqs were modeled

so a feedback loop controller would be aware of these

possible failures and would try to adapt to them. For

instance, to address slow response speeds, four AwReqs

were attached to the quality constraints of softgoals

Fast dispatch, Fast arrival and Fast assistance; to try

and mitigate call �ooding, AwReqs have been associ-

ated with domain assumption Up to <NoC> calls per

day (where the Number of Calls is calculated given the

Number of Sta� Members working, which allows man-

agement to increase it by hiring new employees), and

so forth.

After parameters and di�erential relations have been

modeled during System Identi�cation, adaptation strate-

gies were associated with each AwReq , specifying the

adaptation part that follows monitoring in the feed-

back loop. Table 3 speci�es an ordered list of adapta-

tion strategies to be executed, in the speci�ed order,

in case their associated AwReq fail. AwReq patterns

refer to elements of the goal model using mnemonics

(the letter that precedes the underscore indicates the

type of element � Goal, Task, Domain assumption, or

Quality constraint). Moreover, the Reconfigure() pat-

tern had its parameters omitted due to our focus here

being on EvoReqs. The complete table can be seen in

(Souza, 2012) and details on the recon�guration algo-

rithms that were used are in (Souza et al, 2012b).

6.2 Experiments with the A-CAD

With the parts of the speci�cation of the A-CAD that

are provided by Figure 7 and Table 3, we were able

to simulate run-time failures of this system to evaluate

the response of the Zanshin framework and the e�ec-

tiveness of our proposals.

The �rst step consists in encoding the speci�cation

of the A-CAD in an EMF model so, as explained in

Section 5.2, the framework can parse it and create an

in-memory representation of the system requirements

for every system execution. Figure 8 shows parts of this

EMF model � points of ellipsis (. . .) indicate sections

of the model that were omitted for brevity.

This model excerpt shows the speci�cation of goal

Register call, its child tasks (Input emergency infor-
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Fig. 7 The goal model for the A-CAD system, after applying our approach for the design of adaptive systems.

� �
1 <?xml version ="1.0" encoding ="UTF -8"?>
2 <acad:AcadGoalModel ...>
3 <rootGoal xsi:type="acad:G_GenDispatch">
4 <children xsi:type="acad:G_CallTaking">
5 <children xsi:type="acad:D_MaxCalls "/>
6 <children xsi:type="acad:G_RegCall">
7 <children xsi:type="acad:T_InputInfo

"/>
8 <children xsi:type="acad:T_DetectLoc

"/>
9 </children >
10 ...
11 </children >
12 ...
13 </rootGoal >
14 ...
15 <awReqs xsi:type="acad:AR15" target ="//

@rootGoal/@children .0/ @children .1">
16 <condition xsi:type=" model:

SimpleResolutionCondition "/>
17 <strategies xsi:type="model:

RetryStrategy" time ="5000" >
18 <condition xsi:type=" model:

MaxExecApplicabilityCondition"
maxExecutions ="1"/>

19 </strategies >
20 <strategies xsi:type="model:

RelaxDisableChildStrategy" child
="// @rootGoal/@children .0/ @children
.1/ @children .1">

21 <condition xsi:type=" model:
MaxExecApplicabilityCondition"
maxExecutions ="1"/>

22 </strategies >
23 </awReqs >
24 </acad:AcadGoalModel >� �
Fig. 8 The A-CAD requirements speci�ed as an EMF model.

mation and Detect caller location) and ancestor goals

(Call taking and Generate optimized dispatching in-

structions) in lines 3�9. Line 15 contains the speci�-

cation of AwReq AR15, which refers to Register call as

its target using EMF's syntax for references within a

model (i.e., starting at the root goal, navigate to the

child with index 0, then in that element navigate to the

child of index 1).

AR15 is speci�ed to have a simple resolution con-

dition � i.e., if the AwReq evaluation succeeded, the

problem is solved � and two associated adaptation

strategies, as speci�ed in Table 3: Retry(5000) and

RelaxDisableChild(T_DetectLoc). Both strategies are

applicable at most once during an adaptation session, as

can be seen in the speci�cation. The rationale behind

this speci�cation is the following: if the sta� member

cannot register the call, �rst assume it is a glitch in the

input form and just try again. If the goal is still not

satis�ed, check if it is a problem with caller detection

and disable that part (the sta� member should then

insert the location of the caller manually), checking if

the goal is satis�ed this way.

After the A-CAD speci�cation has been represented

in EMF, an implementation of the Target System Con-

troller Service (cf. �5.2) speci�cally for the A-CAD sim-
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Table 3 Speci�cation of EvoReqs elicited for the A-CAD experiment.

AwReq AwReq Pattern List of EvoReq Adaptation Strategies

AR1 NeverFail(T_InputInfo) 1. Warning(�AS Management�)
2. Recon�gure()

AR2 SuccessRate(AR1, 90%) 1. Warning(�AS Management�)
2. Recon�gure()

AR3 SuccessRate(Q_AmbArriv, 75%) 1. Recon�gure()

AR4 not TrendDecrease(Q_AmbArriv, 30d,

2)

1. Replace(AR4, AR4_60Days) + StrengthenReplace(AR3,
AR3_80Pct)

2. Recon�gure()

AR5 NeverFail(D_DataUpd) 1. Delegate(�Sta� Member�)

AR6 MaxFailure(D_GazetUpd, 1, 7d) 1. Recon�gure()

AR7 1. Recon�gure()

AR8 MaxFailure(D_MDTPos, 1, 1min) 1. Replace(D_MDTPos_20Secs)
2. Replace(AR8, AR8_45Secs)
3. Replace(AR8_45Secs, AR8_30Secs)
4. Retry(60000)
5. Recon�gure()

AR9 SuccessRate(D_MDTPos, 1, 1min) 1. Recon�gure()

AR10 MaxSuccess(T_Except, 10, 1min) 1. Recon�gure()

AR11 NeverFail(Q_Dispatch) 1. Recon�gure()

AR12 SuccessRate(T_Feedback, 90%) 1. Recon�gure()

AR13 NeverFail(Q_MaxCost) 1. Recon�gure()

AR14 MaxFailure(Q_MsgTime, <NoSM>, 1w) 1. Recon�gure()

AR15 NeverFail(G_RegCall) 1. Retry(5000)
2. RelaxDisableChild(T_DetectCaller)

AR16 ComparableDelta(T_SpecConfig,

Q_NoExtra, numAmb, 0)

1. Recon�gure()

ulation has to be provided. In a real setting, this con-

troller would be the connection between the running

A-CAD and Zanshin, e�ecting the application-speci�c

changes related to each EvoReq operation (cf. �4.1).

In our experiments, however, we have instead imple-

mented simulations of the A-CAD system, which call

the life-cycle methods expected by the monitoring in-

frastructure (Souza et al, 2011b) and acknowledges the

reception of EvoReq operations, changing the require-

ments model as instructed.

When this simulation is ran, the A-CAD speci�ca-

tion is read and stored in the repository and life-cycle

methods referring to tasks Input emergency informa-

tion and Detect caller location are sent by the sim-

ulated system. The monitoring infrastructure detects

AR15 has changed its state (again, details in Souza

et al (2011b)), and Zanshin conducts the ECA-based

coordination process, producing a log similar to the one

shown in Figure 9. In the �gure, messages are pre�xed

with TS and AF to indicate if they originate from the tar-

get system or the adaptation framework, respectively,

which run in separate threads. This is done to resemble

more closely a real life situation, in which the target

system is a separate component from the adaptation

framework.

The log shows the adaptation framework receiving

noti�cation of AR15 's failure (line 1), creating a new

adaptation session S1 for it (2) and searching for a suit-

able adaptation strategy to be applied, executing the

Retry(5000) strategy (4�6). Then the simulated tar-

get system acknowledges the reception of the commands

included in that pattern's de�nition (7�12) � see Ta-

ble 2 �, and the adaptation framework veri�es that the

problem has not yet been solved (13).

After a while, the monitoring component noti�es

one more failure of AR15 (line 15), prompting the adap-

tation framework to retrieve the same adaptation ses-

sion S1 as before, realizing that it has not yet been

solved (16�17). Zanshin then proceeds to searching for

a suitable adaptation strategy, but Retry(5000) can-

not be used again in the same session due to its applica-

bility condition (18). The framework ends up selecting
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1 AF: Processing state change: AR15 ->

Failed
2 AF: (S1) Created new session for AR15
3 AF: (S1) The problem has not yet been

solved ...
4 AF: (S1) RetryStrategy is applicable.
5 AF: (S1) Selected: RetryStrategy
6 AF: (S1) Applying strategy RetryStrategy(

true; 5000)
7 TS: Received: new -instance(G_RegCall)
8 TS: Received: copy -data(iG_RegCall ,

iG_RegCall)
9 TS: Received: terminate(iG_RegCall)
10 TS: Received: rollback(iG_RegCall)
11 TS: Received: wait (5000)
12 TS: Received: initiate(iG_RegCall)
13 AF: (S1) The problem has not yet been

solved ...
14 -------------------------------------------

15 AF: Processing state change: AR15 ->
Failed

16 AF: (S1) Retrieved existing session for
AR15

17 AF: (S1) The problem has not yet been
solved ...

18 AF: (S1) RetryStrategy is not applicable
19 AF: (S1) RelaxDisableChildStrategy is

applicable.
20 AF: (S1) Selected:

RelaxDisableChildStrategy
21 AF: (S1) Applying strategy

RelaxDisableChildStrategy(G_RegCall;
Instance level only; T_DetectLoc)

22 TS: Received: suspend(iG_RegCall)
23 TS: Received: terminate(iT_DetectLoc)
24 TS: Received: rollback(iT_DetectLoc)
25 TS: Received: resume(iG_RegCall)
26 AF: (S1) The problem has not yet been

solved ...
27 -------------------------------------------

28 AF: Processing state change: AR15 ->
Succeeded

29 AF: (S1) Retrieved existing session for
AR15

30 AF: (S1) The problem has been solved.
Terminate S1.� �

Fig. 9 Zanshin execution log for the AR15 simulation.

RelaxDisableChild(T_DetectCaller) and executing

it (19�21), which again is recognized by the target sys-

tem controller (22�26).

Finally, the monitoring infrastructure indicates that

AR15 has been satis�ed (line 28), so the adaptation

process can retrieve session S1, mark the problem as

solved and terminate it. From this point on, further

failures of AR15 from the same user will create a new

adaptation session.

As the log shows, the framework is able to execute

the speci�ed adaptation strategies, sending EvoReq op-

erations to the target system, which should then adapt

according to the instructions. Other than demonstrat-

ing the usefulness of our proposed approach, such oper-

ationalization of EvoReqs can help in the development

of adaptive systems by separating the adaptation con-

cerns into a speci�c component.

Fig. 10 Results of the scalability tests of Zanshin.

6.3 Performance

Other than demonstrating the usefulness of our ap-

proach using the A-CAD experiment, we have also eval-

uated the performance of Zanshin's implementation, by

developing a simulation in which goal models of dif-

ferent sizes (100�1000 elements) are built and have an

AwReq failing at runtime. The framework applies the

adaptation strategy that is also included in the spec-

i�cation and the target system (i.e., the simulation)

acknowledges it. The simulation was ran ten times for

each goal model size and the running time of the frame-

work was calculated. Average times in milliseconds for

each goal model size are shown in Figure 10 (the run-

ning time of the target system was irrelevant in com-

parison and, therefore, not included in the graph).

As the graph shows, the adaptation framework scales

linearly with the size of the goal model. The interested

reader can experiment the simulations for themselves

by downloading its source code. Furthermore, the tar-

get system and adaptation framework can be ran in a

separate computers, reducing the impact of the adap-

tation process even further.

7 Related Work

The Rainbow framework (Garlan et al, 2004, Cheng

et al, 2009b) adopts an architectural approach, using

an architectural model as centerpiece for adaptation.

Adaptation rules monitor operational conditions for the

system and de�ne actions if the conditions are unfavor-

able. For example, given a news website as target sys-

tem, the adaptation mechanisms should keep the bal-

ance among three quality objectives: (a) performance

(b) cost and (c) content �delity. During a case that the

response time is low a triggered adaptation strategy can

either enlist more servers or switch o� the multimedia

mode causing the cost or content �delity requirements

respectively to fail. To restore failed requirements, there

are adaptation strategies that when response time in-
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creases discharge the extra servers or switch on the mul-

timedia mode increasing the �delity.

The adaptation mechanism in Rainbow is similar to

our proposal here in that it consists of rules that mon-

itor the target system, evaluate recorded data and if

a constraint violation is detected then an adaptation

strategy is triggered. Their strategies involve changing

the components of the architecture, whereas our rules

change requirements. An advantage of the Rainbow ap-

proach is the reusability of evolution rules for systems

that share the same architecture and similar require-

ments.

Several other approaches for the design of adaptive

systems focus on architectural solutions for this prob-

lem, such as the proposal of Kramer and Magee (2009),

the work of Sousa et al (2009), the SASSY framework

(Menasce et al, 2011), among others. These approaches

usually express adaptation / evolution requirements in

a quantitative manner (e.g., utility functions) and focus

on quality of service (i.e., non-functional requirements).

In comparison, our research is focused on requirements

(goal) models, allowing stakeholders and requirements

engineers to reason about adaptation on a higher level

of abstraction. For this reason, in the rest of this section

we restrict ourselves to approaches that, like ours, are

focused on requirements.

Our approach is quite similar to FLAGS (Baresi and

Pasquale, 2010). This service-oriented approach allows

for the de�nition of adaptive goals which, when trig-

gered by a goal not being satis�ed, execute a set of

adaptation actions that can change the system's goal

model in di�erent ways � add/remove/modify goals

or agents, relax a goal, etc. � and in di�erent levels

� in transient or permanent ways. FLAGS is based on

Linear Temporal Logic (LTL) and our approach is less

heavy-handed in the formalism that is used than logic-

based formalisms such as LTL, which has been found to

be di�cult in many practical settings. Furthermore, our

approach is more general, o�ering a more varied set of

operations over the goal model and allowing for exten-

sible applicability/resolution conditions for adaptation

strategies. On the other hand, FLAGS deals with syn-

chronization and con�ict resolution of adaptation goals,

whereas EvoReqs just delegate these issues to the target

system, sending instructions according to the speci�ca-

tion of adaptation strategies. Considering these issues

is a good opportunity for future work. The RELAX

framework (Whittle et al, 2009) is similar to FLAGS,

although it does not provide a runtime framework that

operationalizes adaptation.

Another similar work is proposed by Fu et al (2010).

Their approach represents the life-cycle of instances of

goals at runtime using a state-machine diagram and,

based on it, an algorithm can prevent possible failures

or repair the system in case of requirements deviation.

Their proposal, however, works at the instance-level

only and does not change the system in a �from now

on� fashion. Moreover, the list of possible adaptation

strategies is �xed, whereas EvoReqs o�ers a �xed set

of operations that can compose many di�erent kinds

of adaptation strategies. Failure prevention can also be

implemented in our approach by specifying AwReqs not

only on system failures but also on indications they are

about to occur (if possible). EvoReqs associated with

these AwReqs could then enact preventive measures,

avoiding the failure altogether.

Most requirements-based adaptive systems propos-

als focus on the solution space. Qureshi and Perini (2010)

focus on service-based applications and adapt by search-

ing for new services at runtime. Brown et al (2006) ex-

tends LTL with an Adapt operator, encapsulating A-

LTL formalisms in speci�cations, which allows the sys-

tem to switch between operational domains. Approaches

that perform adaptation by recon�guration, such as the

ones cited in Section 4.3, also fall into this category. Our

work, on the other hand, proposes to adapt by changing

the requirements (problem) space instead.

Another important aspect of adaptation related to

our work is modeling and managing variability among

applicable executions of a target system. We introduced

earlier the concepts of variation points and control vari-

ables to model variability at the requirements level.

Griss et al (1998) introduce variability as the key for

exploiting reusable software features and propose the

terms variation point and variant. Hallsteinsen et al

(2008) point out that Software Product Lines (SPLs)

lead to the development of applications for di�erent do-

mains composed in terms of reusable parts. However, as

applications become more demanding, it is hard to fore-

tell required variability at runtime. Therefore, there is

a need for Dynamic Software Product Lines (DSPLs)

where adaptation becomes critical in order to cope with

changes in user requirements and the environment.

An interesting approach for developing adaptive sys-

tems based on DSPLs is the FeautureAce framework

(Rosenmüller et al, 2011). FeatureAce allows manual or

automatic adaptation by selecting a set of features from

a static SPL, but also allowing adaptation rules that are

triggered at runtime. Selected features are bound dy-

namically and the �nal recon�guration is validated by

a SAT solver to spot inconsistencies. A similar feature-

oriented approach (Shen et al, 2011) divides available

features represented via alternative and optional con-

structions. Features are inter-related through depen-

dency and other constraints that de�ne a space of pos-

sible variations. The adaptation process is based on
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ECA (Event-Condition-Action) rules that mandate at

runtime an optimal recon�guration. Dinkelaker et al

(2010) also express variability at runtime by specifying

DSPLs through constraint relations among the features

that constitute the software. As in previous approaches

the features are activated or deactivated at run-time

resulting in recon�gurations. Instead of declared rules

and satia�ability checks, the validity of these recon�g-

urations is established with the use of aspect oriented

models taking that way into account the context of the

application's execution.

The problem of requirements evolution has mainly

been addressed in the context of software maintenance.

Thus, most research on this topic treats it as a post-

implementation phenomenon (e.g., �evolution of require-

ments refers to changes that take place in a set of re-

quirements after initial requirements engineering phase�

(Antón and Potts, 2001)) caused by changes in the op-

erational environment, user requirements, operational

anomalies, etc. A lot of research has been devoted to the

classi�cation of types of changing requirements such as

mutable, adaptive, emergent, etc. (Harker et al, 1993)

and factors leading to these changes. Generally, these

changes are viewed as being unanticipated and thus

as not being able to be modeled a priori (Ernst et al,

2011a). Our work is quite di�erent in this respect as we

use EvoReqs to de�ne trajectories for possible runtime

requirements changes under particular circumstances.

Clearly, not all requirements changes can be antici-

pated, but in this work we focused on modeling those

that capture what the system should do in case it fails

to meet its objectives. The triggers for these changes

are clearly identi�able as requirements divergences can

be anticipated. Nevertheless, these changes represent

requirements evolution as they modify the original sys-

tem requirements.

Requirements evolution research has focused on mod-

eling requirements change and its impact on the sys-

tem. For instance, in (Lam and Loomes, 1998), envi-

ronment changes are propagated through requirements

changes and down to design. Each triggered require-

ments change is analyzed in terms of its risks and the

impact it has on the users' needs. Since we are dealing

with anticipated and explicitly speci�ed requirements

changes, the analysis of their impact on the system

can be carefully predicted. Another important aspect

of requirement evolution is the completeness and con-

sistency of requirements models. For instance, to ad-

dress this, (Zowghi and O�en, 1997) proposes a for-

mal approach based to requirements evolution utilizing

non-monotonic default logics with belief revision. In our

approach, we assume that the responsibility for require-

ments consistency rests with the modeler.

8 Discussion

One of the hallmarks of goal-oriented RE is its ability

to systematically elicit, capture and analyze alterna-

tive ways to re�ne requirements. EvoReqs do not pro-

vide this opportunity since they are currently repre-

sented in a non-intentional way, as ECA rules. While in

the method presented in this paper there are ways to

support various ways of evolving system requirements

with di�erent conditions specifying their applicability,

the current approach does not provide for a full-�edged

analysis of alternative system evolutions. Thus, model-

ing and trade-o� analysis of possible requirements evo-

lutions using the common quality criteria of cost, cus-

tomer satisfaction, etc. or the criteria especially rele-

vant for system adaptation, such as the familiarity of

the new solution (Ernst et al, 2011b), is not supported.

For instance, after a failure of the previously men-

tioned AR3, the two adaptation strategies available are

to relax it or to send a warning to a member of the IT

sta� for manual intervention. Obviously, albeit risky,

postponing any action (i.e., relaxation) may prove to

be the most cost-e�ective strategy in case the negative

trend is reversed in the following month. However, the

costly manual intervention is less risky. Depending on

the relative importance of risk vs. cost, the ordering/ap-

plication of the two strategies will be di�erent. Thus,

the framework for systematic elicitation and analysis of

adaptation strategies given the relevant quality criteria

would be a welcome addition to the approach presented

here.

A failure of an AwReq attached to a domain assump-

tion indicates that the environment is in a di�erent

state than anticipated, i.e., in a di�erent context. From

this point of view, adaptation strategies associated with

such failures represent ways to adapt the running sys-

tem to the new context. Therefore, exploring connec-

tions between this framework and the goal-oriented con-

text approaches (e.g., (Lapouchnian and Mylopoulos,

2009)) as a way to support context awareness in adap-

tive systems seems to be a worthy endeavor.

As already mentioned, here we treat system recon-

�guration as a possible adaptation strategy. Our quali-

tative requirements-driven adaptation approach (Souza

et al, 2012b) that relies on the equations produced us-

ing the system identi�cation process itself has a com-

plex adaptation loop that needs to be integrated into

the feedback loop presented in this paper in order to

consistently and reliably combine requirements-based

system evolution and adaptation.

The use of rule sets in our framework constitutes a

signi�cant limitation. Large rule sets are hard to evolve,

as it becomes increasingly di�cult to understand what
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does a change entail. Moreover, attention needs to be

paid to the case where con�icting rules �re at the same

time. Therefore, our method puts a lot of responsibility

on the target system's designers, who need to be con-

cerned with issues such as consistency, correctness and

completeness.

In addition, the operationalization of EvoReqs as-

sumes the target system can be appropriately instru-

mented, which might make the approach di�cult to

apply on legacy systems or systems that rely heav-

ily on third-party components/services. Furthermore,

when stakeholder requirements are very complex, repre-

senting them using adaptation strategies, applicability

and resolution conditions can make the model di�cult

to read. Finally, our current implementation deals with

AwReq failures separately and is not able to handle mul-

tiple concurrent failures.

All these limitations provide opportunities for fur-

ther research, which may also include an experiment

with the complete framework and a real application for

further validation, the development of a CASE tool to

help in model design and analysis.

9 Conclusions

In this paper, we have characterized a new family of re-

quirements, called Evolution Requirements, which spec-

ify changes to other requirements when certain con-

ditions apply. We have also proposed an approach to

model this type of requirement and to operationalize

them at runtime in order to provide adaptivity capa-

bilities to a target system. This approach allows us to

explicitly and precisely model changes to requirements

models in response to certain conditions, such as re-

quirements failures.

We are currently studying design techniques for con-

trollers that would react to undesirable situations (e.g.,

a failed requirement) by changing one or more control

variables, thereby changing the behavior of the system

and/or the state of the environment. We are also begin-

ning to study the adoption of ideas from architecture-

based adaptation frameworks, such as the Rainbow project

(Garlan et al, 2004), so that proposed adaptations take

into account what is a feasible change at the architec-

tural level and what is not.
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