
The FrameWeb Approach to Web Engineering:

Past, Present and Future

Vı́tor E. Silva Souza[0000−0003−1869−5704]

Ontology & Conceptual Modeling Research Group (NEMO)

Department of Computer Science

Federal University of Espı́rito Santo (UFES) - Vitória, ES, Brazil

vitor.souza@ufes.br

http://www.inf.ufes.br/∼vitorsouza/

Abstract. The use of software frameworks is a popular method of reuse, espe-

cially in the context of Web-based Information Systems (WISs) development, as

they share a very similar basic infrastructure that is generalized and implemented

in many different state-of-the-practice frameworks available. Moreover, there has

been a growing interest in publishing data on the Web in a machine-processable

format known as linked data in order to enable automatic processing of the huge

amount of data available today on the Internet. The goal of the FrameWeb project

is to provide methods, languages and tools to aid developers in the construc-

tion of WISs that take advantage of the architectural foundation offered by such

frameworks and facilitate the publication of linked data from such WISs. In this

paper, we review the history of the FrameWeb project, describe the approach in

its current (end of 2019) form and devise plans for its near future.

This paper has been written to honor Ricardo de Almeida Falbo on the occasion

of his formal retirement as a professor of the Department of Computer Science at

the Federal University of Espı́rito Santo (UFES). The research project described

herein would not have existed without him. Hence, this paper shows the fruits

that came from a seed planted by Ricardo more than a decade ago.

Keywords: Reuse · frameworks · Web Engineering · method · language · tools ·

FrameWeb

1 Introduction

Software reuse has been practiced since programming began, using, e.g., libraries, do-

main engineering, design patterns, componentry, etc. [15]. A popular method of reuse

is the use of software frameworks (e.g., Hibernate [6]) or platform architectures (e.g.,

JavaTM Enterprise Edition [11]), which are middleware on/with which applications can

be developed [15]. The use of such frameworks1 helps to avoid the continual rediscov-

ery and reinvention of basic architectural patterns and components, reducing cost and

improving the quality of software by using proven architectures and designs [25].

1 In this paper, the term framework is used both in its traditional sense—a reusable set of libraries

or classes for a software system—and in the sense of platform architectures mentioned above.

http://www.inf.ufes.br/�vitorsouza/

This is particularly evident in the context of Web-based Information Systems (WISs)

development, which is the focus of this paper. WISs are data-centric applications de-

ployed on the Internet or an intranet, in which functionality and data have greater im-

portance than content presentation. Such systems are usually developed on top of a solid

Web infrastructure which commonly includes a Front Controller [5], a Dependency In-

jection mechanism [14], an Object/Relational Mapping [6] solution to communicate

with the database, and so on.

Despite their popularity, until recently, and to the best of our knowledge, none of the

Web Engineering [22] methods and modeling languages proposed in the literature con-

sidered the existence of such frameworks before the coding phase of the software pro-

cess. Given how these frameworks affect the architecture of a WIS, this fact motivated

us to propose FrameWeb, a Framework-based Design Method for Web Engineering [27,

28]. FrameWeb incorporates concepts from well established categories of frameworks

(such as the ones above) into a set of architectural design models, improving developer

communication and project documentation.

On a different, but related front, an increasing number of people and organizations

are choosing to share their data on the Web, contributing to a data deluge. This phe-

nomenon creates problems such as how to provide access to data so it can be most

easily reused; how to enable discovery of relevant data; or how to integrate data from

different and formerly unknown data sources [18]. A solution that has been gaining mo-

mentum in recent years is the publication of linked data [7], a set of technologies that

lay the foundation for what researchers have been calling The Semantic Web [8] for the

past two decades.

According to the Semantic Web vision, making data available on the Web in such

a machine-processable format, would allow the creation of software agents that could

help us through the data deluge, executing tasks that are repetitive, impractical or even

impossible to accomplish nowadays. One of the main issues with this vision is that the

current level of adoption by data publishers and application developers is not enough

for us to harness all the advertised benefits of this new Web of Data.

In this context, FrameWeb provides a systematic method based on well-founded

conceptual models, coupled with tools that automate certain parts of the process, fa-

cilitating the task of integrating a WIS into the Web of Data and, thus, promoting the

adoption of linked data. Although a small contribution regarding the broader problem

of realizing the Semantic Web vision, we can nevertheless harness the benefits of linked

data, even if such vision has not been (or will never be) reached.

Since its initial proposal [27, 28], the FrameWeb approach has evolved in a num-

ber of ways [21, 10, 9, 4, 24], involving many undergraduate and graduate students in a

research project.2 The goal of the FrameWeb project is to provide methods, languages

and tools to aid developers in the construction of WISs that take advantage of the archi-

tectural foundation offered by such frameworks and facilitate the publication of linked

data from such WISs.

In this paper, we review the history of the FrameWeb project in Section 2 — what

was its initial proposal and how it evolved —, describe the approach in its current (end

of 2019) form in Section 3 — what can the approach help me accomplish now — and

2 See https://nemo.inf.ufes.br/projects/frameweb/.

101

https://nemo.inf.ufes.br/projects/frameweb/

devise plans for its near future in Section 4 — what can we expect as future work in the

project. Finally, Section 5 concludes the paper with some personal notes.

2 Past: the FrameWeb Story

FrameWeb’s initial proposal [27, 28], developed between 2005 and 2007, focused on

three specific frameworks based on my previous experiences in developing Web-based

Information Systems (WISs) in practice: Struts,3 Spring4 and Hibernate.5 These frame-

works established, later, the initial set of framework categories that FrameWeb would

support:

– Front Controller frameworks (e.g., Struts): frameworks of this kind implement a

slightly modified version of the Model-View-Controller pattern [16], adapted to the

Web and are, thus, also known as MVC frameworks. When using such a framework,

a WIS manages all requests from clients using an object known as Front Controller.

Based on its configuration,6 this object decides which class (called a controller

class) will respond to the current request. Then, it instantiates an object of that

class, calls one of its methods and, based on the method’s return value, the Front

Controller decides the appropriate view to present as result, such as a Web page,

a PDF report, a file download, etc. For instance, in the Java EE set of standards,

JavaServer Faces7 is a Front Controller framework;

– Dependency Injection frameworks (e.g., Spring): frameworks of this kind allow

the developer to program to interfaces, i.e., when classes depend on objects of other

classes to perform a certain task, have the dependent class relate only to the inter-

face of its dependencies, and not to a specific implementation of that service [14].

Such dependencies are specified in the framework’s configuration and, when a cer-

tain object is created (which is also performed by the framework), all of its depen-

dencies are automatically injected and satisfied. For instance, in Java EE, Contexts

and Dependency Injection for Java8 is the standard Dependency Injection frame-

work;

– Object/Relational Mapping frameworks (e.g., Hibernate): frameworks of this

kind offer automatic and transparent persistence of objects to tables of a relational

database management system (RDBMS) using meta-data that describe the map-

ping between both worlds [6]. Such frameworks became very popular (and not

3 https://struts.apache.org
4 https://spring.io/projects/spring-framework
5 https://hibernate.org/orm/
6 Frameworks are usually configured using specific files or annotations in the classes themselves.

Often, sensible defaults help keep such configuration to a minimum.
7 JSF, http://jcp.org/en/jsr/detail?id=344. Strictly speaking, however, JSF (and the other Java EE

standards) are specifications that can be implemented by many frameworks (e.g., Mojarra and

MyFaces implement JSF). When using a Java EE certified application server, however, this is

not explicit to the developer. As such, we will refer to these standard specifications as being

frameworks themselves.
8 CDI, http://jcp.org/en/jsr/detail?id=346

102

https://struts.apache.org
https://spring.io/projects/spring-framework
https://hibernate.org/orm/
http://jcp.org/en/jsr/detail?id=344
http://jcp.org/en/jsr/detail?id=346

only on WISs) due to what has been called the object-relational impedance mis-

match [19], i.e., a set of problems that arise due to the combination of the object-

oriented paradigm (popular choice for software development) and the relational

paradigm (popular choice for data storage). For instance, the Java EE standard for

Object/Relational Mapping is the Java Persistence API.9

FrameWeb, thus, incorporates the concepts from these frameworks into design mod-

els. Initially, it started with two main contributions to the architectural design phase of

the software process: (i) the definition of a basic architecture (detailed in Section 3) for

better integration with these kinds of frameworks; and (ii) a UML profile (lightweight

extension) for the construction of four different design models that bring the concepts

used by the frameworks to the models.

Figure 1 illustrates some of the proposed extensions in a Navigation Model, which

is the FrameWeb model that incorporates concepts from Front Controller frameworks.

UML stereotypes are used to differentiate Web pages (〈〈page〉〉), templates (〈〈template〉〉,
used to render Web pages), forms (〈〈form〉〉) and controller classes (no stereotype). De-

pendency associations with constraints indicate how the different components interact

and, thus, guide the configuration of the Front Controller framework.

Fig. 1. Navigation Model for log in, log out and remind password features of a WIS [28].

This Navigation Model indicates that the index page of the WIS should have a form

frmLogin with login and password fields, whose respective types (text and password)

9 JPA, http://jcp.org/en/jsr/detail?id=338

103

http://jcp.org/en/jsr/detail?id=338

refer to visual components from the tag library used by the framework. Once the user

fills in and submits this form, the framework should respond with the AuthenticateUser-
Action controller, in particular its executeLogin() method (Struts suggested a standard

execute prefix to all controller methods). If this method returned input (presumably due

to some issue with the user input), the form template should render an error message

related to the login attempt and the user may try again. Instead, if it returns success, the

user should be directed to the home template. Log out and remind password features

work analogously. Note that when components have attributes with the same name (e.g.,

frmLogin.login and AuthetnicateUserAction.login) it means that the framework should

take care of this binding (e.g., have the contents of the login field in the form copied to

the login attribute of the controller).

FrameWeb also prescribed three other models, all of them based on the UML Class

Diagram: the Domain Model (later renamed Entity Model), the Persistence Model

and the Application Model. It also offered an extension of the method, called S-Fra-

meWeb, that prescribed the use of the Object Management Group’s (OMG) Ontology

Definition Metamodel (ODM) [1] in order to guide the creation of a vocabulary in OWL

(W3C’s Web Ontology Language)10 representing the classes from the domain model of

the WIS. Further, a component compatible with the Struts framework was implemented

in order to output instances of this vocabulary based on the data from the WIS.

The original proposal of FrameWeb provided software engineers with interesting

tools to organize and document the architecture of a WIS, giving precise instructions to

developers on how they should write the code and configure the frameworks. However,

it suffered from a few drawbacks:

(i) Its proposed models were based on specific instances of the supported framework

categories (namely, Struts, Spring and Hibernate), with no guarantees they would

fit appropriately if another set of frameworks (although from the same categories,

say JSF, CDI and JPA) were used;

(ii) Although using UML lightweight extensions provides the advantage of allowing

designers to use their UML case tool of choice, it does not prevent them from

including UML constructs in the models that were not intended by the FrameWeb

approach, or to use the ones that were intended, but in an inappropriate way;

(iii) Further, general-purpose UML tools will not validate the specific rules proposed by

the FrameWeb approach for its models, nor provide code generation support for the

kind of application that these models represent (e.g., web::index in Figure 1 would

be generated as a class, not a Web page).

(iv) Finally, the method is focused on a particular architecture for WISs and the state-of-

practice on Web development has evolved, producing different architectures (which

use different kinds of frameworks), e.g., Progressive WebApps, Single-Page Appli-

cations, the use of microservices and front-end frameworks, etc.

Using Model-Driven Development (MDD) [23] techniques, we thus formalized a

domain-specific language for FrameWeb models, whose abstract syntax is the meta-

model illustrated (at a high-level of abstraction) in Figure 2. We decided to keep the

concrete syntax the same as before, as the UML is a language that is familiar to most

10 https://www.w3.org/TR/2012/REC-owl2-overview-20121211/

104

https://www.w3.org/TR/2012/REC-owl2-overview-20121211/

software developers. Hence, our meta-model depends on a Partial UML Meta-model,

which contains the parts of UML that are used by FrameWeb. The meta-model is then

divided in five components, one for each of the proposed FrameWeb models and a

Framework Meta-model component, which allows us to specify rules and modeling

constructs that are specific to the set of frameworks with which a given WIS will be

built [21].11

Fig. 2. Overview of the meta-model that defines the FrameWeb language [20].

Next, we proposed to replace the S-FrameWeb extension with a new one we called

FrameWeb-LD. The new extension suggested the use of the higher-level, well-founded

language OntoUML [17] for ontology capture and formalization and replaced the prim-

itive linked data support that had been specifically built for the Struts framework with

the Ontology-Based Data Access (ODBA) tool D2RQ,12 which serves as a linked data

adapter layer over the relational database already in use by the WIS. FrameWeb-LD

extended the FrameWeb meta-model, providing new constructs that allow designers to

link concepts of the WIS’s domain with external linked data vocabularies, an important

step to connect one’s data to the Web of Data (or Semantic Web). Further, it provided a

tool to help developers generate the operational ontology schema and the ODBA con-

figuration [10].13

Once the FrameWeb language was defined, it became possible to build tools based

on it. Using the infrastructure provided by the Eclipse Modeling Framework (EMF) [29]

and the Sirius project [30], a first version of the FrameWeb Editor was developed. Fig-

ure 3 shows the top-level view of a FrameWeb model open in the editor. At the right-

hand side a palette provides designers only with the constructs that are allowed in the

model being edited; at the bottom, a list of properties allows one to set the attributes

11 This is the result of the work of Masters student Beatriz Franco Martins Souza.
12 http://d2rq.org/.
13 This is the result of the work of Masters student Danillo Ricardo Celino.

105

http://d2rq.org/

Fig. 3. The first version of the FrameWeb Editor [9].

of different model components; at the left-hand side, an overview of the project; in the

center, the model being edited, in this case the project overview. Double-clicking one

of the model components opens it for edition. Note how two platform-specific settings

(Java and JSF) have been imported in the project, showing how the editor supports the

extensibility of the method [9].14

Another tool built on top of the FrameWeb meta-model is the FrameWeb Code Gen-

erator. This tool reads the model created with the FrameWeb Editor and, for each ele-

ment that represents an artifact of code (e.g., controller classes and Web pages in Navi-

gation Models such as the one in Figure 1), it uses a template for that particular artifact

in the specific framework/platform of choice (e.g., a controller class in JSF), filling in

the blanks with data extracted from the model (e.g., the controller’s name, attributes,

methods, etc.) [4, 32]. After the first version of the FrameWeb Code Generator was im-

plemented and integrated with the FrameWeb Editor, both tools were converted into

Eclipse plug-ins with the purpose of integrating them with Web development projects

in this IDE. A developer can now turn on the FrameWeb facet in their regular Eclipse

14 This is the result of the work of undergraduate student Silas Louzada Campos.

106

project, design the models and have the code generated directly into the project struc-

ture.15

FrameWeb has also evolved in the direction of supporting new categories of frame-

works. A feature that is very commonly implemented in WISs using frameworks is that

of authentication & authorization, or role-based access control. To add support for Se-

curity Frameworks to FrameWeb, its meta-model was modified in order to extend its

language syntax, with modifications also implemented in the graphical editor and the

code generator. This now allows developers to specify authentication & authorization

features in architectural design models using a generic language, generating code to

their framework of choice, thanks to FrameWeb’s extensibility characteristics [24].16

The evolution of FrameWeb so far has scratched the surface regarding the aforemen-

tioned drawbacks of the method. With respect to not being generic enough (drawback

(i)), the definition of the FrameWeb language using MDD techniques has improved the

method in this sense, but further studies (discussed in Section 4) are necessary to assure

that the proposed language is, in fact, generic considering the supported categories of

frameworks. On the other hand, such language definition solves drawback (ii), as de-

velopers now have a clear specification of how to write a FrameWeb model. Related to

that, tool support (drawback (iii)) has also improved, but is an ongoing work that needs

further development and polishing (part of which probably should take place outside

Academia to guarantee a minimum level of quality required by the Industry). Finally,

FrameWeb is still very much focused on a particular architecture (drawback (iv)). The

inclusion of a new category of framework paves the way for further modification of the

method’s modeling language in order to support further kinds of frameworks and, as a

later step, different WIS architectures.

3 Present: Developing WISs with FrameWeb

In this section, we describe what can be accomplished with FrameWeb at the moment

(December 2019). Both the method and its tools are constantly being developed, thus

some of the contributions described in the previous section have yet to be incorporated

into the IDE (Integrated Development Environment).

In what follows, we first present what can already be done with the aid of Fra-

meWeb tools (Subsection 3.1), then we talk about two features that have not yet been

integrated: support for security frameworks (Subsection 3.2) and linked data publication

(Subsection 3.3).

3.1 Tool-supported WIS Development

With FrameWeb, one can design Web-based Information Systems (WISs) that fit into

the architecture shown in Figure 4. Based on the Service Layer pattern [13], this archi-

tecture divides the system in three layers: presentation, business and data access.

15 This is the result of the work of Masters student Nilber Vittorazzi de Almeida and undergrad-

uate students Breno Leite Zupeli and Lucas Ribeiro Mendes Silva.
16 This is the result of the work of Masters student Rodolfo Costa do Prado.

107

Fig. 4. FrameWeb’s supported architecture.

In the Presentation Tier, the View package holds the Web pages, stylesheets, client-

side scripts and other user interface artifacts. At the Control package, controller classes

handle the requests made by components of the View package, using the infrastructure

of the Front Controller framework, and call services offered by the Application package.

In the Business Tier, the Application package contains the classes that are respon-

sible for implementing the system’s functionalities, whose dependencies (with Con-
trol and Persistence) are wired by the Dependency Injection framework. Application
classes manipulate objects from the Domain package and persist them via the Persis-
tence package. The Domain package contains the classes that represent the problem

domain, plus annotations that guide the Object/Relational Mapping framework in per-

sisting their data.

Finally, the Data Access Tier consists solely of the Persistence package, which

contains the DAO (Data Access Object [5]) classes, responsible for the persistence, i.e.,

using the Object/Relational Mapping framework services for storing/retrieving objects

in/from the relational database. This last tier/package is optional and its responsibilities

could be merged into the Application package if desired. However, concentrating all

data access operations regarding a given domain class into a single DAO class (which

is the essence of the DAO pattern) helps with the maintainability of the code.

To develop a WIS with FrameWeb,17 we should begin by installing its tools, as

follows: first, install Java and the Eclipse IDE for Java EE Developers; then, install

Sirius through the Eclipse Marketplace that can be accessed inside the IDE; finally,

using the Install New Software feature of Eclipse and pointing it to the FrameWeb plug-

in update site, install the Code Generator and the Graphical Editor FrameWeb tools.

Once the tools are installed, we can create a regular Web project in Eclipse, using

the frameworks of our preference. In this section, we will illustrate the use of FrameWeb

17 More detailed instructions can be found in a tutorial that can be accessed through the project’s

website: https://nemo.inf.ufes.br/projects/frameweb/.

108

https://nemo.inf.ufes.br/projects/frameweb/

Fig. 5. A project in the Eclipse IDE with the FrameWeb Editor facet activated.

with a simplified conference management system,18 focusing on a single functionality,

namely: author registration. Once the project is created, we need to activate the Frame-

Web Editor facet for that project, which will result in the inclusion of a blank Frame-

Web model and configuration in that project. Switching to the Sirius perspective, those

models can be opened in the FrameWeb Editor, as demonstrated in Figure 5.

At the top-right corner of the figure we can see that the Sirius perspective is active.

At the left-hand side, the Model Explorer view shows our project’s files. The files Con-

figuration.frameweb and Model.frameweb were created when the FrameWeb facet was

activated. By expanding the latter and double-clicking the Project item in the Model

Explorer, we open the FrameWeb Editor in the center of the IDE, as shown. At the

right-hand side, the palette allows us to create the four kinds of model the method sup-

ports.

The boxes that are already in the model represent Architecture Definition Files (di-

vided in Language and Framework Definition Files) that were imported to the project

before the screenshot of Figure 5 was taken. As previously shown in Figure 2, the Fra-

meWeb language defines a Framework Meta-model component, which allows us to use,

18 We envisioned a WIS that could be used by professors of Research Methodology classes to

simulate a conference-like setting in which students could peer-review each others’ papers, like

a simplified EasyChair (https://easychair.org). We called it Oldenburg, in honor of the philoso-

pher who is seen as the ‘father’ of modern scientific peer review, according to Wikipedia.

109

https://easychair.org

in our models, elements that are specific to the chosen platform/frameworks. At the

project’s source code repository,19 we can copy a Language Definition File from the

languages folder and a set of Framework Definition Files from the frameworks folder

into our Eclipse project and the FrameWeb tools will automatically include them in the

model.

In practice, Language Definition Files include a list of primitive types and classes

from the API of the programming language of choice (e.g., Java has int, double, String,

etc.) to be used as types of attributes and parameters in different models. In turn, Frame-

work Definition Files include tags from the visual component library of choice (e.g.,

JSF component library PrimeFaces20 has dataTable, inputText, password, etc.) to be

used in Navigation Models and templates for code generation. For every combination of

frameworks we want to use, a set of files should be created and imported. For instance,

the frameworks/jbutler folder at the source code repository offers definition files for

projects that use the JButler21 utility classes together with the Java EE standards JSF,

CDI, JPA and visual component library PrimeFaces.

We now demonstrate the design of the author registration feature of our running

example. Figure 6 shows the Entity Model with the Author class and its object/relational

mappings. Most of the mapping relies on sensible default values (e.g., table names

are the same as class names, column names are the same as attribute names, column

types are inferred, etc.), but string size and date precision are explicitly specified. The

diagram does not show any ID or versioning (optimistic locking) attribute because they

are inherited from a JButler utility class.

Fig. 6. FrameWeb Entity Model for our running example.

The persistence of objects of the Author class is handled by the AuthorDAO, shown

in Figure 7. Most of the basic persistence operations (e.g., retrieve all, retrieve by id,

save, delete, etc.) are inherited from a JButler utility class, therefore are not shown. The

DAO is divided into interface and implementation, and the semantics of the FrameWeb

language states that the former should declare the signatures of all public methods of the

19 https://github.com/nemo-ufes/FrameWeb
20 http://primefaces.org
21 https://github.com/dwws-ufes/jbutler

110

https://github.com/nemo-ufes/FrameWeb
http://primefaces.org
https://github.com/dwws-ufes/jbutler

latter, allowing us to use a simplified notation for the interface. By relying on JButler

for the basic operations, the DAO only shows a method that is specific to our WIS:

retrieving an author given her e-mail, required to check if someone is registering with

an e-mail that has already been used.

Fig. 7. FrameWeb Persistence Model for our running example.

The author registration feature is represented in the Navigation Model of Figure 8.

Web pages in the core/registration/ path are used in this scenario, starting with the

index page, which contains the registrationForm with inputText and password fields

(from PrimeFaces). Once the form is submitted, the Front Controller copies the contents

of the fields to attributes of RegistrationController (note that the fields with author.
prefix are copied to internal attributes of the author object in the controller) and the

register() method is called. Depending on the outcome, the user may be presented the

success or the emailinuse pages, which require that the Front Controller bring some data

(author.name and author.email respectively) back to the view.

Finally, the Application Model shown in Figure 9 completes the architecture with

the RegistrationService which, like the DAO before, is divided in interface and im-

plementation. The RegistrationController from the Navigation model depends on this

service which, in turn, depends on the AuthorDAO to properly perform its register()
method. The Dependency Injection framework will satisfy both dependencies when

needed.

Once the models have been created, we can generate code for it. When doing it

for the first time, we should click on the FrameWeb Configuration item of our project

in the editor (as shown in Figure 5) and set a few properties, such the as Class and

Page Extensions (e.g., .java and .xhtml), the Framework Definition Path — where the

code generation templates are located — and the Src and View Paths, which is where

classes and Web pages, respectively, will be generated. After that, right-clicking any

blank space in the FrameWeb Editor and selecting Generate Source Code will create

all the classes and Web pages from our models right into the structure of our project in

Eclipse itself.

111

Fig. 8. FrameWeb Navigation Model for our running example.

Fig. 9. FrameWeb Application Model for our running example.

112

Listing 1 shows one of the templates used in our running example. Code between

{{ and }} are replaced by elements extracted from the Navigation Model. Further, {%

and %} can be used to insert control flow directives like loops and conditionals in

the template. The rest of it is standard Java code that defines a class that extends JS-
FController from JButler, is annotated with @Model to be referred to in Web pages,

has association with service classes annotated with @EJB (dependency injection anno-

tation), attributes defined with their respective accessor/mutator (get/set) methods and

the skeletons (stubs) for other methods the controller might have. The result of applying

such template to the Navigation Model of Figure 8 (plus running Organize Imports and

Format features from Eclipse) is shown in Listing 2.

We can see that, apart from comments, we only need to implement the register()
method to complete this particular artifact of code. Although further experiments are in

order, recent tests with a different set of frameworks showed that the FrameWeb Code

Generator generated between 68% and 94% of the lines of code of a simple WIS when

compared with the final solution, after manual editing [26]. We consider this a good

result in terms of cost (of modeling) vs. benefit (of less code to write).

3.2 Role-based Access Control

One recent FrameWeb extension that has not yet made its way to the Eclipse plug-

in is the support for security frameworks that implement Role-based Access Control

(RBAC). This extension of the FrameWeb language (i.e., meta-model) allows develop-

ers to specify authentication & authorization features in Entity, Application and Navi-

gation models using a generic language and generating code to a security framework of

choice.

Role-Based Access Control (RBAC) [12] is a basic model for authorization inside

an application that is founded on the separation between actors and the actions available

to them in the system. This separation is made by adding the concept of roles. In RBAC,

any permission to run an action inside the application can only be associated with a role.

Actors do not acquire permissions directly, instead they are given roles that aggregate a

collection of permissions. With this configuration, the assignment of permitted actions

to users inside a system is made with both simplicity and flexibility [24].

A Security Framework provides as reusable infrastructure a set of features con-

cerned with the security of an application, such as authentication, authorization, cryp-

tography, session management, etc. The proposed FrameWeb extension focuses on au-

thentication, i.e., certifying that a user is who she says she is; and authorization, i.e.,

verify if the user has the right to perform an action, given her authenticated credentials.

FrameWeb models can now define: (a) the domain classes that represent users, roles

and permissions; (b) aspects of the Web pages and forms that will trigger the authenti-

cation; (c) which permissions are required by each service method or entire classes, to

implement authorization.

Figure 10 shows an Entity Model that defines users (〈〈AuthUser〉〉 stereotype), roles

(〈〈AuthRole〉〉) and permissions (〈〈AuthPermission〉〉) in a generic way, i.e., they could

be used in or adapted to any WISs. For instance, to use them in Oldenburg, we could

connect User to Author or have the latter annotated with 〈〈AuthUser〉〉 instead, use the

author’s email as the 〈〈AuthUserName〉〉, and so on.

113

Listing 1. Template for a controller class.

package {{ package.Name }};

import javax.ejb.EJB;
import javax.enterprise.inject .*;
import br.ufes.inf.nemo.jbutler.ejb.controller.JSFController;

/** TODO: generated by FrameWeb. Should be documented . */
@Model
public class {{ class.Name }} extends JSFController {

/** Serialization id (using default value , change if necessary). */
private static final long serialVersionUID = 1L;

{% for association in associations %}
/** TODO: generated by FrameWeb. Should be documented . */
@EJB
private {{ association.TargetMember.Type.Name }} {{ association.

TargetMember.Type.Name | lower_first }};
{% endfor %}

{% for attribute in attributes %}
/** TODO: generated by FrameWeb. Should be documented . */
private {{ attribute.Type.Name }} {{ attribute.Name }};
{% endfor %}

{% for method in methods %}
/** TODO: generated by FrameWeb. Should be documented . */
{{ method.Visibility.Name }} {% if method.MethodType is null %}void{% else

%}{{ method.MethodType.Name }}{% endif %} {{ method.Name }}({% for
parameter in method.OwnedParameters %}{{ parameter.Type.Name }} {{
parameter.Name }}{% if loop.last == false %}, {% endif %}{% endfor %})
{

// FIXME: auto -generated method stub
return {% if method.MethodType is not null %} null{% endif %};

}
{% endfor %}

{% for attribute in attributes %}
/** Getter for {{ attribute.Name }}. */
public {{ attribute.Type.Name }} get{{ attribute.Name | capitalize }}() {

return {{ attribute.Name }};
}

/** Setter for {{ attribute.Name }}. */
public void set{{ attribute.Name | capitalize }}({{ attribute.Type.Name }}

{{ attribute.Name }}) {
this .{{ attribute.Name }} = {{ attribute.Name }};

}
{% endfor %}

}

114

Listing 2. Generated code for a controller class.

package br.ufes.informatica.oldenburg.core.controller;

import javax.ejb.EJB;
import javax.enterprise.inject.Model;

import br.ufes.inf.nemo.jbutler.ejb.controller.JSFController;
import br.ufes.informatica.oldenburg.core.application.RegistrationService;
import br.ufes.informatica.oldenburg.core.domain.Author;

/** TODO: generated by FrameWeb. Should be documented . */
@Model
public class RegistrationController extends JSFController {

/** Serialization id (using default value , change if necessary). */
private static final long serialVersionUID = 1L;

/** TODO: generated by FrameWeb. Should be documented . */
@EJB
private RegistrationService registrationService;

/** TODO: generated by FrameWeb. Should be documented . */
private Author author;

/** TODO: generated by FrameWeb. Should be documented . */
private String repeatPassword;

/** TODO: generated by FrameWeb. Should be documented . */
public String register () {

// FIXME: auto -generated method stub
return null;

}

/** Getter for author. */
public Author getAuthor () {

return author;
}

/** Setter for author. */
public void setAuthor(Author author) {

this.author = author;
}

/** Getter for repeatPassword . */
public String getRepeatPassword () {

return repeatPassword;
}

/** Setter for repeatPassword . */
public void setRepeatPassword(String repeatPassword) {

this.repeatPassword = repeatPassword;
}

}

115

Fig. 10. FrameWeb Entity Model with RBAC features [24].

116

Figure 11 shows a Navigation Model that specifies how authentication will be im-

plemented. The model represents the login page (〈〈authPage〉〉 stereotype), the form

with fields for user credentials (〈〈authForm〉〉), as well as processing (〈〈AuthMeth-
od〉〉), success (〈〈AuthSuccessUrl〉〉) and failure (〈〈AuthFailureUrl〉〉) URLs. This in-

formation will guide the security framework in performing authentication. Note that

the processing URL actually refers to a method of the controller class so the security

framework will use the URL that activates this method as the processing URL.

Fig. 11. FrameWeb Navigation Model with RBAC features [24].

Finally, Figure 12 shows an Application Model with authorization settings. Permis-

sions are expressed using UML constraints as concrete syntax. Service class Person-
ServiceImp requires a permission named PERM PERSON to be accessed. Service meth-

ods delete() and update() further require permissions named PERM PERSON DEL
and PERM PERSON UP, respectively.

The RBAC extension for the FrameWeb method has been implemented, not only

regarding the modifications in the meta-model but also with respect to tool support.

Therefore, we can produce the models with security features using the FrameWeb Ed-

itor, as demonstrated by figures 10–12, and generate code with the FrameWeb Code

Generator, as shown in [24]. However, this has been implemented on a separate code

base,22 and, thus, needs to be carefully merged into the code of the FrameWeb Eclipse

plug-ins.

22 https://github.com/Rodolfocostapr/Experimento-Frameweb-Sec

117

https://github.com/Rodolfocostapr/Experimento-Frameweb-Sec

Fig. 12. FrameWeb Application Model with RBAC features [24].

3.3 Linked Data Support

Another extension of the FrameWeb language/meta-model that has not yet been incor-

porated into the FrameWeb tools is FrameWeb-LD [10]. Such extension allows devel-

opers to specify how the data from the WIS relates to well-known vocabularies from

the Semantic Web, with the purpose of integrating them into the Web of Data [18].

Figure 13 shows an example of Entity Model with linked data mappings added to the

domain classes.

The figure illustrates a system that manages researchers from a postgraduate pro-

gram and their publications in order to produce reports on their research productiv-

ity. Although not shown in the diagram, vocabulary identifiers (IDs) are associated to

their respective URIs, e.g., foaf is associated with http://xmlns.com/foaf/0.1/ (Friend of

a Friend vocabulary) and dblp with http://dblp.rkbexplorer.com/id/ (DBLP Computer

Science Bibliography dataset).

Then, concepts from external vocabularies are shown using their vocabulary IDs as

UML namespace (e.g., foaf::Person). They can be related to classes from the WIS via

UML associations, navigable towards the external class, representing an RDF triple: the

class from the WIS is the subject, the external one is the object and the predicate is spec-

ified as a constraint. In the example, Researcher is owl:equivalentClass to dblp:Person.

As a syntactic sugar, the rdfs:subClassOf relation between a class from the WIS and

one from an external vocabulary can be represented by a UML inheritance association.

In the example, Researcher is rdfs:subClassOf foaf:Person.

Triples concerning attributes of classes are represented using constraints in the

form predicate=object. In the example, Researcher.name is owl:equivalentProperty
to dblp:primaryFullPersonName. Constraints in associations between classes from our

WIS establish relations among object properties (in the same way constraints in at-

tributes establish relations among data type properties). In the example, the association

between Publication and Venue is rdfs:subPropertyOf dblp:publicationType. Last, but

118

http://xmlns.com/foaf/0.1/
http://dblp.rkbexplorer.com/id/

Fig. 13. FrameWeb-LD Entity Model with linked data mappings [10].

not least, data from all classes are to be published as linked data, unless the 〈〈ld-ignore〉〉
stereotype is used (either to exclude specific attributes or entire classes). In the example,

the User class is excluded from the linked data set to be published.

Once all the mappings have been included in the Entity Model, tool support23 can

aid developers in producing code for an Ontology-based Data Access (ODBA) solution

such as D2RQ, which creates a layer on top of the relational database and offers triple-

store features (derreferenceable URIs for navigation, a SPARQL endpoint for querying,

etc.) based on a semi-automatic conversion from the database schema to RDF. List-

ings 3 and 4 show excerpts from the OWL operational ontology and D2RQ mapping

generated by FrameWeb-LD’s tool support. Some of the mappings of Figure 13 can be

identified in these generated artifacts.

23 The tool is called ReMaT and is available in a stale branch in FrameWeb’s source code repos-

itory: https://github.com/nemo-ufes/FrameWeb/tree/breno/

119

https://github.com/nemo-ufes/FrameWeb/tree/breno/

Listing 3. Excerpt from operational ontology in OWL generated by FrameWeb-LD’s tool sup-

port [10].

<owl:Class rdf:about="http://dev.nemo.inf.ufes.br/owl/c2d.owl#Publication">
<rdfs:label rdf:datatype="http://www.w3.org /2001/ XMLSchema#string">

Publication </rdfs:label >
<rdfs:subClassOf rdf:resource="http://dblp.uni -trier.de/rdf/schema

-2015 -01 -26# Publication"/>
</owl:Class >
<owl:Class rdf:about="http://dev.nemo.inf.ufes.br/owl/c2d.owl#Venue">

<rdfs:label rdf:datatype="http://www.w3.org /2001/ XMLSchema#string">Venue</
rdfs:label >

<rdfs:subClassOf rdf:resource="http://xmlns.com/foaf /0.1/ Organization"/>
<rdfs:subClassOf rdf:resource="http://dblp.uni -trier.de/rdf/schema

-2015 -01 -26# PublicationType"/>
</owl:Class >
<owl:ObjectProperty rdf:about="http://dev.nemo.inf.ufes.br/owl/c2d.owl#

isPublishedIn">
<rdfs:label rdf:datatype="http://www.w3.org /2001/ XMLSchema#string">

isPublishedIn </rdfs:label >
<rdfs:domain rdf:resource="http://dev.nemo.inf.ufes.br/owl/c2d.owl#

Publication"/>
<rdfs:range rdf:resource="http://dev.nemo.inf.ufes.br/owl/c2d.owl#Venue"/>
<rdfs:subPropertyOf rdf:resource="http://dblp.uni -trier.de/rdf/schema

-2015 -01 -26# publicationType"/>
</owl:ObjectProperty >

Listing 4. Excerpt from the relational-to-RDF mapping file generated by D2RQ and FrameWeb-

LD’s tool support [10].

@prefix c2d: <http ://dev.nemo.inf.ufes.br/owl/c2d.owl#>

Table Researcher
map:Researcher a d2rq:ClassMap;

d2rq:dataStorage map:database;
d2rq:class c2d:Researcher;
d2rq:classDefinitionLabel "Researcher ";
rdfs:subClassOf foaf:Person;
owl:equivalentClass dblp:Person;
.

map:Researcher_name a d2rq:PropertyBridge;
d2rq:belongsToClassMap map:Researcher;
d2rq:property vocab:Researcher_name;
d2rq:propertyDefinitionLabel "Researcher name";
owl:equivalentProperty dblp:primaryFullPersonName;
d2rq:column "Researcher.name";
.

4 Future: where is FrameWeb Going?

FrameWeb is an ongoing research project with undergraduate and graduate students

working on different aspects of the proposal. In the previous sections of this paper, we

have already mentioned limitations of the approach that need to be addressed in future

work. Section 3, for instance, mentioned the support for security frameworks and linked

data not being incorporated into the FrameWeb Eclipse plug-in, which is on our short-

term plans for the future.

Section 2 discussed drawbacks that have motivated recent proposals for the evolu-

tion of FrameWeb: (i) the language not being generic enough; (ii) not having a precise

language specification; (iii) lack of tool support; and (iv) being tailored to a specific

120

architecture and particular framework categories. As discussed, the evolution of Frame-

Web only partially addresses these challenges and, thus, there are many opportunities

for future work to be taken from these limitations.

Regarding the FrameWeb language generality and its precise specification, the

definition of the meta-model and the application of the method in other platforms and

with different frameworks have contributed towards these aspects. However, to properly

understand each category of framework supported by the method, a more systematic

study of the different frameworks of each category is required.

As such, we intend to build ontologies for each supported category, using an ontol-

ogy engineering approach to try and make sure such reference model properly repre-

sents a consensus among the mostly used frameworks. Then, the FrameWeb meta-model

can be reviewed and adjusted based on the ontology, possibly leading to changes in the

FrameWeb language.

This is an ongoing effort, conducted under a separate research project that aims

at building a Software Frameworks Ontology Network (SFWON).24 The network al-

ready includes the Object/Relational Mapping Ontology (ORM-O) [31], which was

built based on the Relational Database System Ontology (RDBS-O) [2] and the Object-

Oriented Code Ontology (OOC-O) [3], both part of SFWON.

Regarding the lack of tool support, the development of the FrameWeb Editor and

the FrameWeb Code Generator is an ongoing effort, with many ideas for new develop-

ments, for instance:

– The use of the FrameWeb tools in the context of Web Development and Semantic

Web courses offered in our university have identified bugs and improvements in

the tools’ usability, reliability, etc.25 that need to be fixed so the tools can be put to

further use and test;

– The editor currently has no support for the creation of Architecture Definition Files,

making it harder for organizations/developers to include support for their platfor-

m/frameworks of choice in FrameWeb;

– Being based on the Eclipse IDE, the tools integrate best with projects for program-

ming languages and platforms that are supported by this IDE and its plug-ins. Sup-

port for different development environments could be offered;

– Modern Rapid Application Development tools (e.g., JHipster26) automatically gen-

erate considerably more code, especially regarding basic Create, Retrieve, Update

and Delete (CRUD) functionalities. These tools, however, are not as extensible (i.e.,

able to support different frameworks) as FrameWeb, but our tools need support for

easier generation of CRUD features and other artifacts that are common to WISs;

– Currently, code generation works only in one direction, thus generating code again

overwrites any changes that might have been manually performed in previously

generated files. Support for preserving manual changes or even more advanced

reverse engineering features could be added.

24 https://nemo.inf.ufes.br/projects/sfwon/
25 https://github.com/nemo-ufes/FrameWeb/issues
26 https://www.jhipster.tech

121

https://nemo.inf.ufes.br/projects/sfwon/
https://github.com/nemo-ufes/FrameWeb/issues
https://www.jhipster.tech

Regarding FrameWeb’s supported architecture and framework categories fur-

ther efforts similar to the one presented in Section 3.2 to include support for new cat-

egories of frameworks are in order. Such efforts could include the definition of an on-

tology for the new category of frameworks or postpone the creation of the ontology as

a later step (e.g., the support for security frameworks was proposed based on the most

used frameworks in the Java platform [24]). As new types of frameworks are included

in the method, new architectures can also be proposed.

Finally, we need to perform more extensive and systematic experiments in order to

evaluate FrameWeb in all of its aspects. Although each proposal conducted their own

validation through proofs of concept and small experiments, we do not yet have properly

evaluated the entire FrameWeb proposal in terms of its usefulness, ease of use, efficacy,

etc.

With the FrameWeb project, I intend to continue to honor professor Ricardo de

Almeida Falbo by carrying on a research agenda that he helped create — more ac-

curately put, would not exist without him — for many years to come. Hopefully, this

project will continue to contribute to the qualification of students involved in it, a legacy

that Falbo should be proud of.

5 Personal Notes

I met Ricardo as my professor of Requirements Engineering during an undergraduate

course in Computer Science at UFES in 2002, the year in which he also became my

advisor on a “Scientific Initiation” (undergraduate research scholarship) project. He

also supervised my (research-oriented) undergraduate final project in 2004 and accepted

me as a Masters student in 2005, continuing to supervise me until 2007. After my

PhD abroad, I came back to Brazil and became a professor at the Computer Science

Department of UFES in 2013, thus Falbo became my colleague until his retirement in

2019. I am proud to say that during this entire time Ricardo has been, and continues to

be, a great friend.

The topic of this paper, the FrameWeb method, was born during my Masters course,

under the supervision of Falbo [27]. However, the topic of Web Engineering was not

connected to my previous undergraduate research projects under his supervision, nor

was it one of the particular areas that Ricardo was focusing his research. Instead, it was

motivated by my previous experiences in software development projects for the Web

and Falbo decided to accept it as the research topic of one of his supervised Masters

students. As a professor now myself, I see how altruistic this gesture was at the time

and it is fair to say that this contributed to the researcher I came to be, which I think

was Ricardo’s intention all along (but we will have to ask him).

Professor Ricardo, thank you for all that you have done for me. You are in great

part responsible for (as modest as they may be) my academic accomplishments. You

are definitely one of my role models and I hope (and work hard) to be to my supervised

students as good an advisor as you were to me. Congratulations on a successful career

of inspiring people like me.

122

References

1. OMG: Ontology Definition Metamodel (ODM) Specification, v. 1.1 (formal/14-09-02), http:

//www.omg.org/spec/ODM/1.1/ (2014)

2. de Aguiar, C.Z., Falbo, R.A., Souza, V.E.S.: Ontological Representation of Relational

Databases. In: Proc. of the 11th Seminar on Ontology Research in Brazil (ONTOBRAS

2018). pp. 140–151. CEUR, São Paulo, SP, Brazil (2018)

3. de Aguiar, C.Z., Falbo, R.d.A., Souza, V.E.S.: OOC-O: A Reference Ontology on Object-

Oriented Code. In: Proc. of the 38th International Conference on Conceptual Modeling (ER

2019). pp. 13–27. Springer, Salvador, BA, Brazil (2019)

4. de Almeida, N.V., Campos, S.L., Souza, V.E.S.: A Model-Driven Approach for Code Gen-

eration forWeb-based Information Systems Built with Frameworks. In: Proc. of the 23rd

Brazilian Symposium on Multimedia and the Web (WebMedia 2017). pp. 245–252. ACM,

Gramado, RS, Brazil (oct 2017)

5. Alur, D., Crupi, J., Malks, D.: Core J2EE Patterns: Best Practices and Design Strategies.

Prentice Hall / Sun Microsystems Press, 2nd edn. (2003)

6. Bauer, C., King, G.: Hibernate in Action. Manning, 1 edn. (2004)

7. Berners-Lee, T.: Linked Data - Design Issues,http://www.w3.org/DesignIssues/LinkedData.

html (last access: May 7th, 2015) (2006)

8. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284(5),

34–43 (2001)

9. Campos, S.L., Souza, V.E.S.: FrameWeb Editor: Uma Ferramenta CASE para suporte ao

Método FrameWeb. In: Anais do 16o Workshop de Ferramentas e Aplicações, 23o Simpósio

Brasileiro de Sistemas Multimedia e Web (WFA/WebMedia 2017). pp. 199–203. SBC, Gra-

mado, RS, Brazil (oct 2017)

10. Celino, D.R., Reis, L.V., Martins, B.F., Souza, V.E.S.: A Framework-based Approach for the

Integration of Web-based Information Systems on the Semantic Web. In: Proc. of the 22nd

Brazilian Symposium on Multimedia and the Web. pp. 231–238. ACM (nov 2016)

11. DeMichiel, L., Shannon, B.: JSR 342: Java(TM) Platform, Enterprise Edition 7 (Java EE 7)

Specification, https://jcp.org/en/jsr/detail?id=342 (last access: April 29th, 2015) (2013)

12. Ferraiolo, D., Cugini, J., Kuhn, D.R.: Role-based access control (RBAC): Features and mo-

tivations. In: Proc. of 11th Annual Computer Security Application Conference. pp. 241–248

(1995)

13. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley, 1 edn. (2002)

14. Fowler, M.: Inversion of Control Containers and the Dependency Injection pattern,

http://www.martinfowler.com/articles/injection.html (last access: September 29th, 2016)

(2004)

15. Frakes, W.B., Kang, K.: Software reuse research: Status and future. IEEE Transactions on

Software Engineering 31(7), 529–536 (2005)

16. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: No TitleDesign Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1 edn. (1994)

17. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. Phd thesis, Uni-

versity of Twente, The Netherlands (2005)

18. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space. Synthesis

Lectures on the Semantic Web: Theory and Technology, Morgan & Claypool Publishers, 1

edn. (2011)

19. Ireland, C., Bowers, D., Newton, M., Waugh, K.: A classification of object-relational

impedance mismatch. In: 2009 First International Conference on Advances in Databases,

Knowledge, and Data Applications. pp. 36–43. IEEE (2009)

123

http://www.omg.org/spec/ODM/1.1/
http://www.w3.org/DesignIssues/LinkedData
https://jcp.org/en/jsr/detail?id=342
http://www.martinfowler.com/articles/injection.html

20. Martins, B.F.: Uma abordagem dirigida a modelos para o projeto de Sistemas de Informação

Web com base no método FrameWeb. Ph.D. thesis, Dissertação de Mestrado, Universidade

Federal do Espı́rito Santo (2016)

21. Martins, B.F., Souza, V.E.S.: A Model-Driven Approach for the Design of Web Information

Systems based on Frameworks. In: Proc. of the 21st Brazilian Symposium on Multimedia

and the Web. pp. 41–48. ACM (2015)

22. Murugesan, S., Deshpande, Y., Hansen, S., Ginige, A.: Web Engineering: a New Discipline

for Development of Web-Based Systems. In: Murugesan, S., Deshpande, Y. (eds.) Web En-

gineering - Managing Diversity and Complexity of Web Application Development, chap. 1,

pp. 3–13. Springer (2001)

23. Pastor, O., España, S., Panach, J.I., Aquino, N.: Model-driven development. Informatik-

Spektrum 31(5), 394–407 (2008)

24. do Prado, R.C., Souza, V.E.S.: Securing FrameWeb: Supporting Role-based Access Control

in a Framework-based Design Method for Web Engineering. In: Proc. of the 24th Brazilian

Symposium on Multimedia and the Web (WebMedia ’18). pp. 213–220. ACM, Salvador,

BA, Brazil (2018)

25. Schmidt, D., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software Architecture,

Patterns for Concurrent and Networked Objects. Wiley (2013)

26. Silva, L.R.M.: Integração do Editor de Modelos de FrameWeb à IDE Eclipse. Tech. rep.,

Relatório Final de Pesquisa, Programa Institucional de Iniciação Cientı́fica, Universidade

Federal do Espı́rito Santo (2019)

27. Souza, V.E.S.: FrameWeb: um Método baseado em Frameworks para o Projeto de Sistemas

de Informação Web. Tech. rep., Universidade Federal do Espı́rito Santo (2007)

28. Souza, V.E.S., Falbo, R.A., Guizzardi, G.: Designing Web Information Systems for a

Framework-based Construction. In: Halpin, T., Proper, E., Krogstie, J. (eds.) Innovations

in Information Systems Modeling: Methods and Best Practices, chap. 11, pp. 203–237. IGI

Global, 1 edn. (2009)

29. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF - Eclipse Modeling Framework.

Addison-Wesley, 2nd editio edn. (2008)

30. Viyovic, V., Maksimovic, M., Perisic, B.: Sirius: A rapid development of DSM graphical

editor. In: Intelligent Engineering Systems (INES), 2014 18th International Conference on.

pp. 233–238. IEEE (2014)

31. Zanetti, F.L., de Aguiar, C.Z., Souza, V.E.S.: Representação Ontológica de Frameworks de

Mapeamento Objeto/Relacional. In: Proc. of the 12th Seminar on Ontology Research in

Brazil (ONTOBRAS 2019). CEUR, Porto Alegre, RS, Brasil (2019)

32. Zupeli, B.L., Souza, V.E.S.: Integração de um Gerador de Código ao FrameWeb Editor. In:

Anais Estendidos do 24o Simpósio Brasileiro de Sistemas Multimedia e Web - Workshop de

Ferramentas e Aplicações (WFA/WebMedia 2018). pp. 109–113. SBC, Salvador, BA, Brazil

(2018)

124

	The FrameWeb Approach to Web Engineering

