Source Code Interoperability based on Ontology

Camila Zacché de Aguiar
Federal University of Espirito Santo
Vitoria, Brazil
camila.zacche.aguiar@gmail.com

ABSTRACT

The different ways of representing a source code in different pro-
gramming languages create a heterogeneous context. In addition,
the use of multiple programming languages in a single source code
(polyglot programming) brings a wide choice of terms from dif-
ferent languages, libraries and structures. These facts prevent the
direct exchange of information between source codes of different
programming languages, requiring specialized knowledge of the
programming languages involved. In this article, we present an
ontology-based method for source code interoperability that pro-
vides an alternative to mitigate heterogeneity problems, aiming
to semantically represent the source code written in different pro-
gramming languages and apply it from different perspectives in
a unified way. In this sense, the method is applied in a lab experi-
ment with the objective of validating its methodological aspects,
instantiating their respective phases in different subdomains (object
orientation and object/relational mapping) and programming lan-
guages (Java and Python) in the code smells detection perspective.
In addition, the code smell detector produced is evaluated with a
set of real-world software projects written in Java and Python.
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1 INTRODUCTION

The different ways of representing a source code in different pro-
gramming languages create a context of heterogeneity. Based on
this concept [14], we define two different types of heterogeneity
in source code: syntactic heterogeneity, when different syntaxes
are attributed to corresponding concepts — for example, both Eif-
fel’s frozen syntax and the C++ final syntax correspond to a non-
extensible class in both programming languages — and semantic
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heterogeneity, when corresponding concepts have different interpre-
tations — for example, the concept of private visibility is interpreted
in Java as a restriction of access to members of a certain class by
members of external classes, while interpreted in C++, additionally,
as a restriction of access to members of a class inherited by its
subclasses.

This scenario is part of the daily life of software developers who
work with different programming languages in the coding of several
source codes or even with multiple programming languages in a
single source code. Hence, they need adequate tools to support the
differences in these programming languages. With the semantic
interoperability of the source code, the tools can operate under a
single and shared semantic abstraction layer, contributing to the
application of standardized functionalities, reuse, evolution and
expansion to different programming languages.

To achieve semantic interoperability, heterogeneity must be elim-
inated, adopting solutions capable of guaranteeing uniform inter-
pretations. This can be obtained with the support of ontologies
built from formal methods and theories in order to clarify concepts
and articulate their representations [8]. In this context, ontologies
can be a consistent representation of the real world within a con-
text, according to the interpretation of reality. Thus, source codes
written in programming languages that share a common consistent
commitment can significantly interoperate with each other.

In the context of this article, an ontology is an explicit and formal
specification of a shared conceptualization [15], understanding ex-
plicit as being clear and well-defined; formal as computer readable;
conceptualization as an abstract model of the real world according
to a purpose; and shared as being based on consensual knowledge
of a community on a domain. When referencing ontology of the
source code, we are talking about the ontological commitments as-
sumed in a consensual way from different programming languages
in order to define concepts of this domain.

An ontology should be built according to a method that supports
the development of Reference Ontologies — when the main goal is to
represent knowledge mainly for human consumption, preserving
the clarity and precision of the semantic nature of the entities and
their interrelationships in the domain — and Operational Ontologies
— when the main goal is to ensure computational properties in
machine-readable model artifacts. An operational ontology written
in the Web Ontology Language (OWL)! or the Resource Description
Framework (RDF)? can formally describe the semantics of a domain
through classes, properties and relations, allowing expressiveness,
flexibility representing data as triples (subject-predicate-object) and
efficiency in supporting reasoning and inference. Thus, although
the source code is commonly represented in the syntactic structure
of the language grammar, a semantic representation allows for

https://www.w3.0rg/OWL.
2https://www.w3.0rg/RDF.
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new insights, brings a greater understanding of its concepts and
relationships and mainly independence of the individual structure
of the programming language.

In this paper, we present the OSCIN (Ontology-based Source
Code Interoperability) method that aims to semantically represent
the source code written in different programming languages and
apply it from different perspectives in a unified way. Combining
a syntactic analysis of the involved programming languages with
an ontological representation of the subdomain, the application
perspective from that particular subdomain can be applied in source
code files of any of the selected programming languages, instanti-
ated for the ontology from the source code.

The method is applied in a lab experiment in order to validate its
methodological aspects, instantiating their respective phases for the
detection of code smell in three different scenarios: object-oriented
code in Java, object-oriented code in Python and object/relational
mapping code in JPA/Java. Therefore, different subdomains (ob-
ject orientation and object/relational mapping) and programming
languages (Java and Python) in the code smells perspective are
addressed. In addition, the produced code smell detector is evalu-
ated with a set of real-world software projects written in Java and
Python.

The rest of the paper is organized as follows: Section 2 describes
the proposed method, illustrating it with a running example. Sec-
tion 3 reports on lab experiments in which we applied the method
ourselves under a few different contexts. An evaluation of the
method using real-world software projects and the threats to va-
lidity of our experiments are then discussed in sections 4 and 5,
respectively. In Section 6, related works are briefly reviewed. Finally,
Section 7 concludes the paper.

2 THE OSCIN METHOD

In this section we present OSCIN — Ontology-based Source Code
Interoperability, a method which is able to semantically represent
source code written in different programming languages and apply
it from different perspectives in a unified way.

Figure 1 shows an overview of the method. It starts with the
Specification Phase, when three aspects that define the context in
which the method is to be applied are identified. The subdomain
indicates the portion of the more general domain of source code
in which we are interested, e.g., object-oriented (OO) code, code
that uses object/relational mapping (ORM), presentation code in
Android apps, etc. The programming language identified in this
phase is the one we intend to analyze, e.g., OO code in Java, ORM
code in Python, Android presentation code in Kotlin, and so on.
Finally, the application perspective tells us which type of appli-
cation will be performed. In this paper, we focus in the detection of
code smells, but other perspectives can be applied, such as source
code measurement, model verification, etc.

In the Subdomain Semantic Abstraction Phase, the conceptual-
izations of the identified subdomain are represented in a semantic
model, i.e., an ontology. In the Language Syntactic Abstraction
Phase, a syntactic analyzer of the identified programming lan-
guage is produced, i.e., a program that can read code in the language
and produce a syntactic structure based on the language grammar
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Figure 1: Overview of the OSCIN method.

rules. In the Language Semantic Abstraction Phase, a semantic an-
alyzer for the language and subdomain is produced, i.e., a program
that creates instances of the subdomain’s ontology from the lan-
guage’s syntactic structure. In the Application Perspective Phase, a
perspective solution for the selected perspective and subdomain
is built, i.e., a program that can perform the intended perspective
(e.g., code smell detection) based on the ontology instances pro-
duced by the semantic analyzer.

Once the method has been fully executed once, it supports the
evolution and inclusion of new subdomains, programming lan-
guages and perspectives. For instance, if a code smell detector for
OO code in Java has been produced using OSCIN, to build one for
Python we can reuse the ontology and the application and only need
to produce new syntactic and semantic analyzers. Analogously, if
we now wanted a smell detector for ORM code in Java, we could
reuse the Java syntactic analyzer but we would need a new ontol-
ogy and new semantic and code analyzers. In that sense, entire
phases can be skipped if the artifact to be produced already exists.
The following subsections describe OSCIN phases in more detail.
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To illustrate the method, we present a running example in which
developers want to detect code smells in the presentation layer of
Android apps [1].

2.1 Specification Phase

This phase aims to identify the characteristics that will be con-
sidered for the source code interoperability, that is, subdomain,
programming language and analysis perspective.

The software engineer extracts information from the stakehold-
ers about the subdomain, programming language and application
perspective to be covered in the method. For instance, code written
in an object-oriented fashion should be analyzed quite differently
than one written using functional programming, the same goes for
Web applications vs. standalone software, code that uses object/re-
lational mapping or not, and so on. Such context must be clearly
identified to guide the semantic representation of the source code
and its code analysis.

This phase produces as output a Specification Document indicat-
ing the chosen subdomain, programming language and perspective.
In our running example, the subdomain of code for the presenta-
tion layer of Android apps would be specified, together with Kotlin
as the language and code smell as the perspective.

2.2 Subdomain Semantic Abstraction Phase

This phase aims to represent a subdomain in an abstraction of
semantic resources, in the form of an ontology. Therefore, this
phase deals with existing conceptual differences between differ-
ent programming languages. In this case, it is possible to observe:
(i) different languages with identical tokens and meanings, such
as the class token adopted by both Java and C++ to represent an
abstract data type; (ii) different languages with identical tokens and
different meanings, such as the private token, adopted in Java to
represent that a member is accessible only in the class itself, and
adopted in C++ to also represent private inheritance; and (iii) differ-
ent languages with different tokens and identical meanings, such
as the frozen and final tokens adopted by C++ and Java to repre-
sent a non-extensible class. Note that this phase produces a single
common artifact for the representation of the previously identi-
fied subdomain, i.e., the subdomain represented in the ontology is
unique and independent of the programming language.

The ontology engineer, assisted by the domain expert, identifies
the relevant programming languages to be considered in the devel-
opment of the ontology of the selected subdomain. The suggestion
is to identify the programming languages for the subdomain of
interest according to the following guidelines: (i) Relevance, search
for programming languages by creation date and, from that list,
consider which of the languages were relevant to introduce this sub-
domain in the programming community; and (ii) Popularity, search
for programming languages in at least two indexes (adoption rank-
ings) of the programming community. From this list, calculate the
average of the programming languages according to these indexes
and identify which of the ranked languages address this subdomain.

Following, the ontology engineer extracts knowledge of the sub-
domain from the domain expert and from the relevant programming
languages for the subdomain, representing it in a reference ontol-
ogy and an operational ontology. The knowledge of the subdomain
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must be extracted from the languages defined so that the concepts
represented in the ontology reflect the consensus reached between
these languages, validated by the domain expert and following an
ontology engineering method. Therefore, the ontology should not
represent specific properties of a single language or even of the cho-
sen perspective, but the shared conceptualization of the subdomain.
Later, code analysis is performed by querying the ontology.

The quality and coverage of the ontology are key features for
the quality of the application of the perspective. For this reason, it
is highly recommended that the ontology is supported by a foun-
dational ontology, to adopt an ontology engineering method that
covers from reference to operational ontologies and provide se-
mantic rules to support information inference. Further, the reuse of
concepts already established in existing ontologies is encouraged
and can bring advantages related to the maturity of the ontology
and the time devoted to the application of the method. On one hand,
the reference ontology must be expressive and accurately represent
the subdomain, on the other hand, the operational ontology must
consider the performance of reasoning and inference.

This phase consumes as input the subdomain identified in the
Specification Phase (cf. Section 2.1) and produces as output refer-
ence and operational ontologies for that subdomain. In our run-
ning example, an ontology on the presentation layer of Android
apps would be developed, preferably reusing ontologies about the
Android platform in general and about object-oriented code. The
reference ontology could be an OntoUML [7] model and its specifi-
cation document, whereas the operational ontology would be an
OWL file based on the reference model.

2.3 Language Syntactic Abstraction Phase

This phase aims to represent source code written in the program-
ming language into an abstraction of syntactic features, i.e., one
that considers the structure and shape of the source code. Exist-
ing parsers could be reused (and we suggest they are), but even in
this case the Study Language activity remains necessary, since this
knowledge will be used in the next phase.

The software engineer understands the syntactic structure of
the programming language, i.e., its tokens and grammar. Since the
definition of tokens and grammar results from the language itself,
we suggest that this phase be carried out from the documentation
of the language as well as its specification.

Following, the software engineer reuses or implements a syn-
tactic analyser for the programming language. Such analyzer is
basically a parser (from a compiler), able to map the characters of a
source code in the language to the set of tokens of that language
and then map to the grammar of that language in order to build its
syntactic structure, e.g., an abstract syntax tree (AST). We highly
recommend using an available parser, but the software engineer
could decide to build a syntactic analyzer from scratch.

This phase consumes as input the programming language iden-
tified in the Specification Phase (cf. Section 2.1) and produces as
output the syntactic analyzer of the language, which can later be
used to analyze any source code written in this language. In our
running example, ANTLR? would be used to generate a parser
based on the existing Kotlin grammar.

3https://www.antlr.org/
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2.4 Language Semantic Abstraction Phase

This phase aims to represent the source code into an abstraction
of semantic features, i.e., one that considers the meaning of the
source code. Although the previous phase allows us to know the
elements that make up a source code, it does not explain the role
these elements play in the code. For example, the private operand
in Java is represented by the classModifier operator in the syntactic
abstraction phase but that does not mean that the role of that
operator is to modify the visibility of a class. Although the name of
the operator is suggestive, it only tells us that it is a leaf node of
the classModifier node in the AST.

Therefore, this phase intends to assign semantics to the elements
of a programming language, noting that a token can represent, in
a given programming language: (i) a single, independent mean-
ing of grammar, e.g., the class token that represents an abstract
data type in the Java language; or (ii) different meanings depend-
ing on the grammar, e.g., the final token which can represent
a non-extensible class, a non-overridable method or a constant
(non-modifiable variable) in Java, depending on where it is used.

The software engineer maps the syntax of a programming lan-
guage to the meaning of the subdomain, in order to assign semantics
to the source code. This mapping is carried out in a conceptual way
linking the concepts defined in the ontology developed in the Subdo-
main Semantic Abstraction phase with symbols of the programming
language identified in the Language Syntactic Abstraction phase.
Note that: (i) not all symbols of the programming language will be
mapped to the ontology and may correspond to exactly one, several
or no semantic concepts of the ontology; and (ii) not all concepts of
the ontology will be mapped to the programming language and may
correspond to exactly one, several or no symbols of the language.

The software engineer implements the semantic analyzer for
the programming language mapped, i.e., a program that is able to
produce instances of the operational ontology from source code
files written in that language. Typically, visitor methods are used to
walk the AST looking for the syntactic structure that corresponds
to the concept of the ontology. Then, one must implement the
instantiation process of the ontology.

This phase consumes as input the reference ontology elabo-
rated in the Subdomain Semantic Abstraction phase (cf. Section 2.2)
and the grammar from the Language Syntactic Abstraction phase
(cf. Section 2.3) and produces as output a semantic analyser of
this language, which can be used later to analyze any source code
written in that language for the given subdomain. In our running
example, a spreadsheet would map language tokens to ontology
concepts and visitor methods for the Kotlin parser generated with
ANTLR would be implemented in order to produce RDF triples
with instances of the operational ontology (i.e., an OWL file).

2.5 Application Perspective Phase

This phase aims to implement an application that, according to
the semantic representation of the subdomain (i.e., the ontology),
reads code in the chosen programming language and provides an
application according to the perspective. In our case, a code smells
detector.

The software engineer, assisted by the ontology engineer, formal-
izes the characteristics of the perspective, following the definition
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established in the Specification Phase. Each perspective has its own
application in the method, being able to consider different points
of the source code in different ways. For instance, for the bad smell
perspective, one can formalize smells in the form of a semantic
query, that is, queries elaborated on the terms of the subdomain
ontology in a query language applicable on the operational ontol-
ogy. In addition, for the formalization of each smell, it is suggested
to use rules already established in the literature, if available. Since
most of these rules are not based on an ontology, this activity may
require adaptations or construction of new rules.

Following, the software engineer implements the application in
order to identify the instances of that ontology that correspond
to the perspective. Therefore, a single ontology is used to identify
different perspectives of the code and a single implementation is
used to identify the same perspective in different programming
languages. Since the formalization is represented from the ontol-
ogy, it is easily customized, updated and it is independent of the
programming language. On the other hand, the knowledge of the
subdomain ontology is indispensable to deal with the perspective.

This phase consumes as input the operational ontology of the
subdomain built in the Subdomain Semantic Abstraction phase (cf.
Section 2.2) and the perspective identified in the Specification Phase
(cf. Section 2.1) and produces as output the application, which can
be used later to any source code in the specified context (subdomain,
programming language, perspective). In our running example,
some sort of OWL API would be used to implement a program
that reads Kotlin files using the parser, produces instances of the
operational ontology and runs the queries over such instances,
identifying which points in the code present any of the specified
smells.

3 APPLYING THE OSCIN METHOD

To assess the methodological aspects of OSCIN, we performed a
laboratory experiment for detecting code smells in three different
scenarios, involving three researchers as domain experts, two of
whom play the role of software engineer and ontology engineer
and one of them of stakeholder: object-oriented code in Java, object-
oriented code in Python and object/relational mapping code in
JPA/Java. The experiment, thus, addresses different subdomains
(object orientation, object/relational mapping) and programming
languages (Java, Python) in the code smells perspective.

The following subsections report on each scenario. All the arti-
facts produced during the application of OSCIN are available at the
project website.

3.1 Object Orientation smells in Java

In the Specification Phase, the software engineer interviewed the
stakeholders and specified the subdomain of Object Orientation
(O0) — defined as “a software implementing method in which pro-
grams are organized as cooperative collections of objects, each
representing an instance of some class and whose classes are mem-
bers of a class hierarchy linked by inheritance relationships”.

The software engineer also specified Java as the programming
language and, in the perspective of code smells, specified a simple
smell to be detected as a proof-of-concept: Long Parameter List [3,

“https://nemo.inf.ufes.br/projetos/oscin/
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Figure 2: Fragment of the OOC-O reference ontology [4].

1

10, 11], a smell that appears when a method has a very long list of
parameters which makes it difficult to use and understand. The long
list of parameters is a smell because everything a method needs is
passed through parameters so that the list of parameters becomes
inconsistent, difficult to manipulate and constantly changing.

Next, in the Subdomain Semantic Abstraction Phase, the software
engineer selected five programming languages for the OO subdo-
main according to their relevance and popularity in the TIOBE,>
IEEE Spectrum,6 and REDMONK? indexes. Thus, Java, Python and
C++ were selected for their popularity. Smalltalk and Eiffel were
also selected due to their relevance.

Once the languages were selected, the SABIO [5] ontology en-
gineering method was applied for the development of the Object-
Oriented Code Ontology (OOC-O) (detailed in [4]), both in reference
and operational versions. The ontology uses the UFO [9] founda-
tion ontology for ontological analysis, the OntoUML [7] language
for graphical representation at the reference level and the OWL
language for codification at the operational level. Figure 2 shows a
fragment of the OOC-O reference ontology and Listing 1 a fragment
of the operational ontology.

Listing 1: Fragment of the OOC-O operational ontology [4].

1 <owl:Class rdf:about="http://ooc-o#Class">

2 <rdfs:subClassOf rdf:resource="http://ooc-o#Named_Element" />

3 <rdfs:subClassOf rdf:resource="http://ooc-o0#Type"/>

4 <owl:disjointWith rdf:resource="http://ooc-o#Member_Function"/

5 <owl:disjointWith rdf:resource="http://ooc-o#Primitive_Type"/>

6 <owl:disjointWith rdf:resource="http://ooc-o#Variable"/>

7 </owl:Class>

8 <owl:Class rdf:about="http://ooc-o#Member_Function">

9 <rdfs:subClassOf rdf:resource="http://ooc-o#Member"/>

10 <rdfs:subClassOf rdf:resource="http://ooc-o#Named_Element" />

11 <owl:disjointWith rdf:resource="http://ooc-o#Member_Variable"/
>

12 <owl:disjointWith rdf:resource="http://ooc-o#Variable"/>

13 </owl:Class>

14 <owl:ObjectProperty rdf:about="http://ooc-o#componentOfClass">

15 <rdf:type rdf:resource="http://www.w3.0rg/2002/07/owl#
FunctionalProperty"/>

16 <rdfs:domain rdf:resource="http://ooc-o#Member"/>

17 <rdfs:range rdf:resource="http://ooc-o#Class"/>

18 </owl:ObjectProperty>

Shttps://www.tiobe.com/tiobe-index/.
Shttps://spectrum.ieee.org/at-work/tech- careers/top-programming-language-2020.
"https://redmonk.com/sogrady/2020/07/27/language-rankings-6-20/.
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Afterwards, in the Language Syntactic Abstraction Phase, the
software engineer studied the Java programming language based
on its specification [6]. Then, a syntactic analyzer was implemented
in Java reusing the ANTLR parser generator and one of its available
grammar files for Java.

Next, in the Language Semantic Abstraction Phase, the software
engineer prepared a mapping table between the concepts of OOC-
O and the syntactic structures of the Java programming language.
For instance: Class is mapped to identifier terminal symbol that
makes up a ClassDeclaration non-terminal; Element Visibility is
mapped to public, private or protected terminal symbol that makes
up a ClassModifier non-terminal symbol of a ClassDeclaration; and
Abstract Class is mapped to abstract terminal symbol that makes up
a ClassModifier non-terminal symbol of a ClassDeclaration. Then, a
semantic analyzer was implemented in Java, again based on ANTLR
and using the Jena framework® to generate ontology instances. The
mapping is implemented by looking for the syntactic structures
of Java that correspond to each concept of the OOC-O ontology,
representing those structures in an OWL ontology (RDF triples).

Next, in the Application Perspective Phase, the ontology engineer
formalized the Long Parameter List code smell in a SPARQL query
using the concepts of OOC-O, as shown in Listing 2. Such formal-
ization considers the case of more than six parameters, hence the
query searches for member functions (line 4) of a class (lines 3 and
6) whose number of parameter variables (lines 5 and 7) is greater
than six (line 10).

Listing 2: Long Parameter List smell as a SPARQL query.

1 SELECT ?class ?method (count(?variable) as ?countVariable)
2 WHERE {

?class rdf:type ooc-o:Class .

?method rdf:type ooc-o:Member_Function

?variable rdf:type ooc-o:Parameter_Variable

?method ooc-o:componentOfClass ?class

?variable ooc-o:componentOfMemberFunction ?method

}

9 GROUP BY ?class ?method

10 HAVING (? countVariable > 6)

® N o G W

Then, a code analyzer was implemented in Java reusing the
Jena framework. The analyzer loads the instantiated ontology and
applies SPARQL queries to detect smells in the source code instanti-
ated by the ontology. The query results are represented in the form
of RDF nodes and correspond to the parts of the source code that
“smell”.

3.2 Object Orientation smells in Python

To detect object-oriented smells in Python, much of the work done
in the previous scenario was reused. In the Specification Phase, only
the programming language was changed to Python. The Subdomain
Semantic Abstraction Phase was skipped, as OOC-O would be reused
in this scenario.

Then, in the Language Syntactic Abstraction Phase, the software
engineer studied the Python specification® and, analogous to the
Java scenario, implemented a parser using ANTLR and an available
grammar file for Python.

8https://jena.apache.org
“https://docs.python.org/3/reference/index.html
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Also as before, in the Language Semantic Abstraction Phase a
mapping table between OOC-O and Python was prepared. For
instance: Class is mapped to name terminal symbol that makes
up a classdef non-terminal; Element Visibility is not mapped; and
Member Function is mapped to name terminal symbol that makes
up a funcdef non-terminal symbol.

Then, a semantic analyzer was implemented in Java, again based
on ANTLR and Jena. Once that was done, the Application Perspective
Phase could be skipped, as the code analyzer for the Long Parameter
List smell had already been built in the previous scenario.

3.3 Object/Relational Mapping smells in JPA

In this scenario, at the Specification Phase the subdomain changed
to Object/Relational Mapping (ORM), which, as specified by the
software engineer, “defines how communication between object-
oriented and relational paradigms is performed, automating the
persistence of object data in database tables and columns and the
construction of objects from data retrieved by database queries”.
Java was specified as programming language again but, more specif-
ically, the Java Persistence API (JPA) standard was considered.

The perspective remained that of detecting code smells, but the
software engineer specified an ORM smell to be detected, namely
Multi Directed Table: smell that appears when entity classes that
are not part of the same hierarchy share the same database table.
This does not cause compilation or execution errors, but allows
solutions that violate the database rules, i.e., have some columns in
the table refer to attributes of a class and other columns to attributes
of another, unrelated class.

In the Subdomain Semantic Abstraction Phase, ORM frameworks
were selected for the development of the subdomain ontology. As a
subdomain of Object-Orientation, the ontology engineer decided
to focus on the three most popular languages from the OO scenario
(C++,Java and Python). Thus, other than JPA, the ontology engineer
selected ORM frameworks Django and SQLAlchemy according to
their popularity for Python; and QxORM and ODB according to
their popularity for C++. Again applying the SABIO [5] method, the
Object/Relational Mapping Ontology (ORM-O) [18] was built based
on OOC-O from the previous scenarios. Figure 3 shows a fragment
of the ORM-O reference ontology (OOC-O concepts have gray
background) and Listing 3 a fragment of the operational ontology.

Since the Java language had already been studied and mapped to
OOC-0Oin a previous scenario, in the Language Syntactic Abstraction
and Language Semantic Abstraction phases the software engineer
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Listing 3: Fragment of the ORM-O operational ontology [18].

1 <owl:Class rdf:about="http://orm-o#Entity_Class">

2 <rdfs:subClassOf rdf:resource="http://o00oc-0#00C-0::Class"/>
3 </owl:Class>

4 <owl:Class rdf:about="http://orm-o#Class_Mapping"/>

5 <owl:Class rdf:about="http://orm-o#Entity_Table">

6 <rdfs:subClassOf rdf:resource="http://rdbs-o#Table"/>

7 </owl:Class>

8 <owl:ObjectProperty rdf:about="http://orm-o#directlyRelatedTo ">
9 <rdfs:domain rdf:resource="http://orm-o#Entity_Table"/>

0 <rdfs:range rdf:resource="http://orm-o#Entity_Class"/>

1 </owl:ObjectProperty>

U

studied the JPA specification!? and mapped it to ORM-O, using a
different architecture from the OO/Java scenario (JavaParser!! and
OWLAPI'? libraries). Since JPA uses Java annotations to perform
object/relational mapping, once these annotations are found in the
source code, concepts of ORM-O were instantiated along OOC-O
ones.

Then, in the Application Perspective Phase the ontology engineer
formalized the Multi Directed Table smell, as shown in Listing 4. It
simply searches for an entity table (line 3) that is related (line 4) to
more than one class (line 7).

Listing 4: Formalization of the Multi Directed Table smell as
a SPARQL query.

1 SELECT ?table (count(?class) as ?countClasses)
2 WHERE {

3 ?table rdf:type orm-o:Entity_Table .

4 ?table orm-o:directly related_to ?class
5

}
6 GROUP BY ?class
7 HAVING (? countClasses > 1)

Finally, a code analyzer was implemented in Java reusing the
OWLAPI library. The analyzer loads the instantiated ontology and
applies SPARQL queries to detect Multi Directed Table smells in
Java code bases that use JPA.

4 EXPERIMENT AND RESULTS

Besides the applications presented in Section 3, we evaluated the
results of applying the OSCIN method, i.e., the code analyzer that
detects the Long Parameter List code smell produced in sections 3.1
and 3.2, to a set of real-world software projects written in Java and
Python. From the Java Qualitas Corpus,'® which is a large curated
collection of open source Java projects [16] with different sizes and
purposes, five open-source software projects were selected, namely:
(i) the JUnit testing framework; (ii) the Log4j logging framework;
(iii) the jEdit source code editor; (iv) the Jena linked data/Semantic
Web framework; and (v) the Maven software project management
and comprehension tool. From GitHub,!* five open-source software
projects written in Python were selected, namely: (i) the Requests
HTTP library; (ii) the Pillow image library; (iii) the Numpy array
Ohttp://jep.org/en/jsr/detail?id=338

Uhttps://www.javaparser.org

http://owles.github.io/owlapi

Bhttp://qualitascorpus.com

Yhttps://github.com/psf/requests, https://github.com/python-pillow/Pillow, https://

github.com/numpy/numpy, https://github.com/numpy/numpy, https://github.com/
Theano/Theano
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Table 1: Results for detecting smells in real-world projects.

Project Files | Classes | Methods | Smells | Time (s)
JUnit 5.0 1137 2496 8984 4 5101
Log4j 2.0 503 982 3277 39 2944
jEdit 4.3.2 519 1479 6830 48 3125
Jena 2.6.3 914 1315 9900 6 5226
Maven 3.0.5 761 1439 6048 48 4625
Django 3.1 2674 7886 24995 119 35791
Numpy 1.19.1 487 1480 10835 40 7616
Pillow 7.2 272 266 2932 13 323
Requests 2.24 35 76 608 6 95
Theano 1.0.5 380 1268 9653 179 9065

processing library; (iv) the Django Web application framework; and
(v) the Theano optimization compiler library.

Each software project was processed separately by the code smell
detector and a summary of the results is presented in Table 1. It
shows, for each project, the number of . java and .py files pro-
cessed, the number of classes identified on those files, the number
of methods identified on those classes, the number of Long Parame-
ter List smells identified on those methods and the processing time
in seconds.

The time spent by the code smell detector is proportional to the
number of files processed considering the complexity and quality
of the code, between 1 to 7 seconds per class in a modest setting
machine (2.70GHz processor, 256GB SSD and 8GB RAM). This time
is dedicated 12,06% for the code parser, 87,79% for the ontology
instantiation and 0,15% for the smells detection, which is reasonable
compared to other approaches and considering that our algorithm
has not been optimized for performance. Note, also, that including
other smells has a very low effect on the overall time.

The results show that a code smell detector produced by the
OSCIN method can be applied to real-world software projects of
considerable size. Since other smells might be formalized in more
complex SPARQL queries, further tests using a more complete
catalog of smells is recommended and subject of future work.

5 THREATS TO VALIDITY

We now discuss the main threats to the validity of our experiments,
according to four types of validity: (i) internal, (ii) external, (iii) con-
clusion, and (iv) construct validity [17].

Internal validity threatens the conclusion of the experiment on
a possible cause and effect relationship between the method and
the result. The artifacts produced in the application of the method
are totally related to its result and, therefore, the quality of the
ontology and the query can be a threat to the result of the method
since the ontology may not represent the concepts necessary for the
detection of smells and the query is customizable according to the
authors of the paper. To mitigate these threats, the method defines
that the ontology must be built following an established ontology
engineering method and that the query must be formalized using
the concepts of the ontology and literature catalogs of smells, when
applicable. In addition, the type of smell adopted in the experiment
can be a threat to the representativeness of smells as other types of
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smells may require other detection strategies. This threat can be
mitigated by adding more types of smells in future works.

External Validity threatens the generalization of the method for
use in industry. The number of domains and programming lan-
guages used in the experiment may not be enough to generalize
the method for any source code. To reduce the impact of this threat,
we instantiated the method with two different source code sub-
domains and programming languages. Moreover, to eliminate the
threat of analyzing toy software, we have selected software projects
recognized by the community, with various purposes and sizes.

Conclusion Validity threatens the correct conclusion on the re-
sults. The reader’s interpretation of the application of the method
can be a threat and, therefore, the method was described with
detailed instructions and running examples. To minimize threats
related to the definition of the method as a standard, the method
was used by two different subjects, although from the same research
group and in an academic context. Thus, threats to the heterogene-
ity of the subjects should be addressed in future works.

Construct Validity threatens the generalization of the method. In
order to eliminate the threat of projects influenced by the chosen
perspective of code smells, the analyzed projects were captured
from an open source repository, developed in a normal software
development proccess and composed of different programmers.
Moreover, the detection of smells was analyzed only quantitatively
and threats to its accuracy and customization should also be ad-
dressed in future works.

6 RELATED WORKS

Very few papers propose a method to source code interoperability
or source code analysis based on ontology. In this context, we find
the DECOR method [12], which presents the steps to define a smells
detection technique by specifying smells rules in a Domain Specific
Language (DSL) to automatically generate detection algorithms.
Code smells are specified in DSL rules that are reified in a smell
model from an object-oriented metamodel and a parser. This model
must be instantiated individually for each smell and from the visitor
methods generate a specific detection algorithm for that smell using
templates. On the other hand, the source code files are reified in
the source code model based on reverse engineering. Then, the
detection algorithms generated from code smell model are applied
on the source code model. Although the DECOR method is able
to detect different code smells on a high level abstraction using a
DSL, we can observe that the method represents the source code
in a syntactic model and code smells in a language-independent
metamodel that generates specific algorithms. Taking a different
view, OSCIN represents the source code in a semantic model (an
ontology) and code smells in a query language on that model.

Other works do not propose a method for deriving code smell
detectors, but instead a detector for specific types of smell. In par-
ticular, some of these works use ontologies to represent the source
code or a common detection rule for different languages, as in
iSPARQL [10] and OCEAN [2].

iSPARQL [10] presents software, bug and versioning ontologies
for source code analysis built on OWL. The ontology is used as
a means of storing the elements needed to analyze the software,
which is done via iSPARQL, an engine that extends the SPARQL
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language with some facilities for query execution. The work focuses
on programming languages and metrics of object-orientation that
are instantiated in the ontology through a parser in order to perform
similarity measures on the source code. In turn, OCEAN [2] presents
a set of components that allows the mining of source code and the
production of ontological individuals that represent code smells.
The ontology stores the source code elements and the software
metrics from the Abstract Syntax Tree, i.e., the metrics are extracted
from the AST. The work focuses on the Java language and on metrics
of object orientation.

Similarly, the use of common detection rules is observed in
MLSD [13], Multiple Language Smells Detector, which presents
an intermediate representation of the source code as database in
order to identify code smell from SQL queries. The source code is
structured in tables from reverse engineering using parsing, regular
expressions and software metrics. From the database, code smells
are detected by applying SQL queries on the database schema, en-
abling application in multiple languages.

Although these works look similar to ours, they differ from
ours by: (i) presenting a computational tool and not a complete
method for the detection of smells; (ii) representing the source code
as an ontology, limited to only a few object-oriented elements or
as a database, without semantic characteristics; (iii) representing
software metrics in the ontology or in the database calculated from
the syntactic structure of the source code; and (iv) limiting the
scope of the ontology-based works to the object-oriented paradigm
or the Java language.

OSCIN differs from existing proposals by allowing code smells
to be formalized as queries over a unified model that represent a
given source code subdomain (e.g., the object-oriented source code
subdomain, represented by OOC-0), which makes them applicable
to code in any programming language, as long as it is included in
the given subdomain and the necessary parsers have been built (e.g.,
Java, Python, etc.). The unified model (ontology) also makes it easier
for us to define new smells and customize smells detection. Finally,
new OSCIN executions can reuse artifacts produced previously.

7 CONCLUSIONS

This article presented OSCIN, an Ontology-based Source Code Inter-
operability method that aims to semantically represent the source
code written in different programming languages and apply it from
different perspectives in a unified way. We systematically presented
the method in detail, illustrating it with a running example, and
apply the method to: (i) Java and, with reuse, also Python, validating
support for multiple programming languages with few changes;
(ii) the object-oriented subdomain and, with reuse, also the objec-
t/relational mapping subdomain, validating support for multiple
subdomains; (iii) definition of smells cataloged in the literature or
customized by the stakeholder in queries over ontology concepts,
validating the definition flexibility and customization.

Furthermore, the application presented in the article was applied
to large and well-known software projects, processing about 7.682
files, 18.687 classes, 84.062 methods and 502 bad smells. Results
show the importance of the characteristics that the OSCIN method
proposes, as well as the differences with respect to other related
works.
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OSCIN allows the semantic representation of the source code
(in essence), independence of the programming language and flex-
ibility in the source code analysis, which differs from the related
works. It is worth noting that the semantic representation of source
code makes it possible to explore and evolve different views on
the analysis of source code looking forward. Finally, future work
intends to focus on the implementation of a tool that helps the
programming community to apply the method in several domains
and programming languages.
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