
Software as a Social Artifact:

a Management and Evolution Perspective

Xiaowei Wang
1
, Nicola Guarino

2
, Giancarlo Guizzardi

3
, and John Mylopoulos

1

1 Department of Information Engineering and Computer Science, University of Trento, Italy
{xwang,jm}@disi.unitn.it

2 ISTC-CNR, Trento, Italy
guarino@loa.istc.cnr.it

3 Ontology and Conceptual Modeling Research Group (NEMO),

Federal University of Espírito Santo (UFES), Brazil
gguizzardi@inf.ufes.br

Abstract. For many, software is just code, something intangible best defined in

contrast with hardware, but it is not particularly illuminating. Microsoft Word

turned 30 last year. During its lifetime it has been the subject of numerous

changes, as its requirements, code and documentation have continuously

evolved. Still a community of users recognizes it as “the same software prod-

uct”, a persistent object undergoing several changes through a social process

involving owners, developers, salespeople and users, and it is still producing

recognizable effects that meet the same core requirements. It is this process that

makes software something different than just a piece of code, and justifies its

intrinsic nature as a social artifact. Building on Jackson’s and Zave’s seminal

work on foundations of requirements engineering, we propose in this paper an

ontology of software and related notions that accounts for such intuitions, and

adopt it in software configuration management to provide a better understand-

ing and control of software changes.

Keywords: software, software evolution, software configuration management,

software versioning, artifact, ontology, software requirements.

1 Introduction

Software has become an indispensable element of our culture, as it continues its re-

lentless invasion of every facet of personal, business and social life. Despite this,

building software applications is still an art more than science or engineering. Failure

and partial failure rates for software projects still are stubbornly high and Software

Engineering (SE) practice is often ahead of SE research, in virgin territory, where

practitioners have few engineering principles, tools and techniques to turn to.

We believe that one of the reasons for this unhappy situation is a lack of consensus

on what exactly is software, what are its defining traits, its fundamental properties and

constituent concepts and how do these relate to each other. For many, both within and

without the SE community, software is just code, something intangible best defined as

the other side of hardware. For example, the Oxford English Dictionary defines soft-

ware as “the programs and other information used by a computer” and other dictionar-

ies adopt paraphrases. In a similar spirit, software maintenance tools such as Concur-

rent Versions System (CVS) and Apache Subversion (SVN), the version control sys-

tems of choice for almost 30 years, are used primarily for code management and evo-

lution, while requirements, architectural specifications etc. are left out in the cold.

Unfortunately, treating software as simply code is not very illuminating. Microsoft

(MS) Word turned 30 last year (2013). During its lifetime it has seen numerous

changes, as its requirements, code and documentation have continuously evolved. If

software is just code, then MS Word of today is not the same software as the original

MS Word of 1983. But this defies the common sense that views software as a persis-

tent object intended to produce effects in the real world, which evolves through com-

plex social processes involving owners, developers, salespeople and users, having to

deal with multiple revisions, different variants and customizations, and different

maintenance policies. Indeed, software management systems were exactly intended to

support such complex processes, but most of them consider software just as code,

dealing with software versioning in a way not much different than ordinary docu-

ments: the criteria underlying the versioning scheme are largely heuristic, and the

change rationale remains obscure.

Yet, differently from ordinary documents, software changes are deeply bound to

the nature of the whole software development process, which includes both a re-

quirements engineering phase and subsequent design and implementation phases.

This means that, making a change to a software system may be motivated by the need

to fix a bug (code), to adopt a more efficient algorithm or improve its functionality

(program specification), adapt it to a new regulation (requirements) and so on. As we

shall see, each of these changes affects a different artifact created within the software

development process. In this paper we shall present an ontology that describes what

these different artifacts are, and how they are inter-related.

The main contribution of this work consists of an argument, supported by ontolog-

ical analysis, that software has a complex artifactual nature, as many artifacts result

from a design process, each having an intended purpose that characterizes its identity.

This is what distinguishes software artifacts from arbitrary code: they are recogniza-

ble as having a purpose, they are the result of an intentional act. A further characteris-

tic of software is its social nature. In order to exist, software
1
 presupposes the exist-

ence of a community of individuals who recognize its intended purpose. The members

of such community may change in time, and, as already noted, may include develop-

ers, users, salespeople and stakeholders. In addition, certain software artifacts (li-

censed software products) have a further social character: they presuppose a pattern

of mutual commitments between owners and users.

The rest of this paper is organized as follows: Firstly, we provide an ontological

analysis of a number of concepts related to software and software engineering, under-

1 In our analysis here, we eschew the limit case of software that is privately produced and

used.

lining their artifactual and social nature in Section 2 and 3. The result of such analysis

is a layered ontology of software artifacts, presented in Section 4. Section 5 discusses

the practical impact of our proposed ontology on software management and software

modeling. Section 6 summarizes our contributions and sketches future work.

2 The Artifactual Nature of Software

2.1 State of the Art: Approaches to the Ontology of Software

In the literature, the term “software” is sometimes understood in a very general sense,

independently of computers. For example, Osterweil [1] proposes that, in addition to

computer software, there are other kinds of software, such as laws or recipes. Focus-

ing on computational aspects, several scholars (e.g. Eden and Turner [2], Oberle [3])

have addressed the complex relationships among i) software code, consisting of a set

of computer instructions; ii) a software copy, which is the embodiment of a set of

instructions through a hard medium; iii) a medium, the hardware on which a software

copy runs; iv) a process, which is the result of executing the software copy.

A different approach to account for the artifactual nature of software is taken by

Irmak [4]. According to Irmak, software is synonymous to program and can be under-

stood in terms of the concepts of algorithm, code, copy and process, but none of these

notions can be identified with software, because due to its artifactual nature, software

has different identity criteria than these concepts. Therefore, a program is different

from a code. We share many of Irmak’s intuitions, as well as the methodology he

adopts to motivate his conclusions, based on an analysis of the condition under which

software maintains its identity despite change. However, he leaves the question of

“what is the identity of software” open, and we answer this question here.

2.2 Code and Programs

Consider a computer code base, defined as a well-formed sequence of instructions in

a Turing-complete language [2]. Two bases are identical iff they consist of exactly the

same sequences of instructions. Accordingly, any syntactic change in a code base c1

results in a different code base c2. These changes may include variable renaming,

order changes in declarative definitions, inclusion and deletion of comments, etc.

A code implements an algorithm. Following Irmak [4], we treat an algorithm as a

language-independent pattern of instructions, i.e. an abstract entity correlated to a

class of possible executions. So, two different code bases c1 and c2 are semantically

equivalent if they implement the same algorithm. For instance, if c2 is produced from

c1 by variable renaming, c2 will be semantically equivalent to c1, and still possess a

number of properties (e.g., in terms of understandability, maintainability) that are

lacking in c1.

Some authors, e.g. Lando et al. [5], who identify the notion of program with that of

computer code, while others, such as Eden [2] and Oberle [3] distinguish program-

script (program code) from program-process (whose abstraction is an algorithm).

However, we agree with Irmak that we cannot identify a program neither with a code,

a process, or an algorithm. The reason is that such identification conflicts with com-

mon sense, since the same program may have different code bases at different times,

as a result of updates
2
. What these different code bases have in common is that, at a

certain time, they are selected as constituents of a program that is intended to imple-

ment the very same algorithm.

To account for this intuition, we need a notion of (technical) artifact. Among alter-

natives in the literature works, Baker’s proposal [6] works best for us: “Artifacts are

objects intentionally made to serve a given purpose”; “Artifacts have proper func-

tions they are (intentionally) designed and produced to perform (whether they per-

form their proper functions or not)”; “What distinguishes artifactual [kinds] from

other [kinds] is that an artifactual [kind] entails a proper function, where a proper

function is a purpose or use intended by a producer. Thus, an artifact has its proper

function essentially”. These passages are illuminating in several respects. Firstly,

Baker makes clear that artifacts are the results of intentional processes. Moreover, she

connects the identity of an artifact to its proper function, i.e., one that fulfills its in-

tended purpose. Finally, she recognizes that the relation between an artifact and its

proper function exists even if the artifact does not perform its proper function. In oth-

er words, the connection is established by means of an intentional act.

In light of these observations, code is not necessarily an artifact. If we accidentally

delete a line of code, the result might still be a computer code. It will not, however, be

“intentionally made to serve a given purpose”. In contrast, a program is necessarily an

artifact, since it is created with a particular purpose. What kind of purpose? Well, of

course the ultimate purpose of a program is –typically– that of producing useful ef-

fects for the prospective users of a computer system or a computer-driven machine,

but there is an immediate purpose which belongs to the very essence of a program:

producing a certain result through execution on a computer, in a particular way. We

insist on the fact that the desired result and the relative behavior must come about

through a computer, as they concern desired phenomena arising within the memory

segment allocated to the program while the program runs. As usual, an abstract de-

scription of such phenomena is given by specifying a data structure and an algorithm

that manipulates it [7]. Note that an algorithm, in turn, is defined as a procedure that

implements a certain function, intended to bring about a desired change within the

data structure. In summary, the immediate purpose of a program is described by a

data structure, a desired change within such data structure, and a procedure to produce

such change by manipulating the data structure. Altogether, such information is called

a program specification. In contrast with code, every program has, necessarily, a pur-

pose: satisfying its specification, namely implementing the desired function in the

desired way. In order for a program to exist, its specification must exist, even if only

in the programmer’s mind.

According to the discussion above, we have to conclude that a program is not iden-

tical to code. This begs the question: what is the relation between the two, then? In

2 Irmak also admits that the same program may have different algorithms at different times,

but we shall exclude this, distinguishing a program from a software system (see below).

general, the relation between an artifact and its material substratum is one of constitu-

tion. As put by [6], the basic idea of constitution is that whenever a certain aggregate

of things of a given kind is in certain circumstances, a new entity of a different kind

comes into being. So, when code is in the circumstances that somebody intends to

produce certain effects on a computer, then a new entity emerges, constituted by the

code: a computer program. If the code does not actually produce such effects, it is the

program that is faulty, not the code. In conclusion, a program is constituted by code,

but it is not identical to code. Code can be changed without altering the identity of its

program, which is anchored to the program’s essential property: its intended specifi-

cation.

2.3 Programs and Software Systems

We have seen that, since the identity of a program depends on its intended specifica-

tion, and the specification includes both the desired function and the algorithm

through which such function is supposed to be implemented, we cannot change the

algorithm without changing the program, even if the function is the same. Yet, in the

course of software development, it is often the case that software keeps its identity

after a change in the algorithm: typically we say that the software is now more effi-

cient after such a change. The strategy we shall adopt to account for such phenomena

will be the same as before: we add a new entity to our layered ontology, a software

system, which is constituted by a software program, which in turn is constituted by

code. The essential property of a software system is being intended to satisfy a func-

tional specification (internal specification), concerning a desired change in a data

structure inside a computer
3
, abstracting away from the behavior. Note that, in the

way we defined it, a program specification already includes a functional specification,

so specifying a software system is just specifying a program in an abstract way, with-

out constraining its behavior. This means that program specification and a software

system specification overlap in the functional specification.

To give a concrete idea of our approach, let us introduce the example we shall use

in the rest of the paper. Consider the following functional specification (S), expressed

here in natural language: the system receives as input a connected, undirected graph

G such that to each arc connecting vertices in G a positive numeric weight is as-

signed. The system returns a subgraph of G that is a tree and connects all vertices

together. Moreover, the sum of weights in the returned tree must be equal or less than

the sum of the weights in all possible trees of the same nature that are subgraphs of

G. This specification defines the desired function of finding a Minimum Spanning

Tree (MST). Now, suppose that we start working on implementing this specification.

First we decide the algorithm to implement, say Prim’s Algorithm, and then we start

writing the code. At a certain point, when this code sufficiently characterizes the pro-

gram (i.e., we believe it may be correct, and it is ready to be tested), then, by an act of

3 We exclude from this discussion any function concerning events in the outside world, such

as a robotic arm moving an object from position A to B.

creation, we decide that this code now constitutes our program (let us call it MST-

Finder). From that point on, we can keep changing the constituting code in order, for

example, to fix bugs, improve readability and maintainability, etc. We can also im-

prove its memory and time efficiency, while keeping the same algorithm. We can

even change the programming language the initial and subsequent code bases are

implemented in. Each of these changes creates a different code base but we still have

the same program as long as we maintain the intention to implement the very same

algorithm. On the contrary, if we replace the code by implementing Kruskal’s instead

of Prim’s Algorithm, then what we get is a different program, although this new pro-

gram, which however still constitutes the same software system.

2.4 Software Systems and Software Applications

As we have seen, programs and software systems, as defined, are software artifacts

intended to produce effects inside a computer, i.e., changes concerning symbolic data

structures, which reside in computer memory. Yet, as Eden and Turner observe [2], a

peculiar aspect of software, with respect to other information artifacts such as books

or pictures, is its bridging role between the abstract and the concrete: despite the fact

that software has an abstract nature, it is designed to be applied to the real world.

Therefore, it seems natural to us to take a requirements engineering perspective while

analyzing the essence of software, instead of focusing on computational aspects only.

So, we shall base our further analysis on a revisitation of the seminal works by Jack-

son and Zave (hereafter J&Z) on the foundations of requirements engineering [8], [9],

[10] which clearly distinguishes the external environment (where the software re-

quirements are typically defined), the system-to-be (a computer-driven machine in-

tended to fulfill such requirements), and the interface between the two.

Fig. 1. A reference model for requirements and specifications (from [10]).

Figure 1 presents the J&Z’s reference model [10].The model consists of two over-

lapping sets of phenomena: environment phenomena, usually happenings in the

world, and system phenomena that happen inside the computer. Importantly, the two

sets overlap. This means that some phenomena happen at the interface between the

computer and the environment and are visible both from within and without the com-

puter.

The letters mark different kinds of phenomena, world assumptions (W), require-

ments (R), specification that describes desired behavior at the interface with the envi-

ronment (S), program specification (P) that determines desired machine behavior, and

assumptions on the machine behavior (M). Specifically, such assumptions concern a

programmable platform
4
 properly connected with the external environment by means

of I/O devices.

If the environment and system interact in the desired way, then the following con-

dition needs to be satisfied: if world assumptions holds, and specification phenomena

occur, then the requirements are satisfied [10]. In a compact form, J&Z describe this

condition as: W ∧ S ⊨ R. We say in this case that S satisfies R under the assumptions

W.

This view constitutes a reference model for requirements engineering, emphasizing

the role of the specification of machine behavior at its interface with the environment.

From a software engineering perspective, however, we are interested not in the ma-

chine as such, but in the program which drives it, and ultimately in the relationship

between the program and its requirements. As observed in [10], such relationship is in

turn the composition of two relationships: If (i) S properly takes W into account in

saying what is needed to obtain R, and (ii) P is an implementation of S for M, then

(iii) P implements R as desired.

To properly account for this picture, it is important to make explicit the relation-

ship between a program and its internal computer environment, which is only implic-

itly accounted by J&Z’s approach. So we propose a revised model described in Fig. 2.

Fig. 2. Our revised reference model.

In Figure 2, the difference is that now the programmable platform is isolated as a

proper part of the system-to-be, and its interface with the program is made explicit.

Reflecting the standard computer architecture, we shall assume that such platform

includes operating system and I/O device phenomena. So the platform has two inter-

faces: an external interface (whose specification describes phenomena in the external

world, such as light being emitted by the monitor or keys being pressed), and an in-

ternal interface, whose specification describes phenomena within the program and the

operating system. A software system specification (Si) then just concerns this internal

interface, while a program specification (P) also concerns phenomena that are not

visible to the platform.

Now, let us go back to our software system intended to solve the MST problem. In

order for it to accept input from the user and display the results, it has to generate a

sequence of machine-based phenomena, using the functionality of its programming

platform. In addition, of course we want our system to interact with the user in a

proper way. Such expected behavior is described by the external specification Se. In

order for the program to behave properly, a condition very similar to the one de-

4 J&Z use the term programming platform. We believe that programmable platform is more

perspicuous.

scribed above must hold: M ∧ Si ⊨ Se. This means that our MST program has to inter-

act with the particular machine at hand (say, running a Windows operating system) to

produce the desired I/O behavior.

Again, we can apply in this case the same line of reasoning which motivated the

distinctions between code, program, and software system: when a software system is

explicitly intended to implement an external specification for a certain machine, then

a new software artifact emerges: we shall call it a software application. A software

application is constituted by a software system intended to determine a specific exter-

nal behavior for a specific machine. Such intention is an essential property of a soft-

ware application, which distinguishes it from a software system. Note that we follow

here the popular terminology according to which a software application “causes a

computer to perform useful tasks beyond of the running of the computer itself” [11],

but, for the reasons explained below, we restrict its range to the “useful tasks” con-

cerning the external interface only, not the outside environment.

As a final note, consider that Se in the formula above plays the role of R in the orig-

inal J&Z’s formula, W ∧ S ⊨ R. This shows the power and the generality of J&Z’s

model. Depending on where we place stakeholder requirements, in the scheme of Fig.

2, we can apply this general model to express the relationship between the require-

ments and the specification of what we have to realize in order to satisfy them. This

paper, for reasons of brevity, we assume that stakeholder requirements concern the

external environment, as shown in Fig. 2. This is the standard case of so-called appli-

cation software, as distinct from system software, whose requirements concern phe-

nomena inside the computer itself.

2.5 Software Applications and Software Products

Finally, let us consider the role of stakeholder requirements in the framework we have

described so far. Going back to our MST example, a plausible description of such

requirements could be “We want to minimize the amount of cable necessary to con-

nect all our network routers”. So there is a desired state, obtained by manual interven-

tion supported by computer assistance, such that the amount of cable used is the min-

imal. Obtaining this result by means of a certain software not only presupposes the

solution of the abstract MST problem, but of course a lot of assumptions concerning

the world and the people’s skills and behaviors. Moreover, during the evolution of

such software, assuming world and machine assumptions remain the same, different

external specifications may be designed, corresponding to different user interfaces. In

this case people may say that the same software is evolving. According to the meth-

odology followed so far, this means that a new artifact emerges, constituted by a

software application, which we shall call a software product. A software product is

constituted by a software application intended to determine specific effects in the

environment as a result of the machine behavior, under given world assumptions.

Such intention is an essential property of a software product, which distinguishes it

from a software application.

In conclusion, the notion of software product captures perhaps the most common

use of the word “software” in the daily life. It is important to remark that a software

product is intended to achieve some effects in the external environment by means of a

given machine, and under given environment assumptions. So, assuming they have

exactly the same high-level requirements, MS Word for Mac and MS Word for PC

are different software products, since they are intended for different machines. Simi-

larly, country-oriented customizations of Word for Mac may be understood as differ-

ent products, since they presuppose different language skills, unless the requirements

already explicitly include the possibility to interact with the system in multiple differ-

ent languages.

3 The Social Nature of Software

In addition to its artifactual nature, discussed in detail above, software –at least soft-

ware used every day in our society– has also a strong social nature, which impacts on

the way it is produced, sold, used and maintained. There are two main social aspects

of software we shall consider under our evolution perspective: social recognition and

social commitment.

3.1 Social Recognition and Software Identity

We have seen the key role the constitution relation plays in accounting for the artifac-

tual nature of software. But how is this constitution relation represented and recog-

nized? In the simplest of cases, we can think of a program produced by a single pro-

grammer for personal use. In this case, we can imagine that the constitution relation-

ship binding a program with its constituting code exists solely in the mind of this

programmer. Likewise, if this program comes to constitute a software system, then

this constitution relation, again, exists only in the mind of the programmer. Yet, in

order for a software artifact to exist in a social context, we shall assume that the con-

stitution relation between the artifact at hand and its constituent needs to be explicitly

communicated by the software author, and recognizable by a community of people.

As a minimal situation, we consider these communications about constitution and

intentions to satisfy specifications as true communicative acts that create expectations,

beliefs and contribute to the creation of commitments, claims and a minimal social

structure (possibly reflecting division of labor) between the software creator(s) and

the potential users or stakeholders. Once this social structure exists, the creators’ ac-

tions become social actions and are subject to social and legal norms that support

expectations and rights. To cite one example, we use the motion picture “The Social

Network” based on the book “Accidental Billionaires” [12] reporting on the creation

of Facebook. As shown there, the legal battle involving the authorship rights in Face-

book was at moments based on the discussion of shared authorship between M. Zuck-

erberg and E. Saverin regarding an initial program (Saverin was allegedly a prominent

proposer of the algorithm) and software system, much before the product Facebook

existed. At other times, the legal battle between Zuckerberg and the Winklevoss

brothers was based on a shared system specification of another program even if, as

argued by Zuckerberg, no lines of the original code had been used by Facebook.

In more disciplined software engineering settings, anyway, the constitution rela-

tionships and the intended specifications are documented by program headers and

possibly user manuals or separate product documentation. Notice that, without the

explicit documentation of these relationships, the software artifacts will depend on

their creators in order to exist, since the constitution relationships are sustained by

their intentional states. Once these relationships are documented, these artifacts can

outlive their creators, as long as this documentation can be properly recognized and

understood. So, for instance, although Joseph Weizenbaum is no longer alive, by

looking to a copy of the ELIZA [13] code, one can still reconstruct the chain of inten-

tions from the informal requirements specification all the way down to the code. In

formal ontological terms, this means that software artifacts are just historically (but

not constantly) depending on their authors, and in addition they are generically con-

stantly depending on a community of people who recognize their essential properties.

If such community of people ceases to exist, the artifact ceases to exist.

3.2 Social Commitment and Software Licensing

As we have seen, the different kinds of software artifacts we have discussed are based

on a requirements engineering perspective. We cannot ignore however another per-

spective that deeply affects the current practice of software engineering, namely the

marketing perspective. In the present software market, software products do not come

alone, since what companies sell are not just software products: in the vast majority of

cases, a purchase contract for a software product includes a number of rights and du-

ties on both parties, including the right to download updates for a certain period of

time, the prohibition to give copies away, the right to hold the clients’ personal data

and to automatically charge them for specific financial transactions, and so on. In-

deed, the very same software product can be sold at different prices by different com-

panies, under different licensing policies. The result is that software products come to

the market in the form of service offerings, which concern product-service bundles.

According to [14], a service offering is in turn based on the notion of service, which is

a social commitment concerning in our case maintenance actions. Service offerings

are therefore meta-commitments, i.e., they are commitments to engage in specific

commitments (namely, the delivery of certain services) once a contract is signed. So,

before the contract is signed we have another software entity emerging: a Licensable

Software Product. After the contract is signed, we have a Licensed Software Product.

Notice that the services regulated by the contract may not only concern the proper

functioning of software (involving the right to updates), but also the availability of

certain resources in the environment where the software is supposed to operate, such

as remote servers (used, e.g., for Web searching, VOIP communication, cloud sync-

ing...). So, when Skype Inc. releases Skype, it publicly commits to engage in such

kind of commitments. By the way, this means that, when buying Skype from Skype

Inc., Microsoft is not only buying the software product, but it is also buying all the

rights Skype Inc. has regarding its clients.

Note that, even in absence of a purchasing contract, when releasing a product as

licensable product, the owner creates already social commitments and expectations

towards a community of users and re-users of the product. For example, take the Pro-

tégé Ontology editor, which is a free open-source product released under the Mozilla

Public License (MPL) [15]. This grants the members of the user community the right

to change Protégé’s code and to incorporate it even in commercial products.

4 A Layered Ontology of Software

The discussion so far induces a layered structure for our ontology of software arti-

facts, based on their different identity criteria and on the constitution relationship that

links them to each other. Such layered structure is shown in Figure 3. As usual, the

subsumption relation is represented by an open-headed arrow. The closed-headed

arrows represent some of the basic relations discussed in the paper. Starting from

code, several kinds of software artifacts have been proposed, all eventually constitut-

ed by code. The different essential properties characterizing their identity are shown

to the right, linked by a relation of specific constant dependence. As the concepts

have already been introduced, we give here only a brief account of the relations ap-

pearing in the picture. For some of them (constitution and specific constant depend-

ence), the intended semantics is rather standard, while for others we just sketch their

intended meaning, postponing a formal characterization to a future paper.

Fig. 3. A layered ontology of software artifacts.

constitutedBy: We mean here the relation described extensively by Baker [6]. We

just assume it being a kind of generic dependence relation that is both asymmetric and

non-reflexive, and that does not imply parthood. We can assume here for this relation,

the minimal axiomatization present in the DOLCE ontology [16].

dependsOn: Among the different kinds of dependence relations (described e.g. in

the DOLCE ontology), dependsOn denotes in this paper a specific constant depend-

ence relation: if x is specifically constantly depending on y, then, necessarily, at each

time x is present also y must be present. Again, we can borrow the DOLCE axiomati-

zation for this relation. When this relation holds, being dependent on y is for x an

essential property.

intendedToImplement: This relation links an artifact to its specification, as a re-

sult of an intentional act. Note that the intention to implement does not imply that the

implementation will be the correct one (e.g., bugs may exist).

intendedToSatisfy: This relation is proposed to capture the intended role of a

specification in the general formula S ∧ W ⊨ R. That is, S is intended to satify R, once

the assumptions W holds.

5 Ontology-Driven Software Configuration Management

According to [17], Software Configuration Management (SCM) is “a discipline for

controlling the evolution of software systems”, and is considered as a core supporting

process for software development [18]. A basic notion of any SCM system is the con-

cept of version [19]. The IEEE Software Engineering Body of Knowledge states [20]

that “a version of a software item is an identified instance of an item. It can be

thought of as a state of an evolving item”. In the past, the same source distinguished,

within versions, between revisions and variants [21]: “A revision is a new version of

an item that is intended to replace the old version of the item. A variant is a new ver-

sion of an item that will be added to the configuration without replacing the old ver-

sion”. In our approach, these two kinds of version can be described as follows:

Revision Process. Suppose that at time t we have p1 constituted by code c1; when

at time t’ we replace the code c1 as the constituent of p1 by code c2, we are not creat-

ing a distinct program p2, but we are simply breaking the constitution relation be-

tween p1 and c1. Thus, at t’, c1 is not a constituent of the program anymore; rather it

is merely a code, so that at t’ we are still left with the same program p1, but now con-

stituted by a different code c2.

Variant Process. Suppose that we have a software system s1 (“MST-Finder A”),

and we develop a software system s2 (“MST-Finder B”) from s1 by adopting a new

algorithm. Now s1 and s2 are constituted by different programs. Of course, s1 will not

be identical to s2, since they are constituted by different programs at the same time,

and by Leibniz’s Law if two individuals have incompatible properties at the same

time they are not identical. Indeed, the two software systems may have independent

reasons to exist at the same time.

Traditionally, revisions and variants are managed by means of naming conventions

and version codes which are usually decided on the basis of the perceived significance

of changes between versions without any clear criterion (e.g. CVS, SVN). We believe

that the layered ontology introduced in this paper can make an important contribution

to make this process more disciplined by providing a general mechanism to explicitly

express what is changed when a new version is created. This can be simply done by

pointing to the software artifact that is affected by the change, and can be reflected by

a simple versioning scheme (e.g. v 1.5.3.2: 1 - software application release number; 5

– software system release number, 3 – program release number; 2 – code release

number). In addition to this scheme, we can document the rationale why a certain

software artifact has been changed, by applying the revised reference model of Figure

2 and pointing to the specific source of change.

We believe that this ability to account both for what and why software is changed

is essential for software engineering, because managing software and software evolu-

tion requires much more than managing code. For example, as Licensed Software

Products are based on a chain of dependent artifacts culminating with a computer

code, a software management system must be able to manage the impact that changes

in the code ultimately have in terms of legal and financial consequences at the level of

licensed products.

6 Conclusions and Future Work

Based on the work of J&Z and Irmak, we analyzed in this paper the identity criterion

of software from the artifectual perspective, extending the analysis to the social nature

of software as well. Several kinds of software artifacts have been identified, resulting

in a layered ontological structure based on the constitution relation.

Besides clarifying core concepts in the domain of software engineering, our work

can also serve as a foundation for software management and evolution. By checking

the identity criteria of the software artifacts in different abstraction layers, we can

judge the conditions when they keep their identities under changes, or new entities are

created. Based on that, a refined versioning methodology and better software version-

ing control tools dealing with revisions and variants could be developed. As noted

several times, traditional tools only focus on code changes. According to our work,

software should be consistently expressed and tracked in multiple abstraction layers.

This work is part of a general project on the ontology of software evolution and

software change. We hope our work could be used as a foundation for researchers and

practitioners working on software maintenance, software project management, soft-

ware measurements and metrics.

Acknowledgements. Support for this work was provided by the ERC advanced grant

267856 for the project entitled “Lucretius: Foundations for Software Evolution”

(http://www.lucretius.eu), as well as the “Science Without Borders” project on “Onto-

logical Foundations of Service Systems” funded by the Brazilian government.

References

1. Osterweil, L.J.: What is software? Autom. Softw. Eng. 15, 261–273 (2008).

2. Eden, A.H., Turner, R.: Problems in the ontology of computer programs. Appl. Ontol. 2,

13–36 (2007).

3. Oberle, D.: Semantic Management of Middleware. Springer, New York (2006).

4. Irmak, N.: Software is an Abstract Artifact. Grazer Philos. Stud. 86, 55–72 (2013).

5. Lando, P., Lapujade, A., Kassel, G., Fürst, F.: An Ontological Investigation in the Field of

Computer Programs. In: Filipe, J., Shishkov, B., Helfert, M., and Maciaszek, L. (eds.)

Software and Data Technologies SE - 28. pp. 371–383. Springer Berlin Heidelberg (2009).

6. Baker, L.R.: The ontology of artifacts. Philos. Explor. 7, 99–111 (2004).

7. Wirth, N.: Algorithms+ data structures= programs. Ser. Autom. Comput. (1976).

8. Jackson, M., Zave, P.: Deriving specifications from requirements: an example. Proceedings

of the 17th international conference on Software engineering. pp. 15–24. ACM, New York,

NY, USA (1995).

9. Zave, P., Jackson, M.: Four dark corners of requirements engineering. ACM Trans. Softw.

Eng. Methodol. 6, 1–30 (1997).

10. Gunter, C.A., Jackson, M., Zave, P.: A reference model for requirements and specifications.

Software, IEEE. 17, 37–43 (2000).

11. Wikipedia: Application software, http://en.wikipedia.org/wiki/Application_software.

12. Mezrich, B.: The Accidental Billionaires: The Founding of Facebook : a Tale of Sex,

Money, Genius and Betrayal. Anchor Books (2010).

13. Wikipedia: ELIZA, http://en.wikipedia.org/wiki/ELIZA.

14. Nardi, J.C., De Almeida Falbo, R., Almeida, J.P.A., Guizzardi, G., Ferreira Pires, L., van

Sinderen, M.J., Guarino, N.: Towards a Commitment-Based Reference Ontology for

Services. Enterprise Distributed Object Computing Conference (EDOC), 2013 17th IEEE

International. pp. 175–184 (2013).

15. Mozilla: Mozilla Public License, http://www.mozilla.org/MPL/.

16. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A., Horrocks, I.: WonderWeb-

D18: Ontology Library. , Trento (2003).

17. Dart, S.: Concepts in Configuration Management Systems. Proceedings of the 3rd

International Workshop on Software Configuration Management. pp. 1–18. ACM, New

York, NY, USA (1991).

18. Chrissis, M.B., Konrad, M., Shrum, S.: CMMI for Development: Guidelines for Process

Integration and Product Improvement. Pearson Education (2011).

19. Estublier, J., Leblang, D.B., van der Hoek, A., Conradi, R., Clemm, G., Tichy, W.F.,

Weber, D.W.: Impact of software engineering research on the practice of software

configuration management. ACM Trans. Softw. Eng. Methodol. 14, 383–430 (2005).

20. Bourque, P., Fairley, R.E. eds: Guide to the Software Engineering Body of Knowledge

Version 3.0. IEEE Computer Society Press (2014).

21. Abran, A., Moore, J.W.: Guide to the software engineering body of knowledge. IEEE

Computer Society (2004).

