Situations in Simulations: An Initial Appraisal

Alessandro M. Baldi, Patricia Dockhorn Costa, Eduardo Zambon, Joao Paulo A. Almeida
Computer Science Departament
Federal University of Espirito Santo (UFES)
Vitéria, Brazil
alessandromurtabaldi@gmail.com, pdcosta@inf.ufes.br, zambon@inf.ufes.br, jpalmeida@ieee.org

Abstract—Approaches to simulation in the literature
range from conventional object-orientation program-
ming, which dates back to the seminal Simula program-
ming language, to the more recent graphical modeling
environments in the scope of agent-based modeling and
simulation. Despite their clear impact and benefits,
we have observed that these approaches have not yet
provided support for situation lifecycle management,
and do not address a notion of “situation” explicitly.
In this paper, we perform a case study in order to
examine how the various approaches support the design
and execution of simulations. We are particularly inter-
ested in contrasting existing approaches to simulation
with a declarative rule-based approach that supports
situations explicitly. We take into account design time
concerns as well as execution time performance. The
study focuses on the simulation of populations of Aedes
aegypti mosquitoes in urban environments.

Index Terms—simulation approaches,
comparison

situations,

I. INTRODUCTION

Simulation-based approaches have been employed suc-
cessfully for the purpose of study in a number of domains
[1]-[3]. These approaches share the aim to investigate the
appropriateness of responses to various situations in a field
of action, constituting an important tool for smart deci-
sion support. Since they can mimic real-world situations,
simulations allow for experimentation under a range of
conditions, enabling (i) the identification of possible issues
in advance; (ii) the training of systems and humans; (iii)
the analysis of possible system states and outcomes, etc.

Despite their similar goals, the various simulation ap-
proaches have utilized an array of styles for the speci-
fication of expected simulation behavior as well as var-
ious means for simulation execution. For example, some
approaches to simulation in the literature employ con-
ventional object-oriented programming, a practice which
can be traced to the seminal Simula programming lan-
guage. Other approaches propose frameworks or libraries
dedicated to simulation [4], enhancing object-oriented
approaches with reuse of basic simulation functionality,
thereby facilitating the development of simulation pro-
grams. More recently, graphical modeling environments
in the scope of agent-based modeling and simulation [5]
have been proposed, providing reuse of basic mechanisms
for simulation, such as support for spatial and temporal

dimensions and their visualization, and raising the level of
abstraction of simulation specification and execution.

We have observed that, despite the importance of the
notion of “situation” in the comprehension of the real-
world [6], the existing range of approaches to simulation
have not yet addressed a notion of “situation” explicitly.
This has motivated us to investigate whether support for
what we call situation lifecycle management [7] could have
a beneficial role in simulations. This paper reports on the
current state of this investigation, with an initial appraisal
of the role of situations in simulations.

We explore four different approaches to simulation and
present a quantitative evaluation concerning run-time per-
formance. Our aim is to examine their suitability for
simulation considering their ease of use and feasibility as
a computational tool. Based on the evaluation, we also
aim to issue recommendations for further development of
situation-aware simulation environments.

We have realized the same simulation scenario in four
ways: a conventional object-oriented implementation in
Java, a model-based graph-transformation specification in
GROOVE [8], an agent-based modeling and simulation
specification in RePast [5], and a declarative rule-based
situation-aware implementation in Drools/SCENE [7].

The case study involves the simulation of a large number
of mosquitoes throughout their lives, and thus we pay
particular attention to the time performance of the sim-
ulation. Since we envision in the medium term the use
of a graphical model-based frontend and a (declarative)
rule-based backend to build a comprehensive simulation
environment, we are particularly interested in answering
whether graph-based and rule-based approaches are able
to scale in scenarios involving many situation elements (in
our case, the individual mosquitoes as vectors of diseases.)
We are also particularly interested in contrasting existing
approaches to simulation with a declarative rule-based
approach that supports situations explicitly.

The paper is further structured as follows: Section II
presents the Aedes aegypti simulation scenario, Section
IIT describes the four realizations of the scenario, Section
IV contrasts the various approaches, Section V discusses
related work and Section VI presents our main conclusions
and outlines some future work.

II. THE AEDES AEGYPTI SIMULATION SCENARIO

The Aedes aegypti is a mosquito present mainly in the
urban environment of tropical and subtropical countries
and is the main vector of Zika, Dengue, Chikungunya and
Yellow Fever diseases [9]. The dynamics of Aedes aegypti is
complex and has motivated researchers to conduct several
studies in various areas [10], [11].

The emergence and resurgence of diseases transmitted
by Aedes aegypti remain a major threat [12], [13]. The
expectation of researchers in the area is that reliable
and useful predictive measures can be developed with the
help of efficient and appropriate tools [10], [13]. With
this mindset, we have defined in this paper an Aedes
aegypti simulation scenario that mimics the dynamics of
the mosquito in a urban environment. We believe that the
result of this simulation is an important decision support
tool since it can assist health professionals to identify and
predict places with higher incidences of Aedes aegypti [14].

We have considered the most common and impor-
tant elements of the Aedes aegypti behavior in a ur-
ban environment, which are: reproduction of mosquitoes
in foci, mosquito population growth and vector combat
through traps. The simulation scenario consists of houses,
mosquitoes, eggs, vector control agents and traps. Houses
represent the places where mosquitoes can oviposit (lay
eggs) and may have foci (mosquito breeding sites) or traps.
In case a female mosquito oviposits in foci, the eggs evolve
to new mosquitoes after 20 days [15]. Otherwise, trapped
oviposition kills mosquitoes and the eggs do not evolve
into new mosquitoes [13], [16]. A health professional checks
traps two days after oviposition and observes if there are
eggs and if a mosquito vector control is necessary in the
region where the trap is located [17]. The control consists
of smoke poison and home visit, which causes extermi-
nation of eggs, mosquitoes and foci [17]. The surviving
mosquitoes remain doing the oviposition for up to 37 days
[15]. During their lifetime, mosquitoes are free to fly and
lay eggs up to 100 meters from their point of birth [17].
Climatic phenomena are also considered in the scenario by
means of rain simulation, bringing back foci.

The spatial aspects are taken from the campus of the
Federal University of Espirito Santo, in Brazil. The cam-
pus covers 157 ha of area, of which 104 ha is constructed
area. We have used OpenStreetMaps to gather geolocation
information of all buildings on campus [18]. We have
used public health data that has been published about
the cities of Vitéoria and Rio de Janeiro. In order to
establish the trap density, we employed a study carried out
in Vitoria which found 1410 traps distributed among 80
neighborhoods in this city in 2011 [19] (an average of about
17 traps per neighborhood). Considering the university
campus as a single neighborhood, we have established for
the simulation scenario the use of 17 traps throughout the
campus. As for the mosquitoes population density, we have
used data from a study carried out in Rio de Janeiro [20],

in which a population density of 10 female Aedes aegypti
per hectare was estimated. Since the university campus
has 104 ha of constructed area, we have considered 1040
mosquitoes as the initial mosquito population.

III. SIMULATION IMPLEMENTATION

We have implemented our scenario in four simulation
approaches, as described in the next subsections.

A. Object-oriented implementation in Java

A first implementation was performed in Java, as a
representative of a high-level, object-oriented, and general-
purpose language. The implementation of the simulation
in Java is given through the manipulation of objects. Ob-
jects are formed by attributes describing their properties
according to the domain in the real world. The attributes
are then manipulated in if-then-else nested conditionals in
order to implement object behaviors.

The implementation scenario defines a list of objects
of type “House”, which are connected to other house
objects, representing the direct links between houses in
which mosquitoes can migrate. An object of type “House”
may also contain a reference to lists of objects of type
“Mosquito”, “Eggs” and “Agent”, indicating whether they
have mosquitoes, eggs or agents in that house, respectively.
A number of attributes are used to represent the state of
each object (e.g., whether mosquitoes have already flown
or oviposited in the current simulation day).

The Java simulation progresses in rounds by means
of loops, in which the simulation behaviors are executed
as if-then-else statements. The code snipped in figure 1,
depicts a particular behavior implemented by the Java
simulation, in which mosquitoes lay eggs. This code checks
whether there are houses with active foci (by means of the
“activefocus” boolean attribute) and, if this is the case,
the method “addEggs()” is invoked to insert eggs in those
particular houses.

private void layEggs() {
for (int verifyingHouses = 0; verifyingHouses < this.scenary.size();
verifyingHouses++) {
House inHouse = this.scenary.get(verifyingHouses);
List<Mosquito> mosquitosInHouse = inHouse.getMosquitos();

for (int verifyingMosquitos = mosquitosInHouse.size() - 1;
verifyingMosquitos >= 0; verifyingMosquitos—) {
if (inHouse.isFocus() == true && inHouse.isActivefocus() == true) {

inHouse.addEggs();
//System.out.printin("Laying Eggs");

}

if (inHouse.isTrap()) {
mosquitosInHouse.remove(verifyingMosquitos);
//System.out.printin("Captured Mosquito");
inHouse.newAgent();
//System.out.println("Agent Called");

}

Fig. 1. LayEggs Code

The complete implementation is omitted here due to
space constraints and can be found in [21].

B. Graph-based implementation in GROOVE

A second implementation employed the GROOVE
(GRaph based Object-Oriented VErification) tool-set.
GROOVE uses graphs to represent the states of the system
and applies graph transformation (rewrite) rules to model
system dynamics [8]. The tool has an editor for creating
state graphs and rewrite rules, a simulator to visualize
the transformations in the system state and a generator
to explore state spaces automatically [22].

The graphs manipulated by GROOVE are formed by
nodes and directed binary edges. Edges are annotated with
labels that characterize the relationship between the two
connected nodes. Additionally, we can have attributes (in-
teger and Boolean values) that describe certain properties
of each node. To model a simulation in GROOVE, we need
to implement the initial scenario as a start state graph.

State graphs are transformed in GROOVE by graph
transformation rules. A rule is also a graph, but, in
contrast to state graphs, rule graphs are subdivided into
subgraphs LHS and RHS. Subgraph LHS can be seen as
the precondition for the rule application, and subgraph
RHS as the effect of the application. A rule is applied
on a host graph (that is, the current state graph that
will undergo the transformation). This application requires
finding a match of LHS in the host graph, and then
replacing this match with a copy of the rule RHS, thus
forming a new state graph [8].

Figure 2 shows the syntax of rule graph elements in
GROOVE. The role of nodes and edges in a rule is
identified by the color and dash type on the edge and
around the node. Fine-dashed (blue) elements (the edge
labeled “edge2” in Figure 2) are elements that must be
present in the current state of the simulation and that are
removed when the rule is applied. Similarly, elements with
fine continuous (grey) lines (“edgel” and all the nodes) are
also elements that must be present in the current state, but
these are preserved by the rule application. Thick-dashed
(red) elements (“edge4”) cannot occur in the current state,
otherwise the rule is not applicable. Finally, elements in a
thick continuous (green) line (“edge3”) are created when
the rule is applied.

edge3 edge2 R
“\ut“

Fig. 2. Rule graph syntax in GROOVE

edgel

The scenario elements were modeled in GROOVE using
nodes with proper labels. The house nodes (with their
structure shown in figure 3-1) has fly-labeled edges linking
other house nodes, indicating that a mosquito can fly from
one house to another. There is also the possibility of a
house containing eggs (figure 3-2) or a mosquito (figure

3-3). A mosquito node has an edge indicating the house
where the mosquito was born, and two Boolean attributes
indicating whether the mosquito has already performed
oviposition and whether it has flown in the current round
of the simulation. In addition, each mosquito has an
integer attribute indicating its age in days. The agent
nodes in figure 3-4 must always be in some house and also
have a visit counter for each visited house. The simulation
scenario is done in rounds, during which all the actions
of the mosquitoes and agents are carried out. At the end
of each round, a day counter is incremented until a given
limit is reached.

fly-

i 2
trap as
[mosauito}«—has— house | i ggs] (inte<-eoss-dayseggs|—day_control >(bool)
foci
3. - flight ¢ 4.
" mosquito] Cooch [house j<—visit—{agent}—visits->{nt)

born mosquimfdavs_*@

Fig. 3. Scenario elements modeled in GROOVE

Figure 4 represents the rule that captures the condition
for oviposition and the corresponding action. If a house
has foci and a mosquito that has not yet layed eggs
(“lay” is false), a batch of eggs is created to represent
oviposition. This is done with the creation of an “eggs”
node connected to the house and initialized with a day
count of 1. The complete set of rules is omitted here due
to space constraints and can be found in [21].

mosquito eggs
- lay = false day_control = true
+ lay = true day_eggs = 1

Fig. 4. An example rule: oviposition

C. Rule-based Implementation in SCENE

A third implementation was performed using SCENE
[7]. SCENE is a platform that runs on the top of JBoss
Drools [23] engine with the aim of supporting rule-based
situation-awareness, enabling the specification of situa-
tions and maintaining the lifecycle of situations [7]. The
Aedes aegypti SCENE simulation behavior is defined in
terms of Drools rules and Situation rules.

A Drools rule declaration comprises a condition and a
consequence expression block, respectively referred to as
Left Hand Side (LHS) and Right Hand Side (RHS). A
rule specifies that when the particular set of conditions
defined in the LHS occurs, the list of actions in the RHS
should be executed. The LHS is composed of conditional
elements which can be combined through logical operators,
such as and, or, not and exists; and set operators,

such as contains and member of. A conditional element
can be a pattern or a constraint. A pattern matches
against a fact in the working memory (of the specified
class type); constraints match against properties, and are
defined as conditions within a pattern. The RHS allows
the declaration of procedural code to be executed when
the conditions defined in LHS are satisfied.

Situation rules are particular types of Drools rules, in
which it is possible to objectify situations and reason
about them as first-class citizens in the specifications.
Conditional patterns defined in the LHS of the Situation
Rule declaration establish the conditions which must hold
for a situation of a particular situation type to exist.
Situation lifecycle control (situation creation, activation
and deactivation) is completely realized by SCENE.

We have also used the CEP (Complex Event Processing)
functionality of Drools (Fusion) in order to specify the
occurrences of events in the simulation. For example, we
define the following as events: (i) episodes of rain are
represented as instances of a Drools Fusion Event Type
called “Rain”, which is instantiated every 15 days; (ii) the
migration of mosquitoes; (iii) oviposition and, finally, (iv)
the incubation of eggs.

The simulation progress is defined by triggering of rules.
For example, Figure 5 depicts the rule “mosquitoMigra-
tion”, which defines the following behavior: if a mosquito
is in a house but has not yet migrated in the past day (time
constraint defined with the “over window:time” operator),
generate a “MosquitoMigrated” event for that mosquito
and change its location to a neighbor house (randomly
chosen). This rule forces mosquito migration every single
day, to a different house.

rule "mosquitoMigration”
when
mosquito: Mosquito()
house: House() from mosquito.getHouse()
not MosquitoMigrated (this.migrated==mosquito) over window:time(1d)
then
MosquitoMigrated eventFlown =new MosquitoMigrated();
eventFlown.setMigrated(mosquito);
house. changeMosquito(mosquito);
insert(eventFlown);
update(mosquito);

Fig. 5. Mosquito Migration Rule

Another example of rule that makes the simulation
progress is the “mosquitoLayingEggs” rule (in Figure
6). The goal of this rule is to force oviposition of all
mosquitoes located in a breeding site (houses with traps
or active focus). Therefore, this rule is executed when
there is no “MosquitoLayedEggs” event in the past day
for a mosquito that is located in a house with traps
or active focus. If this condition is met, a new event
“MosquitoLayedEggs” is triggered for that mosquito and
new eggs are inserted for that particular house.

rule "mosquitolayingEggs"
when
mosquito: Mosquito()
house: House(trap || activefocus) from mosquito.getHouse()
not MosquitolLayedEggs (this.layed==mosquito) over window:time(1d)
then
MosquitoLayedEggs eventlLay = new MosquitolLayedEggs();
eventlay.setLayed(mosquito);
Eggs neweggs= house.addEggs();
insert(eventlLay);
insert(neweggs);
EggsHatched eventHatch = new EggsHatched();
eventHatch. setHatched(neweggs);
insert(eventHatch);
end

Fig. 6. Mosquito Laying Eggs Rule

The simulation of incubation of eggs is similarly spec-
ified. We define a rule “eggsHatching” in which the LHS
detects whether there are eggs in houses with active foci
that have not yet hatched for the past 20 days. The RHS
of this rule simulates the birth of 10 mosquitoes in that
particular house.

Figure 7 depicts the capturedMosquitoAndCallingAgent
rule, which is an example of a Situation Rule in the
simulation. It defines the situation in which mosquitoes
have been detected in a trap but the extermination agents
have not arrived yet. This situation is activated when an
event of EggsHatched is detected for a particular house
and remains active for over 4 days.

rule "capturedMosquitoAndCallingAgent"
@role(situation)
@type(capturedMosquitoAndCallingAgent)
when
eggs: EggsQ
house: House(trap==true) from eggs.getHouse()
EggsHatched(this.hatched==eggs) over window:time(4d)
then
SituationHelper.situationDetected(drools);
end

Fig. 7. Captured Mosquito and Calling Agent Situation

Both activation and deactivation events related to the
situation capturedMosquitoAndCallingAgent are used by
other rules. For example, the “AgentWorking” rule is exe-
cuted when the deactivation of the capturedMosquitoAnd-
CallingAgent situation is detected (i.e., 4 days after the
eggs have hatched). The RHS of this rule simulates the
work of an agent, which is the extermination of eggs and
mosquitoes of that particular house and of 4 neighbor
houses, randomly chosen.

The complete code is available at [21].

D. Agent-based modeling with RePast

A final implementation was performed with RePast.
RePast is a tool that uses the Agent-Based Modeling and
Simulation (ABM&S) approach, in which agents exhibit
independent and autonomous behaviors. A number of
programming languages are supported by RePast, such

as Logo (called reLogo), Java and C#. We have chosen
reLogo for this simulation, which is the recommendation of
various RePast papers since it is a simple and fast language
to implement simulations.

In order to make simulations in RePast, developers
should define agent types (or “individuals”) and their
behaviors. The running of the simulation is divided into
time steps or “ticks”, therefore, agent actions should be
defined for each tick. RePast natively supports spatial
functionality and also offers off-the-shelf agents behaviors.
Simulations in RePast also require the configuration of
the UserObservation component, which offers a graphical
interface to define the initial configuration of the scenarios
as well as defining shapes and colors to agents.

The following agent types have been defined in the
RePast simulation: Agents, Eggs, House and Mosquito.
Figure 8 depicts the definition of the “Eggs” agent type.
In order to define this agent behavior, we should define
their actions for each tick in the simulation, which is
done by implementing the “step” method inherited from
ReLogoTurtle class. For the Eggs agent type, in every
tick of the simulation, the variable days is incremented
by one and, when it reaches 20, the simulation creates 10
mosquito agents (representing the birth of 10 mosquitoes
from that batch of eggs), and, in addition, this particular
Eggs “agent” “dies”. The complete code is available at [21].

class Eggs extends RelLogoTurtle {

def days=0
def step(Q{
days++
if(days==20) {
hatchMosquitos(1@)
die()
}
1

Fig. 8. Agent “Eggs”

IV. PERFORMANCE RESULTS

Table I summarizes the results of the performance tests
for each of the approaches. Simulation times corresponding
to 5 to 90 scenery days are represented in each row.
Results were obtained on a MacBook Pro (Retina, 13-
inch, Early 2015) with Intel i5-5257U 2.7 GHz, 8GB 1867
MHz DDR3 memory, 128GB SSD and Mac OS High Sierra
10.13.3. The implementation in Java was found to have
the best time performance, followed by Scene, RePast and
GROOVE respectively. The dash marks (“~”) represent
the absence of measurements due to memory scalability
issues as discussed in the sequel.

The simulation reveals that the simulated mosquito
combat strategy is unable to cope with the increase in
the number of mosquitos. This leads to memory scalability
issues for various simulations, as the simulation progresses
and the number of individual elements, such as mosquitos

and eggs, increase significantly. Thus, memory constraints
limit the number of days that can be simulated according
to the approach’s memory usage. Table II shows the
maximum number of elements that we are able to simulate
with each approach. Note that if the simulated mosquito
combat strategy were adequate, the number of individual
elements in the simulation would be kept under control,
and the scalability issues would not arise. So, despite the
scalability constraints, we consider three of the examined
realizations to be feasible (Java, Scene and RePast). The
performance of the realization in GROOVE deserves some
special attention. The relatively poor performance can be
explained by the fact that the tool is originally aimed at
exhaustive exploration of a state space. Because of that,
the execution of the simulation in this tool differs from the
execution in all the other approaches, which take benefit
from the execution of a single path is the whole state
space. (For example, while in the three other approaches
a mosquito flies to only one house within range, in the
GROOVE simulation, a new state of the simulation is
produced for each possible migration departing from a
particular house.)

TABLE I
ExXeEcuTION TIME IN MILLISECONDS
Days Java | GROOVE Scene RePast
5 22 48,224 5,783 49,038
10 28 861,846 8,311 92,073
15 33 - 9,854 122,607
20 40 - 11,288 146,686
25 76 - 107,747 1,039,921
30 115 - 488,994 3,445,092
35 206 - 957,218 6,642,166
40 254 - | 1,782,615 | 10,276,445
50 822 - - —
60 7,235 - - -
70 330,112 - - —
80 33,757,062 - - -
TABLE II
MaxiMuM NUMBER OF ELEMENTS IN SIMULATION

Days | Mosquitos Eggs

Java 82 37,118,209 | 232,602,309

Groove 10 665 8,097

Scene 42 78,129 309,638

RePast 43 79,359 317,728

V. RELATED WORK

Most approaches for simulation in the situation aware-
ness literature, such as [2], [3], [24], [25] address simulation
from the perspective of humans in the loop. Their objec-
tive is mainly to examine observe human performance and
behavior under controlled conditions. Here, instead, we
have focused on fully-automated simulations as a means
to gain insight into the consequences of particular action
strategies. Differently from the works cited, the behavior
of humans in the setting we have considered is quite
restricted in scope, and limits itself to clear cut mosquito

fighting actions of the healthcare professionals. Consider-
ing more sophisticated behavior for the healthcare pro-
fessionals (and perhaps of the overall population) would
be a natural extension of this work. This is because the
combination of community-based programs with chemical
control of the mosquito has yielded significant results [26]
apud [27]. As discussed in [28], the success of community-
based strategies depends, among other things, on the
behavior of the people, and strategies involved.

Concerning the application area itself, an advanced
effort in the simulation of dengue fever is [1]. The au-
thors have proposed a tool to assist the design of (site-
specific and vector population-specific) control strategies
for dengue. They have provided, among other elements:
(i) a collection of built-in models that can be combined
to represent various scenarios; (ii) a modeling language;
and (iii) a graphical interface for model selection and
configuration. Models are implemented using the high-
level programming language TerraML (Terra Modeling
Language) from TerraME [4], which is based on the Lua
programming language [29].

TerraME combines multiple paradigms such as agent-
based simulation, cellular automata abstractions and
scheduled events [4]. Although it also supports sched-
uled events, the simulation progresses through well-defined
steps, by invoking code (functions such as execute and
synchronize) that must be supplied by the designer of
the simulation. We believe that the TerraME framework
could be made even more comprehensive with the support
for rule-based situation detection and complex rule-based
event processing.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have worked out a simulation scenario
in four different realization approaches. The approaches
have been selected because of their complementary charac-
teristics. The object-oriented programming approach was
selected as a representative of a mainstream implementa-
tion approach. It has offered the best time performance
for simulation execution in the experiment conducted.
Nevertheless, from a design perspective, we can observe
that it offers no support for situation management or
other high-level abstractions for simulation. The graph-
based approach was selected because of its radical de-
parture from the conventional approach. It incorporates a
model-based front-end with fully declarative transforma-
tion rules. Despite the benefits in the visual specification of
situation elements and high-level rules, we have observed
that the graph-based approach was not able to deliver the
time and memory performance to address the simulation
scenario. This can be explained by the fact that the
tool is originally aimed at exhaustive exploration of a
state space as discussed in the results section. The agent-
based approach in its turn, featured a programming style
that is quite similar to the object-oriented programming
approach. Despite that, it was supported by an easy to

use graphical interface, directly connected to simulation
visualization. Spatial aspects were also supported directly
in this approach favoring the specification simulations of
physical environments. Finally, the rule-based situation-
aware approach was selected because of the high-level ab-
stractions employed. We have observed, as expected, that
the declarative approach favors a specification that reflects
domain rules more directly. Concerning the performance
aspects, we have observed that the declarative specifica-
tion and high-level interpretation of rule sets by the rule
engine has not constituted a hurdle for the scalability of
the approach, and we were able to simulate a large number
of elements in the proposed case study (over 380 thousand
elements, such as mosquitos and batches of eggs).

We conclude that an ideal solution would require the
combination of a model-based front-end with the abstrac-
tion provided by the declarative specification of rules. We
believe this can be pursued with a combination of the
existing approaches with a platform such as Scene/Drools
Fusion. This perhaps can be obtained with the use of a
generative model-transformation based approach (such as
the one some of us employed in [30]). Implementing such
a vision is the scope of our ongoing efforts.

Since we have observed that a situation-aware platform
such as Scene [7] can be used for simulation but also for
efficient runtime execution, we believe this can serve as
a design strategy. In this case, situation specification and
detection can be first explored in simulation and then be
put to work in real-time. We are currently exploring this
strategy in the scope of environmental disaster manage-
ment, in particular in a project concerning water pollution
in the Rio Doce basin after the massive rupture of an
iron ore tailings dam. One of the challenges we intend to
address concerns the integration of (water quality) historic
records and sensor data into a situation-aware solution.

ACKNOWLEDGMENTS

This work is partly supported by CNPq (407235/2017-5
and 312123/2017-5) and CAPES (23038.028816/2016-41).

REFERENCES

1] T. F. M. de Lima, R. M. Lana, T. G. de Senna
Carneiro, C. T. Codego, G. S. Machado, L. S.
Ferreira, L. C. Medeiros, and C. A. Davis Jr,
“Dengueme: A tool for the modeling and simula-
tion of dengue spatiotemporal dynamics,” Interna-
tional Journal of Environmental Research and Public
Health, vol. 13, no. 9, 2016.

[2] V. F. Mancuso, D. Minotra, N. Giacobe, M. Mc-
Neese, and M. Tyworth, “Idsnets: An experimental
platform to study situation awareness for intrusion
detection analysts,” in Cognitive Methods in Situ-
ation Awareness and Decision Support (CogSIMA),
2012 IEEFE International Multi-Disciplinary Confer-
ence on, IEEE, 2012, pp. 73-79.

[10]

[11]

A. Angelopoulou, K. Mykoniatis, and W. Kar-
wowski, “A framework for simulation-based task
analysis-the development of a universal task analysis
simulation model,” in Cognitive Methods in Situation
Awareness and Decision Support (CogSIMA), 2015
IEEE International Inter-Disciplinary Conference
on, IEEE, 2015, pp. 77-81.

T. G. de Senna Carneiro, P. R. de Andrade, G.
Camara, A. M. V. Monteiro, and R. R. Pereira,
“An extensible toolbox for modeling nature—society
interactions,” Environmental Modelling & Software,
vol. 46, pp. 104-117, 2013.

N. Collier, “Repast: An extensible framework for
agent simulation,” The University of Chicago’s So-
cial Science Research, vol. 36, p. 2003, 2003.

P. D. Costa, G. Guizzardi, J. P. A. Almeida, L. F.
Pires, and M. van Sinderen, “Situations in con-
ceptual modeling of context,” in Enterprise Dis-
tributed Object Computing Conf. Workshops, 2006.
EDOCW’06. 10th IEEE Int., IEEE, 2006, pp. 6-16.
1. S. Pereira, P. D. Costa, and J. P. A. Almeida, “A
rule-based platform for situation management,” in
Cognitive Methods in Situation Awareness and Deci-
sion Support (CogSIMA), 2018 IEEE International
Multi-Disciplinary Conf. on, IEEE, 2013, pp. 83-90.
A. H. Ghamarian, M. de Mol, A. Rensink, E. Zam-
bon, and M. Zimakova, “Modelling and analysis
using GROOVE,” Int. Journal on Software Tools for
Technology Transfer, vol. 14, no. 1, pp. 1540, 2012.
C. Lok, N. Kiat, and T. Koh, “An autocidal ovitrap
for the control and possible eradication of aedes
aegypti.,” The Southeast Asian J. Tropical Medicine
and Public Health, vol. 8, no. 1, pp. 56-62, 1977.
V. Morato et al., “Infestation of aedes aegypti es-
timated by oviposition traps in brazil,” Revista de
Satde Publica, vol. 39, no. 4, pp. 553-558, 2005.

P. F. C. Vasconcelos, “Doencga pelo virus zika: Um
novo problema emergente nas américas?” Revista
Pan-Amazénica de Saide, vol. 6, no. 2, 2015.

I. A. Braga and D. Valle, “Aedes aegypti: Histérico
do controle no Brasil,” Epidemiologia e servigos de
satde, vol. 16, no. 2, pp. 113-118, 2007.

N. Sivagnaname, K. Gunasekaran, et al., “Need for
an efficient adult trap for the surveillance of dengue
vectors,” Indian Journal of Medical Research, vol.
136, no. 5, p. 739, 2012.

A. M. Baldi, E. Zambon, P. D. Costa, and E. M.
Montiel, “Simulacdo de aplicagdo de armadilhas no
combate ao aedes aegypti,” in XVII Workshop de
Informadtica Médica - Sao Paulo, SP, 2017.

H. A. Maimusa, A. H. Ahmad, N. F. A. Kassim, and
J. Rahim, “Age-stage, two-sex life table characteris-
tics of aedes albopictus and aedes aegypti in Penang
Island, Malaysia,” Journal of the American Mosquito
Control Association, vol. 32, no. 1, pp. 1-11, 2016.

[27]

[28]

World Health Organization, Dengue Control, http:
/ /www.who.int/denguecontrol /research, 2017.

F. Dzul-Manzanilla et al., “Indoor resting behavior
of aedes aegypti (diptera culicidae) in Acapulco,
Mexico,” Journal of Medical Entomology, 2016.
OpenStreetMap, OpenStreetMap, http : / / www .
openstreetmap.org, 2017.

M. P. C. Piccin, “Avaliacdo da relacdo da densidade
de vetores e da presenca de Aedes aegypti infectados
com a ocorréncia de dengue na cidade de Vitoria,”
Master’s thesis, Fed. Univ. of Espirito Santo, 2013.
R. M. Freitas, A. E. Eiras, and R. L. Oliveira,
“Calculating the survival rate and estimated pop-
ulation density of gravid Aedes aegypti (Diptera,
Culicidae) in Rio de Janeiro, Brazil,” Cadernos de
Saude Publica, vol. 24, pp. 2747-2754, Dec. 2008.
A. Baldi, GitHub Repository, https://github.com /
alexnede?tab=repositories, 2017.

A. Rensink and E. Zambon, GROOVE - GRaphs
for Object-Oriented VErification, http://groove.cs.
utwente.nl, 2017.

P. Browne, Jboss drools business rules. Packt Pub-
lishing Ltd, 2009.

E. Ozyurt, B. Déring, and F. Flemisch, “Simulation-
based development of a cognitive assistance system
for navy ships,” in Cognitive Methods in Situation
Awareness and Decision Support (CogSIMA), 2013
IEEE International Multi-Disciplinary Conference
on, IEEE, 2013, pp. 22-29.

O. Juarez-Espinosa and C. Gonzalez, “Situation
awareness of commanders: A cognitive model,” 2004.
A. Baly, M. Toledo, M. Boelaert, A. Reyes, V.
Vanlerberghe, E. Ceballos, M. Carvajal, R. Maso,
M. La Rosa, O. Denis, et al., “Cost effectiveness
of aedes aegypti control programmes: Participatory
versus vertical,” Transactions of the Royal Society
of Tropical Medicine and Hygiene, vol. 101, no. 6,
pp. 578-586, 2007.

I. A. Rather, H. A. Parray, J. B. Lone, W. K.
Paek, J. Lim, V. K. Bajpai, and Y.-H. Park, “Pre-
vention and control strategies to counter dengue
virus infection,” Frontiers in Cellular and Infection
Microbiology, vol. 7, p. 336, 2017.

V. S. Nam, N. T. Yen, T. V. Phong, T. U. Ninh,
et al., “Elimination of dengue by community pro-
grams using Mesocyclops (Copepoda) against Aedes
aegypti in central vietnam,” The American J. of
Tropical Medicine and Hygiene, vol. 72, no. 1, 2005.
R. Ierusalimschy, L. H. Figueiredo, and W. Ce-
les Filho, “Lua-an extensible extension language,”
Softw., Pract. Exper., vol. 26, no. 6, 1996.

P. D. Costa, I. T. Mielke, 1. Pereira, and J. P. A.
Almeida, “A model-driven approach to situations:
Situation modeling and rule-based situation detec-
tion,” in Enterprise Distributed Object Computing
Conf. (EDOC), 2012 IEEE 16th Int., 2012.

