

1

Abstract—Convergence is driving the uptake of new

technologies on networking and service layers. The emerging
new network infrastructure centered on 3GPP and IMS will
have a horizontal layering with a good separation of control
functions, media handling, networking issues, and service
layers. This is a first step for fast service creations. In addition,
we need a good tool chain for service creation as well as a rich
execution environment. This paper describes the approach of
the IST project SPICE with respect to Service Creation
Environment and Service Execution Environment.

Index Terms—Service Creation, Service Execution, Service
Description Language, Telecommunication

I. INTRODUCTION
Convergence of networks, services and content is happening
at an increasing speed. There are two major drivers: on one
hand, technology development has increased competition in
the telecommunications market and opened the opportunity
for lowering operational expenses and concentrating capital
expenditure in the core business. This is used by new
market entries as well as by incumbent market leaders. The
second aspect is that convergence is increasingly speeding
up the introduction of new and/or converged services. New
market opportunities like “triple play” of voice, video and
data services are emerging from this trend.

The creation of appealing value added services seems to
be a key feature to avoid an operator being reduced to a
“transport only” provider [1]. This new service market is
foreseen to be one important battlefield for the operators.
The attractiveness of the service portfolio offered seems to
be the key to attract and retain customers, and to increase
revenues. At the same time, as the service market is highly
competitive with a wider range of potential players, a key
feature to compete effectively is to reduce the time-to-
market for new services.

More concretely, the service lifecycle process needs to be
sped up by an effective Service Creation Environment
(SCE) that supports as much as possible the reuse and the
composition of pre-existing consolidated components. In
fact, most of the business benefits triggered by these
facilities stem from the possibility to reuse services, thereby
enabling faster time-to-market and lower costs in the service
development process. This leads to direct and indirect
benefits to service end-users, service developers, platform
operators and service providers.

One of the goals of the project SPICE (Service Platform
for Innovative Communication Environment) is the design
of a SCE for easy development of services over
heterogeneous platforms. The IST project SPICE is part of
the Wireless World Initiative (WWI).

The approach to service creation in SPICE is driven by
the constraint of being able to address heterogeneous target
execution environments, where the technologies range from
general Information Technology (IT) where, for example,
Web Services are one of the leading technology in Service
Oriented Architectures [5], to very specific Telco ones,
where a plethora of protocols and standards are available
(SIP and IMS first of all). What seems to be clear in Telco
services is the need to integrate many resources over
different protocols and to be able to represent a set of
interactions that are not limited to the classic
request/response paradigm. In such an heterogeneous
environment, the approaches to service creation should be
as general as possible, supporting a stepwise approach that
drives the developer from abstract to concrete definitions
targeting a specific Service Execution Environment (SEE).

Looking at the main challenges of the service creation
process, the most important characteristics that will be
described in the following consist of:
• A language that allows the specification of a Telco/IT

integrated services
• Tools that support the definition of services and their

deployment to a target Service Execution Environment
• A Service Execution Environment that allows to

combine effectively different technologies.

II. THE LANGUAGE
To describe SPICE services, a specialized description
language named SPATEL has been designed [2]. The
approach used is based on the Model Driven Architecture
approach (MDA) [3], as defined by the Object Management
Group (OMG) [4]. The purpose of a dedicated formalism is
to allow agile development of complex telecommunication
services on top of the SPICE architecture using state-of-the-
art software engineering techniques like software
component technology and model-driven engineering. Such
dedicated formalism supports the Service Oriented
Architecture paradigm and includes specificities of the
telecom domain like voice dialog support and multimedia
data types.

The definition of a domain-specific language for
integrated Telco services is one of the key elements for
improving significantly the agility of the service
development process. Various domain-specific languages
addressing, for example the orchestration of web services
exist nowadays (e.g. BPEL [8]), however high-level design
languages coupling support of state-of-the-art IT technology
and telecom specificities are difficult to find.

According to MDA principles, the SPATEL language is
"platform independent", leaving the translation to specific
execution engines, terminals and platforms to

Service Creation in the SPICE Service Platform
João Paulo Almeida, Alberto Baravaglio, Mariano Belaunde, Paolo Falcarin, Ernö Kovacs

2

transformations that will be offered by the SCE in a semi-
automated way.

SPATEL specifies two kinds of service representation
addressing two categories of service developers: the
developer formalism and the end-user formalism. The
SPATEL formalism for developers is aimed at professional
service developers that, expressing compositions as state
machine diagrams, will be able to define complex
composition patterns. On the other hand, the SPATEL
formalism for end-users is aimed to the less-experienced
service end-users or customers, to give them the possibility
of creating new services by means of a very much assisted
assembly process of pre-existing components.

A. SPATEL formalism for service developers
In the service developer formalism, a service is primarily

described through an external view which provides the
information that is useful for the clients of the service. The
external view is basically an interface declaring a list of
operations, input and output events, multimedia streams and
relevant side-effects. The constraints on the service interface
such as the ordering of operation invocations can be
precisely defined through a contract. An important feature
of SPATEL is the ability to annotate the elements of the
interface (like the operations and the parameters) with
semantics tags and non functional features to enable rich
scenarios for service discovery and dynamic composition.
The approach is similar to WSDL-S [6] in that the
annotations refer to elements defined in ontologies. The
following semantic annotations are pre-defined:
• Annotations on Input and Output parameters of the

service operations.
• Annotations on goals that describe the overall objective

of a service or the objective of a single operation
exposed by the service.

• Annotations on the effects of a given operation that
describe the outcomes of its execution in terms of state
achieved by the service or action performed.

• Annotations on the preconditions of a given operation
that describe the conditions that have to be satisfied in
order to allow its execution.

Non functional features are partitioned on the basis of
categories like quality of service, charging,
internationalization or resource usage.

The service developer formalism also allows representing
the internal view of a service (white box representation) by
means of a set of inter-connected service components. Two
distinct views are available: an architectural view showing
the list of involved components and their connections and a
behavioral view consisting of state machines that define
precisely the logic of an operation – an orchestration of
components being a particular case.

The figure below gives an example of a service
composition defined using the developer formalism. On the
left the interface of a location aware hotel reservation
service is firstly defined with semantics and non functional
tags that refer to pre-existing ontologies; on the right, the
precise behavior of the “book” operation is defined as an
orchestration of two sub-components: a location service

(LOCS) and a hotel reservation service (HRS).
<<ontology>>

tourism = http://ist-spice//tourismOntology.owl
nonFunctional = http://ist-spice/nonFunctional.owl

book(n_nigths,n_persons,status,offer)

LocationAwareHRS

<<operation>>
book()
<<goal>> -> tourism:HotelReservation
<<QoS>> -> nonFunctional

responseTime = 3500ms
availability = 80%

<<Cost>> …

OffersObtained

noOtherOffers

HRS.book(st,offer)bookingFailure

bookingSuccess

[offers->notEmpty()]

[status="failure"]

[status="success"]

[else]

HRS.getOffers(loc,offers);
LOCS.getLocation(userID,loc);

<<ontology>>
tourism = http://ist-spice//tourismOntology.owl
nonFunctional = http://ist-spice/nonFunctional.owl

book(n_nigths,n_persons,status,offer)

LocationAwareHRS

book(n_nigths,n_persons,status,offer)

LocationAwareHRS

<<operation>>
book()
<<goal>> -> tourism:HotelReservation
<<QoS>> -> nonFunctional

responseTime = 3500ms
availability = 80%

<<Cost>> …

OffersObtained

noOtherOffers

HRS.book(st,offer)bookingFailure

bookingSuccess

[offers->notEmpty()]

[status="failure"]

[status="success"]

[else]

HRS.getOffers(loc,offers);
LOCS.getLocation(userID,loc);

OffersObtained

noOtherOffers

HRS.book(st,offer)bookingFailure

bookingSuccess

[offers->notEmpty()]

[status="failure"]

[status="success"]

[else]

HRS.getOffers(loc,offers);
LOCS.getLocation(userID,loc);

Fig. 1. SPATEL external and internal view of a composite service in the
developer formalism

B SPATEL formalism for end users
The end-user formalism is designed to enable users to

assemble pre-existing service components to produce a new
service addressing their needs. The formalism proposed is
designed by simplicity constraints and by strict controls on
which components can be used and how they can be
configured. A composite service in the end-user notation is
defined as an orchestration of elementary building blocks,
each of them defining a set of configuration parameters that
can customize its behavior. Moreover building blocks offer
a set of actions that can be triggered by event notifications
produced by other building blocks or network resources.

The end user formalism has been designed so that service
compositions can be automatically transformed in the
SPATEL developer notation. Figure 2 gives an example of a
service composition defined using the end-user formalism.
In the example the composition of a location and a weather
forecast service is expressed through dependencies, linking
notifications (like onLocated) to actions (like findForecast).
The property configurations are used to prepare the context
of a service invocation, whereas the variables allow
retrieving the relevant outputs.

Fig. 2. SPATEL end user representation of a composite service

The end-user formalism is depicted with a user friendly

and dedicated representation; for the developer formalism a
UML2 profile has been provided in order to reuse existing
notational conventions for depicting composition and
behavior. Both formalisms are further defined by a MOF
conformant metamodel [7] from which the XML
serialization is derived. The approach taken allows to
potentially work with different concrete syntaxes and front-
end tools but at the end having the same serialization
format.

3

III. THE SERVICE CREATION ENVIRONMENT
In SPICE, the Service Creation Environment (SCE) is seen
as a set of integrated tools that support the service creation
process and is characterized by the following macro
components:

- Developer Studio: is used by professional developers
for designing arbitrarily complex services by using the
SPATEL/developer formalism for high-level design, in
combination with general purpose languages for
completing the non-generated parts of the code of the
service. In particular the tool will be used to specify
composite services orchestrating other components,
which could pre-exist or be developed from scratch.
Basic components will typically consist of a SPATEL
Service Interface and code implementing the exposed
operations, while composite components will consist of
a Service Interface and a state machine representing the
composition. The Developer Studio will be provided
with different pluggable transformers that will support
the translation of the SPATEL specification in the code
for a target execution platform (such as JSLEE, J2EE,
.NET, BPEL and so on).

- End User Studio: is a graphical tool that, supporting the
SPATEL end-user formalism, enables the end user to
create new services by composing high level
representations of Basic Components. Addressing a
wide population of non-professional service designers,
this tool should be as lightweight as possible, with
minimal or no installation requirements and an
extremely friendly user interface. An approach based on
a very much assisted graphical composition tool can be
a core solution to be extended in a stepwise approach
with further facilities like natural language interpreters
(e.g. to propose initial automatic compositions to be
manually visualized, verified and corrected), or with
wizards to define the details of the composition.

- Automatic Service Composition Engine: produces
automatically service compositions based on a
formalized service request. Formalized service requests
include a semantic description of the desired service or
service composition, and optionally required non-
functional properties or constraints. In SPICE, the
composition generated is expressed using the
SPATEL/developer formalism. One of the applications
of automatic composition is the creation of composed
services which consider the current situation or user’s
context, for example to enhance or personalize the user
experience.

- Deployment Tool: is used to package and deploy a
SPICE component and a SPICE service composition in
the target SEE. This tool will have to be specialized for
the different SEEs and the SCE will take advantage of a
standard interface to interact with the SEE specific
deployment facilities.

A. Supported Activities and Main Information Flows
Figure 3 depicts service creation schematically, both for

professional service development and end-user service
development. The Developer Studio supports the following

main service creation activities for a professional service
developer: (i) creation of basic components, which offer
services that are described with SPATEL; (ii) creation of
service compositions in SPATEL (these compositions
involve basic components developed from scratch and
previously defined components); (iii) discovery of
components and their services for incorporation in service
composition (offering an interface to the SPICE service
repository); and, (iv) publication of service components and
compositions. For the professional service developer, the
service creation environment is said to provide design with
reuse (through service discovery) and design for reuse
(through service publication). The End-user Studio supports
the creation of end-user service compositions with reuse of
existing services. The existing services and the end-user
composition are described with SPATEL for end-users.

service
end-user

professional
service developers

SPATEL
service

composition

SPATEL
end-user
service

composition

SPICE
Services

Repository

Existing
component

(described with
SPATEL)

Basic
component

(described with
SPATEL)

Existing
component

(described with
SPATEL)

discover
discover

publish
component

publish
composed

service

creates

creates creates

tool support user activity
with information flow

usage dependency

model (PIM/PSM)

Fig. 3. Main components and actors in developer and end user service
creation process.

Figure 3 describes a simplified service creation process,

and omits activities such as service emulation, testing,
provisioning, moreover it is not mentioned the SPATEL
description enrichment by means of semantic descriptions
referring to service ontologies; details of the SPATEL
metamodel and the SPATEL semantic annotations can be
found in [2].

The relations between the various models supported by
the Service Creation Environment and the components
deployed in the Service Execution Environment are
represented in Figure 4 where the deployment activities and
information flows are identified, together with the
transformation of SPATEL service compositions into
Platform-Specific Models (PSM). Further it shows the
transformation of a SPATEL end-user service composition
into a SPATEL developer composition. This transformation
is transparent to the user, and allows the reuse of
transformations from the SPATEL service composition into
the target technologies supported by the Service Execution
Environment. The transformations are defined using Model-
Driven Architecture (MDA) technologies and profits from
the meta-model support for SPATEL.

4

service
end-user

professional
service developers

SPATEL
service

composition

SPATEL
end-user
service

composition

Existing service
(described with

SPATEL)

Basic
component

(described with
SPATEL)

creates

creates creates

tool-supported user activity
with information flow

usage dependency

deploy component

Generated PSM
service

composition

transform

Generated
SPATEL
service

composition

Generated PSM
service

composition

transform

transform

deploy composition

Composition
component

Basic
component

Existing
component Composition

component

deploy composition

previously
deployed

previously
deployed

Existing service
(described with

SPATEL)

Existing
component

Service Creation Environment

Service Execution Environment

tool-supported activity/flow
(transparent to user)

model (PIM/PSM)

deployed component
Fig. 4 Relations between the models supported by the Service Creation
Environment and the components deployed in the Service Execution
Environment

The main activities and information flows for Automatic

Service Composition Engine (ACE) based on a semantic
request formulated by service developer are represented in
Figure 5. The Composition Factory Function is realized by
the ACE component of the SCE. Domain and service
ontologies are a key component in the ACE because they
are related to the SPATEL descriptions that have to refer to
concepts defined in the ontologies to annotate services with
goals and to provide semantics for operation parameters.
Moreover the same ontologies are used by the Composition
Factory Function to relate the semantics of a request and the
semantics of composed constituent services.

professional service
developer

Domain and
service

ontologies

SPICE
Service

Repository

Semantic
composition

request

Composition
Factory
Function

Generated PSM
service

composition

Existing service
(described with

SPATEL)

create

discover
generate

transform

retrieve and
incorporate

Existing service
(described with

SPATEL)

SPATEL
service

composition

Fig. 5. Automatic Service Composition based on semantic request
formulated by service developer

It is also possible to envision an Automatic Service

Composition process activated by natural language requests
formulated by the end-user, eventually enriched by some
additional contextual information (such as, e.g. the user’s
location); the main activities and information flows for this
scenario are depicted in Figure 6. Both the Semantic
Analysis Function and the Composition Factory Function
are realized by the ACE component in the SCE.

presence location

end-user

natural
language
request

Semantic
Analysis

context
information

create

senses

professional service
developer

Domain and
service

ontologies

SPICE
Service

Repository

Semantic
composition

request

Composition
Factory
Function

SPATEL
service

composition

Generated PSM
service

composition

Existing service
(described with

SPATEL)

Existing service
(described with

SPATEL)

create

discover
generate

transform

retrieve and
incorporate

create

Fig. 6. Automatic Service Composition based on natural language request
and contextual information

All the activities and information flows are integrated in

the SPICE concept of Service Creation Environment and
will be implemented by a set of tools, among which the
most important are the Developer Studio and the End User
Studio, whose characteristics will be sketched in the
following.

B. Developer Studio
The Developer Studio helps the professional service

creator in creating both new basic service components and
complex compositions of a set of published reusable service
components.

Figure 7 shows the architecture of Developer Studio and
its sub-components:

- The Basic Service Development is used for developing
basic components, which consist of a SPATEL Service
Interface and code implementing the exposed
operations.

- The Service Composition Development feature is used
to specify composite services orchestrating
components, which could pre-exist or be developed
from scratch; composite components will consist of a
Service Interface and a state machine representing the
composition.

- The Ontology Browser is used to visualize existing
ontologies, which can be linked to the service
description if they contain semantic definitions of non-
functional properties which are used to annotate service
interfaces.

The Developer Studio will be provided with different

pluggable transformers that will support the translation of
the SPATEL specification into the code for a target
execution platform such as JSLEE, J2EE, .NET; for

5

composite/orchestrated services, BPEL scripts could be
produced.

Whenever a service (basic or composite) is ready to be
released, the Service Packaging will pack related code and
SPATEL descriptions and deploy them in the SEE by means
of the Deployment tool.

Fig. 7. The Developer Studio Architecture and the dependencies relations
between its functions

Finally, the Automatic Composition Engine produces

service compositions based on (formalized) service requests.
Formalized service requests include a semantic description
of the desired service or service composition, and optionally
required non-functional properties or constraints. This
component also aggregates properties of service
compositions (which are produced manually or
automatically), to derive the resulting composition’s
properties.

The Automatic Composition Engine is composed by the
following sub-components:
- The Semantic Analyzer produces a service request given a

natural language request;
- The Composition Factory produces a number of

alternative SPATEL compositions that match a
composition request. The composition request includes a
semantic description of the required service (with
references to ontologies) and constraints for the
composition.

- The Property Aggregator aggregates the properties of the
services that are composed into a composition. It takes as
input the SPATEL service composition.

C. End-User Studio
It is well known that Telco operators and service

providers offer an always increasing number of services to
their customers, but the impossibility to foresee all the
conditions and needs that a customer can experience in his
daily life, makes very difficult to provide an exhaustive set
of services. That’s why it seems to be interesting
investigating the possibility to allow end users to define
their own services as long as they need them. This goal is
very challenging and poses a set of constraints mainly
related to the simplicity of the way the end user can create
his own service and the security issues related.

In the End-User Studio, the service creator will be the end
user himself. Users will be able to satisfy specific needs,
creating new services by means of a very much assisted
assembly process: the services will be the result of a
composition of a set of pre-existing components.

An assembly process targeting end users, can be
supported by different tools with different degrees of
friendliness. These tools can range from natural language
interpreters to wizard based rules editors to graphical
component assembly tools. An approach based on a very
much assisted graphical composition tool can mediate
between implementation complexity and effectiveness of the
solution; moreover it can be a core solution to be extended
in a stepwise approach with natural language interpreters
(e.g. to propose initial automatic compositions to be
manually visualized, verified and corrected), or with
wizards to define some details of the composition.

The End User Studio should provide a strong support for

Telco services, that often have the characteristic of being
asynchronous and event based (e.g. whenever I get an
incoming message…); these considerations lead to the
conclusion that the service notation should support an event
driven specification paradigm, i.e. building blocks generate
and process events and the service definition specify the
flow of events inside the service. From a graphical notation
perspective, the service control flow is expressed by means
of arcs connecting components. The notation abstracts all
protocol details; these are completely masked by the
component implementation.

Fig. 8. End User Studio core components and their relations

As described in the former figure, the End User Studio

will be provided with Translators that will allow the service
definitions to be transformed in the SPATEL developer
oriented notation. This will allow reusing the common
functions of service lifecycle management previously
described, concentrating the End User Studio to the service
assembly functions

1) Support for Service implicit configurations

The End User Studio will provide functions to address a
set of security constraints, to maintain control on the service
that has been created. Not all the attributes, actions or
notifications available for developers will be available for
end users, in the service definition: some parameters will
have to be implicitly derived from the user profile.

Two practical service examples could clarify the previous
statement:

1) An end user wants to create a service that retrieves the

6

weather forecast and sends the result in an instant message.
2) An end user wants to create a service that finds a

restaurant with given characteristics and then performs a
third party initiated voice call between the end user and the
restaurant.

In both examples it is quite evident that there is a security
concern: the destination of the instant message containing
the weather forecast and the caller of the third party call
must be forced to the end user himself (to avoid non proper
services).

The End User Studio will help to fill the configuration
information of the components assembled in the service
definition. One way to achieve this goal is to introduce an
implicit “myself” building block, containing the user profile
information. Going back to the examples, the “caller” of a
ThirdPartyCall or “sender” of a SendIM can be forced to the
attribute of Myself that represents a user’s SIP address.

Data accessible through the Myself building block could
be, for example: name, nickname, e-mail address, sip
address, phone numbers, gender, preferences...

2) The End User Studio UI

The user interface of the End User Studio has to be very
friendly: service composition must be intuitive and self-
explaining and no software development skills must be
required to develop a service.

Here is a list of requirements that should be fulfilled by
the End User Studio

- Short learning curve: it should be possible to learn the
tool hands-on, just by going through few examples.

- Service composition assistant: the composition could be
assisted in many ways; for example whenever the user
picks a block, the End User Studio can suggest a
selection of other blocks that can be used or, when
making a connection, it can suggest a list of meaningful
endpoints. This requirement can be met in two stages: in
a first phase this can have a simple syntactical
implementation (i.e. the user is presented with a set of
building block instances, among those that are already
in the service definition, that will yield a syntactically
correct representation), while in a second phase, the
selected set of building blocks could be further
restricted to those that will also produce a semantically
correct overall service definition.

- No installation required: the End User Studio should be
accessible through lightweight interfaces like web
applications.

Some of the upcoming technologies in Web 2.0, like
AJAX [9], seem to be promising for the implementation of a
service editor of the End User Studio

IV. THE SERVICE EXECUTION ENVIRONMENT
The Service Creation in SPICE, as previously explained,

is based on a service specification that is Platform
Independent, leaving the transformation to a target
Execution Engine to a following phase; coherently to this
approach, the SPICE SEE is designed to allow the
integration of different containers, specialized to address
specific functions. Even if the specific containers integrated

in the overall SEE are not very much affecting the service
creation process (due to the separation in platform
independent and specific models), it is relevant to describe
how the overall SPICE architecture is designed to facilitate
the definition of reusable components available on SEE for
the SCE.

The following figure shows the layered structure of the
SPICE architecture.

Terminal Platform

Value Added Services

Knowledge Layer

Component Services

Capability & Enabler
SPICE

3rd Party Service Execution

Knowledge Layer

Value Added Services

Component Services

Capability & Enablers

3rd Party Service Platform

Exposure & Mediation Layer

OMA / IMSOMA / IMS

SCE

Fig. 9. Layers in the SPICE Architecture

The SPICE SEE offers a component model that allows to

install SPICE components in a variety of service execution
engines (such as J2EE and JSLEE) with a moderated effort
to adapt to the specific runtime requirements of these
execution engines. Based on their offered interfaces, the
components are logically divided into the basic “Component
Services”, the “Knowledge Layer” and the “Value-Added
Services (VAS)” layer. The SCE usually deploys its service
compositions in the VAS layer.

Basic Components offer access to the underlying
capabilities and enablers of the network. For example, there
are basic components for access to IMS (e.g. by intercepting
the SIP messages exchanged), to OMA enablers (e.g. by
utilizing existing interfaces to the respective Application
Servers) such as presence, IM or Third-Party Call Control.
The interfaces to these enablers are usually wrapped into
SPICE components thus allowing to fast use the SPICE
mechanisms for access control, policy enforcement,
semantic publishing and discovery, as well as making
components aware to knowledge and context.

V. CONCLUSIONS
In this work we have described the approach of the

SPICE project with respect to Service Creation. The
approach consists of a language that leverages reuse through
platform-independent service composition; tools that
support the definition of services and their deployment to a
target Service Execution Environment and a Service
Execution Environment that allows combining effectively
different technologies.

The SCE architecture supports different pluggable
transformers to automate the translation of the SPATEL
specification into platform-specific code for different target
execution platforms, such as JSLEE, J2EE, .NET, as well as
BPEL scripts for orchestrating service compositions in the
SEE.

The Service Creation Environment eases fast service
creation both of basic service and of complex service

7

compositions; selection of reusable services can be now
based on actual QoS, cost, and other non-functional
properties which are now made accessible, thanks to the
SPICE SCE, both to end users and to a broad public of
application developers.

The SPICE SCE, together with the SPATEL language
and the SPICE SEE, will broaden up the developers
community, thanks to a new way of reusing components to
provide advanced telecommunication services. This will
ease the service creation process diminishing time-to-market
for the new services.

REFERENCES
[1] Anett Schülke, Daniele Abbadessa, Florian Winkler. Service Delivery

Platform: Critical Enabler to Service Providers' New Revenue
Streams. World Telecommunications Congress 2006.

[2] M. Belaunde et al, “Advanced Language for Value added services
composition and creation”, IST Spice Project Deliverable D5.1,
August 2006.

[3] OMG, Model Driven Architecture, http://www.omg.org/mda/
(October 2006)

[4] OMG, The Object Management Group (OMG), http://www.omg.org/
(October 2006)

[5] Thomas Erl, "SOA : Service-Oriented Architecture (SOA): Concepts,
Technology, and Design", Prentice Hall, 2005

[6] Rama Akkiraju et al, “Web Service Semantics - WSDL-S”,
http://www.w3.org/Submission/WSDL-S (October 2006)

[7] OMG, Meta Object Facility (MOF) Core Specification,
http://www.omg.org/docs/html/06-01-01/Output/06-01-01.htm
(October 2006)

[8] OASIS, “Business Process Execution Language for Web Services
(Version 1.1)”, OASIS, May 2003

[9] Jesse James Garrett, “Ajax: A New Approach to Web Applications”,
Adaptive Path,
http://www.adaptivepath.com/publications/essays/archives/000385.ph
p (October 2006).

