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Abstract. Software testing is a complex and critical process for achieving product quality. Its importance has been increasing and
well recognized, and there is a growing concern in improving the accomplishment of this process. In this context, Knowledge
Management (KM) emerged as an important supporting approach to improve the software testing process. However, managing
relevant testing knowledge requires effective means to represent and to associate semantics to a large volume of testing infor-
mation. To address this concern, we have developed a Reference Ontology on Software Testing (ROoST). ROoST establishes a
common conceptualization about the software testing domain, which can serve several KM-related purposes, such as defining
a common vocabulary for knowledge workers with respect to the testing domain, structuring testing knowledge repositories,
annotating testing knowledge items, and for making search for relevant information easier. In this paper, we present ROoST, and
we discuss how it was developed using two ontology pattern languages. Moreover, we discuss how we evaluated ROoST fol-
lowing four complementary approaches: assessment by humans, data-driven evaluation, ontology testing, and application-based
evaluation.
Keywords: Software Testing, Ontology, Reference Ontology, Ontology Evaluation, Knowledge Management

1. Introduction

Software Verification & Validation (V&V) activities intend to ensure, respectively, that a software pro-
duct is being built in conformance with its specification, and that it satisfies its intended use and the user
needs (IEEE, 2004). Software testing consists of dynamic V&V of the behavior of a program against
the expected behavior (Bourque and Fairly, 2014). To be effective, testing activities should be integrated
into a well defined controlled testing process. Nowadays, the importance of testing processes is widely
recognized, and there is a growing concern in how to improve the accomplishment of this process (TMMi,
2012).

During the entire testing process, a significant amount of information is generated. Software testing
is a knowledge intensive process, and thus it is important to provide computerized support for tasks of
acquiring, processing, analyzing and disseminating testing knowledge for reuse (Andrade et al., 2013).
Thus, Knowledge Management (KM) emerges as an important means to manage software testing know-
ledge since KM principles can help capturing and representing testing knowledge in an affordable and
manageable way.

There are many benefits of managing software testing knowledge, such as (Souza et al., 2015a): (i)
selection and application of better suited techniques; (ii) cost reduction; (iii) increase of test effective-
ness; and (iv) competitive advantages. However, there are also problems, such as (Souza et al., 2015a):
(i) employees are normally reluctant to share their knowledge; (ii) knowledge sharing may increase the
employee workload; and (iii) existing communication systems are not appropriate.

In this context, one of the main challenges is how to represent knowledge. A KM system should support
integrating information from disparate sources for a decision maker handling information that someone
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else conceptualized and represented. So, the KM system must minimize ambiguity and imprecision in
interpreting shared information. This can be achieved by representing the shared information using on-
tologies (Kim, 2000). As pointed out by Staab et al. (2001), ontologies are particularly important for KM.
They bind KM activities together, allowing a content-oriented view of KM. Ontologies define a shared vo-
cabulary to be used in the KM systems to facilitate knowledge communication, integration, search, storage
and representation (Benjamins et al., 1998).

Considering this context, to represent the software testing knowledge, we need a software testing onto-
logy. More specifically, we need a reference domain ontology, i.e. a domain ontology that is constructed
with the main goal of making the best possible description of the domain as realistic as possible. A refe-
rence domain ontology is a special kind of conceptual model representing a model of consensus within
a community. It is a solution-independent specification with the aim of making a clear and precise des-
cription of domain entities for the purposes of communication, learning and problem-solving (Guizzardi,
2007). A reference ontology on the software testing domain can be used for several KM-related purposes,
such as defining a common vocabulary for knowledge workers regarding the testing domain, structuring
knowledge repositories, annotating knowledge items, and for making search for relevant information ea-
sier.

By means of a Systematic Literature Review (SLR), we looked for ontologies in the software testing
domain (Souza et al., 2013). For analyzing these ontologies, we considered some of the characteristics
pointed out by d’Aquin and Gangemi (2011) as characteristics that are presented in “beautiful ontologies”.
In our analysis, we considered the following characteristics: having a good domain coverage; implement-
ing an international standard; being formally rigorous; implementing also non-taxonomic relations; fol-
lowing an evaluation method; and reusing foundational ontologies. As a result, we found 12 ontologies.
However, after analyzing them, we concluded that they are insufficient for representing software testing
knowledge in a KM system. We highlight following to justify why they are insufficient: most ontologies
have limited coverage; the studies do not discuss how the ontologies were evaluated; none of the ana-
lyzed testing ontologies is truly a reference ontology; and none of them is grounded in a foundational
ontology. Briefly, we concluded that the software testing community should invest more efforts to get a
well-established reference software testing ontology. Therefore, we decided to build another one, which
we called ROoST (Reference Ontology on Software Testing). The purpose of ROoST is to define a shared
vocabulary regarding the testing domain to be used in KM initiatives.

In this paper, we present ROoST, which comprises sub-ontologies focusing on the software testing pro-
cess and its activities, the artifacts that are used and produced by those activities, the testing environ-
ment, and testing techniques for test case design. Moreover, we discuss how ROoST was evaluated fol-
lowing four complementary approaches: assessment by humans, data-driven evaluation, ontology test, and
application-based evaluation.

This paper is organized as follows. In Section 2, we present the main concepts related to software testing.
Moreover, we briefly present the testing ontologies already published in the literature. Section 3 discusses
the Ontology Engineering process we followed to develop ROoST. Section 4 presents ROoST. Section
5 presents an operational version of ROoST. Section 6 discusses how ROoST was evaluated. Section 7
compares ROoST with the testing ontologies presented in Section 2. Finally, in Section 8, we present our
final considerations.

2. Background

In this section, we briefly present the main concepts related to Software Testing, as well as existing
ontologies on software testing.
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2.1. Software Testing

To achieve quality software products, it is essential to perform Verification & Validation (V&V) ac-
tivities throughout the software development process. This is recognized by most international software
process quality standards, such as CMMI (CMMI, 2010) and ISO 12207 (ISO, 2008), as well as by the
Software Engineering Body of Knowledge (SWEBOK) (Bourque and Fairly, 2014). In particular, there is
the ISO/IEC/IEEE 29119 (IEEE, 2013) set of standards that is devoted to software testing.

V&V activities can be static and dynamic. Dynamic V&V activities require the execution of a program,
while static V&V activities do not. Static V&V are typically done by means of technical reviews and
inspections. Dynamic V&V are done by means of testing (Mathur, 2012). Thus, software testing consists
of the dynamic V&V of the behavior of a program on a finite set of test cases, against the expected behavior
(Bourque and Fairly, 2014). A test case is a set of inputs, execution conditions and the expected result of a
certain program or unit. The simplest definition of software testing is “Testing is the process of executing
a program with the intent of finding errors” (Myers, 2004).

Testing activities are supported by a well defined testing process. The testing process consists of several
activities, namely: Test Planning, Test Case Design, Test Execution and Test Result Analysis (Bourque
and Fairly, 2014); (Ammann and Offutt, 2008); (Black and Mitchell, 2011). Briefly, key aspects of Test
Planning include, among others, coordination of personnel, management of available test facilities and
equipment, scheduling testing activities, and planning for possible undesirable outcomes. Test Case De-
sign aims at designing the test cases to be executed. Test Cases should be implemented as Test Scripts.
During Test Execution, test cases are executed, producing actual results. Finally, in the Test Result Analy-
sis, test results are evaluated to determine whether or not tests have been successful in identifying defects.

Testing process comprises testing activities, and provides a guide to testing teams for supporting achie-
ving test objectives effectively (Bourque and Fairly, 2014). Moreover, techniques, levels, artifacts and
environment are also integrated into the testing process. Following, these concepts are briefly discussed:

Testing Techniques: According to Mathur (2012), testing techniques can be classified into: Black-
box Testing Techniques, which generate test cases relying only on the input/output behavior, without
the aid of the code that is under test. Examples of black-box testing techniques include equivalence
partitioning and boundary-value analysis; White-box Testing Techniques, which use the structure of
the code under testing for generating test cases. Control flow, Data flow and Coverage testing are
examples of white-box testing techniques; Defect-based Testing Techniques, which design test cases
aimed at revealing categories of likely or predefined faults, such as Mutation Testing; and Model-
based Testing Techniques, which are based on requirements formally specified, for example, using
one or more mathematical or graphical notations such as Statecharts, Finite State Machines (FSM)
and others.

Test Level: Three important test levels can be distinguished, namely: Unit Testing, Integration Tes-
ting and System Testing. During Unit Testing, the focus is on the unit or the individual components
that have been developed. The goal is to ensure that the unit functions correctly in isolation. When
units are integrated and a large component or a subsystem formed, programmers perform Integration
Testing. During Integration Testing, the goal is to ensure that a collection of components function as
desired. On the other hand, when the entire system has been built, its testing is referred to as System
Testing (Mathur, 2012). System testing is concerned with the behavior of the entire system (Bourque
and Fairly, 2014); (Perry, 2006).

Test Artifact: Test artifacts are produced and used throughout the testing process. Documentation
is an integral part of the formalization of the test process (Bourque and Fairly, 2014). According to
IEEE (1998), testing artifacts include, among others, Test Plan, Test Procedure, Test Case, and Test
Results. During the test planning activity, a Test Plan is developed. The Test Plan describes how the
test should be performed, providing a roadmap for future testing activities. During, the test case de-
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sign activity, Test Cases are generated. A Test Case comprises the input data, expected results, steps
and general conditions for running the test case. Test Cases are documents. In order to be executed,
they should be implemented. Thus, during test coding, Test Code is generated. Once implemented,
tests can be run. During test execution, Test Code is run, and Test Results are recorded. Finally, during
the test result analysis activity, Test Results are analyzed and a Test Analysis Report is produced.

Test Environment: According to Perry (2006), software testers are most effective when they work in
an environment that encourages and supports well-established testing policies and procedures. The
test environment encompasses the entire structure where the test is performed and considers both
hardware and software, as well as the human resources involved in testing (Everett and Raymond,
2005); (Perry, 2006).

2.2. Testing Ontologies

The efficiency of the testing process can be improved by reusing testing-related knowledge, since testing
is a complex and knowledge intensive process. For instance, during test case design, a test case designer
could benefit from reusing past experiences related to choosing which technique to apply, or even by
reusing a test case. In order to facilitate communication, integration, search, and representation of testing
knowledge, a reference domain ontology on software testing can be used. Such ontology is useful for
defining the shared vocabulary to be used in the KM system.

In order to look for a domain ontology in software testing, we conducted a Systematic Literature Review
(SLR), including questions related to their coverage of the software testing domain, and how they were
developed. A SLR is a form of secondary study that uses a well-defined process to identify, analyze and
interpret the available evidences. The research method applied was defined based on the guidelines for
SLRs given by Kitchenham and Charters (2007). The referred SLR was published in (Souza et al., 2013).

As a result of the SLR, 12 different ontologies were identified and each one was analyzed. The fol-
lowing testing ontologies were found: Software Testing Ontology for Web Service (STOWS) ((Huo et al.,
2003); (Zhu and Huo, 2005); (Hong, 2006); (Yufeng and Hong, 2008); (Zhu and Zhang, 2012)), OntoTest
((Barbosa et al., 2006); (Nakagawa, 2009)), TaaS Ontology ((Yu et al., 2008); (Yu et al., 2009)), Test Onto-
logy Model (TOM) (Bai et al., 2008), MND-TMM Ontology(MTO) (Ryu et al., 2011), and the ontologies
proposed in (Li and Zhang, 2012), (Arnicans et al., 2013), (Guo et al., 2011), (Nasser et al., 2009), (Sapna
and Mohanty, 2011), (Cai et al., 2009) and (Anandaraj et al., 2011).

Although there are a relatively large number of ontologies on software testing published in the literature
(12 ontologies), there are still problems related to the establishment of an explicit common conceptualiza-
tion with respect to this domain. To analyze these ontologies, we considered some of the characteristics
pointed out by d’Aquin and Gangemi (2011) as characteristics that are presented in “beautiful ontologies”.
In (d’Aquin and Gangemi, 2011), these characteristics are classified along three types of evaluation dimen-
sions: syntactic and formal structure, conceptual coverage and task, and pragmatic or social sustainability.
Some of these characteristics are hard to evaluate, since there isn’t much information about them in the
papers presenting the corresponding ontologies. For instance, in the Pragmatic and Social Sustainability
dimension, there are characteristics that are difficult to evaluate based on the papers, such as the result of
an evolution; wide usage or acceptance; commercial impact; recommended by industry; applications built
on top of it; and successful personal experience in building apps with it. Thus, in our analysis, we con-
sidered the following characteristics: (i) a good domain coverage; (ii) implementing an international stan-
dard; (iii) formally rigorous; (iv) implementing also non-taxonomic relations; (v) following an evaluation
method; and (vi) reusing foundational ontologies.

With respect to domain coverage, we noticed that most ontologies had very limited coverage. Ontologies
with higher coverage were: STOWS, OntoTest and TaaS Ontology.

Some of the ontologies considered international standards, namely: OntoTest, TOM and the ontologies
proposed by Arnicans et al. (2013), Sapna and Mohanty (2011), and Cai et al. (2009). Others, on the
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other hand, did not consider international standards (or at least did not mention them). This is the case of
STOWS and TaaS Ontology.

The next two characteristics (being formally rigorous and also implementing non-taxonomic relations)
are very important for a reference ontology. Ideally, a reference ontology must be a heavyweight ontology,
and thus it must comprise conceptual models that include concepts, and relations (of several natures), and
also axioms describing constraints and allowing to derive information from the domain models. Taking
this perspective into account, most of the existing ontologies present problems.

Five ontologies (the ones proposed by Guo et al. (2011), Nasser et al. (2009), Ryu et al. (2011), Cai
et al. (2009) and Anandaraj et al. (2011)) are just Web Ontology Language (OWL) artifacts (i.e., opera-
tional ontologies). The ontologies proposed by Arnicans et al. (2013) and Cai et al. (2009) are, in fact,
taxonomies, and thus, they do not qualify as ontologies. STOWS is mainly a set of taxonomies of basic
concepts, including some properties and few relations. There are taxonomies of Tester, Context, Testing
Activities, Testing Methods, and Testing Artifacts, but there are important relations missing. For instance,
which are the artifacts produced and required by a testing activity? Without relations between the con-
cepts, questions such as this one cannot be answered. Moreover, there are two “compound concepts” in
STOWS that are defined on the bases of the basic concepts: capability and task. Capability, for instance, is
modeled as a composite entity, which parts are Activity, Method, an optionally Environment, Context, and
Data (a subtype of Artifact). This model is questionable, since it puts together objects and events as part
of Capability. Objects (or endurants) exist in time; while events (or perdurants) happen in time (Guizzardi
and Halpin, 2008). So what is a Capability? An object or an event? This shows that this ontology presents
problems.

TaaS Ontology presents very simple models. The Unified Modeling Language (UML) class diagrams
presented in (Yu et al., 2008) and (Yu et al., 2009) do not specify multiplicities of the relationships.
Moreover, like STOWS, most of the relationships are modeled as aggregations (whole-part relations in
UML). This approach is very questionable from an ontological point of view. For instance, there is a
core concept called Test Task, which is modeled as composed by TestActivity, TestType, TargetUnderTest,
TestEnvironment and TestSchedule. Similar to the analysis of STOWS, the composite object Test Task
aggregates endurants and perdurants.

Although probably the most complete ontology among the ones achieved through the SLR, OntoTest
also presents problems. First, there are sub-ontologies that were not published yet, namely the Testing
Process, Testing Phase, Testing Artifact, and Testing Procedure sub-ontologies. Second, OntoTest does not
properly link the concepts to the sub-ontologies. For instance, albeit in the Main Software Testing Ontology
there is a relationship between Testing Step and Test Resource, there are not relationships between their
subtypes. This is an important part of the software testing conceptualization that needs to be made explicit.

Regarding ontology evaluation, none of the publications in the SLR discussed how the proposed on-
tologies were evaluated, except the one proposed by Arnicans et al. (2013), who say that a software testing
expert has analyzed the ontology fragment related to testing techniques.

Finally, concerning the reuse of foundational ontologies, none of the ontologies analyzed have used
one. This can be considered a problem, because important distinctions made in Formal Ontologies may
be disregarded as clearly noticed in the brief analysis done (as in the aforementioned cases of STOWS
and TaaS Ontology). The lack of truly ontological foundations puts in check the truthfulness of those
ontologies.

Thus, as the main finding of the SLR, we concluded that the software testing community has still a lot
of work to do, in order to achieve a reference software testing ontology. Once developed a good quality
reference testing ontology, an operational version of it can be designed and implemented.

3. Ontology Engineering Approach

In order to develop ROoST, the Systematic Approach for Building Ontologies (SABiO) (Falbo, 2014)
was adopted. SABiO was originally conceived for supporting the development of domain reference on-
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tologies (Falbo et al., 1998). Currently, SABiO incorporates best practices commonly adopted in Software
Engineering and Ontology Engineering, and also addresses the design and coding of operational ontolo-
gies (Falbo, 2014). As Figure 1 shows, SABiO development process comprises five main phases, namely
(Falbo, 2014):

1. Ontology Purpose Identification and Requirements Elicitation: this phase aims at eliciting
ontology requirements, and comprises four activities: Purpose and Intended Uses Identification; Re-
quirements Elicitation; Competency Questions Identification; and Ontology Modularization. These
activities are performed in an iterative way.

2. Ontology Capture and Formalization: the main goal of this phase is to capture the domain con-
ceptualization based on the competency questions. SABiO advocates that concepts and relations in
a reference domain ontology should be analyzed in the light of a foundational ontology. The rele-
vant concepts, relations, properties and axioms should be identified and organized, and a conceptual
model should be built in a graphical language. SABiO suggests the use of OntoUML, a UML class
diagram profile that incorporates important foundational distinctions made by the Unified Founda-
tional Ontology (UFO) (Guizzardi, 2005). This phase comprises four activities: Conceptual Mode-
ling, Definition of the Terms in a Dictionary of Terms, Definition of Informal Axioms, and Defini-
tion of Formal Axioms.

3. Ontology Design: in this phase the conceptual specification of the reference ontology should be
transformed into a design specification by taking into account a number of issues, ranging from ar-
chitectural to technological non-functional requirements, to target a particular implementation en-
vironment. The design phase, thus, aims at bridging the gap between the conceptual modeling of
reference ontologies and the coding of them in terms of a particular operational (machine-readable)
ontology language (e.g. OWL).

4. Ontology Implementation: this phase implements the ontology in the chosen operational lan-
guage.

5. Ontology Testing: this phase refers to dynamic verification and validation of the behavior of the
operational ontology on a finite set of test cases, against the expected behavior regarding the com-
petency questions. In this sense, SABiO’s testing phase is competency questions-driven. In addition,
validation testing can be performed by using the operational ontology in actual software applications,
according to the intended uses originally proposed for the ontology.

SABiO considers also five supporting processes (see Figure 1) (Falbo, 2014): Knowledge Acquisition,
Documentation, Configuration Management, Reuse, and Evaluation.

Knowledge Acquisition occurs mainly in the initial phases of the ontology development process. Con-
ventional methods and techniques for knowledge acquisition and for requirements elicitation applies. Do-
main experts are the main source for knowledge acquisition. Other important sources of knowledge are
consolidated bibliographic material, such as classical books, international standards, glossaries, lexicons,
classification schemes, and reference models (Falbo, 2014). For developing ROoST, besides involving
domain experts in the ontology development, several references were used, including international stan-
dards. The main literature references used for building ROoST were: (IEEE, 1990); (IEEE, 1998); (My-
ers, 2004); (Bourque and Fairly, 2014); (Pressman, 2006); (Black and Mitchell, 2011); (Mathur, 2012);
(IEEE, 2013). The purpose of using different references was to achieve consensus on ROoST’s concepts
and relations, since an ontology should capture a shared conceptualization.

Results from the ontology development process must be documented. The main documents developed,
as well as the source code of the operational ontologies, must have their configuration managed. Thus,
once approved, they must be submitted to the Configuration Management, where they will be controlled
at least concerning changes, versions, and delivery (Falbo, 2014).
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Fig. 1. Systematic Approach for Building Ontologies (SABiO) (Falbo, 2014)

Along the development process, there are many opportunities for reusing conceptualizations already
established for the domain in hands. The purpose of the Reuse Process is to explore these opportuni-
ties. Sources for ontology reuse include: existing domain ontologies, core ontologies, foundational on-
tologies, and ontology patterns (Falbo, 2014). ROoST has been developed by reusing and extending on-
tology patterns of the Software Process Ontology Pattern Language (SP-OPL) (Falbo et al., 2013) and
the Enterprise-Ontology Pattern Language (E-OPL) (Falbo et al., 2014). An Ontology Pattern Language
(OPL) (Falbo et al., 2013) is a network of interconnected domain-related ontology patterns that provides
holistic support for solving ontology development problems for a specific domain. An OPL offers a set
of interrelated domain patterns, plus a process with explicit guidance on what problems can arise in that
domain, informing the order to address these problems, and suggesting one or more patterns to solve each
specific problem. SP-OPL is an OPL for the software process domain, addressing aspects such as Standard
Process Definition, Project Process Definition and Scheduling, and Process Execution. E-OPL (Falbo et
al., 2014) is an OPL for the enterprise domain, addressing aspects such as Organization Arrangement,
Team Definition, Institutional Roles, Institutional Goals, and Human Resource Management. Both OPLs
are derived from core ontologies that were built grounded in the Unified Foundational Ontology (UFO)
(Guizzardi, 2005); (Guizzardi et al., 2008); (Guizzardi et al., 2013).

Finally, with respect to SABiO’s Evaluation Process, it comprises two main perspectives: (i) Ontology
Verification: aims to ensure that the ontology is being built correctly, in the sense that the output artifacts
of an activity meet the specifications imposed on them in previous activities. (ii) Ontology Validation: has
an objective to ensure that the right ontology is being built, that is, the ontology fulfills its specific intended
purpose. In order to evaluate ROoST, different evaluation approaches were applied, namely: assessment by
humans, data-driven evaluation, and application-based evaluation (Brank et al., 2005). For evaluating the
reference ontology as a whole (intended purposes, competency questions and conceptual models), expert
judgment was performed. For evaluating if the reference ontology is able to represent real world situations,
the concepts and relations of ROoST were instantiated using testing data extract from an actual project,
in a data-driven approach to ontology evaluation. Furthermore, ROoST was implemented in OWL and the
resulting operational ontology was also tested in an ontology testing approach. Finally, we developed a
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KM application based on ROoST to support managing software testing knowledge, and ROoST was also
evaluated in this context, in an application-based approach to ontology evaluation.

In the next section ROoST is presented. In Section 5, we present an OWL operational version of ROoST.
Finally, in Section 6, we discuss how ROoST were evaluated.

4. ROoST: Reference Ontology on Software Testing

As mentioned earlier, ROoST is a reference domain ontology, i.e. a domain ontology built with the main
goal of making the best possible description of the testing domain. ROoST was developed for establishing
a common conceptualization about the software testing domain, focusing on the testing process, to support
the communication between the stakeholders involved in such process. In particular, ROoST is designed
to be used as a core conceptual model to be used for several purposes, such as:

• To support human learning on the software testing process: Testing process is very important for
software product quality assurance. However, it is often neglected. Practitioners, many times, do not
know basic concepts on testing. Thus, ROoST can be used to support learning by humans of the key
concepts related to software testing process.

• As a basis for structuring and representing knowledge related to software testing: Testing process is
knowledge intensive. For instance, a tester shall know several testing techniques for applying them
properly. Test cases can be reused, as well as lessons learned regarding testing. In this context, it is
very useful to apply Knowledge Management (KM) techniques. ROoST can be used for structuring
a testing knowledge repository, and for supporting searches in it.

• As a reference model for integrating software tools supporting the testing process: Testing is a com-
plex process, and thus requires tool support. Several different types of tools are required to support
the software testing process, such as tools supporting test case design, environments for running test
cases, issue tracking systems, and control version systems. ROoST can be used to support semantic
integration of tools.

• As a reference model for annotating testing resources in a semantic documentation approach: By
adding ontology-based annotations to testing documents, we can reach semantic documents, i.e. do-
cuments that know about their own content so that automated processes can know what to do with
them (Uren et al., 2006). Once semantically annotated, we can extract knowledge and link contents
from different documents according to the shared ontology. By merging the content extracted from
several documents (including testing documents), we are able to achieve a more holistic view of the
knowledge available in a project or organization (Arantes and Falbo, 2010).

In order to cover this scope, ROoST should be able to answer the following competency questions:

CQ01. In which project a given testing process occurred?
CQ02. How is a testing process structured in terms of testing activities and sub-activities?
CQ03. When did a testing process start and when did it end?
CQ04. When did a testing activity start and when did it end?
CQ05. On which activities does a testing activity depend on to be performed?
CQ06. What is the test level of a testing activity?
CQ07. What are the artifacts produced in a testing activity?
CQ08. What are the artifacts used by a testing activity?
CQ09. How do testing artifacts relate to each other?
CQ10. Which are the testing techniques adopted in a testing activity devoted to designing test cases?
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CQ11. To which test levels does a testing technique apply?
CQ12. Which are the testing techniques applied to derive a given test case?
CQ13. Which human resources participate in a testing activity?
CQ14. When did a human resource participation start and when did it end?
CQ15. Which hardware resources are used in a testing activity?
CQ16. When did a hardware resource participation start and when did end?
CQ17. Which software resources are used in a testing activity?
CQ18. When did a software resource participation start and when did it end?
CQ19. Which are the hardware, software, and human resources that comprise the testing environment of

a project?

Besides the functional requirements for ROoST, posed as competency questions, we also elicit non-
functional requirements, namely:

• ROoST should take the main books and standards on software testing into account, in particular
ISO/IEC/IEEE 29119 (IEEE, 2013). This non-functional requirement is aligned to the characteristic
of beautiful ontologies of being based on international standards.
• Since the main focus of ROoST is on the testing process, it should be integrated to a Software Process

Ontology, as well as being grounded in a foundational ontology. This non-functional requirement is
aligned to the characteristic of beautiful ontologies of reusing foundational ontologies.

Based on ROoST’s functional and non-functional requirements, we decided to use the Software Process
Ontology Pattern Language (SP-OPL) (Falbo et al., 2013). SP-OPL has three entry points, i.e. three dif-
ferent ways to start using its patterns. Each entry point defines a pattern in the language that can be used
first, independently from other patterns, and defines a way to traverse the OPL. The first entry point (EP1)
is to be chosen when the requirements for the domain ontology being developed include problems related
to Standard Process Definition. The second entry point (EP2) is to be chosen when the requirements for
the ontology being developed include problems related to Project Process Definition and Scheduling, but
standard process definition is out of scope. Finally, the third entry point (EP3) is to be chosen when only
problems related to the Software Process Execution are to be addressed by the ontology being developed
(Falbo et al., 2013). Thus, for developing ROoST, we chose EP3 as entry into SP-OPL, since our interest is
to represent knowledge involved in the execution of testing processes. Figure 2 shows the SP-OPL patterns
accessible from EP3. From EP3, the first pattern to be applied is Process and Activity Execution (PAE)
pattern. From this pattern, the ontology engineer can achieve others patterns that address problems related
to human resource participation (Human Resource Participation - HRPA), hardware and software resource
participation (Resource Participation - RPA), procedures adopted (Procedure Participation - PRPA), and
work product inputs and outputs (Work Product Participation - WPPA). These patterns were reused.

Fig. 2. SP-OPL patterns accessible from the entry point EP3 (Falbo et al., 2013)

With respect to the competency questions, it is important to emphasize that SP-OPL lead to the text
for the questions originally defined for ROoST. First, we posed an initial set of competency questions
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that should be answered by ROoST. This initial set helped us to select the relevant SP-OPL’s patterns.
Once patterns of the SP-OPL were applied, their competency questions were reused and adapted to the
software testing domain. Finally, in an iterative way, as we developed the conceptual models, new com-
petency questions popped up. Thus, we achieved the set of 19 competency questions previously listed. It
is important to highlight that very specific questions about the software testing domain that do not have a
counterpart in SP-OPL were also considered. This is the case of CQ06, CQ09, CQ10, CQ11, CQ12 and
CQ19.

Since the testing domain is complex, ROoST was developed in a modular way, as suggested by SABiO.
ROoST has four modules (sub-ontologies). Figure 3 presents a UML package diagram, showing the sub-
ontologies that comprise ROoST and the relationships between them. The dependencies between the
sub-ontologies indicate that concepts and relations from a sub-ontology are used by the dependent sub-
ontology.

Fig. 3. ROoST: sub-ontologies

In the following subsections, ROoST sub-ontologies are presented, as well as how we applied the reused
patterns in their development. Concepts reused from SP-OPL are shown in grey, and they are preceded by
the pattern acronym (e.g., PAE::). The conceptual models presented in the sequel are written in OntoUML.

4.1. Testing Process and Activities sub-ontology

This sub-ontology addresses the competency questions CQ1 to CQ6. To answer them, the Process and
Activity Execution (PAE) pattern was reused. PAE concepts were extended to the testing domain, as shown
in Figure 4. Testing Process is a subtype of Specific Performed Process, since a testing process occurs in
the context of the entire software process (General Performed Process) of a Project. A testing process,
in turn, is composed by testing activities, and thus Testing Activity is considered a subtype of Performed
Activity. Similarly to Performed Activity, Testing Activity can be further divided into Composite and Simple
Testing Activity.

Besides specializing concepts, relationships were also specialized from PAE. For instance, in PAE, there
is a whole-part relationship between Specific Performed Process and Performed Activity. The whole-part
relationship between Testing Process and Testing Activity is a subtype of the former. Whenever a ROoST
relationship is a subtype of another relationship defined in SP-OPL, the same name is used for both.

Looking at the literature (Bourque and Fairly, 2014); (Black and Mitchell, 2011); (Mathur, 2012), it is
possible to establish that the testing process consists of, at least, the following activities: Test Planning,
Test Case Design, Test Coding, Test Execution, and Test Result Analysis. Thus, these activities are subtypes
of Testing Activity. Moreover, Test Planning is a Composite Testing Activity. Although not shown in Figure
4, test planning involves several sub-activities, such as defining the testing process, allocating people and
resources for performing its activities, analyzing risks, and so on. On the other hand, Test Case Design, Test
Coding, Test Execution and Test Result Analysis are considered Simple Testing Activities. Test Planning



E. F. Souza et al. / Applied Ontology LATEX 2ε Style sample 11

Fig. 4. ROoST’s Testing Process and Activities sub-ontology.

activity is not explicitly decomposed into sub-activities in ROoST, since, by inspecting the literature, we
could not reach a consensus regarding which sub-activities comprise Test Planning.

Software testing is usually carried out at different test levels (Mathur, 2012). Simple Testing Activities
are grouped according to the Test Level to which they are related, forming Level-based Testing activities
(CQ6). Thus, Level-based Testing is a subtype of Composite Testing Activity. In Figure 4, the three most
cited testing levels in the literature are made explicit, namely: Unit Testing, Integration Testing and System
Testing. However, there may be others, such as Regression Testing.

To answer CQ1, two axioms already defined in PAE were reused. They say that the relationship occurs
in between General Performed Process and Project can be extended to the sub-processes and activities
that compose the former.

(A1) ∀gpp : GeneralPerformedProcess; p : Project, spp :
SpecificPerformedProcess occursIn(gpp, p) ∧ partOf(spp, gpp)→ occursIn(spp, p)

(A2) ∀spp : SpecificPerformedProcess; p : Project, a :
PerformedActivity occursIn(spp, p) ∧ partOf(a, spp)→ occursIn(a, p)
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4.2. Testing Artifacts sub-ontology

The Testing Artifacts sub-ontology addresses the competency questions CQ7 to CQ9. To answer CQ7
and CQ8, the Work Product Participation (WPPA) pattern was reused. Figure 5 shows this pattern. Ac-
cording to this pattern, a Performed Activity can have as one of its parts an Artifact Participation. Artifact
participations can be of three types: (i) Artifact Creation, meaning that the artifact is created during the
activity occurrence, and thus it is an output of this activity (the /produces derived relation); (ii) Artifact
Usage, meaning that the artifact is only used during the activity, and thus it is only an input for the activity
(the /uses derived relation); and (iii) Artifact Change, meaning that the artifact is changed during the acti-
vity, and thus it is both input and output of the activity. Since in ROoST we are not interested in modeling
the events representing the artifact participations, but only which artifacts were used and produced by a
testing activity, only the derived relationships /uses and /produces are modeled, instead of modeling the
artifact participations.

Fig. 5. The “Work Product Participation” (WPPA) pattern

An important issue for ROoST is to describe the types of artifacts that are produced and used during
the testing process. Thus, a pattern not originally considered in SP-OPL was proposed and applied: the
Work Product Types (WPT) pattern. In WPT, a taxonomy of software artifacts is defined including, among
others, the following types of artifacts: Document, which refers to artifacts consisting of textual statements
usually associated with organizational patterns that define how they should be produced; Software Item,
referring to a piece of software, produced during the execution of a software process, but not considered
a complete Software Product, being an intermediate result. Code, which concerns to portions of code
written in a programming language; and Information Item, referring to data used or produced during the
software process. Artifact Type is a second order type, whose instances include Document, Software Item,
and Information Item, among others.

During the software testing process, several artifacts are used and produced. An important issue for
ROoST is to precisely define the relationships between testing activities and testing artifacts (CQ7 and
CQ8), as well as the relationship between the artifacts (CQ9). In order to make this part of the testing
domain conceptualization explicit, the relationships uses and produces from WPPA are extended to link
testing artifacts to the corresponding testing activities in which they are produced or used. Moreover,
relationships between the testing artifacts are defined, as shown in Figure 6.

During Test Planning, a Test Plan is produced. In Test Case Design, different artifacts are used for
deriving test cases, such as requirements specifications, diagrams, programs, and so on. Artifacts used for
deriving test cases play the role of Test Case Design Input. The main outputs of a Test Case Design activity
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Fig. 6. The ROoST’s Testing Artifacts sub-ontology.
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are Test Cases. A Test Case aims to test a Code To Be Tested, and specifies the Test Case Input and the
Expected Result.

Test Case Input and Expected Result are roles played by Information Items in a test case, and are part
of it. Whatever code fragments (such as programs, modules, and the whole system code) that have a Test
Case designed for them play the role of Code To Be Tested. It is worth highlighting that “role” in this work
is used in the sense of UFO, i.e. a role is an anti-rigid specialization of a sortal such that the specialization
condition is a relational one (Guizzardi, 2005). Consider, as an example, the role Code To Be Tested. It
is an anti-rigid specialization of Code (a subkind in UFO), such that the specialization condition is to be
the target code of a Test Case (tests relation). The relational property of being the code to be tested by a
Test Case is part of the very definition of the role Code To Be Tested. Whenever a concept in ROoST is
stereotyped with <<role>>, this view applies.

During a Test Coding, Test Cases are implemented as Test Code. Test Code is a portion of code that is to
be run for executing a given set of test cases. There are different subtypes (subkind) of Test Code, among
them: Test Script, Driver and Stub. A Test Script comprises a sequence of actions for the execution of a
Test Case. A Driver is a test code used to invoke a module under test. A driver typically provides inputs,
controls and monitors the execution of the module being tested, and reports test results. A Stub is a test
code that is used as a proxy for a software module. The stub is used to test another component or module
that calls the stub or otherwise depends on it.

Test Execution requires as input the Test Code to be run and the Code To Be Tested. If a Test Execution
executes a Test Case, then the Test Case should use a Test Code that implements the Test Case, and Test
Execution should also use a Code to be Test that is tested by the Test Case (see Axiom A3). As an output of
this activity, Test Results are produced. A Test Result is relative to a Test Case. Following this relationship,
it is possible to know the Test Case Input and Expected Result to which an Actual Result must be compared
during Test Result Analysis (see axiom A4). Actual Result is the role played by an Information Item when
it is part of a Test Result.

(A3) ∀te : TestExecution, tc : TestCase executes(te, tc)→ (∃tco : TestCode, ctbt :
CodeToBeTested uses(te, tco) ∧ implements(tco, tc) ∧ uses(te, ctbt) ∧ tests(tc, ctbt))

(A4) ∀ar : ActualResult, er : ExpectedResult comparedWith(ar, er)→ (∃tc : TestCase, tr :
TestResult partOfTestResult(ar, tr) ∧ relativeTo(tr, tc) ∧ partOfTestCase(er, tc))

A test execution can achieve a result (Actual Result), but it can also fail. A Testing Incident Report
reports an incident. Incidents may be defects or bugs, but may also be perceived problems, anomalies that
are not necessarily defects. In an incident, what is initially recorded is the information about the failure
(not about the defect) that was generated during test execution. The information about the defect that
caused that failure would come to light when someone (e.g. a developer) begins to look into the failure, but
this is out of the scope of software testing. A Testing Incident Report is used to register any event found
during the execution of a software test that requires investigation. Thus, a Test Result contains either an
Actual Result, or a Testing Incident Report, or both. Moreover, a Test Result must include one of them, as
defined by the following axiom:

(A5) ∀tr : TestResult→ ∃art :
Artifact(ActualResult(art) ∨ TestingIncidentReport(art)) ∧ partOf(art, tr))

Finally, during a Test Result Analysis, Test Results are analyzed and a Test Analysis Report is produced.
WPPA pattern also defines an important axiom for ROoST to answer CQ5. This axiom says that if an

artifact art is an output of an activity a1, and art is also an input to another activity a2, then a2 depends
on a1.

(A6) ∀a1, a2 : PerformedActivity, art : Artifact (produces(a1, art) ∧ uses(a2, art)→
dependsOn(a2, a1))
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From this axiom, it is possible to infer important dependencies between testing activities, namely: Test
Coding depends on Test Case Design; Test Execution depends on Test Coding; Test Result Analysis de-
pends on Test Execution. Moreover, the depends on relationship is transitive (A7). Thus, we can also infer,
for instance, that Test Execution depends on Test Case Design.

(A7) ∀a1, a2, a3 : PerformedActivity (dependsOn(a3, a2) ∧ dependsOn(a2, a1)→
dependsOn(a3, a1))

4.3. Testing Techniques sub-ontology

This sub-ontology addresses the competency questions CQ10 to CQ12. In order to answer them, the
Procedure Participation (PRPA) pattern was reused. According to the PRPA pattern, Procedures may have
been adopted to support the accomplishment of Performed Activities. Analogously to WPPA, PRPA in-
cludes a concept for the events representing the procedure participations in performed activities. However,
since in ROoST we are not interested in representing those events, but only the procedures adopted by a
testing activity, only the relationship /adopts is modeled, as Figure 7 shows.

Fig. 7. ROoST’s Testing Techniques sub-ontology.

To answer CQ10, one subtype of Procedure is introduced: Technique. This concept is further extended
as Testing Technique. There are several subtypes of Testing Technique, among them: Black-box, White-box,
Defect-based, and Model-based Testing Techniques. These testing techniques can be adopted by activity
occurrences of the type Test Case Design.

Some testing techniques are more appropriate to certain test levels. To answer CQ11, a relationship
between Testing Technique and Test Level is introduced. Black-box Testing Techniques, for example, apply
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to all test levels. Most White-box Testing Techniques, on the other hand, are suitable only for Unit Testing,
although some also apply to Integration Testing. In general, they are not suitable for System Testing,
because it is difficult in practice to derive test cases based on the source code when the entire system is
considered (Mathur, 2012). To represent this constraint that a Level-Based Testing can only adopt Testing
Techniques applicable to the corresponding Test Level, axiom (A8) is defined. Note that Unit Testing,
Integration Testing, and System Testing are typical instances of Test Level, which is the criterion for the
generalization set of Level-based Testing.

(A8) ∀tcd : TestCaseDesign, lbt : LevelBasedTesting, tt : TestingTechnique, tl :
TestLevel adopts(tcd, tt) ∧ partOfLevelBasedTesting(tcd, lbt) ∧ instanceOf(lbt, tl)→

appliesTo(tt, tl)

Finally, for designing a specific test case, a testing technique is applied. Thus, for answering CQ12, we
added a relationship between Testing Technique and Test Case to link a test case to the testing technique
applied in its design. If a testing technique was used in a certain test case design, then the test case design
activity that produced this test case should have adopted this testing technique, as defined by the following
axiom:

(A9) ∀tc : TestCase, tt : TestingTechnique, tcd :
TestCaseDesign designedAccordingTo(tc, tt) ∧ produces(tcd, tc)→ adopts(tcd, tt)

4.4. Testing Team and Environment sub-ontology

The Testing Environment sub-ontology addresses the competency questions CQ13 to CQ19. Figure 8
shows the conceptual model of this sub-ontology. It was developed using the patterns Human Resource
Participation - HRPA, and Resource Participation - RPA. According to the RPA pattern, during a Per-
formed Activity, Resources are used. In this pattern, two important types of resources are considered, since
they are very relevant in the context of software processes: Hardware Resource refers to the use of a
Hardware Equipment in an activity, and Software Resource refers to the use of a Software Product in an
activity.

A Test Environment is defined for a Project and is composed by Test Hardware Resources and Test
Software Resources. Test Hardware Resources and Test Software Resources are the roles played by a
Hardware Resource and a Software Resource, respectively, when they are used by a Testing Activity.
Testing Activities also uses the whole Test Environment.

Testing Activities are performed by Human Resources. A Human Resource can play different testing
roles (CQ13), such as Test Manager, Test Case Designer and Tester.

For properly addressing aspects related to human resource organization in test teams, we decided to
use the Enterprise Ontology Pattern Language (E-OPL) (Falbo et al., 2014). We chose the first entry point
of E-OPL, and follow a path through the following patterns: Simple Organization Arrangement (SOAR),
Organizational Team Definition (OTD), Team Roles (TEAR), and Team Allocation (TEAA). Concepts
reused from E-OPL are shown in yellow in Figure 8, and they are preceded by the pattern acronym (e.g.,
SOAR::).

By applying the above mentioned patterns, we are able to model aspects related to teams. An Organiza-
tion might have Organizational Teams. An organizational team is composed by human resources. A Team
Allocation links the Team Members (the role a Human Resource plays when she is allocated to a Team) to
the Team, in a given period of time. Moreover, Team Allocation also establishes the Human Role that the
team member must play in that Team Allocation.

By extending this enterprise model to the context of test teams, we capture that Test Team is a subtype
of Organizational Team. A Test Team Allocation links a Test Team Member to a Test Team, in a given
period of time (CQ14), establishing the Testing Role that she must play in that Test Team Allocation.
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Fig. 8. ROoST’s Testing Environment sub-ontology.
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5. An OWL Operational Version of ROoST

Reference ontologies are to be used in an off-line manner to assist humans in tasks such as mean-
ing negotiation and consensus establishment. If its machine-readable version is required to meet some
intended use, an operational version must be designed and implemented. The same reference ontology
can be used to produce a number of different operational versions, each one considering a target lan-
guage/environment. Unlike reference ontologies, operational ontologies are not focused on representation
adequacy, but are designed with the focus on guaranteeing desirable computational properties. A design
phase, thus, is necessary to bridge the gap between the conceptual modeling of reference ontologies and
the coding of them in terms of a specific operational ontology language (such as, for instance, OWL,
RDFS, F-Logics). Issues that should be addressed in the design phase are, for instance: determining how
to deal with the differences in expressibility of the languages that are used in each of these phases; or
how to produce lightweight specifications that maximize specific non-functional requirements, such as
reasoning performance (Guizzardi, 2007); (Falbo et al., 2013).

Since there are intended uses of ROoST that require its operational version (such as to serve as basis for
integrating software tools supporting the testing process or for annotating testing resources in a semantic
documentation approach), we need to continue SABiO’s development process, and design and implement
it in a machine-readable language. We chose OWL as target operational language, since it is the most
used language in the scenarios we intend to use this operational version, named here OWL-ROoST. For
implementing OWL-ROoST, we follow the transformation rules from OntoUML to OWL proposed in
(Barcelos et al., 2013). These rules guide the transformation of OntoUML concepts and relations to OWL
classes and properties.

Artifact exemplifies the case of a concept of the type <<category>>. According to UFO (Guizzardi,
2005), a category groups rigid instances of classes with different principles of identity, in our case, in-
stances of classes Document, InformationItem and Code, which are kinds (and thus, are stereotyped
with <<kind>>). Artifact is a superclass of Document, InformationItem and Code. Concepts of the
type <<kind>> are mapped as disjoint subclasses. The concepts of the type <<subkind>> are also
mapped as subclasses of their respective superclasses. For example, Document is a <<kind>> and has
as <<subkind>> types the following documents: Test Plan, Test Result, Test Case and Testing Incident
Report. These concepts are mapped to disjoint OWL subclasses, as shown in Figure 9. In this figure,
we present part of the transformation discussed above, considering test-related Document subtypes and
following the same format that transformations are present in (Barcelos et al., 2013).

Fig. 9. Example of transformation to OWL
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6. ROoST Evaluation

In order to evaluate ROoST, we performed Ontology Verification & Validation (V&V) activities. Con-
sidering the guidelines proposed by SABiO, ROoST was evaluated in four steps. First, we performed a ve-
rification activity by means of expert judgment, in which we checked if the concepts, relations and axioms
defined in ROoST are able to answer its competency questions, in an assessment by human approach to
ontology evaluation (Brank et al., 2005). Next, since a reference ontology should be able to represent real
world situations, to validate ROoST, we instantiated its concepts and relations using testing data extracted
from an actual project, in a data-driven approach to ontology evaluation (Brank et al., 2005). These
two evaluation steps were performed manually, considering the reference ontology. ROoST was then im-
plemented in OWL, and the resulting operational ontology (OWL-ROoST) was also tested in an onto-
logy testing approach to ontology evaluation (Vrandecic and Gangemi, 2006). Test cases were designed
and exercised in the context of a sub-ontology, in order to check if OWL-ROoST is able to answer the
competency questions. Finally, since we developed an application based on ROoST to support managing
software testing knowledge, by testing this application with end users, we also evaluated ROoST, in an
application-based approach to ontology evaluation (Brank et al., 2005). Following each one of these
four evaluation steps are described in more details.

Evaluation Step 1 - Assessment by human approach to ontology evaluation

ROoST evaluation started with a verification activity, when we manually checked if the concepts, re-
lations and axioms defined in ROoST are able to answer its competency questions (CQs). This approach
enabled us to check not only if the CQs were answered, but also whether there were irrelevant elements
in the ontology, i.e. elements that do not contribute to answer any of the questions. Table 1 illustrates this
verification process, showing which elements of the ontology (concepts, relations, properties and axioms)
answer each one of the Competency Questions (CQs) of the Testing Artifacts sub-ontology. Similar ap-
proach was applied to the other sub-ontologies.

Table 1: Verifying ROoST concepts, relations and axioms

CQ Concepts, Relations and Properties Axioms

CQ7

Test Planning produces Test Plan

-
Test Case Design produces Test Case

Test Coding produces Test Code
Test Execution produces Test Result

Test Result Analysis produces Test Analysis Report

CQ8

Test Case Design uses Test Case Design Input

A3
Test Coding uses Test Case

Test Execution uses Test Code
Test Execution uses Code To Be Tested
Test Result Analysis uses Test Result

CQ9

Test Case Input and Expected Result are part of Test Case

A4, A5

Test Case tests Code To Be Tested
Test Code implements Test Case

Test Result is relative to Test Case
Actual Result and Issue are part of Test Result

Test Analysis Report analyzes Test Result
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This evaluation step was performed in parallel with the ontology development. We continuously eva-
luated if the competency questions were being answered. Moreover, many competency questions were
included in the ontology, as we judged that new concepts and relations were in the scope of the ontology.
In other words, we followed an iterative approach, merging requirements identification, conceptual mode-
ling and evaluation steps, until we achieved a set of competency questions that were all addressed by the
concepts, relations and axioms defined in the ontology.

Evaluation Step 2 - Data-driven approach to ontology evaluation

In order to check if ROoST is able to represent concrete situations of the real world, we instantiated
its concepts and relations using testing data extracted from an actual project, called Amazon Integration
and Cooperation for Modernization of Hydrological Monitoring Project (ICAMMH Project) (Braga et al.,
2009). Table 2 shows part of the instantiation done.

Table 2: ROoST Instantiation

Concept Instance
Project ICAMMH Project
Testing Process ICAMMH Testing Process
Black-box Testing Tech-
nique

Equivalence partitioning, Boundary-value analysis (black-box
techniques applied to derive test cases in the ICAMMH Project)

Test Case Test Case P01-256 [Collected by electronic media - Invalid date]
(a test case produced in the ICAMMH Project)

Test Case Design Input Use Case Specification “SAD_MCU_001-Customize Data Col-
lection” (artifact that was used to derive the test case P01-256)

Test Case Input 2009-15-11 [Year-month-day/file .txt with month invalid for data
collection in header] (input data to the test case P01-256)

Code To Be Tested CollectFormUtil.java (Java class that is to be tested by the test
case P01-256)

Test Code (Test Script) P01-256 Script (a test script that implements the test case P01-
256)

Actual Result “Invalid data”

As a result from this evaluation step, we could conclude that ROoST is able to represent real world
situations. ICAMMH is a large and complex project, with a great concern for testing. Thus, we expect that
the data extracted from it are representative of real world situations. However, we are aware that, since
different projects can perform testing in different ways and levels, the examples used in the data-driven
evaluation could influence the generality of the evaluation results. For instance, many organizations con-
sider regression testing (testing that verifies that software previously developed and tested still performs
correctly after it was changed) as a testing level. ROoST does not explicitly represent regression testing as
a testing level, although it is flexible enough to admit this approach. In fact, this motivated us to perform
an application-based approach for evaluating ROoST, to get a wider feedback.

Evaluation Step 3 - Ontology Testing

For testing the operational version of ROoST (OWL-ROoST), test cases were designed from the com-
petency questions, in a competency question-driven approach for ontology testing. According to (Falbo,
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2014), in this approach, a test case comprises an implementation of a competency question (the specifica-
tion to be tested) as a query in the chosen implementation environment, plus instantiation data from a frag-
ment of the ontology being tested (input), and the expected results based on the considered instantiation
(expected output).

It is important to notice that some of our competency questions (CQs) were defined in a high level of
abstraction, which may hinder the design of test cases. Thus, depending on the abstraction level of a CQ,
we derived more specific questions from it. So, when necessary, the CQs were rewritten in a format closer
to a query script, emphasizing the names of concepts, properties and relations. For example, let us consider
CQ09:"How do testing artifacts relate to each other?". Since in ROoST there is no general relationship
between testing artifacts, to answer CQ09, we need to analyze the conceptual model of ROoST, capture
all the relationships between testing artifacts, and create a CQ for each of them. As a result, we identified
the following (low abstraction level) CQs:

CQ09.1 - What are the test case inputs of a given test case?
CQ09.2 - What are the expected results of a given test case?
CQ09.3 - What is the code to be tested by a given test case?
CQ09.4 - What are the test codes that implement a given test case?
CQ09.5 - What are the test results relative to a given test case?
CQ09.6 - What are the actual results that comprise a given test result?
CQ09.7 - What are the issues reported in a given test result?
CQ09.8 - What are the test results reported in a test analysis report?

Finally, for each specific CQ, we developed a set of test cases, by implementing the CQs as SPARQL
(SPARQL Protocol and RDF Query Language) queries. We chose SPARQL, because it can be used to
query both RDF Schema and OWL model to filter out individuals with specific characteristics. Table
3 shows some CQs implemented as SPARQL queries. Table 4 presents some of the test cases that we
developed. For performing the test cases, instances considered in the previous evaluation step were added
in the corresponding OWL files.

Table 3: SPARQL Queries for the Competency Questions.

Id CQ SPARQL Query
CQ01 In which project a

given testing pro-
cess occurred?

SELECT ?TestingProcess ?Project ?Name
WHERE {

?TestingProcess roost:occurredIn ?Project.
?TestingProcess roost:hasName ?Name.

FILTER(?Name = "Add project name").
}

CQ07 What are the arti-
facts produced in
a testing activity?

SELECT DISTINCT ?Activity ?Artifact ?Name
WHERE {

?Activity roost:produces ?Artifact.
?Activity roost:hasName ?Name.

FILTER (?Name = "Add activity name").
}

Continues
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Table 3: Generated test cases

Id CQ SPARQL Query
CQ09.01 What are the test

case inputs of a
given test case?

SELECT ?TestCaseId ?TestCase ?TestCaseInput
WHERE {

?TestCase roost:hasInputs ?TestCaseInput.
?TestCase roost:hasId ?TestCaseId.

FILTER (?TestCaseId = Add test case Id).
}

CQ09.02 What are the ex-
pected results of a
given test case?

SELECT ?TestCaseId ?TestCase ?ExpectedResult
WHERE {
?TestCase roost:hasExpectedResults ?ExpectedResult.
?TestCase roost:hasId ?TestCaseId.

FILTER (?TestCaseId = Add test case Id).
}

CQ09.03 What is the code
to be tested by a
given test case?

SELECT ?TestCaseId ?TestCase ?CodeToBeTested
WHERE {
?TestCase roost:hasCodeToBeTested ?CodeToBeTested.
?TestCase roost:hasId ?TestCaseId.

FILTER (?TestCaseId = Add test case Id).
}

CQ12 What are the
testing techniques
applied to derive
a given test case?

SELECT ?TestCaseId ?TestCase ?TestingTechniques
WHERE {
?TestCase roost:derivedApplying ?TestingTechniques.
?TestCase roost:hasId ?TestCaseId.
FILTER (?TestCaseId = Add test case Id).
}

Table 4: Test Cases

Test Case Id CQ Inputs Expected Result
T01.01 CQ01 ICAMMH Testing Process ICAMMH Project
T07.01 CQ07 ICAMMH Test Planning Activity ICAMMH Test Plan
T09.01 CQ09.01 P01-256 2009-15-11
T09.02 CQ09.02 P01-256 “Invalid data”
T09.03 CQ09.03 P01-256 CollectFormUtil.java (Java class)
T12.01 CQ12 P01-256 Black-box Testing

Finally, after executing a test case, we compared the returned results with the expected results to de-
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termine whether the test case passed or failed. If the results match, then OWL-ROoST passed in this test
case. Otherwise, we need to analyze if the problem is in the conceptual model of ROoST, in its implemen-
tation (OWL-ROoST), or even in the formulation/implementation of the CQs. For running the test cases,
we used Protégé. Figure 10 shows an example of the execution of the test case T12.01. As we can see by
contrasting the actual result with the expected result, this test case passed.

Fig. 10. Example of test case execution

In general, the test cases worked out well. Several problems were detected, most of them related to the
implementation of OWL-ROoST, and a few related to the implementation of the test cases. When a pro-
blem was detected, we made the necessary changes, and reran the test case. During this evaluation step,
we did not detect any problem in the conceptual models of ROoST.

Evaluation Step 4 - Application-based approach to ontology evaluation

As already said before, we developed a KM system to support managing software testing knowledge,
called Testing Knowledge Management Portal (TKMP). TKMP is a web application that was developed
using ROoST for structuring its knowledge repository. TKMP was built extending a more general Soft-
ware Engineering KM Portal, which provides more general KM features such as yellow pages and fea-
tures for managing lessons learned. Yellow pages map professional capabilities, skills and interests of the
organization’s members. Lessons Learned are positive or negative experiences distilled from projects that
should be taken into account in future projects. Thus, TKMP provides general functionalities for creating,
evaluating, searching, retrieving, and valuing knowledge items.

Managing testing knowledge is not an easy task, and thus it is better to start with a small-scale initiative.
So, we performed a survey to define a scenario for applying KM in software testing (Souza et al., 2015b).
The purpose of our survey was to identify which is the most appropriate scenario in the software testing
domain, from the point of view of testing stakeholders, for starting a KM initiative. Considering the main
findings of the survey, test case design was considered the software testing activity to be first supported,
and test cases the main knowledge item to be managed. So, only the relevant information for designing
test cases was considered in the scope of TKMP development.
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From TKMP, testers can make a query for retrieving test cases and reuse them. TKMP’s search feature
allows testers to search related projects, informing the desired combination of parameters to refine their
queries, such as test level, testing technique, and information about valuations previously done by testers
about the test cases. Figure 11 presents the results of TKMP’s search functionality for a query using the
following parameters: Project - ICAMMH; Test Level - Unit Testing; Testing Technique - Equivalence
Partitioning.

Fig. 11. Search page of TKMP

TKMP’s knowledge repository was populated with 1594 test cases extracted from two actual projects:
ICAMMH Project and On-Board Data Handling (OBDH) inside Inertial Systems for Aerospace Appli-
cation (SIA) Project. TKMP was then initially evaluated by the testing leaders of these two projects. We
should emphasize that this evaluation is preliminary, since ICAMMH was already finished, and OBDH
was still in its initial phase, when we performed the evaluation step. As a result of using TKMP, both the
test leaders pointed out that TKMP would be extremely useful for their projects. Both stressed the impor-
tance of such a system to support the software testing process, in particular to critical systems, such as the
ones from which the test cases were extracted. Moreover, both feel comfortable with the vocabulary used
by the system, which is ultimately the one provided by ROoST.

Next, we made TKMP available on the Web, and performed a survey with testing practitioners and
students. 43 participants used TKMP and answered a questionnaire. The survey results pointed out that
most of the participants (more than 80%) positively evaluated TKMP.

We should highlight, however, that application-based evaluation is an indirect way of evaluating an
ontology. Although, TKMP was built based on ROoST, users of TKMP are not really aware of the on-
tology underlying the system. Moreover, TKMP does not address all the aspects covered by ROoST, but
only those related to test cases. By using TKMP, in particular, those features for sharing and reusing test
cases, the users are indirectly in touch with the conceptualization underlying the system. Hence, we could
evaluate ROoST by means of this application only indirectly and partially.
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7. Related Work

A comparison with the ontologies found in the SLR (see Section 2) was performed considering some
of the characteristics of “beautiful ontologies” defined by d’Aquin and Gangemi (2011), namely: having
a good domain coverage; implementing an international standard; being formally rigorous; implementing
also non-taxonomic relations; being modular; being designed in a principle way; following an evaluation
method; and reusing foundational ontologies. Table 5 summarizes the comparison of the 12 ontologies
found in SLR with ROoST considering aforementioned criteria. For evaluating whether the ontology was
developed “being formally rigorous” or not, we take into account if the ontology presents also axioms
defined in some formal language.

As Table 5 shows, beside ROoST, OntoTest is the testing ontology that best fits the aforementioned
criteria. In sum, the main distinguishing feature of ROoST when contrasted to other testing ontologies is
that ROoST was developed taking features of “beautiful ontologies” (d’Aquin and Gangemi, 2011) into
account. ROoST was developed following SABiO method, which is a well-established method, used in
several ontology development efforts (Falbo, 2014). Moreover, ROoST was built by reusing and extending
patterns of SP-OPL and E-OPL. Since SP-OPL and E-OPL are grounded in Unified Foundational Onto-
logy (UFO), ROoST inherits this foundational ground from these patterns. Further, concepts introduced in
ROoST were also analyzed in the light of UFO. ROoST is a heavyweight (strongly axiomatized) modular
ontology that was built considering several references, including important international standards in the
field of software testing. ROoST was evaluated from both verification and validation perspectives, ap-
plying different approach (assessment by humans, data-driven approach to ontology evaluation, ontology
testing, and application-based approach to ontology evaluation). Finally, concerning its coverage, ROoST
covers aspects related to the software testing process and its activities, artifacts that are used and produced
by those activities, testing techniques for test case design, and the software testing environment, including
hardware, software and human resources.
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8. Conclusions

Currently, software testing is considered a complex process comprising activities, techniques, artifacts,
and different types of resources (hardware, software and human resources). Thus, building a complete
testing ontology is not a trivial task. Although there are a relatively large number of ontologies on software
testing published in the literature (at least 12 ontologies), we notice that there are still issues related to the
establishment of an explicit common conceptualization with respect to this domain. So, in this work we
developed a Reference Ontology on Software Testing (ROoST), establishing a common conceptualization
about the software testing domain.

ROoST is designed to be used as a reference model to be employed for several purposes, such as: to sup-
port human learning on the software testing process, as a basis for structuring and representing knowledge
about software testing, for integrating software tools supporting the testing process, and for annotating tes-
ting resources in a semantic documentation approach. Furthermore, the main difference of ROoST when
contrasted to other testing ontologies is that ROoST was developed taking characteristics from “beautiful
ontologies” (d’Aquin and Gangemi, 2011) into account. Moreover, in order to support computational tasks
such as semantic annotation and reasoning, an OWL version of ROoST was implemented.

For properly dealing with intended uses such as tool integration, KM support and semantic documen-
tation, ROoST should be integrated to other Software Engineering (SE) domain ontologies, such as Soft-
ware Requirements, Design and Coding. Thus, we have already integrated ROoST to SEON, a Software
Engineering Ontology Network (Ruy et al., 2016). An ontology network is a collection of ontologies re-
lated together through a variety of relationships, such as alignment, modularization, and dependency. A
networked ontology, in turn, is an ontology included in such a network, sharing concepts and relations
with other ontologies (Suárez-Figueroa et al., 2012). SEON is designed seeking for: (i) taking advantage
of well-founded ontologies (all its ontologies are ultimately grounded in UFO); (ii) providing ontology
reusability and productivity, supported by core ontologies organized as Ontology Pattern Languages; and
(iii) solving ontology integration problems by providing integration mechanisms (Ruy et al., 2016). In
its current version, SEON includes a core ontology about software processes, as well as domain ontolo-
gies for the main technical software engineering subdomains, namely requirements, measurement, design,
coding and testing (ROoST), and for some management subdomains, namely project management, con-
figuration management, and quality assurance. SEON specification and its OWL version are available at
https://nemo.inf.ufes.br/projects/seon/. The current OWL version of SEON is a lightweight version, in the
sense that the axioms of SEON’s networked ontologies (including ROoST) are not implemented in it. As
a future work, we intend to implement the complete axiomatization of SEON (and ROoST), as well as to
modularize the OWL code.

With respect to the use of SP-OPL (Software Process - Ontology Pattern Language), some SP-OPL
patterns were not entirely used. This showed us that the patterns were too big, reflecting in fact, the need for
varying patterns. As a matter of fact, the use of SP-OPL to develop ROoST leads to an important feedback
to SP-OPL, which is now under review. A more specific version of an OPL about software processes for
ISO standards (ISP-OPL) (Ruy et al., 2015) was developed considering several aspects identified as absent
in this study (e.g., artifact types) or inadequate with respect to pattern granularity (the case of all patterns
reused to develop ROoST).

As future work, we also intend to continue to explore more deeply how ontologies can be used for
managing knowledge in the software testing context, and we intend to extend TKMP considering other
parts of ROoST not yet explored. Moreover, we intend to perform a more consistent assessment of TKMP
by using it during the accomplishment of actual software projects.
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