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Abstract

The variety of design artifacts (models) produaec imodel-driven design process results in
an intricate relationship between requirements nel various models. This paper proposes a
methodological framework that simplifies managemehtthis relationship, which helps in
assessing the quality of models, realizations aaalsformation specifications. Our framework is
a basis for understanding requirements traceabilitynodel-driven development, as well as for
the design of tools that support requirements taddéy in model-driven development proc-
esses. We propose a notion of conformance betwg#ication models which reduces the effort
needed for assessment activities. We discuss hewdtion of conformance can be integrated
with model transformations.

Keywords: requirements traceability, assessmemtfocmance, model transformation, model-

driven design



1. Introduction

Model-driven design holds the promise of improvagplication development significantly by
capturing design steps in explicit model transfdioms (Object Management Group, 2003a). The
design of an application in model-driven design lsarseen as the process of building a realization
of the application specification that satisfiesagplication requirements stated in the specibeati
by applying appropriate transformations.

At several stages in the application lifecycle, lg@gpion maintainers need to know which appli-
cation models and/or components satisfy requiresnémat have been explicitly stated. This
relation between requirements and elements ofdhgien (e.g., application models and compo-
nents) is called requirements traceability. Reauiets traceability is for instance used during
acceptance testing, when application users (orypeos) are interested in assessing the extent to
which an application adheres to its requirements.

We observe that, in a model-driven design prodéssgreat variety of modelling artifacts pose
challenges to requirements traceability and assggsiNot only application realizations have to
be assessed for requirements satisfaction, but agptication models, metamodels and model
transformation specifications since these may hbsaconsidered products of the model-driven
design process.

The main contribution of this paper is to providenathodological framework which allows
designers to relate requirements to the varioudymts of the model-driven design process. This
framework is a basis for tracing requirements asskssing the quality of model transformation
specifications, models and realizations. Furtheenave propose a requirements traceability
metamodel that serves two purposes: it models #ie elements of the above-mentioned frame-

work, and serves as basis for the design of reqeinés tracing tool support.



Since the model-driven design process may congsifferent levels of abstraction (and plat-
form-independence, see Almeida, van Sinderen, iFeff&res & Quartel, 2003), requirements are
traced throughout these levels. We propose a natfoconformance between models which
simplifies requirements tracing. The idea is thhanhs$formations which are assumed to produce
conformant results can be reused, deeming somssasset activities redundant.

This paper is structured as follows. Section 2 jpies some background in the area of re-
guirements engineering. Section 3 defines the ladions of model-driven design required in this
paper. It defines the notion of satisfaction ofuiegments in terms of the relation between
requirements, the various application models aatizegions of an application. Section 4 defines
and justifies the notion of conformance between el®@roposed here. Section 5 extends the
view of the model-driven design process defineseiction 3 by introducing model transformation
chains. This allows us to discuss how conformaartgfiormations can simplify assessment activi-
ties. Section 6 presents our requirements tradyaimétamodel, and defines the conditions that
must apply to the results of the requirements &gy process. We define these conditions such
that this methodological framework can be used wifferent model-driven development proc-
esses and practices. Section 7 illustrates ouroapprwith an example. Section 8 discusses
related work, and finally, section 9 presents oancdtusions and outlines topics for further

research.

2. Requirements Engineering

The term Requirements Engineering (RE) refers o phase in application development in
which requirements of different stakeholders arthe@d and processed, in general resulting in a

requirements specification or software specificati®equirements can be formulated as either



properties of the problem that the stakeholderst w@rsolve using the application under devel-
opment or desired properties of that applicati®his phase is called requirements engineering to
indicate that more is needed than only requiremelidisation: requirements have to be processed
to resolve conflicts, prioritized, and capturecinonsistent requirements specification.

We assume in this paper that a requirement spswit is verifiable (Firesmith, 2003;
IEEE, 1998) i.e., given a realization, it is poksito conduct assessment activities to determine
whether the requirements can be considered sdtisfe use the term “assessment activity” for
the act of checking whether a requirement is sadisfExamples of assessment activities are
acceptance testing by end users, model checkif@ymal correctness proofs.

We conceptualize requirements as implicitly de@irenset of application realizations that satisfy
them. Figure 1 shows the relation between requinésrend the space of possible realizations. An
arbitrary grouping of the requirement specificatiold setsRS, 0 RS 0 RSc Is considered. The
realization setss, I1S,, andIS; represent realizations that satisfg;, RS,, andRS; respectively.
The realizationss. that satisfy the total set of requiremeR&: (the union oRS;, RS;, andRS,)
lie in the intersection betweeas,, IS,, IS;. Note that this is a conceptual notion, indepehdén

whether requirements are formalized.
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Figure 1 Requirements and realizations

In this paper we addressaceability of requirementsSeveral definitions of traceability are
presented by Gotel (1995). The one most suitabldéh® purpose of this paper is: “the means
whereby software producers can ‘prove’ to theertlithat: the requirements have been under-
stood; the product will fully comply with the regements; and the product does not exhibit any
unnecessary feature or functionality” (Wright, 19@& quoted by Gotel,1995). Our notion of
assessment activities exactly operationalises @tiemof ‘prove’ in this definition. In terms of ¢h
IEEE Recommended Practice for Software RequiremBpeifications (IEEE, 1998), we are
interested in forward traceability, in which artifa (in our case: models) constrained by the
requirements specification need to be traced badke requirements specification. In order to
trace requirements throughout the design processpavtition the set of requirements into

subsets as illustrated in Figure 1. The partitigrstrategy is discussed in the remainder of this

paper.



3. Requirementsand Artifactsin Model-Driven Design

Before we explain how requirements are relatedhi deveral different artifacts in model-
driven design, we need to guarantee some commoerstadding of the model-driven design

process and of these artifacts.
3.1. Artifactsin Mode-Driven Design

Model-driven design is based on capturing differ@spects of a (distributed) application into
symbolic artifacts known asodels Models are manipulated throughout the design gs®c
resulting ultimately in one or more realizationglod application. The manipulation of application
models in a model-driven design process often lentaiodel transformation activi-
ties (Schot, 1992) which may be determined or camsd by (node) transformation specifica-
tions These specifications or their implementations rbayexecuted automatically, with the
purpose of improving the overall efficiency of ttlesign process. In this paper, we consider that
transformations are used to relate source andttargdels at different levels of abstraction. The
notions of source and target models are thus velat a design step. Models are expressed in
suitable modelling languages, with their abstrgotax described imetamodels

Model transformation specifications and metamodetsdefined in an application-independent
phase of the model-driven design process (knowthaspreparation phase in (Almeida, 2006;
Gavras, Belaunde, Ferreira Pires & Almeida, 200Bhey are used by designers to build specific
applications. In this context, model transformatgpecifications capture reusable design knowl-
edge, and metamodels capture reusable conceptmtedns for application modelling.

Figure 2 shows an example of model-driven desigjedtory, depicting schematically the de-

pendencies between the various artifacts. Thresdsl@f models are shown. In the lowest level of



models, two alternative application models are poed (3 andm3’), which are defined in terms

of different metamodels. Figure 2 includes modbehlies of reusable models.
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Figure 2 Artifacts in a model-driven design trajectory

3.2. Requirementsand Application Models

The multitude of artifacts in model-driven desiggrves the ultimate purpose of producing
application realizations that satisfy a particidat of requirements. Usually, there are (virtually
infinitely) many application realizations that sffia set of requirements. The design task consists
of obtaining a particular application realizationat satisfies requirements while respecting
implementation constraints and general design iptex: Figure 3 illustrates the relation between

requirements and application models at differevglgeof abstraction.
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Figure 3 Requirements and application models

We assume that application models capture desigsiales, defining characteristics of a potential
application realization. Furthermore, we requiratthodels have a well-defined semantics. More
precisely, we say that a model has a well-defimedasitics, if, and only if, given a realization and
a model, it is possible to determine whether tladization exhibits the characteristics as defimed i
the model. The means by which this semantics imetf(e.g., mapping to a formal domain,
natural language, or basic set of design concept®)t prescribed by this definition.

We can conceptualize models as implicitly defininget of realizations that realize them. Fig-
ure 4 (adapted from (Almeida, Dijkman, Ferreira eBjr Quartel & van Sinderen, 2006;
Schot, 1992)) depicts the relation between modwedstie space of realizations. In this figure, an
oval represents the sets of acceptable realizafmna particular model. Different design deci-
sions may lead to alternative realizations, and thishown by different sets of realizations

(shaded) for alternative modelg2 andm2’, M3 andms’).
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Figure 4 Models and the space of realizations

Design decisions should eventually lead to a detsighdefines all relevant characteristics of a
realization of the system (Almeida, Dijkman, FemePires, Quartel & van Sinderen, 2006),
satisfying all stated requirements and implememationstraints. It is not our intention to debate
the distinction between realizations and models. ¢ar purposes, a model that satisfies all
requirements can be considered a realization. kample, a workflow model executed in an
engine can be considered a realization, with nihéurtransformation.

Figure 5 shows requirements, models and realizationone picture (combining Figures 3
and 4). It reveals the (indirect) relation betweegquirements and realization. As can be observed
in this figure, the set of realizations for an a@giion modeM1 is contained in the set of realiza-
tions that satisfikS1. The set of realizations for an application maaels contained in the set of

realizations that satisfys3. (Application models12’ andm3' are omitted for conciseness.)



requirements

( general design knowledge

application
model M1

o
application
model M2

= RS/=KS
@ RS;¥RSs\RS,

RSy= RSc \RSs

degree of abstraction———— \_/

o
application
model M3

(__implementation constraints )

realizations

Figure 5 Requirements, models and realizations

At this point, we can formulate the notion of datision of requirements by models. We say
that a mode satisfies a set of requiremems, if and only if, the set of acceptable realizasion
for M is contained in the set of realizations that 8atks. In order to support requirements
traceability, it is the task of the designer totestavhich requirements are satisfied by which
models, and to conduct assessment activities tpostiguch claims of satisfaction. In the remain-
der of this paper, we work out which claims areunesl and discuss how they can be managed in

a model-driven design process.

4. Preserving Satisfaction of Requirements through Conformance

The notion of conformance between models is cetdralir approach. We say that a madel
conforms to another models if, and only if, the set of acceptable realizasidar MT is con-
tained in the set of acceptable realizationsMgr Given this definition, we can observe that
Figure 4 depicts both conformant and non-conforrpais of models. For exampla3’ does not

conform tom2’, while M2’ conforms tavi1.



If a model at a lower level of abstractioni{1) does not conform to a model at the previous
level (vi), a designer is forced to consider botirl andMi in a subsequent design step. This
problem is exacerbated in the presence of multglels of abstraction that are not related by
conformance. In the extreme case, a designer hasrisider all models in a design step that
produces the realization. This problem is addregstdconformant models. Conformant models
can be regarded as replacing the models they confor For example, Figure 5 shows only
conformant models11, M2 andM3. Thus, in the design step fran2 to M3, M1 does not have to
be considered. Furthewg3 is sufficient to derive the realization.

Intuitively, a model creates a sort of a “mould’tkuhat all subsequent models should fit into
it (“conform”). The same is not necessarily trug¢hwgets of requirements, which can be regarded
as defining constraints that have to be considerednjunction.

By populating a hierarchy of models with modelst tbanform to models at a higher level of
models, designers can simplify requirements traltyalactivities. This is possible because
requirements satisfied by a model are also satifijeall models that conform to it. The evidence
showing that a model satisfies certain requiremeatsbe reused for models that conform to it.

In a design step that produces a conformant targetel, the designer only has to provide
evidence for supplementary requirements that atiefied in the target model but not in the
source model. In Figure 5, this means that asse$saievi2 only requires evidence for the
satisfaction ofRs2 instead of botlRs1 and RS2. Further, modification of models at a lower
abstraction level does not affect models at a highstraction level if the modified model remains

conformant.



We can now observe that the partitioning of reaqneets in different sets as depicted in Figure
5 arises from the way in which the various setsegfuirements are addressed throughout the

model-driven design trajectory.

5. Requirements Traceability with Transformation

This section extends the view of the model-drivesigh process as described in section 3 with

model transformation chains.

5.1. Automated Transformation Chains

We start by considering fully automated transforomathains. Fully automated transformation
chains consist of a predefined series of transfoomapecifications that can be applied to relate
different subsequent levels of models. All transfation activities are automated using the
various transformation specifications. An applieatmodel that is used as input for the transfor-
mation chain is sufficient to obtain a realizat@rthe application.

In the case of automated transformation chainslicapipn requirements only influence the
application model. This is shown in Figure 6. Nthat there are no relations between model
transformation specificationg$A andTSB) and application requirements. The reason forighis
that model transformation specifications capturpliegtion-independent design operations that
can be reused in the development of several apiplsa

A useful analogy for automated transformation chasnthe programming language compiler:
source code can be regarded as the applicationlnaakassembly code can be considered the
realization on a target hardware platform (withemtediate representations often used for
optimization purposes). The specification of thenpder (i.e., the model transformation specifi-

cation) is independent of the applications comdigdhe compiler.
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Figure 6 Application-specific requirements only affect the highest level of models

In the case of automated transformation chaingsasgent activities can be summed up in (i)
assessing whether the application model satisppsication requirements, and (i) whether1
conforms tomi for every transformation step (a special kind sgessment we calbnformance
assessmehtIn case models at intermediate levels are nosidered reusable products of the
design process, it suffices to assess whetheasheriodel conforms to the first model.

When a transformation chain is assumed to prodonaomant results, the only required activ-
ity left is assessing whether the application mosigtisfies application requirements. Other
assessment activities are deemed redundant bgsbenption of conformance. In the analogy of a
programming language compiler, only source co@ssessed if the compiler can be trusted.

To capture this reorganization of assessment aiesvn terms of the quality of a transforma-
tion specification, we define the notion of@nformant transformation specificatiowe say that
a transformation specification @nformant if, and only if, for every source and target mede

related by the specification, the target model aoné to the source model.



5.2. Partially Automated Transformation Chains

As discussed in the last section, the traceabifiyequirements can be largely simplified for the
case of fully automated transformation chains watmformant transformation specifications.
However, full automation of transformations is radways feasible or desirable. For example, it
may be impossible to derive relevant design detssioom an high-level application model, or it
may be inefficient to specify automated transforore having a limited reuse potential (see
Almeida (2006) for an analysis on the costs/bemefitautomated transformation). We distinguish
the following approaches to decrease the levelubbraation without manual modification of
target models:

(i) transformation parameterizationn which case the designer selects values foistoama-
tion parameters, i.e., arguments. Transformaticarpaters capture variation in the way source
and target models are related; and,

(i) selection of transformationsn which case a designer configures a transfaomathain
from a number of alternative predefined transforomest In order to simplify our discussion, we
regard selection of alternative transformationsa a&pecial case of transformation parameteriza-
tion, where a transformation specification inclutles relations specified by all alternative trans-
formations, and arguments are used to select amative.

In this case, application requirements influeneadformation arguments (see Figure 7).
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Figure 7 Application-specific requirements affect transformation arguments

The definition of a conformant transformation speation can be easily adjusted to incorpo-
rate transformation arguments. A transformatiorcépation is said to beonformant if, and
only if, for every source and target models reldigdhe specificatiomnder every admissible set
of transformation argumentshe target model conforms to the source model.

For a transformation chain with parameterized conémt transformation specifications, one
should assess whether the application model ak lesatisfies application requirememsi, and
whether design decisions implied by transformat@yguments satisfy different partitions of

requirementsKsi).
5.3. Manual Modification

If necessary, the level of automation may be furtbvered by allowing designers to manually
modify target models. We assume in this case tloalkification is not unconstrained: the relations
between source and target models as defined anaftrmation specification should be respected

(although tool support may allow these relationséotemporarily violated, as long as they are



eventually re-established). Figure 8 shows thetioglabetween requirements and the various

levels of models for this case.
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Figure 8 Application-specific requirements affect application models

Assessment activities in this case include: assgsshether models are conformant, and as-
sessing whether the partitions of requiremeRts)(are satisfied progressively. If transformation
specifications are conformant, this is simplifiexl @ssessing the satisfaction of the partitions of

requirementsKsSi) at the different levels of models.

6. A Requirements Traceability Metamodel for M odel-Driven Development

In order to provide tool support for requirememeceability according to the framework pro-
posed in this paper, we define a requirements afaltg metamodel (Figure 9, using the Ecore
meta-metamodel, as supported by the Eclipse Madeliramework (EMF), see Budinsky et
al, 2003).

This metamodel captures the main elements of thair@ments traceability framework pre-
sented so far. We use a requirements traceabiityxrto visualize the relation between require-

ments and the various artifacts. A traceability mdtrecords the relationship between two or



more products of the development process” (IEEB220In our model, traceability is recorded
in terms of model and transformation conformandeickvmakes it suitable for inclusion in tools

for model-driven development.
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Figure 9 Requirements Traceability Metamodel

In the proposed metamodel, the traceability matorsists of a satisfaction relation for each
pair of related requirement and artifact. Eachs&atiion relation must provide some assessment
evidence. We distinguish assessment evidence (ptatirect evidencewhich is the result of
assessment activities that directly verify the séattion of requirements into artifacts (e.g.,
testing, inspection and analysis); and i@lirect evidencewhich is the result of model confor-
mance assessment and conformant transformatioe.usag

We use aonfigurationto group a requirements traceability matrix, aunexments specifica-
tion and a set of design artifacts (models at wifielevels and the realization). A configuratisn
a collection of items undeconfiguration managemetEEE, 2002; Software Engineering
Institute, 2000). (While configuration managemestially considers versioning of configuration

items, this is not discussed in this paper.)



A particular kind of configuration of special inést for us is daseling which is a formally
approved configuration (IEEE, 2002). We define tsts for a baseline configuration such that
requirements in the requirements specificationpaogerly accounted for with suitable evidence
captured in the traceability matrix (see constea@i, C2, C3 in Table 1). These constraints are
defined using OCL 2.0 (Object Management Group3BPOA particular kind of baseline of
interest is a “build” baseline which contains aliragion. In this baseline, there exists an artifac
that satisfies all requirements (either directly idirectly). This artifact is a realization (see

constraintc4 in Table 1).

ID Constraint

C1 “in a baseline, there must be satisfaction relation all requirements”

context Baseline inv: requirementsSpecification.requirements->forAll( r : Requirement | r.satisfactions->notEmpty() )

C2 “in a baseline, no indirect evidence is based swifi{fevidence graph is acyclic)”

context Baseline inv:

traceabilityMatrix.satisfactions.evidences->forAll( e : IndirectEvidence | not e.allSourceEvidence()->includes(e) )

C3 “in a baseline, all indirect evidence must be utiely based on direct evidence”

context Baseline inv:
requirementsSpecification.requirements.satisfactions.evidences->forAll ( e : IndirectEvidence |

e.allSourceEvidence()->exists(ocllsKindOf(DirectEvidence))

C4 “in a build baseline, there exists an artifact atisfies all requirements (either directly oriiadtly)”

context BuildBaseline inv:artifacts->exists(satisfactions.requirement->asSet()=requirementsSpecification.requirements)

Helper |“expression that provides all evidence on whiclvamindirect evidence is based (transitive clogure
IndirectEvidence::allSourceEvidence(): Set(AssessmentEvidence)

= source.getEvidence()->union( source.getindirectEvidence()->collect(allSourceEvidence())->asSet() )

“expressions that provide indirect and direct enabefor a given artifact”

Artifact::getIndirectEvidence() : Set(IndirectEvidence) = self.getEvidence()->select(oclisKindOf(IndirectEvidence))

Artifact::getEvidence() : Set(AssessmentEvidence) = self.satisfactions.evidences->asSet()->flatten()

Table 1 Constraints

The constraints capture the conditions that muplyap the result of the requirements trace-
ability process, without unnecessarily constraining requirements traceability process itself.

This makes our approach suitable to different modeen development processes and practices.



7. Example

To illustrate the application of our framework aadshow how our approach reduces assess-
ment activity effort, we present as an exampledésign of a telemonitoring system (Almeida,
lacob, Jonkers & Quartel, 2006). The goal of tlysteam is to monitor a chronically ill patient
continuously and warn the patient and care giveig (at a hospital) of critical health conditions.

Table 2 presents (functional and non-functionaumements for a specific telemonitoring

system, which issues alarms for epileptic seizures.

1D

Description

AR1

Upon detection of an (eminent) epileptic seizure,gatient shall be alarmed.

AR2

Upon detection of an (eminent) epileptic seizuigkparsons in the surrounding of the patient masidened.

ARS3

Only aid persons with an available status are adrm

AR4

In case no aid persons can be alarmed an emerjgealtly care team in the surrounding of the patidhbe alarmed.

ARS

In case the epileptic seizure occurs at a spedehigan 8km/h, an emergency health care teanbevilarmed (istead o|

aid persons) (rationale: this may involve high,reky., if the patient is biking, jogging, driving)

ARG

Alarms to aid persons or health team inform thetheflast known location of the patient.

AR7

Alarms should be realized through short messagimgce or calling aid persons with voice messagatonale: ai

persons do not have to maintain and carry any engavices in addition to their mobile phones).

ARS8

Patient location and speed may be determined thr@RSS devices.

AR9

Patient and aid person location may be determimed gh Parlay-X.

AR10

Aid person availability status may be determinedulgh Parlay-X presence.

AR11

In case patients/aid persons should carry mobifieetefor monitoringthese should allow uninterrupted monitoring fé

hours, without requiring battery recharges.

AR12

Costs of mobile communication should not exceed BOR per month per patient.

In this example, the development of the systenuidegl by a model-driven design trajectory, in
which three levels of models are defined (Almeidankers, lacob & Quartel, 2005; Almeida,
lacob, Jonkers & Quartel, 2006): the service speatibn level (1); the platform-independent

service design leveM2); and the platform-specific service design lew)( These three levels of

Table 2 Requirements for telemonitoring system

models are depicted in Figure 10.



At the level of service specification a service tandescribed in terms efents which repre-
sent contextual changes and occurrences of int@&pst an epileptic seizurejueriesto provid-
ers of context information (e.g., a patient’s lomat speed and bio-signals), aadtions which
represent actions to be performed in order to pevhe service to the user (e.g., issuing an
alarm). These elements are expressed in a domaaifisdanguage (called ECA-DL (Almeida,
Jonkers, lacob & Quartel, 2005; Almeida, lacob kéos & Quartel, 2006)).

At the platform-independent service design levelhavioural aspects of service design are
described with ISDLThe Interaction Systems Design Languabtp:/isdl.ctit.utwente.nl/)
models and OCL (Object Management Group, 2003b¥tcaints. UML class diagrams (omitted

here) are used to represent information models.
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Figure 10 Design trajectory for context-aware mobile services (adapted from Almeida, lacob,
Jonkers & Quartel, 2006)

WsDL |
metamodel

The transformation between the service specifinaéind the service design level consists of
refining events, queries and actions at the sespeeification level into sequences of interactions

in the service design. At the service specificatemel, an action represents an activity performed



by the system as a whole (including any contexraEsiand action services). However, at the

service design level the same action has to bempeetd by cooperation of different services, in a

service-oriented design which includes various exinaind action services. The transformation

rules are defined extensively in (Almeida, Jonkéspb & Quartel, 2005)TSA is parameterized

so that the designer can define constraints onhagevices can be used to realize events and

actions in the service specification (so it carcbesidered a partially automated transformation).
7.1. Modes

We focus on the service specification and platfardependent service design levels in order to
limit the size of this example. The Telemonitorservice specification is depicted in Figure 11

(this corresponds tei1 in Figure 10).

ﬁelemonitoringECAService Patient pat , String alert , Coordinates patient_xy | Coordinates aidperson_xy 1, AidPersonAlert loc W
[pat = seizureAlert_indCppat, T T T TTToToT T
alert = "seizure";
TelemonitoringECAService ts patient_xy = position_rspC xy;
((aidperson_xy.x - position_rspC xy.x) * (aidperson_xy.x - position_rspC.xy.x) +
(aidperson_xy.y - position_rspC xy.y) * (aidperson_xy.y - position_rspC xy.y) ) <2000 * 2000 1

Patient pat , String alert , PatientAlert loc
[pat = seizureAlert_indC.pat;
alert = "seizure” | alertAid_regA boolean ok , Locus loc
ZlertAid_rspA [loc = alertAid_regA.loc ]

alertPatient_regA [position_rspC.speed <=8 ]

seizureAlert_indC [not alertAid_rspA.ok ]

Patient pat , Seizure loc

osition_rspC.speed > 8
position_reqC position_rspC [P fspe-<p !

Coordinates xy , double speed , Locus loc alertTeam_regA
[loc = position_reqC.loc ]

String endUserldentifier , Positioning loc
[endUserldentifier = seizureAlert_indC.pat.endUserldentifier 1

L Patient pat , String alert , Coordinates patient_xy |, CoverageArea coverageArea i HealthTeamAlert loc

[pat = seizureAlert_indC.pat, T T T T T ITITITITITT
alert = "Epilleptic seizure at high speed or no aid person available";

patient_xy = position_rspC .xy;

((coverageArea.geolLocation.x - position_rspC .xy.x) * (coverageArea.geoLocation x - position_rspC.xy.x) +
(coverageArea.geol ocation.y - position_rspC xy.y) * (coverageArea.geoLocation.y - position_rspC.xy.y) )
< coverageArea.range * coverageArea.range 1

Figure 11 The Telemonitoring service specification (M1, see Almeida, lacob, Jonkers & Quar-
tel, 2006)

Ovals represent context events, queries and acfldressuffix_indC indicates a context event,
the suffixes_reqC, _rspC indicate a request-response query to context esusnd the suffixes

_regA, _rspA indicate request-response to action services. wsrmdicate enabling relations



between events, queries and actions; white diamamesent choice (or-split) and white squares
denote disjunction. Guards for enabling relationd eonstraints for information are depicted in
boxes attached to context events, queries andhactio

The platform-independent service design is thelreguhe application of all transformation
rules to the service specification. Figure 12 (tusresponds to a part mP in Figure 10) shows
the generated coordination component. The dashed liepresent causality relations already
present in the service specifications. Semi-ovgisasent interactions in ISDL.

The generated coordination component interacts avisiervice trader to find context and ac-
tion services. The service queries are generated ¢onstraints at the service specification level,
which are indicated in argumerds, to the transformation (in this case, they are tamgs on

alertAid_reqgA.aidperson_xy andalertTeam_regA.coverageArea as marked with boxes in Figure 11).



TelemonitoringECAServiceCoordination
regServicgQuerry_seizureAlert_ind ~
reqServiceQuery
ServiceQ i Alert_ind

Patient pat

expression

ubscribe

AServiceC inati tsc

otifyEvent_seizureAlert_indC
notifyEvent_seizureAlert_in [serviceType = "PatientAlert";

expression ="" ]

ServiceType serviceType |, ServiceQueryExpression expression

ServiceEndpoint[] serviceEndpoints

reqServiceQuery_alertPatient_réqA

)]

ServiceType serviceType , ServiceQueryExpression expression
[serviceType = "AidPersonAlert";

let string1 : String = rspQueryContext_position_rspC .xy.x.toString() in

let string2 : String = rspQueryContext_position_rspC xy.y.toString() in
expression =

"((aidperson_xy .x - ".concat(string1).concat(

") * (aidperson_xy.x - ").concat(string1).concat(

") + (aidperson_xy.y - ").concat(string2).concat(

") * (aidperson_xy.y - ").concat(string2).concat(") ) < 2000 * 2000 ") 1

qServiceQuery_alertAid_regA

pServiceQuery_alertAid_reqA

/

ServiceEndpoint]] serviceEndpoints

rspServiceQuery_aIertPatient_r Patient pat , Stringalert , Location loc
[pat = notifyEvent_ind.pat;

alert = "seizure";

I

loc.e2 = rsp:
reqDo_alertPatient_reqA’

Query_alertPatient_regA.:

first)

feqDo_alertAid_regA

/

Patient pat , String alert , Coordinates patient_xy , Location loc

ServiceType serviceType , ServiceQueryExpression expression
[serviceType = "Positioning";
expression =" ]

regServiceQuery_position_reqC

=1

[pat = notifyEvent_seizureAlert_indC pat;

alert = "seizure";

patient_xy = rspQueryContext_position_rspC.xy;

loc.e2 = rspServiceQuery_alertAid_regA.serviceEndpoint->first() 1

ServiceEndpoint[] serviceEndpoints |

| [rspQueryContext_position_rspC.speed <=8 | |

rspServiceQuery_position_req

=1

String endUserldentifier , Location loc

loc.e2 = rspServiceQuery_position_reqC.serviceEndpoint->first()

[endUserldentifier = notifyEvent_seizureAlert_indC pat.endUserIdentifier;

1

| [rspQueryContext_position_rspC.speed>8 ] |

boolean ok

— _— TspDo_alertAid_rspA
reqQueryContext_position_reqC — \ —
Coordinates xy , double speed | —
- ServiceType serviceType , ServiceQueryExpression expression ):" [not rspDo_alertAid_rspA.ok ]
EspQuerycmm position_repC [serviceType = "HealthTeamAlert"; _

let string1 : String = rspQueryContext_position_rspC .xy.x.toString() in
let string2 : String = rspQueryContext_position_rspC xy.y.toString() in
expression =

"((coverageArea.geoLocation x - ".concat(string1).concat(

") * (coverageArea.getLocation x - ").concat(string1).concat(

") + (coverageArea.getLocation.y - ").concat(string2).concat(

") * (coverageArea.getLocation.y - ") .concat(string2).concat(

Patient pat , String alert , Coordinates patient_xy , Location loc

[pat = notifyEvent_seizureAlert_indC pat;

alert = "seizure";

loc.e2 = rspServiceQuery_alertTeam_regA serviceEndpoints->first() 1

| ServiceEndpoint]] serviceEndpoints

")) < coverageArea.range * coverageArea.range ") 1
L iceQuery_alertTeam_regA’

—Teq

spServiceQuery_alertTeam_regA’

\

feqDo_alertTeam_reqA

Figure 12 Generated coordination component for Telemonitoring service (M2)

7.2. Traceability

formance simplifies assessment activities.

In this section, we present the resulting tracealmiformation for our example. First, we show
a requirements traceability matrix with only direstidence for satisfaction of requirements (i.e.,
without using the notion of conformance proposeteheand then we present a requirements
traceability matrix using the notion of conformaransformation. The objective is to illustrate the

kinds of assessment techniques that may be empioybe framework, and to show how con-



7.2.1. Traceability with Direct Evidence

The traceability matrix with direct evidence is aépd in Table 3, with a row for each re-
guirement, and a column for each artifact. An insgaofSatisfactionRelation (in our metamodel)
is represented by a check mark in the mat)x All marks must be justified by evidence resgtin

from assessment activities, for example:

Marks in the column correspondinghn can be justified by directly inspectimy against the
requirements specification; alternatively they tanjustified by simulatings1 (e.g., with the
Grizzle simulator, see http://isdl.ctit.utwenteodls/grizzle).
— Marks in the column corresponding to argumentsT&x (arsa ) can be justified by consider-
ing the characteristics of the action servicesieapdby the particular choice of arguments.
— Marks in the column corresponding 2 can be justified by simulation of the service dgasi
by model checking behavioural constraints impligd\R1-AR10, etc.
— Marks in columnv3 that correspond to requiremem®1-AR10 can be justified by executing
test cases foaAR1-AR10. Marks for the satisfaction @fR11 (“mobile devices for monitoring
should allow uninterrupted monitoring for 24 hounsthout requiring battery recharges.”) in
M3 may be justified by analysing3 and the specifications of the target platform dmciwm3
relies (in this case the specifications of bat@ygsumption for PDAs or mobile phones) and
any characteristics a3 that may influence battery consumption (e.g., comogation and
display usage). Assessment of satisfactioaraf2 (“mobile communication costs should not
exceed EUR 50,- per month per patient”Mi may be conducted by analysing the amount of
traffic generated byi3 and its composition with the characteristics @ ptatform on which it

relies (e.g., cost models and the traffic char#ttes of communication protocols).
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Table 3 Requirements traceability matrix with direct evidence
7.2.2. Traceability with Conformant Transformation Usage

As discussed in section 5.2, these assessmenitiastcan be simplified by employing confor-
mant transformations. We illustrate this with angfarmationTSA, which has been designed such
that it is conformant under the following assumpsigAlmeida, Jonkers, lacob & Quartel, 2005):
(i) the service trader is always able to produceemvice offer for a service query, (i) context
sources always reply to context query requests, (@péction services always reply to action
invocation requests (in case action invocation estjand action invocation response is used in a
pattern). Assumption (i) can be guaranteed by awéil/ of service offers in the service trader
that correspond to actions and context querieseaedts in the service specification level (ac-
cording to transformation argumendss,). Assumptions (i) and (iii) constrain the desigh
context sources and action services. These asansie necessary to integrate the interactions
in the target design into actions and then appdy dbnformance assessment method described
in (Quartel, Ferreira Pires & van Sinderen, 2002).

By employing conformantsSA andTSB, the resulting requirements traceability matripie-
sented in Table 4. All marks in thw2 column and all marks foxR1-AR10 in theM3 column are

implied (i.e., indirect evidence is provided), whirs indicated by square brackets](| Assess-



ment activities to check them have become redundiéminishing the assessment effort needed.
In fact, M2 can even be considered a “black-box” by an apjminadesigner, without assessment

activities required.

M1 arsa M2 M3

AR1 v [v]TSA [v]TSB
AR2 \ [v] TSA [v1TSB
AR3 v [v1TSA [v]TSB
AR4 v [v]TSA [v]TSB
AR5 v [v1TSA [v]TSB
AR6 v [v1TSA [v]TSB
AR7 v [v] arsa [¥]TSB
ARS8 v [V]arsa [vITSB
AR9 v [V]arsa [V]TSB
AR10 \ [v] atsa [v]TSB
AR11 v

AR12 v

Table 4 Requirements traceability matrix with indirect evidence

The matrix also reveals a “natural” partitioningrefjuirements into sets, since certain sets of
requirements are satisfied initially at a partici&vel of models. This is shown in Table 4 with
thick borders delimiting three sets of requiremexi®s-AR6, AR7-AR10 and AR11-AR12 which
are satisfied at levels 1, 2 and 3 respectively.

All constraints defined in the metamodel are Batis(seeC1-C4 in section 6), such the con-
figurations with the requirements traceability negs shown in Tables 3 and 4 can be considered

“build” baselines, i.e., an approved configuratimimch includes an approved realization.

8. Rdated Work

8.1. Requirements Engineering and Traceability

In the area of Requirements Engineering, the stdngieneral introduction of the requirements

traceability problem has been provided by Gotel &mkelstein (1994). The Ph.D. thesis of



Gotel (1995, pages 71-72) provides extensive dssonf requirements traceability, including a
number of definitions.

It has been recognized that requirements tracigladorious task and that any assistance in
maintaining the interdependencies between requiresmand other design artifacts is highly
welcome. Egyed (2003) presents an approach in va@plendencies are discovered automatically
from data generated by executing a minimal setceharios. This approach requires that an
executable version of the system is available tceate these scenarios. In our approach, how-
ever, traceability is not dependent on an exeomtapstem; therefore, traceability is already
possible when the design process has not yet edsalan executable prototype.

Ramesh and Jarke (2001) present a reference modeéduirements traceability that they
derived from an empirical study. Their referencedelcomprises a number of possible relations
that can be traced between design artifacts andirezoents. For different stakeholders (and
different ambition levels with respect to traceabil a different subset of those relations can be
chosen. In principle, our conformance-based appr@&tansparent with respect to the choice of
this subset. An interesting question for futureeegsh is whether subsets can be identified that are
particularly suitable for a model-driven design ieggeh. In this sense, we mention here also the
work of van den Berg, Tekinerdogan & Nguyen (2006)d van den Berg, Conejero &
Hernandez (2006) who use traceability matricesdir tstudy of crosscutting concerns and impact
analysis in model-driven design. Nevertheless, d@pgroach does not address the issue of con-
formance and conformant transformations.

We do not account in this paper for explicit regments on the design process itself, such as,
e.g., cost, delivery schedules, validation andfigation criteria (assessment criteria). This is in

line with IEEE (1998), which states that “SRS skoabdress the software product, not the



process of producing the software product.” Thesrull be captured in project requirements
which “represent an understanding between the mestand the supplier about contractual
matters pertaining to production of software anastbhould not be included in the SRS.” How-
ever, requirements on the model-driven design drajg (so-called application-independent
requirements) are addressed by Almeida, van Eckd&b (2006). According to Almeida, van
Eck & lacob (2006), these are to be maintainedragplst from application-specific requirements,
and are relevant only to “suppliers” and their int¢ organization and are not visible to “custom-

ers.

8.2. Techniquesfor Conformance Assessment

So far we have argued that, in order to suppomiregpents traceability and claims of satisfac-
tion, it is the task of the designer to conducteassient activities. The main question to be
eventually answered by assessment activities isvhat extent all the functional and non-
functional requirements that have been derived ftbenoriginal purpose of the application are
met in the current application realisation. We henghasized the assessment of conformance for
transformation specifications, by demonstrating #ssessment activities can be to a large extent
diminished if only conformant transformations asswamed to be used during the design process.
We have deliberately chosen to be neutral in outhoa®logical framework with respect to
specific tools or techniques that the designer wlayose to trust to support the assessment
process (as well as those he/she may chose to mhedapplication). Instead, we have focused on
how to manage the relations between models andreaggnts.

Examples of useful conformance assessment tecln@pgethe “conformance rules” for “be-

haviour refinement” discussed by Quartel, FerrBiras & van Sinderen (2002) (and used in our



example), “refinement relations” discussed by Dgkn{2006) or “conformant transformations for
interaction refinement” presented by Almeida, Dikm Ferreira Pires, Quartel & van
Sinderen (2006).

In the area of formal methods, notions of transtirom conformance have also been defined.
Nevertheless, approaches based on formal methtyderrdormal proofs as evidence for trans-
formation conformance (see, e.g., “correct archited refinement” in (Moriconi, Qian &
Riemenschneider, 1995), and “correctness presernvagsformations” in (Bolognesi, van de
Lagemaat & Vissers, 1995; Gibson, Dowling & Mal@§00)). We believe that formal proofs
may not be required in many practical cases. Thezeive have proposed definitions for confor-
mance and requirements satisfaction that are imdigoe of proofs of conformance or formaliza-
tion of requirements.

We have made a clear distinction between the assaes®f the conformance of transformation
specifications and the assessment of conformamdeafiesformation results, which we call model
conformance. One of the reasons for making sucistmation has to do with the separation of
roles in the design process, namely with the distn between the transformation specifier and
the transformation user (see Brottier, FleureyelStBaudry & Le Traon, 2006). Therefore, the
techniques for assessing the conformance of madeisbe treated separately from those for
transformation specifications, although one mighaint that the two types of conformance are
equivalent, namely, if a transformation specificatis conformant then transformation results (i.e.
target models) will also be conformant with thensfarmation inputs (i.e., source models), and
the other way around: if for any possible sourcelehothe target model obtained as result of the
application of a transformation specification canie with the source model, then the transfor-

mation specification is also conformant.



Transformation specification assessment has bemgmnesed as an important issue by several
authors that argue that transformation specificatiand transformation results should undergo a
rigorous validation and testing process (e.g., dad&rance & Carver, 2003 and Lin, Zhang &
Gray, 2005). Accordingly, Fleurey, Steel & Baud?2pQ4) proposes a functional test adequacy
criterion for the validation of model transformatiprograms. Kister (2004) goes a step further
by identifying the most important properties thawvé to be checked through model transforma-
tion validation and testing approaches. These diechinesyntactic correctness of a model trans-
formation (ensuring that the model transformation produgedastically correct models, that
conform to a specified target metamodtdymination and confluence of a model transfornratio
(this would ensure that the model transformatiomags produces a unique resulsgmantic
eqguivalence or semantics preservation of a modelsfiormation andsafety or liveness proper-
ties However, apart from identifying these properti¢gster’'s account only focuses on checking
syntactic correctness, namely rule and non-tersinalrectness, while our approach starts by
assuming syntactic correctness and mostly focuseshe preservation of semantics through
(partially automated) model transformation chains.

In the area of model conformance assessment tem®jignportant advances are currently
made with respect to model-driven testing. Thiseaesh (Dai, 2004; Hartman, Nagin & OI-
vovsky, 2004; Heckel & Lohmann, 2003; Pfaller, st¢dimann, Hartmann, Rappl, Rittmann &
Wild, 2006; Zhu, Horgan, Cheung & Li 2006) is basad the distinction between platform-
independent and platform-specific models and fadl@awcorresponding strategy for model-driven
testing with respect to the reuse of platform-iretefent test cases and the (automated) test
generation. In this line of thinking, several authpropose approaches rooted in general model-

based system testing theory and focusing on th&erand generation of tests and oracles (e.g.,



Brottier, Fleurey, Steel, Baudry & Le Traon, 206f&ckel & Lohmann, 2003), while others focus
on specific methodologies, techniques and tool stipjer model-driven testing of UML models
(e.g., Dai, 2004). An architecture for testing mddensformations is proposed by Lin, Zhang &
Gray (2004), which starts from the assumption thatel transformation conformance assess-
ment can be reduced to the verification of the @on&nce of the transformation results, i.e., to
“the execution of a deterministic transformatioredfication with test data (i.e., input to test
cases) and a comparison of the actual results {lhe.target model) with the expected output
(i.e., the expected model), which must satisfy ititent of the transformation”. The authors
propose an algorithmic approach and model transfbom testing framework using model
comparison (with the detection of a difference smstijg graph representations of the compared
models.

Finally, in the Reference Model of Open Distributedocessing (RM-ODP, see ISO/ITU-
T, 1995), the term “conformance” is used as refabietween a “specification” and an “implemen-
tation”. In this paper, we have used the term kdio& between two application models. Consid-
ering our stance on the distinction between aniegimn model and an application realization
(see section 3), our view on conformance does owflict RM-ODP’s approach to conformance.
RM-ODP uses the term “conformance testing”, anduge the more general term “conformance

assessment” to include other forms of assessmanitias.

9. Conclusions

We believe that a mature discipline for model-dmidesign must provide techniques to account
for how requirements relate to the various artdfgmtoduced during the design process. In this

paper we have proposed a methodological framewuak @addresses this issue. Our framework



can be seen as basis for requirements traceabilityalso serves to reveal the intricate relation-
ship between requirements, application models aatizations, model transformation specifica-
tions and transformation arguments. The framewocludes a metamodel that can be used as a
basis for tool support for model-driven development

In our view it is important for both applicationars and application designers to be able to
produce evidence for satisfaction of requirementss is realised through assessment activities.
We have argued that some of these assessmentiestcan be deemed redundant under the
assumption that conformant transformation spetifica are used in the design process. Thus,
we have concluded that conformance between modeélsnty simplifies requirements tracing but
also has the potential of reducing the amount oéssary assessment activities.

We acknowledge though that the quality of assessdepends ultimately on the quality of a
requirements specification. Different charactersstof a “good” specification are defined by
IEEE (1998) including correctness, lack of ambigutompleteness, consistency, etc. Guidelines
for obtaining these qualities are beyond the sapdis paper. Also it should be noted that the
simplification of assessment activities resultsrfrthe way in which requirements are partitioned
and addressed at different levels of abstractitwerdfore, for sets of requirements that cannot be
partitioned and that must be partially satisfiednatltiple abstraction levels, simplification of
assessment by conformance is limited. Finally, evine have discussed the potential benefits of
conformant transformations, we would like to empteshat evidence for transformation con-
formance may be costly to produce. One should finere&onsider the pay-off in terms of assess-
ment activities, depending on the reuse of transion specifications.

In our future work, we intend to investigate bdtk specification of conformance relations and

model transformations in the same transformaticecifipation framework. More precisely, we



plan to focus on techniques and tools (based onnmmiamodel) for capturing, enforcing and
assessing conformance between models; and assesbether transformation specifications
respect conformance. This may be feasible by tafdsguggested by Almeida, Dijkman, Ferreira
Pires, Quartel & van Sinderen, 2006) a relatiopgiraach regarding model transformations and
conformance (Akehurst, Kent & Patrascoiu, 2003,e0bManagement Group, 2005).

Future work could also investigate traceabilityreduirements in face of changes in require-
ments specifications, which may be trigged duehanging application requirements and due to

improved understanding of requirements in an inegatesign process.
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