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Abstract 

The variety of design artifacts (models) produced in a model-driven design process results in 

an intricate relationship between requirements and the various models. This paper proposes a 

methodological framework that simplifies management of this relationship, which helps in 

assessing the quality of models, realizations and transformation specifications. Our framework is 

a basis for understanding requirements traceability in model-driven development, as well as for 

the design of tools that support requirements traceability in model-driven development proc-

esses. We propose a notion of conformance between application models which reduces the effort 

needed for assessment activities. We discuss how this notion of conformance can be integrated 

with model transformations. 

Keywords: requirements traceability, assessment, conformance, model transformation, model-

driven design 



1. Introduction 

Model-driven design holds the promise of improving application development significantly by 

capturing design steps in explicit model transformations (Object Management Group, 2003a). The 

design of an application in model-driven design can be seen as the process of building a realization 

of the application specification that satisfies all application requirements stated in the specification 

by applying appropriate transformations. 

At several stages in the application lifecycle, application maintainers need to know which appli-

cation models and/or components satisfy requirements that have been explicitly stated. This 

relation between requirements and elements of the solution (e.g., application models and compo-

nents) is called requirements traceability. Requirements traceability is for instance used during 

acceptance testing, when application users (or procurers) are interested in assessing the extent to 

which an application adheres to its requirements. 

We observe that, in a model-driven design process, the great variety of modelling artifacts pose 

challenges to requirements traceability and assessment. Not only application realizations have to 

be assessed for requirements satisfaction, but also application models, metamodels and model 

transformation specifications since these may also be considered products of the model-driven 

design process. 

The main contribution of this paper is to provide a methodological framework which allows 

designers to relate requirements to the various products of the model-driven design process. This 

framework is a basis for tracing requirements and assessing the quality of model transformation 

specifications, models and realizations. Furthermore, we propose a requirements traceability 

metamodel that serves two purposes: it models the main elements of the above-mentioned frame-

work, and serves as basis for the design of requirements tracing tool support. 



Since the model-driven design process may consist of different levels of abstraction (and plat-

form-independence, see Almeida, van Sinderen, Ferreira Pires & Quartel, 2003), requirements are 

traced throughout these levels. We propose a notion of conformance between models which 

simplifies requirements tracing. The idea is that transformations which are assumed to produce 

conformant results can be reused, deeming some assessment activities redundant.  

This paper is structured as follows. Section 2 provides some background in the area of re-

quirements engineering. Section 3 defines the basic notions of model-driven design required in this 

paper. It defines the notion of satisfaction of requirements in terms of the relation between 

requirements, the various application models and realizations of an application. Section 4 defines 

and justifies the notion of conformance between models proposed here. Section 5 extends the 

view of the model-driven design process defined in section 3 by introducing model transformation 

chains. This allows us to discuss how conformant transformations can simplify assessment activi-

ties. Section 6 presents our requirements traceability metamodel, and defines the conditions that 

must apply to the results of the requirements traceability process. We define these conditions such 

that this methodological framework can be used with different model-driven development proc-

esses and practices. Section 7 illustrates our approach with an example. Section 8 discusses 

related work, and finally, section 9 presents our conclusions and outlines topics for further 

research. 

2. Requirements Engineering 

The term Requirements Engineering (RE) refers to the phase in application development in 

which requirements of different stakeholders are gathered and processed, in general resulting in a 

requirements specification or software specification. Requirements can be formulated as either 



properties of the problem that the stakeholders want to solve using the application under devel-

opment or desired properties of that application.  This phase is called requirements engineering to 

indicate that more is needed than only requirements elicitation: requirements have to be processed 

to resolve conflicts, prioritized, and captured in a consistent requirements specification. 

We assume in this paper that a requirement specification is verifiable (Firesmith, 2003; 

IEEE, 1998) i.e., given a realization, it is possible to conduct assessment activities to determine 

whether the requirements can be considered satisfied. We use the term “assessment activity” for 

the act of checking whether a requirement is satisfied. Examples of assessment activities are 

acceptance testing by end users, model checking or formal correctness proofs. 

We conceptualize requirements as implicitly defining a set of application realizations that satisfy 

them. Figure 1 shows the relation between requirements and the space of possible realizations. An 

arbitrary grouping of the requirement specification into sets RSA ⊂ RSB ⊂ RSC is considered. The 

realization sets IS1, IS2, and IS3 represent realizations that satisfy RS1, RS2, and RS3 respectively. 

The realizations ISC that satisfy the total set of requirements RSC (the union of RS1, RS2, and RS3) 

lie in the intersection between IS1, IS2, IS3. Note that this is a conceptual notion, independent of 

whether requirements are formalized. 



 
Figure 1 Requirements and realizations 

In this paper we address traceability of requirements. Several definitions of traceability are 

presented by Gotel (1995). The one most suitable for the purpose of this paper is: “the means 

whereby software producers can ‘prove’ to their client that: the requirements have been under-

stood; the product will fully comply with the requirements; and the product does not exhibit any 

unnecessary feature or functionality” (Wright, 1991, as quoted by Gotel,1995). Our notion of 

assessment activities exactly operationalises the notion of ‘prove’ in this definition. In terms of the 

IEEE Recommended Practice for Software Requirements Specifications (IEEE, 1998), we are 

interested in forward traceability, in which artifacts (in our case: models) constrained by the 

requirements specification need to be traced back to the requirements specification. In order to 

trace requirements throughout the design process, we partition the set of requirements into 

subsets as illustrated in Figure 1. The partitioning strategy is discussed in the remainder of this 

paper. 



3. Requirements and Artifacts in Model-Driven Design 

Before we explain how requirements are related to the several different artifacts in model-

driven design, we need to guarantee some common understanding of the model-driven design 

process and of these artifacts. 

3.1. Artifacts in Model-Driven Design 

Model-driven design is based on capturing different aspects of a (distributed) application into 

symbolic artifacts known as models. Models are manipulated throughout the design process 

resulting ultimately in one or more realizations of the application. The manipulation of application 

models in a model-driven design process often entails model transformation activi-

ties (Schot, 1992) which may be determined or constrained by (model) transformation specifica-

tions. These specifications or their implementations may be executed automatically, with the 

purpose of improving the overall efficiency of the design process. In this paper, we consider that 

transformations are used to relate source and target models at different levels of abstraction. The 

notions of source and target models are thus relative to a design step. Models are expressed in 

suitable modelling languages, with their abstract syntax described in metamodels.  

Model transformation specifications and metamodels are defined in an application-independent 

phase of the model-driven design process (known as the preparation phase in (Almeida, 2006; 

Gavras, Belaunde, Ferreira Pires & Almeida, 2004)). They are used by designers to build specific 

applications. In this context, model transformation specifications capture reusable design knowl-

edge, and metamodels capture reusable concepts and patterns for application modelling. 

Figure 2 shows an example of model-driven design trajectory, depicting schematically the de-

pendencies between the various artifacts. Three levels of models are shown. In the lowest level of 



models, two alternative application models are produced (M3 and M3’), which are defined in terms 

of different metamodels. Figure 2 includes model libraries of reusable models. 

 
Figure 2 Artifacts in a model-driven design trajectory  

3.2. Requirements and Application Models 

The multitude of artifacts in model-driven design serves the ultimate purpose of producing 

application realizations that satisfy a particular set of requirements. Usually, there are (virtually 

infinitely) many application realizations that satisfy a set of requirements. The design task consists 

of obtaining a particular application realization that satisfies requirements while respecting 

implementation constraints and general design principles. Figure 3 illustrates the relation between 

requirements and application models at different levels of abstraction.  



 
Figure 3 Requirements and application models 

We assume that application models capture design decisions, defining characteristics of a potential 

application realization. Furthermore, we require that models have a well-defined semantics. More 

precisely, we say that a model has a well-defined semantics, if, and only if, given a realization and 

a model, it is possible to determine whether the realization exhibits the characteristics as defined in 

the model. The means by which this semantics is defined (e.g., mapping to a formal domain, 

natural language, or basic set of design concepts) is not prescribed by this definition. 

We can conceptualize models as implicitly defining a set of realizations that realize them. Fig-

ure 4 (adapted from (Almeida, Dijkman, Ferreira Pires, Quartel & van Sinderen, 2006; 

Schot, 1992)) depicts the relation between models and the space of realizations. In this figure, an 

oval represents the sets of acceptable realizations for a particular model. Different design deci-

sions may lead to alternative realizations, and this is shown by different sets of realizations 

(shaded) for alternative models (M2 and M2’, M3 and M3’). 



 
Figure 4 Models and the space of realizations  

Design decisions should eventually lead to a design that defines all relevant characteristics of a 

realization of the system (Almeida, Dijkman, Ferreira Pires, Quartel & van Sinderen, 2006), 

satisfying all stated requirements and implementation constraints. It is not our intention to debate 

the distinction between realizations and models. For our purposes, a model that satisfies all 

requirements can be considered a realization. For example, a workflow model executed in an 

engine can be considered a realization, with no further transformation. 

Figure 5 shows requirements, models and realizations in one picture (combining Figures 3 

and 4). It reveals the (indirect) relation between requirements and realization. As can be observed 

in this figure, the set of realizations for an application model M1 is contained in the set of realiza-

tions that satisfy RS1. The set of realizations for an application model M3 is contained in the set of 

realizations that satisfy RS3.  (Application models M2’ and M3’ are omitted for conciseness.)  



 
Figure 5 Requirements, models and realizations 

At this point, we can formulate the notion of satisfaction of requirements by models. We say 

that a model M satisfies a set of requirements RS, if and only if, the set of acceptable realizations 

for M is contained in the set of realizations that satisfy RS. In order to support requirements 

traceability, it is the task of the designer to state which requirements are satisfied by which 

models, and to conduct assessment activities to support such claims of satisfaction. In the remain-

der of this paper, we work out which claims are required and discuss how they can be managed in 

a model-driven design process. 

4. Preserving Satisfaction of Requirements through Conformance 

The notion of conformance between models is central to our approach. We say that a model MT 

conforms to another model MS if, and only if, the set of acceptable realizations for MT is con-

tained in the set of acceptable realizations for MS. Given this definition, we can observe that 

Figure 4 depicts both conformant and non-conformant pairs of models. For example, M3’ does not 

conform to M2’, while M2’ conforms to M1.  



If a model at a lower level of abstraction (Mi+1) does not conform to a model at the previous 

level (Mi), a designer is forced to consider both Mi+1 and Mi in a subsequent design step. This 

problem is exacerbated in the presence of multiple levels of abstraction that are not related by 

conformance. In the extreme case, a designer has to consider all models in a design step that 

produces the realization. This problem is addressed with conformant models. Conformant models 

can be regarded as replacing the models they conform to. For example, Figure 5 shows only 

conformant models M1, M2 and M3. Thus, in the design step from M2 to M3, M1 does not have to 

be considered. Further, M3 is sufficient to derive the realization. 

Intuitively, a model creates a sort of a “mould” such that all subsequent models should fit into 

it (“conform”). The same is not necessarily true with sets of requirements, which can be regarded 

as defining constraints that have to be considered in conjunction. 

By populating a hierarchy of models with models that conform to models at a higher level of 

models, designers can simplify requirements traceability activities. This is possible because 

requirements satisfied by a model are also satisfied by all models that conform to it. The evidence 

showing that a model satisfies certain requirements can be reused for models that conform to it.  

In a design step that produces a conformant target model, the designer only has to provide 

evidence for supplementary requirements that are satisfied in the target model but not in the 

source model. In Figure 5, this means that assessment of M2 only requires evidence for the 

satisfaction of RS2 instead of both RS1 and RS2. Further, modification of models at a lower 

abstraction level does not affect models at a higher abstraction level if the modified model remains 

conformant.  



We can now observe that the partitioning of requirements in different sets as depicted in Figure 

5 arises from the way in which the various sets of requirements are addressed throughout the 

model-driven design trajectory.  

5. Requirements Traceability with Transformation  

This section extends the view of the model-driven design process as described in section 3 with 

model transformation chains. 

5.1. Automated Transformation Chains 

We start by considering fully automated transformation chains. Fully automated transformation 

chains consist of a predefined series of transformation specifications that can be applied to relate 

different subsequent levels of models. All transformation activities are automated using the 

various transformation specifications. An application model that is used as input for the transfor-

mation chain is sufficient to obtain a realization of the application.  

In the case of automated transformation chains, application requirements only influence the 

application model. This is shown in Figure 6. Note that there are no relations between model 

transformation specifications (TSA and TSB) and application requirements. The reason for this is 

that model transformation specifications capture application-independent design operations that 

can be reused in the development of several applications.  

A useful analogy for automated transformation chains is the programming language compiler: 

source code can be regarded as the application model, and assembly code can be considered the 

realization on a target hardware platform (with intermediate representations often used for 

optimization purposes). The specification of the compiler (i.e., the model transformation specifi-

cation) is independent of the applications compiled by the compiler. 
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Figure 6 Application-specific requirements only affect the highest level of models 

In the case of automated transformation chains, assessment activities can be summed up in (i) 

assessing whether the application model satisfies application requirements, and (ii) whether Mi+1 

conforms to Mi for every transformation step (a special kind of assessment we call conformance 

assessment). In case models at intermediate levels are not considered reusable products of the 

design process, it suffices to assess whether the last model conforms to the first model.  

When a transformation chain is assumed to produce conformant results, the only required activ-

ity left is assessing whether the application model satisfies application requirements. Other 

assessment activities are deemed redundant by the assumption of conformance. In the analogy of a 

programming language compiler, only source code is assessed if the compiler can be trusted. 

To capture this reorganization of assessment activities in terms of the quality of a transforma-

tion specification, we define the notion of a conformant transformation specification. We say that 

a transformation specification is conformant, if, and only if, for every source and target models 

related by the specification, the target model conforms to the source model.  



5.2. Partially Automated Transformation Chains 

As discussed in the last section, the traceability of requirements can be largely simplified for the 

case of fully automated transformation chains with conformant transformation specifications. 

However, full automation of transformations is not always feasible or desirable. For example, it 

may be impossible to derive relevant design decisions from an high-level application model, or it 

may be inefficient to specify automated transformations having a limited reuse potential (see 

Almeida (2006) for an analysis on the costs/benefits of automated transformation). We distinguish 

the following approaches to decrease the level of automation without manual modification of 

target models: 

(i) transformation parameterization, in which case the designer selects values for transforma-

tion parameters, i.e., arguments. Transformation parameters capture variation in the way source 

and target models are related; and, 

(ii) selection of transformations, in which case a designer configures a transformation chain 

from a number of alternative predefined transformations. In order to simplify our discussion, we 

regard selection of alternative transformations as a special case of transformation parameteriza-

tion, where a transformation specification includes the relations specified by all alternative trans-

formations, and arguments are used to select an alternative. 

In this case, application requirements influence transformation arguments (see Figure 7). 
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Figure 7 Application-specific requirements affect transformation arguments 

The definition of a conformant transformation specification can be easily adjusted to incorpo-

rate transformation arguments. A transformation specification is said to be conformant, if, and 

only if, for every source and target models related by the specification under every admissible set 

of transformation arguments, the target model conforms to the source model. 

For a transformation chain with parameterized conformant transformation specifications, one 

should assess whether the application model at level-1 satisfies application requirements RS1, and 

whether design decisions implied by transformation arguments satisfy different partitions of 

requirements (RSi).  

5.3. Manual Modification 

If necessary, the level of automation may be further lowered by allowing designers to manually 

modify target models. We assume in this case that modification is not unconstrained: the relations 

between source and target models as defined in a transformation specification should be respected 

(although tool support may allow these relations to be temporarily violated, as long as they are 



eventually re-established). Figure 8 shows the relation between requirements and the various 

levels of models for this case.  

 
Figure 8 Application-specific requirements affect application models 

Assessment activities in this case include: assessing whether models are conformant, and as-

sessing whether the partitions of requirements (RSi) are satisfied progressively. If transformation 

specifications are conformant, this is simplified to assessing the satisfaction of the partitions of 

requirements (RSi) at the different levels of models.  

6. A Requirements Traceability Metamodel for Model-Driven Development 

In order to provide tool support for requirements traceability according to the framework pro-

posed in this paper, we define a requirements traceability metamodel (Figure 9, using the Ecore 

meta-metamodel, as supported by the Eclipse Modelling Framework (EMF), see Budinsky et 

al, 2003).  

This metamodel captures the main elements of the requirements traceability framework pre-

sented so far. We use a requirements traceability matrix to visualize the relation between require-

ments and the various artifacts. A traceability matrix “records the relationship between two or 



more products of the development process” (IEEE, 2002). In our model, traceability is recorded 

in terms of model and transformation conformance, which makes it suitable for inclusion in tools 

for model-driven development.  

 
Figure 9 Requirements Traceability Metamodel 

In the proposed metamodel, the traceability matrix consists of a satisfaction relation for each 

pair of related requirement and artifact. Each satisfaction relation must provide some assessment 

evidence. We distinguish assessment evidence into: (i) direct evidence, which is the result of 

assessment activities that directly verify the satisfaction of requirements into artifacts (e.g., 

testing, inspection and analysis); and (ii) indirect evidence, which is the result of model confor-

mance assessment and conformant transformation usage.  

We use a configuration to group a requirements traceability matrix, a requirements specifica-

tion and a set of design artifacts (models at different levels  and the realization). A configuration is 

a collection of items under configuration management (IEEE, 2002; Software Engineering 

Institute, 2000). (While configuration management usually considers versioning of configuration 

items, this is not discussed in this paper.) 



A particular kind of configuration of special interest for us is a baseline, which is a formally 

approved configuration (IEEE, 2002). We define constraints for a baseline configuration such that 

requirements in the requirements specification are properly accounted for with suitable evidence 

captured in the traceability matrix (see constraints C1, C2, C3 in Table 1). These constraints are 

defined using OCL 2.0 (Object Management Group, 2003b). A particular kind of baseline of 

interest is a “build” baseline which contains a realization. In this baseline, there exists an artifact 

that satisfies all requirements (either directly or indirectly). This artifact is a realization (see 

constraint C4 in Table 1). 

ID Constraint 

C1 “in a baseline, there must be satisfaction relations for all requirements” 

context Baseline inv: requirementsSpecification.requirements->forAll( r : Requirement | r.satisfactions->notEmpty() ) 

C2 “in a baseline, no indirect evidence is based on itself (evidence graph is acyclic)” 

context Baseline inv:  

traceabilityMatrix.satisfactions.evidences->forAll( e : IndirectEvidence |  not e.allSourceEvidence()->includes(e)  ) 

C3 “in a baseline, all indirect evidence must be ultimately based on direct evidence” 

context Baseline inv:  

requirementsSpecification.requirements.satisfactions.evidences->forAll ( e : IndirectEvidence |  

e.allSourceEvidence()->exists(oclIsKindOf(DirectEvidence)) 

C4 “in a build baseline, there exists an artifact that satisfies all requirements (either directly or indirectly)”  

context BuildBaseline inv:artifacts->exists(satisfactions.requirement->asSet()=requirementsSpecification.requirements) 

Helper  “expression that provides all evidence on which a given indirect evidence is based (transitive closure)”  

IndirectEvidence::allSourceEvidence(): Set(AssessmentEvidence) 

= source.getEvidence()->union(  source.getIndirectEvidence()->collect(allSourceEvidence())->asSet() ) 

“expressions that provide indirect and direct evidence for a given artifact” 

Artifact::getIndirectEvidence() : Set(IndirectEvidence) = self.getEvidence()->select(oclIsKindOf(IndirectEvidence)) 

Artifact::getEvidence() : Set(AssessmentEvidence) = self.satisfactions.evidences->asSet()->flatten() 

Table 1 Constraints 

The constraints capture the conditions that must apply to the result of the requirements trace-

ability process, without unnecessarily constraining the requirements traceability process itself. 

This makes our approach suitable to different model-driven development processes and practices. 



7. Example 

To illustrate the application of our framework and to show how our approach reduces assess-

ment activity effort, we present as an example the design of a telemonitoring system (Almeida, 

Iacob, Jonkers & Quartel, 2006). The goal of this system is to monitor a chronically ill patient 

continuously and warn the patient and care givers (e.g., at a hospital) of critical health conditions. 

Table 2 presents (functional and non-functional) requirements for a specific telemonitoring 

system, which issues alarms for epileptic seizures.  

ID Description 

AR1 Upon detection of an (eminent) epileptic seizure, the patient shall be alarmed. 

AR2 Upon detection of an (eminent) epileptic seizure, aid persons in the surrounding of the patient may be alarmed. 

AR3 Only aid persons with an available status are alarmed. 

AR4 In case no aid persons can be alarmed an emergency health care team in the surrounding of the patient will be alarmed. 

AR5 In case the epileptic seizure occurs at a speed higher than 8km/h, an emergency health care team will be alarmed (instead of 

aid persons) (rationale: this may involve high risk, e.g., if the patient is biking, jogging, driving). 

AR6 Alarms to aid persons or health team inform them of the last known location of the patient. 

AR7 Alarms should be realized through short messaging service or calling aid persons with voice messages (rationale: aid 

persons do not have to maintain and carry any complex devices in addition to their mobile phones). 

AR8 Patient location and speed may be determined through GPS devices. 

AR9 Patient and aid person location may be determined through Parlay-X. 

AR10 Aid person availability status may be determined through Parlay-X presence. 

AR11 In case patients/aid persons should carry mobile devices for monitoring, these should allow uninterrupted monitoring for 24 

hours, without requiring battery recharges. 

AR12 Costs of mobile communication should not exceed EUR 50,- per month per patient. 

Table 2 Requirements for telemonitoring system 

In this example, the development of the system is guided by a model-driven design trajectory, in 

which three levels of models are defined (Almeida, Jonkers, Iacob & Quartel, 2005; Almeida, 

Iacob, Jonkers & Quartel, 2006): the service specification level (M1); the platform-independent 

service design level (M2); and the platform-specific service design level (M3). These three levels of 

models are depicted in Figure 10. 



At the level of service specification a service can be described in terms of events, which repre-

sent contextual changes and occurrences of interest (e.g., an epileptic seizure), queries to provid-

ers of context information (e.g., a patient’s location, speed and bio-signals), and actions, which 

represent actions to be performed in order to provide the service to the user (e.g., issuing an 

alarm). These elements are expressed in a domain-specific language (called ECA-DL (Almeida, 

Jonkers, Iacob & Quartel, 2005; Almeida, Iacob, Jonkers & Quartel, 2006)). 

At the platform-independent service design level, behavioural aspects of service design are 

described with ISDL (The Interaction Systems Design Language; http://isdl.ctit.utwente.nl/) 

models and OCL (Object Management Group, 2003b) constraints. UML class diagrams (omitted 

here) are used to represent information models. 

 
Figure 10 Design trajectory for context-aware mobile services (adapted from Almeida, Iacob, 

Jonkers & Quartel, 2006) 

The transformation between the service specification and the service design level consists of 

refining events, queries and actions at the service specification level into sequences of interactions 

in the service design. At the service specification level, an action represents an activity performed 



by the system as a whole (including any context sources and action services). However, at the 

service design level the same action has to be performed by cooperation of different services, in a 

service-oriented design which includes various context and action services. The transformation 

rules are defined extensively in (Almeida, Jonkers, Iacob & Quartel, 2005). TSA is parameterized 

so that the designer can define constraints on which services can be used to realize events and 

actions in the service specification (so it can be considered a partially automated transformation).  

7.1. Models 

We focus on the service specification and platform-independent service design levels in order to 

limit the size of this example. The Telemonitoring service specification is depicted in Figure 11 

(this corresponds to M1 in Figure 10).  

 
Figure 11 The Telemonitoring service specification (M1, see Almeida, Iacob, Jonkers & Quar-

tel, 2006) 

Ovals represent context events, queries and actions. The suffix _indC indicates a context event, 

the suffixes _reqC, _rspC indicate a request-response query to context sources and the suffixes 

_reqA, _rspA indicate request-response to action services. Arrows indicate enabling relations 



between events, queries and actions; white diamonds represent choice (or-split) and white squares 

denote disjunction. Guards for enabling relations and constraints for information are depicted in 

boxes attached to context events, queries and actions. 

The platform-independent service design is the result of the application of all transformation 

rules to the service specification. Figure 12 (this corresponds to a part of M2 in Figure 10) shows 

the generated coordination component. The dashed lines represent causality relations already 

present in the service specifications. Semi-ovals represent interactions in ISDL.  

The generated coordination component interacts with a service trader to find context and ac-

tion services. The service queries are generated from constraints at the service specification level, 

which are indicated in arguments aTSA to the transformation (in this case, they are constraints on 

alertAid_reqA.aidperson_xy and alertTeam_reqA.coverageArea as marked with boxes in Figure 11). 



 
Figure 12 Generated coordination component for Telemonitoring service (M2) 

7.2. Traceability 

In this section, we present the resulting traceability information for our example. First, we show 

a requirements traceability matrix with only direct evidence for satisfaction of requirements (i.e., 

without using the notion of conformance proposed here), and then we present a requirements 

traceability matrix using the notion of conformant transformation. The objective is to illustrate the 

kinds of assessment techniques that may be employed in the framework, and to show how con-

formance simplifies assessment activities. 



7.2.1. Traceability with Direct Evidence 

The traceability matrix with direct evidence is depicted in Table 3, with a row for each re-

quirement, and a column for each artifact. An instance of SatisfactionRelation (in our metamodel) 

is represented by a check mark in the matrix (�). All marks must be justified by evidence resulting 

from assessment activities, for example: 

− Marks in the column corresponding to M1 can be justified by directly inspecting M1 against the 

requirements specification; alternatively they can be justified by simulating M1 (e.g., with the 

Grizzle simulator, see http://isdl.ctit.utwente.nl/tools/grizzle).  

− Marks in the column corresponding to arguments for TSA (aTSA ) can be justified by consider-

ing the characteristics of the action services implied by the particular choice of arguments. 

− Marks in the column corresponding to M2 can be justified by simulation of the service design, 

by model checking behavioural constraints implied by AR1–AR10, etc.  

− Marks in column M3 that correspond to requirements AR1–AR10 can be justified by executing 

test cases for AR1–AR10. Marks for the satisfaction of AR11 (“mobile devices for monitoring 

should allow uninterrupted monitoring for 24 hours, without requiring battery recharges.”) in 

M3 may be justified by analysing M3 and the specifications of the target platform on which M3 

relies (in this case the specifications of battery consumption for PDAs or mobile phones) and 

any characteristics of M3 that may influence battery consumption (e.g., communication and 

display usage). Assessment of satisfaction of AR12 (“mobile communication costs should not 

exceed EUR 50,- per month per patient”) in M3 may be conducted by analysing the amount of 

traffic generated by M3 and its composition with the characteristics of the platform on which it 

relies (e.g., cost models and the traffic characteristics of communication protocols).  



 M1 aTSA M2 M3 
AR1 �  � � 

AR2 �  � � 

AR3 �  � � 

AR4 �  � � 

AR5 �  � � 

AR6 �  � � 

AR7  � � � 

AR8  � � � 

AR9  � � � 

AR10  � � � 

AR11    � 

AR12    � 

Table 3 Requirements traceability matrix with direct evidence 

7.2.2. Traceability with Conformant Transformation Usage 

As discussed in section 5.2, these assessment activities can be simplified by employing confor-

mant transformations. We illustrate this with a transformation TSA, which has been designed such 

that it is conformant under the following assumptions (Almeida, Jonkers, Iacob & Quartel, 2005): 

(i) the service trader is always able to produce a service offer for a service query, (ii) context 

sources always reply to context query requests, and (iii) action services always reply to action 

invocation requests (in case action invocation request and action invocation response is used in a 

pattern). Assumption (i) can be guaranteed by availability of service offers in the service trader 

that correspond to actions and context queries and events in the service specification level (ac-

cording to transformation arguments aTSA). Assumptions (ii) and (iii) constrain the design of 

context sources and action services. These assumptions are necessary to integrate the interactions 

in the target design into actions and then apply the conformance assessment method described 

in (Quartel, Ferreira Pires & van Sinderen, 2002).  

By employing conformant TSA and TSB, the resulting requirements traceability matrix is pre-

sented in Table 4. All marks in the M2 column and all marks for AR1–AR10 in the M3 column are 

implied (i.e., indirect evidence is provided), which is indicated by square brackets ([�]). Assess-



ment activities to check them have become redundant, diminishing the assessment effort needed. 

In fact, M2 can even be considered a “black-box” by an application designer, without assessment 

activities required. 

 M1 aTSA M2 M3 
AR1 �  [�] TSA [�]TSB 

AR2 �  [�] TSA [�]TSB 

AR3 �  [�] TSA [�]TSB 

AR4 �  [�] TSA [�]TSB 

AR5 �  [�] TSA [�]TSB 

AR6 �  [�] TSA [�]TSB 

AR7  � [�] aTSA [�]TSB 

AR8  � [�] aTSA [�]TSB 

AR9  � [�] aTSA [�]TSB 

AR10  � [�] aTSA [�]TSB 

AR11    � 

AR12    � 

Table 4 Requirements traceability matrix with indirect evidence 

The matrix also reveals a “natural” partitioning of requirements into sets, since certain sets of 

requirements are satisfied initially at a particular level of models. This is shown in Table 4 with 

thick borders delimiting three sets of requirements AR1-AR6, AR7-AR10 and AR11-AR12 which 

are satisfied at levels 1, 2 and 3 respectively. 

 All constraints defined in the metamodel are satisfied (see C1-C4 in section 6), such the con-

figurations with the requirements traceability matrices shown in Tables 3 and 4 can be considered 

“build” baselines, i.e., an approved configuration which includes an approved realization. 

8. Related Work 

8.1. Requirements Engineering and Traceability 

In the area of Requirements Engineering, the standard general introduction of the requirements 

traceability problem has been provided by Gotel and Finkelstein (1994). The Ph.D. thesis of 



Gotel (1995, pages 71-72) provides extensive discussion of requirements traceability, including a 

number of definitions. 

It has been recognized that requirements tracing is a laborious task and that any assistance in 

maintaining the interdependencies between requirements and other design artifacts is highly 

welcome. Egyed (2003) presents an approach in which dependencies are discovered automatically 

from data generated by executing a minimal set of scenarios. This approach requires that an 

executable version of the system is available to execute these scenarios. In our approach, how-

ever, traceability is not dependent on an executable system; therefore, traceability is already 

possible when the design process has not yet resulted in an executable prototype. 

Ramesh and Jarke (2001) present a reference model for requirements traceability that they 

derived from an empirical study. Their reference model comprises a number of possible relations 

that can be traced between design artifacts and requirements. For different stakeholders (and 

different ambition levels with respect to traceability), a different subset of those relations can be 

chosen. In principle, our conformance-based approach is transparent with respect to the choice of 

this subset. An interesting question for future research is whether subsets can be identified that are 

particularly suitable for a model-driven design approach. In this sense, we mention here also the 

work of van den Berg, Tekinerdogan & Nguyen (2006) and van den Berg, Conejero & 

Hernández (2006) who use traceability matrices in their study of crosscutting concerns and impact 

analysis in model-driven design. Nevertheless, this approach does not address the issue of con-

formance and conformant transformations.  

We do not account in this paper for explicit requirements on the design process itself, such as, 

e.g., cost, delivery schedules, validation and verification criteria (assessment criteria). This is in 

line with IEEE (1998), which states that “SRS should address the software product, not the 



process of producing the software product.” These should be captured in project requirements 

which “represent an understanding between the customer and the supplier about contractual 

matters pertaining to production of software and thus should not be included in the SRS.” How-

ever, requirements on the model-driven design trajectory (so-called application-independent 

requirements) are addressed by Almeida, van Eck & Iacob (2006). According to Almeida, van 

Eck & Iacob (2006), these are to be maintained separately from application-specific requirements, 

and are relevant only to “suppliers” and their internal organization and are not visible to “custom-

ers.”  

8.2. Techniques for Conformance Assessment 

So far we have argued that, in order to support requirements traceability and claims of satisfac-

tion, it is the task of the designer to conduct assessment activities. The main question to be 

eventually answered by assessment activities is to what extent all the functional and non-

functional requirements that have been derived from the original purpose of the application are 

met in the current application realisation. We have emphasized the assessment of conformance for 

transformation specifications, by demonstrating that assessment activities can be to a large extent 

diminished if only conformant transformations are assumed to be used during the design process. 

We have deliberately chosen to be neutral in our methodological framework with respect to 

specific tools or techniques that the designer may choose to trust to support the assessment 

process (as well as those he/she may chose to model the application). Instead, we have focused on 

how to manage the relations between models and requirements.  

Examples of useful conformance assessment techniques are the “conformance rules” for “be-

haviour refinement” discussed by Quartel, Ferreira Pires & van Sinderen (2002) (and used in our 



example), “refinement relations” discussed by Dijkman (2006) or “conformant transformations for 

interaction refinement” presented by Almeida, Dijkman, Ferreira Pires, Quartel & van 

Sinderen (2006).  

In the area of formal methods, notions of transformation conformance have also been defined. 

Nevertheless, approaches based on formal methods rely on formal proofs as evidence for trans-

formation conformance (see, e.g., “correct architectural refinement” in (Moriconi, Qian & 

Riemenschneider, 1995), and “correctness preserving transformations” in (Bolognesi, van de 

Lagemaat & Vissers, 1995; Gibson, Dowling & Malloy 2000)). We believe that formal proofs 

may not be required in many practical cases. Therefore, we have proposed definitions for confor-

mance and requirements satisfaction that are independent of proofs of conformance or formaliza-

tion of requirements.  

We have made a clear distinction between the assessment of the conformance of transformation 

specifications and the assessment of conformance for transformation results, which we call model 

conformance. One of the reasons for making such a distinction has to do with the separation of 

roles in the design process, namely with the distinction between the transformation specifier and 

the transformation user (see Brottier, Fleurey, Steel, Baudry & Le Traon, 2006). Therefore, the 

techniques for assessing the conformance of models can be treated separately from those for 

transformation specifications, although one might claim that the two types of conformance are 

equivalent, namely, if a transformation specification is conformant then transformation results (i.e. 

target models) will also be conformant with the transformation inputs (i.e., source models), and 

the other way around: if for any possible source model, the target model obtained as result of the 

application of a transformation specification conforms with the source model, then the transfor-

mation specification is also conformant.  



Transformation specification assessment has been recognised as an important issue by several 

authors that argue that transformation specifications and transformation results should undergo a 

rigorous validation and testing process (e.g., Judson, France & Carver, 2003 and Lin, Zhang & 

Gray, 2005). Accordingly, Fleurey, Steel & Baudry (2004) proposes a functional test adequacy 

criterion for the validation of model transformation programs. Küster (2004) goes a step further 

by identifying the most important properties that have to be checked through model transforma-

tion validation and testing approaches. These include the syntactic correctness of a model trans-

formation (ensuring that the model transformation produces syntactically correct models, that 

conform to a specified target metamodel), termination and confluence of a model transformation 

(this would ensure that the model transformation always produces a unique result), semantic 

equivalence or semantics preservation of a model transformation, and safety or liveness proper-

ties. However, apart from identifying these properties, Küster’s account only focuses on checking 

syntactic correctness, namely rule and non-terminals correctness, while our approach starts by 

assuming syntactic correctness and mostly focuses on the preservation of semantics through 

(partially automated) model transformation chains. 

In the area of model conformance assessment techniques, important advances are currently 

made with respect to model-driven testing. This research (Dai, 2004; Hartman, Nagin & Ol-

vovsky, 2004; Heckel & Lohmann, 2003; Pfaller, Fleischmann, Hartmann, Rappl, Rittmann & 

Wild, 2006; Zhu, Horgan, Cheung & Li 2006) is based on the distinction between platform-

independent and platform-specific models and follows a corresponding strategy for model-driven 

testing with respect to the reuse of platform-independent test cases and the (automated) test 

generation. In this line of thinking, several authors propose approaches rooted in general model-

based system testing theory and focusing on the reuse and generation of tests and oracles (e.g., 



Brottier, Fleurey, Steel, Baudry & Le Traon, 2006; Heckel & Lohmann, 2003), while others focus 

on specific methodologies, techniques and tool support for model-driven testing of UML models 

(e.g., Dai, 2004). An architecture for testing model transformations is proposed by Lin, Zhang & 

Gray (2004), which starts from the assumption that model transformation conformance assess-

ment can be reduced to the verification of the conformance of the transformation results, i.e., to 

“the execution of a deterministic transformation specification with test data (i.e., input to test 

cases) and a comparison of the actual results (i.e., the target model) with the expected output 

(i.e., the expected model), which must satisfy the intent of the transformation”. The authors 

propose an algorithmic approach and model transformation testing framework using model 

comparison (with the detection of a difference set) using graph representations of the compared 

models. 

Finally, in the Reference Model of Open Distributed Processing (RM-ODP, see ISO/ITU-

T, 1995), the term “conformance” is used as relation between a “specification” and an “implemen-

tation”. In this paper, we have used the term as relation between two application models. Consid-

ering our stance on the distinction between an application model and an application realization 

(see section 3), our view on conformance does not conflict RM-ODP’s approach to conformance. 

RM-ODP uses the term “conformance testing”, and we use the more general term “conformance 

assessment” to include other forms of assessment activities. 

9. Conclusions 

We believe that a mature discipline for model-driven design must provide techniques to account 

for how requirements relate to the various artifacts produced during the design process. In this 

paper we have proposed a methodological framework that addresses this issue. Our framework 



can be seen as basis for requirements traceability, but also serves to reveal the intricate relation-

ship between requirements, application models and realizations, model transformation specifica-

tions and transformation arguments. The framework includes a metamodel that can be used as a 

basis for tool support for model-driven development.  

In our view it is important for both application users and application designers to be able to 

produce evidence for satisfaction of requirements. This is realised through assessment activities. 

We have argued that some of these assessment activities can be deemed redundant under the 

assumption that conformant transformation specifications are used in the design process. Thus, 

we have concluded that conformance between models not only simplifies requirements tracing but 

also has the potential of reducing the amount of necessary assessment activities.  

We acknowledge though that the quality of assessment depends ultimately on the quality of a 

requirements specification. Different characteristics of a “good” specification are defined by 

IEEE (1998) including correctness, lack of ambiguity, completeness, consistency, etc. Guidelines 

for obtaining these qualities are beyond the scope of this paper. Also it should be noted that the 

simplification of assessment activities results from the way in which requirements are partitioned 

and addressed at different levels of abstraction. Therefore, for sets of requirements that cannot be 

partitioned and that must be partially satisfied at multiple abstraction levels, simplification of 

assessment by conformance is limited. Finally, while we have discussed the potential benefits of 

conformant transformations, we would like to emphasize that evidence for transformation con-

formance may be costly to produce. One should therefore consider the pay-off in terms of assess-

ment activities, depending on the reuse of transformation specifications. 

In our future work, we intend to investigate both the specification of conformance relations and 

model transformations in the same transformation specification framework. More precisely, we 



plan to focus on techniques and tools (based on our metamodel) for capturing, enforcing and 

assessing conformance between models; and assessing whether transformation specifications 

respect conformance. This may be feasible by taking (as suggested by Almeida, Dijkman, Ferreira 

Pires, Quartel & van Sinderen, 2006) a relational approach regarding model transformations and 

conformance (Akehurst, Kent & Patrascoiu, 2003; Object Management Group, 2005).  

Future work could also investigate traceability of requirements in face of changes in require-

ments specifications, which may be trigged due to changing application requirements and due to 

improved understanding of requirements in an iterative design process. 
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