

Requirements Traceability and Transformation Conformance
in Model-Driven Development

João Paulo Almeida1, Pascal van Eck2
, Maria-Eugenia Iacob1,

1Telematica Instituut, Enschede, The Netherlands
2Centre for Telematics and Information Technology, University of Twente, The Netherlands
joaopaulo.almeida@telin.nl, p.a.t.vaneck@ewi.utwente.nl, maria-eugenia.iacob@telin.nl

Abstract

The variety of design artefacts (models) produced in a
model-driven design process results in an intricate rela-
tionship between requirements and the various models.
This paper proposes a methodological framework that
simplifies management of this relationship. This frame-
work is a basis for tracing requirements, assessing the
quality of model transformation specifications, metamod-
els, models and realizations. We propose a notion of con-
formance between application models which reduces the
effort needed for assessment activities. We discuss how
this notion of conformance can be integrated with model
transformations.

Keywords: requirements traceability, assessment, con-
formance, model transformation, model-driven design

1. Introduction

Model-driven design holds the promise of improving
application development significantly by capturing design
steps in explicit model transformations [22]. The design
of an application in model-driven design can be seen as
the process of building a realization of the application
specification that satisfies all application requirements
stated in the specification by applying appropriate trans-
formations.

At several stages in the application lifecycle, applica-
tion maintainers need to know which application models
and/or components satisfy requirements that have been
explicitly stated. This relation between requirements and
elements of the solution (e.g., application models and
components) is called requirements traceability. Require-
ments traceability is for instance used during acceptance
testing, when application users (or procurers) are inter-
ested in assessing the extent to which an application ad-
heres to its requirements.

We observe that, in a model-driven design process, the
great variety of modelling artefacts pose challenges to

requirements traceability and assessment. Not only appli-
cation realizations have to be assessed for requirements
satisfaction, but also application models, metamodels and
model transformation specifications since these may also
be considered products of the model-driven design proc-
ess.

The main contribution of this paper is to provide a
methodological framework which allows designers to
relate requirements to the various products of the model-
driven design process. This framework is a basis for trac-
ing requirements and assessing the quality of model trans-
formation specifications, metamodels, models and realiza-
tions.

Since the model-driven design process may consist of
different levels of abstraction (and platform-independence
[6]), requirements are traced throughout these levels. We
propose a notion of conformance between models which
simplifies requirements tracing. The idea is that transfor-
mations which are assumed to produce conformant results
can be reused, deeming some assessment activities redun-
dant.

This paper is structured as follows. Section 2 provides
some background in the area of requirements engineering.
Section 3 defines basic notions of model-driven design
required in this paper. It defines the notion of satisfaction
of requirements in terms of the relation between require-
ments, the various application models and realizations of
an application. Section 4 defines and justifies the notion
of conformance between models proposed here. Section 5
extends the view of the model-driven design process de-
fined in section 3 by introducing automated model trans-
formation chains. This allows us to discuss how confor-
mant transformations can simplify assessment activities.
Section 6 identifies the role of application-independent
requirements in model-driven design. Section 7 illustrates
the approach with an example. Section 8 discusses as-
sumptions and limitations of our framework. Section 9
discusses related work, and finally, section 10 presents
our conclusions and outlines topics for further research.

2. Requirements Engineering

The term Requirements Engineering (RE) refers to the
phase in application development in which requirements
of different stakeholders are gathered and processed, in
general resulting in a requirements specification or soft-
ware specification. Requirements can be formulated as
either properties of the problem that the stakeholders want
to solve using the application under development or de-
sired properties of that application. This phase is called
requirements engineering to indicate that more is needed
than only requirements elicitation: requirements have to
be processed to resolve conflicts, prioritized, and captured
in a consistent requirements specification.

We assume in this paper that a requirement specifica-
tion is verifiable [12, 17], i.e., given a realization, it is
possible to conduct assessment activities to determine
whether the requirements can be considered satisfied. We
use the term “assessment activity” for the act of checking
whether a requirement is satisfied. Examples of assess-
ment activities are acceptance testing by end users, model
checking or formal correctness proofs.

We conceptualize requirements as implicitly defining a
set of application realizations that satisfy them. Figure 1
shows the relation between requirements and the space of
possible realizations. An arbitrary grouping of the re-
quirement specification into sets RSA ⊂ RSB ⊂ RSC is con-
sidered. The realization sets IS1, IS2, and IS3 represent re-
alizations that satisfy RS1, RS2, and RS3 respectively. The
realizations ISC that satisfy the total set of requirements
RSC (the union of RS1, RS2, and RS3) lie in the intersection
between IS1, IS2, IS3. Note that this is a conceptual notion,
independent of whether requirements are formalized.

Figure 1 Requirements and realizations

In this paper we address traceability of requirements.
Several definitions of traceability can be found in [16].
The one most suitable for the purpose of this paper is:
“the means whereby software producers can ‘prove’ to
their client that: the requirements have been understood;

the product will fully comply with the requirements; and
the product does not exhibit any unnecessary feature or
functionality” ([27], as quoted in [16]). Our notion of
assessment activities exactly operationalises the notion of
‘prove’ in this definition. In terms of the IEEE Recom-
mended Practice for Software Requirements Specifica-
tions [17], we are interested in forward traceability, in
which artefacts (documents, in our case: models) con-
strained by the requirements specification need to be
traced back to the requirements specification.

In order to trace requirements throughout the design
process, we partition the set of requirements into subsets
as illustrated in Figure 1. The partitioning strategy is dis-
cussed in the remainder of this paper.

3. Requirements and Artefacts in Model-
Driven Design

Before we discuss how requirements are related to the
several different artefacts in model-driven design, we
need to guarantee some common understanding of the
model-driven design process and of these artefacts.

3.1. Artefacts in Model-Driven Design

Model-driven design is based on capturing different
aspects of a (distributed) application into symbolic arte-
facts known as models. Models are manipulated through-
out the design process resulting ultimately in one or more
realizations of the application. The manipulation of appli-
cation models in a model-driven design process often
entails model transformation activities [25] which may be
determined or constrained by (model) transformation
specifications. These specifications or their implementa-
tions may be executed automatically, with the purpose of
improving the overall efficiency of the design process. In
this paper, we consider that transformations are used to
relate source and target models at different levels of ab-
straction. The notions of source and target models are
thus relative to a design step.

Models are expressed in suitable (general purpose or
domain-specific) modelling languages, with their abstract
syntax described in models known as metamodels.

Model transformation specifications and metamodels
are defined in an application-independent phase of the
model-driven design process (known as the preparation
phase in [2, 13]). They are used by designers to build spe-
cific applications. In this context, model transformation
specifications capture reusable design knowledge, and
metamodels capture reusable concepts and patterns for
application modelling.

Figure 2 shows an example of model-driven design
trajectory, depicting schematically the dependencies be-
tween the various artefacts. Three levels of models are

shown. In the lowest level of models, two alternative ap-
plication models are produced (M3 and M3’), which are
defined in terms of different metamodels. The figure also
depicts model libraries which consist of reusable models.

Figure 2 Artefacts in a model-driven design

trajectory

3.2. Requirements and Application Models

The multitude of artefacts in model-driven design
serves the ultimate purpose of producing application re-
alizations that satisfy a particular set of requirements.
Usually, there are (virtually infinitely) many application
realizations that satisfy a set of requirements. The design
task consists of obtaining a particular application realiza-
tion that satisfies requirements while respecting imple-
mentation constraints and general design principles. Fig-
ure 3 illustrates the relation between requirements and
application models at different levels of abstraction.

de
gr

ee
 o

f a
bs

tra
ct

io
n

Figure 3 Requirements and application models

We assume that application models capture design deci-
sions, defining characteristics of a potential application
realization. Furthermore, we require that models have a
well-defined semantics. More precisely, we say that a
model has a well-defined semantics, if, and only if, given
a realization and a model, it is possible to determine
whether the realization exhibits the characteristics as de-
fined in the model. The means by which this semantics is
defined (e.g., mapping to a formal domain, natural lan-
guage descriptions, or basic set of design concepts) is not
prescribed by this definition.

We can conceptualize models as implicitly defining a
set of realizations that realize them. Figure 4 (adapted
from [4, 25]) depicts the relation between models and the
space of realizations. In this figure, an oval represents the
sets of acceptable realizations for a particular model. Dif-
ferent design decisions may lead to alternative realiza-
tions, and this is shown by different sets of realizations
(shaded) for alternative models (M2 and M2’, M3 and M3’).

Figure 4 Models and the space of realizations

Design decisions should eventually lead to a design
that defines all relevant characteristics of a realization of
the system [4], satisfying all stated requirements and im-
plementation constraints. It is not our intention to debate
the distinction between realizations and models. For our
purposes, a model that satisfies all requirements can be
considered a realization. For example, a workflow model
executed in a workflow engine can be considered a reali-
zation, with no further transformation.

Figure 5 shows requirements, models and realizations
in one picture (combining Figures 3 and 4). It reveals the
(indirect) relation between requirements and realization.

As can be observed in this figure, the set of realiza-
tions for an application model M1 is contained in the set
of realizations that satisfy RS1. The set of realizations for
an application model M3 is contained in the set of realiza-
tions that satisfy RS3. Application models M2’ and M3’
have been omitted for the sake of conciseness.

At this point, we can formulate the notion of satisfac-
tion of requirements by models. We say that a model M
satisfies a set of requirements RS, if and only if, the set of

acceptable realizations for M is contained in the set of
realizations that satisfy RS.

In order to support requirements traceability, it is the
task of the designer to state which requirements are satis-
fied by which models, and to conduct assessment activi-
ties to support such claims of satisfaction. In the remain-
der of this paper, we work out which claims are required
and discuss how they can be managed in a model-driven
design process.

de
gr

ee
 o

f a
bs

tra
ct

io
n

Figure 5 Requirements, models and realizations

4. Preserving Satisfaction of Requirements
through Conformance

The notion of conformance between models is central
to our approach. We say that a model MT conforms to
another model MS if, and only if, the set of acceptable
realizations for MT is contained in the set of acceptable
realizations for MS. Given this definition, we can observe
that Figure 4 depicts both conformant and non-
conformant pairs of models. For example, M3’ does not
conform to M2’, while M2’ conforms to M1.

If a model at a lower level of abstraction (Mi+1) does
not conform to a model at the previous level (Mi), a de-
signer is forced to consider both Mi+1 and Mi in a subse-
quent design step. This problem is exacerbated in the
presence of multiple levels of abstraction that are not re-
lated by conformance. In the extreme case, a designer has
to consider all models in a design step that produces the
realization. This problem is addressed with conformant
models. Conformant models can be regarded as replacing
the models they conform to. For example, Figure 5 shows
only conformant models M1, M2 and M3. Thus, in the de-
sign step from M2 to M3, M1 does not have to be consid-
ered. Further, M3 is sufficient to derive the realization.

Intuitively, a model creates a sort of a “mould” such
that all subsequent models should fit into it (“conform”).
The same is not necessarily true with sets of require-
ments, which can be regarded as defining constraints that
have to be considered in conjunction.

By populating a hierarchy of models with models that
conform to models at a higher level of models, designers
can simplify requirements traceability activities. This is
possible because requirements satisfied by a model are
also satisfied by all models that conform to it. The evi-
dence showing that a model satisfies certain requirements
can be reused for all models that conform to it.

In a design step that produces a conformant target
model, the designer only has to provide evidence for sup-
plementary requirements that are satisfied in the target
model but not in the source model. In Figure 5 this means
that assessment of M2 only requires one to show evidence
for satisfaction of RS2 instead of both RS1 and RS2.

Further, modification of models at a lower level of ab-
straction does not affect models at a higher level of ab-
straction if the modified model remains conformant.

We can now observe that the partitioning of require-
ments in different sets as depicted in Figure 5 arises from
the way in which the various sets of requirements are ad-
dressed throughout the model-driven design trajectory.

5. Requirements Traceability with Trans-
formation

This section extends the view of the model-driven de-
sign process as described in section 3 with model trans-
formation chains.

5.1. Automated Transformation Chains

We start by considering fully automated transforma-
tion chains. Fully automated transformation chains consist
of a predefined series of transformation specifications that
can be applied to relate different subsequent levels of
models. All transformation activities are automated using
the various transformation specifications. An application
model that is used as input for the transformation chain is
sufficient to obtain a realization of the application.

In the case of automated transformation chains, appli-
cation requirements only influence the application model.
This is shown in Figure 6. Note that there are no relations
between model transformation specifications (TSA and
TSB) and application requirements. The reason for this is
that model transformation specifications capture applica-
tion-independent design operations that can be reused in
the development of several applications.

A useful analogy for automated transformation chains
is the programming language compiler: source code can
be regarded as the application model, and assembler code
can be considered the realization on a target hardware
platform (with intermediate representations often used for
optimization purposes). The specification of the compiler
(i.e., the model transformation specification) is independ-
ent of the applications compiled by the compiler.

In the particular case of automated transformation
chains, assessment activities can be summed up in (i) as-
sessing whether the application model satisfies applica-
tion requirements, and (ii) whether Mi+1 conforms to Mi
for every transformation step (a special kind of assess-
ment we call conformance assessment). In case models at
intermediate levels are not considered reusable products
of the design process, it suffices to assess whether the last
model conforms to the first model.

requirements

realizations

RSA application
model M1

application
model M2

application
model M3

implementation constraints

general design knowledge

Figure 6 Application-specific requirements only

affect the highest level of models

When a transformation chain is assumed to produce
conformant results, the only required assessment activity
left is assessing whether the application model satisfies
application requirements. Other assessment activities are
deemed redundant by the assumption of conformance. In
the analogy of a programming language compiler, only
source code is assessed if the compiler can be trusted.

To capture this reorganization of assessment activities
in terms of the quality of a transformation specification,
we define the notion of a conformant transformation
specification. We say that a transformation specification
is conformant, if, and only if, for every source and target
models related by the specification, the target model con-
forms to the source model.

5.2. Partially Automated Transformation Chains

As we have discussed in the last section, the traceabil-
ity of requirements can be largely simplified for the case
of fully automated transformation chains with conformant
transformation specifications. However, full automation
of transformations is not always feasible or desirable. For
example, it may be impossible to derive relevant design
decisions from an high-level application model, or it may
be inefficient to specify automated transformations that
have a limited reuse potential (see [2] for an analysis on
the costs/benefits of automated transformation). We dis-

tinguish the following approaches to decrease the level of
automation without manual modification of target models:

(i) transformation parameterization, in which case the
designer selects values for transformation parameters, i.e.,
arguments. Transformation parameters capture variation
in the way source and target models are related; and,

(ii) selection of transformations, in which case a de-
signer configures a transformation chain from a number
of alternative predefined transformations. In order to sim-
plify our discussion, we regard selection of alternative
transformations as a special case of transformation param-
eterization, where a transformation specification includes
the relations specified by all alternative transformations,
and arguments are used to select an alternative.

In this case, application requirements influence trans-
formation arguments. This is depicted in Figure 7.

The definition of a conformant transformation specifi-
cation can be easily adjusted to incorporate transforma-
tion arguments. A transformation specification is said to
be conformant, if, and only if, for every source and target
models related by the specification under every admissi-
ble set of transformation arguments, the target model
conforms to the source model.

de
gr

ee
 o

f a
bs

tra
ct

io
n

tra
ns

f.
ac

tiv
iti

es

TS
 B

TS
 C

tra
ns

f.
ac

tiv
iti

es

Figure 7 Application-specific requirements affect

transformation arguments

For a transformation chain with parameterized con-
formant transformation specifications, one should assess
whether the application model at level-1 satisfies applica-
tion requirements RS1, and whether design decisions im-
plied by transformation arguments satisfy different parti-
tions of requirements (RSi).

5.3. Manual Modification

If necessary, the level of automation may be further
lowered by allowing designers to manually modify target
models. We assume in this case that modification is not
unconstrained: the relations between source and target
models as defined in a transformation specification
should be respected. (Although tool support may allow

these relations to be temporarily violated, as long as they
are re-established.) Figure 8 shows the relation between
requirements and the various levels of models for this
case.

Assessment activities in this case include: assessing
whether models are conformant, and assessing whether
the partitions of requirements (RSi) are satisfied progres-
sively. If transformation specifications can be assumed
conformant, this is simplified to assessing the satisfaction
of the different partitions of requirements (RSi) at the dif-
ferent levels of models. Manual modification may be
combined with parameterization. We do not show that in
this paper due to space restrictions.

requirements

realizations

RSA
RSB

RSC

IS2

ISA=IS1

IS3 ISB=IS1 IS2

ISC=ISB IS3

RS1 = RSA

RS2 = RSB \ RSA

RS3 = RSC \ RSB

application
model M1

application
model M2

application
model M3

implementation constraints

general design knowledge

Figure 8 Application-specific requirements affect

application models

6. Application-Independent Requirements

So far, we have discussed how application require-
ments can be traced throughout the design trajectory. In
addition to application requirements, in a model-driven
design process we also identify application-independent
requirements, which impact design decisions for a whole
class of applications, instead of a specific application. As
opposed to application requirements, application-
independent requirements are not the concern of the users
or procurers of an application. Instead, they are the con-
cern of the designers that oversee the model-driven design
process, and arise from the repeated application of certain
design manipulations, patterns and structures. Ap-
plication-independent requirements often entail require-
ments on the modelling languages used (e.g., “UML shall
be used for information modelling”), on architectural
styles or frameworks (e.g., “the service-oriented discov-
ery pattern shall be used”) and on the platforms used
(e.g., “Web Services shall be used for all interactions
across firewalls”, “CORBA shall be used for all interac-
tions inside the organization”).

These requirements are satisfied by reusable design
decisions that are captured in transformation specifica-
tions, metamodels, reusable model libraries, “abstract

platforms” [5, 6], target platforms and other “reuse infra-
structures” [8]. Similarly to the proposed partitioning of
application requirements, application-independent re-
quirements can also be partitioned and addressed at dif-
ferent levels of models. Figure 9 illustrates that. Applica-
tion-specific requirements and their relations with the
various models have been omitted.

application
model M1

model
library ML1

TS
 A

metamodel
MM1

application
model M2

model
library ML2

metamodel
MM1

application
model M3

model
library ML3

metamodel
MM3

TS
 B

tra
ns

f.
ac

tiv
iti

es
tra

ns
f.

ac
tiv

iti
es

AIRSA
AIRSB

AIRSC

AIRS1 = AIRSA

AIRS2 = AIRSB \ AIRSA

AIRS3 = AIRSC \ AIRSB

application-independent requirements artefacts

Figure 9 Application-independent requirements
and transformation specifications, metamodels

and model libraries

Application-independent requirements are not or-
thogonal to application-specific requirements. For exam-
ple, if real-time properties of a particular application
process are relevant (as defined in an application re-
quirements specification), languages such as BPEL or
BPMN may be considered inadequate to describe this
process. If application-specific requirements are given
priority over application-independent requirements, a
design trajectory that supports only these languages (as
result of application-independent requirements) should be
discarded. Conversely, giving priority to the set of appli-
cation-independent requirements, would rule out possible
(classes of) application-specific requirements, and there-
fore, restrict the generality of the design trajectory.

7. Example

To show how our approach reduces assessment activ-
ity effort for traceability, we present as an example the
design of a telemonitoring system ([7]). The goal of this
system is to monitor a chronically ill patient continuously
and warn the patient and care givers (e.g., at a hospital) of
critical health conditions.

7.1. Requirements

Table 1 presents 13 requirements for a specific telemo-
nitoring system, which issues alarms for epileptic sei-
zures.
ID Description
AR1 Upon detection of an (eminent) epileptic seizure, the patient

shall be alarmed.
AR2 Upon detection of an (eminent) epileptic seizure, aid persons

in the surrounding of the patient may be alarmed.
AR3 Only aid persons with an available status are alarmed.
AR4 In case no aid persons can be alarmed an emergency health

care team will be alarmed.
AR5 In case the epileptic seizure occurs at a speed higher than

8km/h, an emergency health care team will be alarmed (in-
stead of aid persons) (rationale: this may involve high risk,
e.g., if the patient is biking, jogging, driving).

AR6 Alarms to aid persons or health team inform them of the last
known location of the patient.

AR7 Alarms may be realized through short messaging service or
calling aid persons with voice messages (rationale: mobile
phones are cheap devices, known to aid persons).

AR8 Patient location and speed may be determined through GPS
devices.

AR9 Patient and aid person location may be determined through
Parlay-X.

AR10 Aid person availability status may be determined through
Parlay-X presence.

AR11 In case patients/aid persons should carry mobile devices for
monitoring, these should allow uninterrupted monitoring for
24 hours, without requiring battery recharges.

AR12 As a guideline, costs of mobile communication should not
exceed EUR 50,- per month per patient.

Table 1 Application-specific requirements

7.2. Application-independent requirements

The telemonitoring system can be categorized as a
context-aware distributed application. Patients and care
givers are not only geographically distributed but also
mobile. Their location, speed and biosignals are consid-
ered context that is relevant for the behaviour of applica-
tion. This class of applications is supported by a model-
driven design trajectory as defined in [3, 7]. We assume
that applications in this class have been designed repeat-
edly, e.g., by a software house that specializes in this
class of applications. As a result, the design process has
been captured in the form of different levels of models,
transformations between these levels and a number of
platforms.

Three levels of models are defined: the service specifi-
cation level, the platform-independent service design
level and the platform-specific service design level.

At the level of service specification a service can be
described in terms of events, which represent contextual
changes, queries to providers of context information (so-
called context sources), and actions, which represent ac-
tions to be performed in order to provide the service to
the user. These elements can be expressed in a domain-

specific language (called ECA-DL [3, 7]). In this exam-
ple, we have chosen to express behavioural aspects at the
level of platform-independent service design in ISDL
models [26] and OCL constraints. UML class diagrams
(omitted here) are used to represent information models.

The transformation between the service specification
and the service design level consists of refining events,
queries and actions at the service specification level into
sequences of interactions in the service design. At the
service specification level, an action represents an activity
performed by the system as a whole (including any con-
text sources and action services). However, at the service
design level the same action has to be performed by co-
operation of different services, in a service-oriented de-
sign which includes various context and action services.
Transformation rules are defined extensively in [3]. TSA
is parameterized with constraints for the services that can
be used to realize events and actions in M1 (so it can be
considered a partially automated transformation chain).

Figure 10 Design trajectory for context-aware

mobile services (adapted from [7])

Table 2 presents application-independent requirements
for part of the design trajectory depicted in Figure 10.

Thick borders delimit the partitioning of requirements
so that they can be traced to the different levels of mod-
els: AIR1–AIR5 are addressed at the service specification
level (and result in the metamodel of the ECA-DL lan-
guage); AIR6–AIR11, are addressed at the platform-
independent service design level (and result in TSA and
the abstract platform at that level); AIR12–AIR16 are ad-
dressed at platform-specific level (and result in TSB and
the target platforms, which we will denote with P3).

ID Description
AIR1 Application designers should be able to describe the behaviour

of a context-aware application at a high-level of abstraction.
AIR2 This behaviour may refer to the occurrence of context events

(such as, e.g., epileptic seizure).
AIR3 This behaviour may prescribe the execution of actions (such

as, e.g., alarming patients).
AIR4 Ability to describe constraints on actions based on context

information (such as, e.g., that only available aid persons in
the surroundings of a patient are alarmed).

AIR5 This behaviour may refer to context information (e.g, an alarm
may include patient location information).

AIR6 Application design should be based on the reuse of context
and action services.

AIR7 It should be possible to add reusable services at service run-
time.

AIR8 Basic reusable services for application design should be pro-
vided. These should include services provided by mobile
telecommunications networks (sending SMS, establishing
calls, determining location).

AIR9 It should be possible to simulate designs.
AIR10 Service designs should be service-platform-independent.
AIR11 Service components should specify required services, which

can be discovered and bound at runtime.
AIR12 End-users may access services through mobile phones, smart-

phones, PDAs, PCs and plain-old telephones.
AIR13 Service realizations should be supported by a standardized

middleware platform.
AIR14 Distribution between client-side and back-end side is sup-

ported by Web Services protocols on top of GPRS.
AIR15 Service trading is realized through UDDI in the back-end.
AIR16 Services of the telecommunication network are provided by

Parlay-X in the back-end.

Table 2 Application-independent requirements
for context-aware mobile services

7.3. Models

We will only discuss the service specification and plat-
form-independent service design levels in order to limit
the size of this example.

The Telemonitoring service specification is depicted in
Figure 11 (this is M1 in Figure 10). Ovals represent con-
text events, queries and actions. The suffix _indC indicates
a context event, the suffixes _reqC, _rspC indicate a re-
quest-response query to context sources and the suffixes
_reqA, _rspA indicate request-response to action services.
Arrows indicate enabling relations between events, que-
ries and actions; white diamonds represent choice (or-
split) and white squares denote disjunction. Guards for
enabling relations and constraints for information are de-
picted in boxes attached to context events, queries and
actions.

The platform-independent service design is the result
of the application of all transformation rules to the service
specification. Figure 12 (this is a part of M2 in Figure 10)
shows the generated coordination component. The dashed
lines represent causality relations already present in the
service specifications. Semi-ovals represent interactions
in ISDL.

The generated coordination component interacts with a
service trader to find context and action services. The
service queries are generated from constraints at the ser-
vice specification level, which are indicated in arguments
aTSA to the transformation (in this case, aler-
tAid_reqA.aidperson_xy and alertTeam_reqA.coverageArea as
marked with boxes in Figure 11).

Figure 11 The Telemonitoring service specification (M1) [7]

7.4. Traceability

In its simplest form, traceability manifests itself in
cross-tables in which elements of a design are checked
against the requirements that they satisfy. We use cross-
tables to illustrate the relations between requirements and
models at different levels.

Table 3 presents a traceability cross-table at the level
of consecutive models, revealing the partitioning of appli-
cation requirements. The table shows that the outcome of
assessment activities is that M1 satisfies all level-1 re-
quirements, while model M2 satisfies those requirements
as well as the level-2 requirements, and so on. It is possi-
ble to be more specific: in this case there would be an
entire table for M1, with a column for each model element
present in M1.

Evidence for all check marks should be provided
through assessment activities. For example, marks in the
column corresponding to M1 can be justified by directly
inspecting M1 against the requirements specification; by
simulating M1, etc. Marks in the column corresponding to

M2 can be justified by simulation, by model checking be-
havioural aspects implied by AR1–AR10, etc. Marks in the
column corresponding to aTSA can be justified by consider-
ing the characteristics of the context and action services
implied by the particular choice of aTSA.

Figure 12 Generated coordination component for Telemonitoring service (M2)

 M1 aTSA M2 P3 M3
AR1
AR2
AR3
AR4
AR5
AR6
AR7
AR8
AR9
AR10
AR11
AR12

Table 3 Traceability cross-table

Because certain platform characteristics are considered
relevant for assessment of application-specific require-

ments, we have also included a row for the platform P3 in
this cross-table. Assessing satisfaction of AR11 should be
justified by analysing specifications of the target platform
P3, in this case the specifications of battery consumption
for PDAs or mobile phones, and characteristics of M3 that
may influence battery consumption. AR12 refers to sub-
scription costs and require both the amount of traffic gen-
erated by M3 and characteristics of the platform used (ef-
ficiency of encoding schemes used, cost per traffic gener-
ated, etc.). Note that application-independent require-
ments AIR12–AIR16 may affect P3 and thereby influence
satisfaction of AR11 and AR12. Other marks in row M3 can
be justified by testing it against test cases for AR1–AR10.

As discussed in section 5.2, these assessment activities
can be simplified by employing conformant transforma-
tions. We illustrate this with a transformation TSA, which
has been designed such that it is conformant under the
following assumptions [3]: (i) the service trader is always
able to produce a service offer for a service query, (ii)
context sources always reply to context query requests,
and (iii) action services always reply to action invocation
requests (in case action invocation request and action
invocation response is used in a pattern). Assumption (i)
can be guaranteed by availability of service offers in the
service trader that correspond to actions and context que-
ries and events in the service specification level (accord-
ing to transformation arguments aTSA). Assumptions (ii)
and (iii) constrain the design of context sources and ac-
tion services. These assumptions are necessary to inte-
grate the interactions in the target design into actions and
then apply the conformance assessment method described
in [21].

Transformation TSA simplifies traceability, which is il-
lustrated by Table 4. Assuming TSA and TSB conformant,
all marks in the M2 column and all marks for AR1–AR10 in
the M3 column are implied, which is indicated by square
brackets. Assessment activities to check them have be-
come redundant, which greatly diminishes the assessment
effort needed. In fact, M2 can even be considered a
“black-box” by an application designer.

 M1 aTSA M2 P3 M3
AR1 [] TSA []TSB
AR2 [] TSA []TSB
AR3 [] TSA []TSB
AR4 [] TSA []TSB
AR5 [] TSA []TSB
AR6 [] TSA []TSB
AR7 [] aTSA []TSB
AR8 [] aTSA []TSB
AR9 [] aTSA []TSB
AR10 [] aTSA []TSB
AR11
AR12

Table 4 Traceability cross-table with conformant
transformations

8. Discussion

We do not account in this paper for explicit require-
ments on the design process itself, such as, e.g., cost, de-
livery schedules, validation and verification criteria (as-
sessment criteria). This is in line with the IEEE Recom-
mended Practice for Software Requirements Specifica-
tions (SRS) that defines that “SRS should address the
software product, not the process of producing the soft-
ware product.” These should be captured in project re-
quirements which “represent an understanding between
the customer and the supplier about contractual matters
pertaining to production of software and thus should not
be included in the SRS.” [17]. However, we do capture
requirements on the model-driven design trajectory (the
so-called application-independent requirements). These
are maintained separately from application-specific re-
quirements, and are relevant only to “suppliers” and their
internal organization and are typically not visible to “cus-
tomers.”

We acknowledge that the quality of assessment de-
pends eventually on the quality of a requirements specifi-
cation. Different characteristics of a “good” specification
are defined in [17] including correctness, lack of ambigu-
ity, completeness, consistency, etc. Guidelines for obtain-
ing these qualities are beyond the scope of this paper.
However, we believe that application-independent re-
quirements may serve to identify unstated requirements
called “necessary design constraints” or “software system
attributes” in [17], thus contributing to the completeness
of requirements specifications. In our example, the appli-
cation-independent requirements AIR7 (“It should be pos-
sible to add reusable (context and action) services at ser-
vice runtime”) and AIR11 (“Service components should
specify required services, which can be discovered and
bound at runtime”) reveal unstated maintainability re-
quirements for the telemonitoring service.

The simplification of assessment activities results from
the way in which requirements are partitioned and ad-
dressed at different levels of abstraction. For sets of re-
quirements that cannot be partitioned and that must be
partially satisfied at multiple abstraction levels, simplifi-
cation of assessment by conformance is limited.

We have considered an application model at a particu-
lar abstraction level as a unit of design for requirements
traceability. Nevertheless, we do not exclude more “fine-
grained” traceability strategies which identify parts of
application models. Clustering these parts of application
models into levels that are related by conformance is suf-
ficient to apply the technique discussed in this paper.

Finally, while we have discussed the potential benefits
of conformant transformations, we would like to empha-
size that evidence for transformation conformance may be
costly to produce. One should therefore consider the pay-

off in terms of assessment activities, depending on the
reuse of transformation specifications.

9. Related work

In the area of Requirements Engineering, the standard
general introduction of the requirements traceability prob-
lem has been provided by Gotel and Finkelstein [15]. The
Ph.D. thesis of Gotel provides extensive discussion of
requirements traceability, including a number of defini-
tions (see pages 71-72 of [16]).

It has been recognized that requirements tracing is a
laborious task and that any assistance in maintaining the
interdependencies between requirements and other design
artefacts is highly welcome. Egyed [11] presents an ap-
proach in which dependencies are discovered automati-
cally from data generated by executing a minimal set of
scenarios. This approach requires that an executable ver-
sion of the system is available to execute these scenarios.
In our approach, however, traceability is not dependent
on an executable system; therefore, traceability is already
possible when the design process has not yet resulted in
an executable prototype.

Ramesh and Jarke [24] present a reference model for
requirements traceability that they derived from an em-
pirical study. Their reference model comprises a number
of possible relations that can be traced between design
artefacts and requirements. For different stakeholders
(and different ambition levels with respect to traceability),
a different subset of those relations can be chosen. In
principle, our conformance-based approach is transparent
with respect to the choice of this subset. An interesting
question for future research is whether subsets can be
identified that are particularly suitable for a model-driven
design approach.

In the Reference Model of Open Distributed Process-
ing (RM-ODP) [18], the term “conformance” is used as
relation between a “specification” and an “implementa-
tion”. In this paper, we have used the term as relation
between two application models. Considering our stance
on the distinction between an application model and an
application realization (see section 3), our view on con-
formance does not conflict RM-ODP’s approach to con-
formance. RM-ODP uses the term “conformance testing”,
and we use the more general term “conformance assess-
ment” to include other forms of assessment activities.

In the area of formal methods, notions of transforma-
tion conformance have also been defined. Nevertheless,
approaches based on formal methods rely on formal
proofs as evidence for transformation conformance (see,
e.g., “correct architectural refinement” in [20], and “cor-
rectness preserving transformations” in [9, 14]). We be-
lieve that formal proofs may not be required in many
practical cases. Therefore, we have proposed definitions

for conformance and requirements satisfaction that are
independent of proofs of conformance or formalization of
requirements. Furthermore, we are neutral with respect to
the techniques the designer may chose to trust for assess-
ment.

We have intentionally considered specific techniques
to assess requirements satisfaction and conformance out-
side the scope of this paper. Instead, we have focused on
how to manage the relations between models and re-
quirements assuming the existence of some conformance
assessment technique. Examples of such techniques are
the “conformance rules” for “behaviour refinement” dis-
cussed in [21] (and used in our example), “refinement
relations” discussed in [10] or “conformant transforma-
tions for interaction refinement” presented in [4].

10. Conclusions

We believe that a mature discipline for model-driven
design must provide techniques to account for how re-
quirements relate to the various artefacts produced during
the design process. In this paper we have proposed a
methodological framework that addresses this issue. Our
framework can be seen as basis for requirements trace-
ability, but also serves to reveal the intricate relationship
between requirements, application models and realiza-
tions, model transformation specifications, transformation
arguments, metamodels, model libraries and platforms.

In our view it is important for both application users
and application designers to be able to produce evidence
for satisfaction of requirements. This is realised through
assessment activities. We have argued that some of these
assessment activities can be deemed redundant under the
assumption that conformant transformation specifications
are used in the design process. Thus, we have concluded
that conformance between models not only simplifies
requirements tracing but also has the potential of reducing
the amount of necessary assessment activities.

In our future work, we intend to investigate both the
specification of conformance relations and model trans-
formations in the same transformation specification
framework. More precisely we plan to focus on tech-
niques and tools for capturing, enforcing and assessing
conformance between models; and assessing whether
transformation specifications respect conformance. This
may be feasible by regarding transformation and confor-
mance as relations ([1, 23]) (as suggested in [4]).

Future work could also investigate traceability of re-
quirements in face of changes in requirements specifica-
tions, which may be trigged due to changing application
requirements and due to improved understanding of re-
quirements in an iterative design process.

Acknowledgements

This work is part of the Freeband A-MUSE project
(http://a-muse.freeband.nl), which is sponsored by the
Dutch government under contract BSIK 03025.

Remco Dijkman, Luís Ferreira Pires, Henk Jonkers,
Thijs Munsterman, Dick Quartel and Marten van
Sinderen should be acknowledged for fruitful discussions
on the topics addressed in this paper.

References

[1] D. Akehurst, S. Kent, and O. Patrascoiu, “A relational
approach to defining and implementing transformations
between metamodels”, Software and Systems Modeling,
vol. 2. no. 4, Springer-Verlag, 2003, pp. 215-239.

[2] J.P.A. Almeida, Model-Driven Design of Distributed Ap-
plications, CTIT Ph.D.-Thesis Series, No. 06-85,
Telematica Instituut Fundamental Research Series, No.
018, 2006.

[3] J.P.A. Almeida, H. Jonkers, M.E. Iacob, and D. Quartel,
Platform-Independent Modelling of Service Infrastructure
Components: Towards the A-MUSE Abstract Platform,
Freeband A-MUSE/D1.6, Telematica Instituut, The
Netherlands, 2005; https://doc.telin.nl/dscgi/ds.py/Get/
File-59319

[4] J.P.A. Almeida, R. Dijkman, L. Ferreira Pires, D. Quartel,
and M. van Sinderen, “Model Driven Design, Refinement
and Transformation of Abstract Interactions”, Int’l J. Co-
operative Information Systems (IJCIS), World Scientific, to
appear.

[5] J.P.A. Almeida, R. Dijkman, M. van Sinderen and L.
Ferreira Pires, “On the Notion of Abstract Platform in
MDA Development,” Proc. 8th IEEE Int’l Conf. on Enter-
prise Distributed Object Computing (EDOC 2004), IEEE
CS Press, Sept. 2004, pp. 253-263.

[6] J.P.A. Almeida, M. van Sinderen, L. Ferreira Pires and D.
Quartel, “A systematic approach to platform-independent
design based on the service concept,” Proc. 7th IEEE Int’l
Conf. on Enterprise Distributed Object Computing (EDOC
2003), IEEE CS Press, Sept. 2003, pp. 112-134.

[7] J.P.A. Almeida, M.-E. Iacob, H. Jonkers, and D. Quartel,
“Model-Driven Development of Context-Aware Services”,
Distributed Applications and Interoperable Systems (DAIS
2006), 6th IFIP International Conference, LNCS, vol.
4025, Springer, 2006, pp 213-227.

[8] G. Arango, “Domain Analysis: from Art Form to Engineer-
ing Discipline,” ACM SIGSOFT Software Engineering
Notes, vol. 14, no. 3, ACM Press, May 1989, pp. 152-159.

[9] T. Bolognesi, J. van de Lagemaat, and C. Vissers, eds.,
LOTOSphere: Software Development with LOTOS, Kluwer
Academic Publishers, 1995.

[10] R.M. Dijkman, Consistency in Multi-Viewpoint Architec-
tural Design, CTIT Ph.D.-Thesis Series, No. 06-80,
Telematica Instituut Fundamental Research Series, No.
017, 2006.

[11] A.F. Egyed, “A Scenario-Driven Approach to Trace
Dependency Analysis”, IEEE Transactions on Software
Engineering, 2003. vol. 29, no. 2, pp. 116-132.

[12] D. Firesmith, “Specifying Good Requirements”, in Journal
of Object Technology, vol. 2, no. 4, July-August 2003, pp.
77-87; http://www.jot.fm/issues/issue_2003_07/column7

[13] A. Gavras, M. Belaunde, L. Ferreira Pires, J.P.A. Almeida,
“Towards an MDA-based Development Methodology for
Distributed Applications”, Software Architecture: First
European Workshop (EWSA2004), LNCS, vol. 3047,
Springer, 2004, pp. 230-240.

[14] J.P. Gibson, T.F. Dowling, and B.A. Malloy, “The Appli-
cation of Correctness Preserving Transformations to Soft-
ware Maintenance”, Proc. 16th IEEE International Con-
ference on Software Maintenance (ICSM'00), IEEE CS
Press, 2000, pp. 108-119.

[15] O. Gotel and A. Finkelstein, “An Analysis of the
Requirements Traceability Problem,” Proc. First Int’l
Conf. Requirements Eng., 1994, pp. 94-101.

[16] O. Gotel, Contribution Structures for Requirements Trace-
ability. Ph.D. Thesis, London, England: Imperial College,
Department of Computing, 1995.

[17] IEEE, IEEE Recommended Practice for Software Require-
ments Specifications, IEEE Std 830-1998, 1998.

[18] ISO / ITU-T, Open Distributed Processing - Reference
Model - Part 2: Foundations, International Standard
ISO/IEC 10746-2, ITU-T Recommendation X.902, 1995.

[19] H. Kremer, Protocol Implementation: Bridging the gap
between Architecture and Realization, Ph.D. thesis, Uni-
versity of Twente, Enschede, The Netherlands, Oct. 1995.

[20] M. Moriconi, X. Qian, and R.A. Riemenschneider, “Cor-
rect Architecture Refinement”, IEEE Transactions on Soft-
ware Engineering, 21(4), IEEE CS Press, April 2005.

[21] D. Quartel, L. Ferreira Pires, and M. van Sinderen, “On
Architectural Support for Behaviour Refinement in Dis-
tributed Systems Design,” Journal of Integrated Design
and Process Science, vol. 6, no. 1, Society for Design and
Process Science, 2002.

[22] Object Management Group, MDA-Guide, V1.0.1, omg/03-
06-01, June 2003.

[23] Object Management Group, MOF QVT Final Adopted
Specification, ptc/05-11-01, Nov. 2005.

[24] B. Ramesh, M. Jarke, “Toward reference models for re-
quirements traceability”, IEEE Transactions on Software
Engineering, vol. 27, no. 1, Jan. 2001, pp. 58-93.

[25] J. Schot, The role of Architectural Semantics in the formal
approach of Distributed Systems design, Ph.D. thesis, Uni-
versity of Twente, Enschede, The Netherlands, Feb. 1992.

[26] The Interaction Systems Design Language (ISDL);
http://isdl.ctit.utwente.nl/

[27] S. Wright, “Requirements Traceability - What? Why? and
How?”, Tools and Techniques for Maintaining Traceability
During Design, IEE Colloquium, Computing and Control
Division, Professional Group C1 (Software Engineering),
U.K., Digest Number: 1991/180, December 2, 1991, pp.
1/1-1/2.

