
Requirements and Architectural Approaches to
Adaptive Software Systems: A Comparative Study

Konstantinos Angelopoulos1, Vı́tor E. Silva Souza2,1, João Pimentel3,1
1 Department of Information Engineering and Computer Science, University of Trento, Italy
2 Computer Science Department, Federal University of Espı́rito Santo (Ufes), Vitória, Brazil

3 Centro de Informática, Universidade Federal de Pernambuco (UFPE), Recife, Brazil
angelopoulos@disi.unitn.it, vitorsouza@inf.ufes.br, jhcp@cin.ufpe.br

Abstract—The growing interest in adaptive software systems
has resulted in a number of different proposals for the de-
sign of adaptive systems. Some approaches adopt architectural
models, whereas others model adaptation options, at the level
of requirements. This dichotomy has motivated us to perform
a comparative study between two proposals for the design
of adaptive systems: the Rainbow Framework (architecture-
based) and our own proposal, Zanshin (requirements-based).
This evaluation paper reports on our methodology and results.
It also provides a comparison between the use of architectural
and requirements models as centrepieces of adaptation, offering
guidelines for the future research in the field of adaptive systems.

Index Terms—Adaptive systems, adaptation, requirements,
architecture, Zanshin, Rainbow, comparative study

I. INTRODUCTION

The past decade, has seen a growing interest in adaptive
software systems, i.e., systems that can adapt to changes in
their environment or their requirements in order to continue
to fulfil their mandate. Researchers involved in this area have
published several different proposals for the design of such
systems, as can be seen in surveys and roadmap papers in the
literature, such as [1], [2], [3], [4], [5].

Among the many proposals, intended to guide developers
in the construction of adaptive systems, some focus on ar-
chitectural models that capture architectural variability and
support architectural reconfigurations, propagating the effects
to the actual system, in response to certain situations. Instead,
other approaches, advocate the use of requirements models to
capture variability and support adaptation.

This dichotomy has motivated us to investigate whether
these two types of approaches can produce the same results,
what are their respective advantages and drawbacks, and study
whether they are complementary.

As a first step in finding answers to these questions, in
this paper we present a comparative study of one represen-
tative approach of each of the aforementioned categories,
respectively: Rainbow [6] and Zanshin [7]. Our methodology
consisted of applying both frameworks to the same exemplar:
the ZNN.com case study presented in [8] for the Rainbow
framework. Models of the system’s adaptation rules were
produced for each framework and adaptation scenarios based
on an implementation of ZNN.com were executed.

The remainder of this paper is structured as follows: Sec-
tion II summarizes the chosen adaptation approaches for this

comparative study; Section III presents the ZNN.com exemplar
and its solutions in the chosen architecture- and requirements-
based approaches; Section IV details the methodology and the
results of this study, discussing the questions mentioned above;
Section V presents related work; finally, Section VI concludes.

II. SELECTED ADAPTATION APPROACHES

Among existing approaches for the design of adaptive
systems, some of which will be discussed in Section V, we
are interested in comparing two kinds, namely:

• Requirements-based (henceforth RE-based) approaches:
extend Requirements Engineering techniques in order
to represent the requirements of adaptation and/or the
inherent uncertainty of the environment in which the
system operates. These approaches may or may not in-
clude mechanisms for run-time reasoning and frameworks
that operationalise the adaptation requirements, since they
focus on capturing and analysing the problem rather than
implementing solutions;

• Architecture-based approaches: concentrate on helping
designers build architectures that support adaptation.
They usually propose the use of an architectural model
that shows system components and how they communi-
cate amongst themselves through connectors. Such pro-
posals often include the runtime software infrastructure
on top of which to build the adaptive system, taking care
of its adaptation rules and how to evolve its models.

For our comparative study, we have chosen one approach for
each type, namely Zanshin and Rainbow respectively. These
frameworks were chosen for a number of reasons. Firstly,
they are good representatives of their respective schools of
thought on building adaptive software systems. Secondly, they
are fairly comprehensive and quite well documented in guiding
the design of adaptive systems. Thirdly, there was code readily
available for running our experiments. We summarise both
approaches next.

A. Rainbow

The Rainbow framework [6] is a prominent architecture-
based approach for the design of adaptive systems. According
to the proposal, adaptation rules are used to monitor the
operational conditions of the system and define actions to be
taken if the conditions are unfavorable. For example, given a

978-1-4673-4401-2/13 c© 2013 IEEE SEAMS 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

23

Fig. 1. The components of the Rainbow framework [8].

news website (which we will detail in Section III), if measured
response times are too long, actions such as enlisting more
servers or switching from multimedia to textual mode can be
executed to try and improve response time.

The framework prescribes the use of the ACME architecture
description language [9], which extends the usual component-
connector representation with the concept of families, allow-
ing designers to define different architectural variants and
styles [10]. This allows for the specialization of the frame-
work to specific application domains, defining style-specific
architectural operators and repair strategies [11].

Fig. 1, adopted from [8], shows the elements that compose
the Rainbow framework. Monitoring is done with a set of
Probes deployed in the target system, which send observations
to Gauges that interpret the probe measurements in terms
of higher-level models. The Model Manager is responsible
for tracking the changes in the models’ states and keeping it
consistent with the target system. Moreover, other components
query the Model Manager for information about the current
state of the model.

One of these components is the Architecture Evaluator,
which detects changes in the status of the properties of
the system’s architecture and environment, validating such
changes with respect to the constraints stated in the model.
In case of a violation, it triggers the Adaptation Manager
in order for it to select the most appropriate strategy, using
Utility Theory (details in [8]) for the decision. Finally, the
Strategy Executor coordinates the execution process, deciding
the operators that should be applied through the Effectors at
the System Layer.

For the final parts of the adaptation loop, Rainbow uses a
language called Stitch, which captures routine human adap-
tation knowledge as explicit adaptation policies [12]. The
language allows designers to specify what, when and how to
adapt, thus automating the adaptation process. In Section III
we will see some examples of Stitch applied to the exemplar
chosen for our experiments, the news website ZNN.com [8].

B. Zanshin

Zanshin is an RE-based framework for the design of adap-
tive systems that exploits concepts of Control Theory to design
adaptive software systems [7]. The core idea of the approach
is to make the elements of the feedback loops that provide
adaptivity first class citizens in the requirements models. An
overview of the approach is shown in Fig. 2.

The approach is divided in two main steps that augment
“vanilla” Goal-Oriented Requirements Engineering (GORE)
with RE techniques that concern specifically adaptation re-
quirements. Inspired by Control Theory, Zanshin supports
System Identification of the target system in order to identify:
(a) important indicators and the respective values the system
should strive to maintain; (b) parameters that could be tuned at
runtime to change the system’s behavior; and (c) how changing
parameters affect the value of the indicators [13].

Indicators are constrained by Awareness Requirements
(AwReqs), which are requirements that refer to the states
assumed by other requirements — such as their success or
failure — at runtime [14]. Thus, AwReqs represent situations to
which stakeholders would like the system to adapt. That way,
they constitute the requirements for the monitoring component
of the feedback loop that implements the adaptive capabilities
of the system. Parameters have two flavors: Variation Points,
which are the OR-refinements already present in goal mod-
els; and Control Variables, which are abstractions over OR-
refinements that are too complex or tedious to model (we will
see examples in Section III).

Strategy Specification focuses on the adaptation part of
the feedback loop. Its objective is to associate one or more
adaptation strategies (e.g., “Retry/delegate a task”, “Relax
a requirement”, etc.) to each AwReq in order to have them
executed in case of an AwReq failure at runtime. These
strategies should also be elicited from the stakeholders and are
represented by Evolution Requirements (EvoReqs). EvoReqs
prescribe how other requirements of the model should evolve
in response to an AwReq failure, and are specified using
a set of primitive operations, each of which is associated
with application-specific actions to be implemented in the
system [15]. One strategy in particular, the Reconfiguration
strategy, uses the information elicited during System Identi-
fication to reconfigure the system, also allowing designers to
specify different reconfiguration algorithms depending on the
amount of information available [16].

A prototype framework that operationalizes a feedback loop
based on the models produced by Zanshin is available at
https://github.com/sefms-disi-unitn/Zanshin. The experiments
described in this paper (cf. Section IV) were conducted
using this framework and can be repeated by the interested
reader. In the next section, we will derive a goal model to
represent the requirements of the ZNN.com exemplar used in
the experiments and apply Zanshin to it.

III. THE ZNN.com EXEMPLAR

An exemplar, or a model problem, is a shared, well-defined
problem adopted by researchers of a specific field for pre-

24

Problem
Adaptation
Concerns

“Vanilla” GORE Goal-oriented
Requirements
Specification

Design

Coding

Target
System

The Zanshin
Approach

Adaptation Requirements
Specification

Awareness
Requirements
(indicators)

System parameters
and how they
affect indicators

Adaptation strategies
(Evolution Requirements)

System
Identification

 Strategy
 Specification

Parsing

Reasoning

Zanshin
Framework

A
D
A
PT

A
D
A
PT

Log

残心残心

Fig. 2. An overview of the Zanshin approach.

senting and comparing proposals. The Software Engineering
for Adaptive and Self-Managing Systems (SEAMS) research
community has proposed some exemplars in their website,1

among which we chose ZNN.com to perform the comparative
study presented in this paper.

The choice of ZNN.com was also motivated by the fact that
it had already been used in [8] as a case study for the proposal
of the Rainbow framework. In this section, we present an
overview of this model problem and how it was solved by
Rainbow; then we apply Zanshin to it in order to be able to
compare these two approaches.

A. Overview of the Problem and Its Architectural Solution

ZNN.com is a news service that serves multimedia news
content to its customers through a website. It is a simplified
version of real sites such as cnn.com. It is presented in detail
in [8] (§ 3.2) and also features as one of the exemplars in the
SEAMS community website.

ZNN.com’s adaptive features are needed when the website
experiences spikes in news requests due to, for instance,
popular events. In these cases, response times for user requests
might become unacceptable and the system has two possible
adaptation strategies: enlisting new servers to divide the load
of requests or switch from multimedia to text-mode to make
each request quicker to respond. However, these strategies
may cause problems in two other requirements of this system:
first, the website managers would like to run the system at
the lowest cost possible and adding new servers costs money;
second, the users would like to see news with high content
fidelity (i.e., high presentation quality), preferring multimedia
over simple text.

Like most high demand websites, the architecture for
ZNN.com includes a load balancer (or proxy) that distributes

1See http://seams.self-adapt.org/wiki/Exemplars.

requests among multiple web servers and a database server.
Current technology for load balancing and cloud computing
already supports some level of adaptation, but automating
trade-offs among multiple objectives like stated above is
usually not supported [8]. For the ZNN.com case study, the
operational target of the system is to keep a balance among
its cost, performance and content fidelity.

The challenge of such systems is to achieve their mandate
even when they operate under critical conditions. The difficulty
lies in taking the right decision at the right time, in the
sense that the problem should be detected promptly and the
most efficient strategy to stabilize operation should be applied
immediately. Under such circumstances, human intervention
can be insufficient and automated mechanisms are required to
carry out both decision making and adaptation.

Rainbow tackles this challenge through a software architec-
ture model of ZNN.com written in the ACME language [9].
The model includes elements representing clients, servers,
connections and the proxy; as well as properties for the
client’s experienced response time, the connection’s bandwidth
and the server’s cost, load and fidelity. Moreover, operations
for (de)activating a server and setting its fidelity allowed
architectural designers to create four tactics that can be applied
when adaptation is necessary: enlisting/discharging servers and
raising/lowering the fidelity [17].

Tactics such as these are combined in strategies, written
in Stitch to form high level adaptation processes. The exact
definition of the adaptation strategies used in ZNN.com are
described in Appendix C of Cheng’s thesis [8]. We show one
of these strategies in Fig. 3 and summarize them below:

• SimpleReduceResponseTime: In case a client ex-
periences response time above a predefined threshold then
the fidelity is lowered by one step. In case response time
remains high, fidelity is decreased again one more step;

25

strategy SmarterReduceResponseTime
[styleApplies && cViolation] {
 define boolean unhappy = numUnhappyFloat/numClients >
M.TOLERABLE_PERCENT_UNHAPPY;

 t0: (unhappy) -> enlistServers(1) @[500 /*ms*/] {
 t1: (!cViolation) -> done;
 t2: (unhappy) -> enlistServers(1) @[2000 /*ms*/] {
 t2a: (!cViolation) -> done;
 t2b: (unhappy) -> lowerFidelity(2, 100) @[2000 /*ms*/] {
 t2b1: (!cViolation) -> done;
 t2b2: (unhappy) -> do[1] t2;
 t2b3: (default) -> TNULL; // in this case, we have no more steps to take
 }
 }
 }
}

Fig. 3. Strategy SmarterReduceResponseTime in Stitch [8].

• SmarterReduceResponseTime: If an unacceptable
percentage of clients experiences high response time, then
enlist one server, then enlist another server and finally
lower fidelity by one step. Repeat twice the last two
actions until response time is restored;

• ReduceOverallCost: If server cost is higher than a
threshold value then reduce the number of servers by one.
If response time is low and cost remains high repeat the
previous action, until cost is returned to normal;

• ImproveOverallFidelity: If content fidelity level
is below threshold then raise fidelity of all servers by one
step. If response time is low and fidelity remains low then
raise fidelity level one more step.

The strategies above compose the possible options of the
Adaptation Manager we described earlier when it is required
to restore the system’s invariants such as cost, performance
and content fidelity to their desired levels.

Given the availability of Rainbow models for the ZNN.com
exemplar, to conduct the comparative study we needed to
produce models of the system according to Zanshin. The
results of this effort are reported next.

B. An RE-Based Solution to ZNN.com using Zanshin

Using available documentation, we have elicited require-
ments for the ZNN.com exemplar, producing the model shown
in Fig. 4. Of course, the figure does not represent complete re-
quirements for a news service (which would include concerns
such as adding news, searching, managing advertisement, etc.),
but concentrates on the adaptation scenario described earlier.

Requirements for the system are represented using Goal-
Oriented Requirements Engineering (GORE) elements such
as goals, tasks, softgoals, quality constraints and refinement
relations that indicate how (soft)goals are satisfied using
Boolean semantics [18]. One of ZNN.com’s goals is to Serve
news to its visitors, which can be accomplished using text-
only, low resolution or high resolution contents. Three non-
functional requirements also compose this simple scenario:

• Cost-efficiency: the system should either be operating
using a single server, unless response times are above
a certain minimum threshold (MINRT), which would
justify the addition of extra servers;

• High fidelity: analogously, the system should prefer high
resolution content over lower ones, unless response times
are above the minimum threshold;

• High performance: response time and server load should
be under a certain maximum threshold (MAXRT).

Quantitative values for MINRT and MAXRT should even-
tually be provided by the stakeholders, but are not essential to
the discussion herein.

On top of this base model, we have applied Zanshin to elicit
requirements for adaptation as well. In the model of Fig. 4,
these are represented by AwReqs AR1, AR2 and AR3, variation
point VP1 and control variable NoS (Number of Servers).
Moreover, by applying System Identification to ZNN.com we
have come up with the following qualitative relations among
indicators (AwReqs) and parameters:

∆ (AR1/NoS) [0,maxServers] < 0 (1)
∆ (AR3/NoS) [0,maxServers] > 0 (2)

The equations tell us that increasing the number of
servers will hurt cost-efficiency (1), but contribute to-
wards higher performance (2). Relations between variation
point VP1 and AwReqs AR2 and AR3 were also identi-
fied, but are not necessary to produce the ZNN.com sce-
narios presented in the previous subsection (we come back
to those in Section IV-C). Finally, Fig. 5 shows the com-
plete specification for AwReqs AR1–AR3, based on Rainbow’s
SimpleReduceResponseTime strategy presented earlier.

Assuming initial values NoS = 4 and V P1 =
high resolution, AR1 will never actually fail (the simple sce-
nario does not include enlisting of servers) and AR2 (checked
for every user request) will not fail initially. When ZNN.com
experiences spikes in news requests it may cause AR3 (related
to High performance and also checked at every request) to
fail, starting an adaptation session for it.

The first adaptation strategy (AS3.1), applicable only for the
first failure of the session, is to change parameter VP1, which
will take the value low. For the next 1000ms, other requests
with response time over threshold will activate strategy 3.2 (Do
Nothing), simulating the waiting period of Rainbow’s strategy.

If AR3 keeps failing for more than a second, AS3.2 will
cease to be applicable, giving turn to AS3.3, which switches
the fidelity to text-only mode and becomes immediately in-
applicable. Further failures in the next 3 seconds will activate
AS3.4 to simulate another waiting period. If the problem is not
solved during this entire time, the Abort strategy (by default,
the last resort in all AwReq failures) will take place and close
the session.

The problem is considered solved when its resolution con-
dition becomes true. This means that AR3 was evaluated as
being satisfied for a request that happened after one of the
useful strategies (i.e., the ones that are not Do Nothing) was
applied. Until this is true and AR3’s session is closed, failures
of AR2 will not lead to its strategy being executed, given its
applicability condition. Once AR3 is done and response time

26

Serve
news

High
performance

OR

Serve text-
only content Serve high

resolution
content

NoS

VP1

NeverFail
(AR1)

Key (GORE):

Goal Softgoal TaskQuality
constraint Refinement

 Control Variable
 Awareness Requirement

Key (Zanshin):

Cost
efficiency

Single
server

High
fidelity

Content
resolution

is high

NeverFail
(AR2)

NeverFail
(AR3)

Run news
portal

Response
time < MAX

RT

Serve low
resolution
content

AND

Response
time > MIN

RT

OR

Response
time > MIN

RT

OR

Fig. 4. Goal model for the ZNN.com exemplar, mirroring the adaptation scenarios modeled in Rainbow.

AwReq AR1: softgoal Cost efficiency should never fail
- Checked at: every second
- Adaptation Strategy 1.1: Reconfigure(∅)

- Applicability Condition: there are no active sessions for AR3

AwReq AR2: softgoal High fidelity should never fail
- Checked at: every request
- Adaptation Strategy 2.1: ChangeParam(VP1, high)

- Applicability Condition: there are no active sessions for AR3

AwReq AR3: softgoal High Performance should never fail
- Checked at: every request
- Adaptation Strategy 3.1: ChangeParam(VP1, low)

- Applicability Condition: this is the first failure
- Adaptation Strategy 3.2: Do Nothing

- Applicability Condition: AS3.1 applied last, less than 1s ago
- Adaptation Strategy 3.3: ChangeParam(VP1, text-only)

- Applicability Condition: AS3.1 applied last, more than 1s ago
- Adaptation Strategy 3.4: Do Nothing

- Applicability Condition: AS3.3 applied last, less than 3s ago
- Resolution Condition: AR3 was satisfied AND:

- AS3.1 was applied last, more than 1s ago OR
- AS3.3 was applied last, more than 3s ago

Fig. 5. Specification of the SimpleReduceResponseTime strategy with
Zanshin.

goes under MINRT , the AR2’s strategy will be applicable
and, as a result of its execution, ZNN.com will go back to
serving multimedia content.

As the description above shows, the models
produced by applying Zanshin can produce,
at runtime, the same result as the Rainbow’s
SimpleReduceResponseTime strategy. It is also
possible to model the SmarterReduceResponseTime
strategy, by changing the specification of AR3, as follows.

First, its definition would change from “High performance
should never fail” to “High performance should not fail
for more than the MAXunhappy% of the clients”, where
MAXunhappy represents the percentage of clients who ex-
perience response times that are higher than the tolerated
threshold before something has to be done. Second, its adap-

AwReq AR3: HP should not fail more than MAX
unhappy

% of the clients

- Checked at: every request
- Adaptation Strategy 3.1: Do Nothing

- Applicability Condition:
- Only one useful AS applied, less than 0.5s ago OR
- At least two useful ASs applied, last was less than 2s ago

- Adaptation Strategy 3.2: Reconfigure(∅)
- Applicability Condition:

- This is the first or second failure OR
- Last useful AS applied was AS3.3 OR
- VP1 == text-only

- Adaptation Strategy 3.3: ChangeParam(VP1, low)
- Applicability Condition: VP1 == high

- Adaptation Strategy 3.4: ChangeParam(VP1, text-only)
- Applicability Condition: VP1 == low

- Resolution Condition:
- AR3 was satisfied AND
- AS3.1 is not applicable (i.e., we are not waiting)

Fig. 6. Specification of AR3 for the SmarterReduceResponseTime
strategy.

tation strategies and resolution condition should also change,
as shown in Fig. 6. The new specification of AR3 repre-
sents, in a declarative way, the same algorithm described
for SmarterReduceResponseTime in the previous sub-
section: reconfiguration (enlisting of additional servers) is
applied at first with half a second of wait, then multiple times
more (as long as the number of servers does not overcome
maxServers) interposed with gradual reductions of fidelity.

The above exercise of mapping ZNN.com’s Rainbow spec-
ification to Zanshin indicates that the latter, although using a
different representation, has at least equivalent expressiveness
to the former. We will come back to this in the discussion of
Section IV-C.

The expressiveness of Zanshin is due to its extensibility,
allowing for new AwReq/EvoReq patterns and applicabili-
ty/resolution conditions to be created. In effect, most of the
conditions used in the examples of Fig. 5–6 did not yet exist
when we started this experiment.

27

IV. COMPARISON BETWEEN RAINBOW AND ZANSHIN

In the previous section we represented the adaptation strate-
gies that Rainbow implements using Stitch with the EvoReqs
of Zanshin. This allowed us to repeat the same experiment
that simulates a scenario of highly increasing traffic that was
already implemented for Rainbow [17], but this time assigning
the adaptation control to Zanshin.

It is important to point out that the purpose of this work
is not to compare the performance of the two frameworks or
provide a better solution for the case study, but to compare and
contrast the two approaches. To this end we mirror the solution
of the ZNN.com case study using the Zanshin framework
in order to make an apples-to-apples comparison. In what
follows, we describe the methodology of our experiment,
present its result and discuss the two frameworks based on
our experience.

A. Methodology

For purposes of this work, we implemented in Zanshin the
goal model shown in Fig. 4, along with the specification of
the SimpleReduceResponseTime strategy described in
Fig. 5. For the base system (the ZNN.com website) we used
the source code available on the SEAMS community website.

The deployment configuration is similar to the one described
in [17] for the evaluation of the Rainbow framework and
includes five Apache web servers (four replicated hosts and
one proxy) and a MySql database server running on a Debian-
flavored operating system. A JavaTM application called JMeter,
which is used to perform stress tests on web applications, is
instantiated in one additional machine that plays the role of
the clients who send requests to the server. The workload we
created for the experiment (equivalent to that of [17]) simulates
a real world case that many websites like ZNN.com deal with
on a regular basis. The traffic scenario is as follows:

1) Slow start with 6 visits/min;
2) Sudden increase for five minutes where the traffic in-

creases by 120 visits/min every minute until it reaches
600 visits/min;

3) Hold the load for 18 minutes;
4) For the remaining 36 minutes reduce the workload by 15

visits/min every minute.
After running the experiment and evaluating the effective-

ness of Zanshin, we compare the characteristics of the two
approaches by indicating weaknesses and advantages. The
comparison points we set include a) adaptation type b) the kind
of models used by each approach, c) the adaptation actions, d)
the adaptation triggering, e) the adaptation selection and f) how
each framework deals with adaptation failures. The outcome
of this comparison can be exploited by the ongoing research
on adaptive systems, leading to adaptation frameworks that
would combine the maximum set of advantages of the current
approaches.

B. Experimental Results

We conducted two trials, one without any adaptation process
and another applying Zanshin’s adaptation strategies. The

results we extracted from JMeter’s output are presented in
figures 7 and 8, produced by the online service Loadosophia2.
The Baseline trial represents the one without the adaptation
process, whereas the one referred as Test represents the trial
where Zanshin controls ZNN.com.

Fig. 7 shows that the response time has been improved
by 67.4% after applying the adaptation strategies and the
throughput has been improved by 8.7%. While in Fig. 8 the
distribution of the experienced response times is depicted.
From the latter we notice that in the case where Zanshin is
present the distribution of the low response times is higher
than in the case where an adaptation mechanism is absent.

To evaluate the efficiency of our approach we measured
the failures of the AwReqs for every trial. The results have
shown that without the use of an adaptation framework the
AR3 failed 518 times, while with the use of Zanshin it failed
408 times but also AR2 failed 214 times. The improvement
in the performance is obvious but it came with the cost of not
providing high fidelity content for the whole duration of the
experiment. The analysts of the system could use these metrics
to evaluate their strategies and apply the suitable thresholds.

C. Discussion

In this subsection we juxtapose the core ideas of the
architecture-based approach followed by Rainbow and the RE-
based approach followed by Zanshin.

We start by noticing that both approaches base their adap-
tation process on a closed loop, where the system monitors its
output, detects possible malfunctions and changes its parame-
ters in order to keep fulfilling its mandate. The necessity of the
closed loop in software engineering has been pointed out by
[4] as a tool that will give the opportunity to produce systems
based on the principles of Control Theory. Another common
point of the two frameworks, is that the control is external,
which means that the target system does not implement any
part of the control loop. In [19] it is mentioned that by
delegating the control of the system to an external mechanism,
higher generality, cost-effectiveness and composability can be
achieved.

The main difference of the two frameworks lies on the
different kinds of models they utilise to support their adap-
tation mechanism. The architectural model of Rainbow gives
information about the capabilities and the restrictions of the
system, which later on will be exploited as operators and
adaptation conditions accordingly. Furthermore, basing the
adaptation strategies on an architectural model that describes
a family of systems makes them reusable to any target system
that conforms to the same architecture.

However, having as a starting point the architectural model
of the system can result in capturing only low level require-
ments about it. On the other hand, a requirements model as
the one Zanshin uses can capture every requirement that comes
from the stakeholders. Nevertheless, technical restrictions and

2https://loadosophia.org

28

Fig. 7. Summary comparison report

Fig. 8. Distribution of response times

properties can be revealed only at a later stage of the require-
ments analysis process and sometimes important details are
overlooked unintentionally.

We saw earlier that the possible adaptation actions of
Rainbow are defined by the set of basic operators provided
by the target system, e.g., activate server and change fidelity.
These operators can be combined in tactics, which are then
combined in strategies expressed in Stitch language. These
strategies are intended to encapsulate human expertise on
specific situations, where external intervention is required to
restore a malfunctioning system. On the other hand, Zan-
shin provides two kinds of adaptation: reconfiguration and
evolution. A reconfiguration can either change a parameter
of the system (control variable) or switch to an alternative
selected for a variant point (OR-refinement on the goal model).
The new configuration is informed to the system, which can
then take further actions related to this change. It is also
important to point out that the ability of self-inspecting in
Zanshin provides a lot of expression power for its adaptation

strategies. However, as it is usually the case in any modeling
language, this should be used with care in order not to make
models that are very difficult to manage. These modifications
are based on the differential relations mined during the system
identification process and let the system compose its own
adaptation strategies given the holding conditions.

EvoReqs, however, are modeled as Event-Condition-Action
(ECA) rules, where the actions are composed of sixteen basic
operations [15]. From these, thirteen are system-specific thus
must be implemented in the target system. These operations
allow, among other things, to retry a given goal, to change the
parameters of the system, to delegate the issue to an actor and
to relax the awareness requirements (meta-adaptation). In the
previous section we managed to express the Rainbow strategies
with EvoReqs and Reconfiguration using the applicability and
the resolution conditions. Defining a formal transformation
from one approach to the other, though, is not an easy task. The
adaptation strategies composed by EvoReqs are more close to
those of the Rainbow framework written in Stitch as they both

29

capture static administrative operations while the latter gives
a more clear representation of the priorities of the objectives
using Utility Theory.

Regarding the monitoring part (malfunction detection),
in Rainbow an adaptation is triggered when any invari-
ant in the ACME model fails. An example of invariant is
response time < MAXRT . Thus, if the response time gets
equal or higher than the maximum allowed, an adaptation is
triggered. Instead of invariants, Zanshin utilizes AwReqs in the
requirements model to reason about the status of the target
system’s operation.

For instance, considering a quality constraint of
response time < MAXRT , an AwReq may state that
this should be the case in at least 90% of the time. If
the percentage goes below that threshold, an adaptation is
triggered. We can say that both frameworks are based on the
models that they use as a centerpiece for their adaptation, in
order to define the variables of the system which should be
monitored. However, the variety of AwReqs offer a higher
level of expressiveness to represent objectives to be satisfied
at runtime, than the simple conditions of the architectural
model.

Another comparison point is adaptation triggering. In Rain-
bow, it is guided by pre-conditions for the execution of
adaptation strategies. If more than one is applicable, the best
one is selected according to an aggregate attribute vector that
considers a) the cost-benefit of the tactics in a strategy, b) the
weights of predefined criteria, and c) the likelihood of each
tactic being applicable. In Zanshin, EvoReqs have a similar
format: there are pre-conditions that define whether a strategy
applies or not. If more than one is applicable, the first one is
selected (according to the order on which the EvoReqs were
defined).

However, when Zanshin uses reconfiguration, the new val-
ues for the system’s parameters are defined based on a control-
theoretic approach. Differential relations are used to define
the impact of parameter changes on the AwReqs (benefit).
Different adaptation algorithms can be used to select which
reconfiguration to perform. In Section III-B, given that we
were mirroring the scenario implemented in Rainbow, only one
parameter (NoS) was used in the process and reconfiguration
was trivial. We could have, however, included differential
relations about VP1 as well:

∆ (AR2/V P1) > 0 (3)
∆ (AR3/V P1) < 0 (4)

These equations represent the fact that an increase in the
fidelity level would contribute positively to the success of
AR2 (3) but at the same time decrease the success rate of the
AR3 (4). Considering these equations together with the ones
presented earlier, we can prioritize the relations that involve the
same indicator to declare which parameters have greater im-
pact on it. For example, ∆ (AR3/NoS) [0,maxServers] >
∆ (AR3/V P1) would mean that by increasing the number

of servers the probability to have high performance (AR3) is
increasing faster than by decreasing the fidelity. This way,
Zanshin can provide dynamic adaptation based on control
theory principles, while the adaptation process in Rainbow is
in this sense static.

Finally, we contrast how the two frameworks deal with
adaptation failures. In Rainbow a tactic fails when a) its pre-
conditions are not satisfied, b) the execution of its operators
fail, or c) the result of the tactic is different than expected
(which is assessed through post-conditions). These failures
are predicted in the strategies, which can request alternative
tactics to be executed when a given tactic fails. If all the
possible tactics were applied, but the goal of the strategy
is not achieved, a termination condition is triggered and the
strategy ends. Then Rainbow will recalculate which is the
most suitable strategy to apply. Similarly, in Zanshin when
none of the applicability conditions of the EvoReqs for a
given adaptation is satisfied, the adaptation is aborted. After an
adaptation action is performed, but the AwReq that triggered
the adaptation still fails, the adaptation selection is performed
again.

V. RELATED WORK

As we have previously mentioned, the purpose of this paper
is to compare RE-based and architecture-based approaches to
the design of adaptive systems. To this end, we have chosen
one representative of each type, respectively the Zanshin (cf.
§II-B) and the Rainbow (cf. §II-A) frameworks.

However, there are several approaches that fit these two
categories, many of which are cited in surveys and roadmap
papers in the area of adaptive systems [1], [2], [3], [4], [5]. In
what follows, we summarize some of these approaches.

A well-known RE-based approach is RELAX [20], which
aims at capturing uncertainty declaratively with modal, tempo-
ral and ordinal operators applied over SHALL statements (e.g.,
“the system SHALL ... AS CLOSE AS POSSIBLE to ...”).
A similar approach, but based on the goal-oriented language
KAOS [21], is FLAGS [22]. This approach extends the linear
temporal logic (LTL) used in KAOS with fuzzy relational and
temporal operators, allowing some goals to be satisfied even if
values are “around” but not exactly equal to the desired ones.
FLAGS also proposes an operationalisation of its models in
a service-oriented infrastructure. It could also be a candidate
for a more extended comparison since the approach involves
mechanisms for capturing the problem and the adaptive solu-
tions similar to Zanshin. The operationalisation though of the
approach would require to tailor the case study accordingly.

The LoREM approach [23], also based on KAOS, uses
an extension of LTL that includes an Adapt operator and
defines a systematic process for performing goal-oriented
RE for adaptive systems. Later, Cheng et al. [24] integrate
this approach with the RELAX language in order to explore
environmental uncertainty using threat modeling.

There are also a few RE-based approaches for the design
of adaptive systems based on i? [25] and Tropos [26]. Tro-
pos4AS [27] is a methodology for the design of agent-based

30

adaptive systems founded on the Belief-Desire-Intention (BDI)
model. As run-time infrastructure, Tropos4AS proposes the
mapping of goal models to Jadex.3 The CARE method [28]
also bases itself on Tropos, but focuses on service-based appli-
cations. Adaptive requirements are specified at design time and
a run-time infrastructure based on environment monitoring,
service selection and customization is provided. Dalpiaz et
al. [29] propose an architecture that adds self-reconfiguring
capabilities to a system using a Monitor-Diagnose-Compensate
(MDC) loop based on the system’s requirements models in i?.
Different reconfiguration algorithms are proposed on top of
this architecture.

On the architecture-based side, one of the first proposals
for an architecture that is well-suited for systems that can adapt
themselves was IBM’s autonomic computing initiative [30].
According to it, systems are made of interactive collections of
autonomic elements delivering services to users and to other
elements according to specified goals and constraints. Each
element follows an internal MAPE-K loop which performs
monitoring, analysis, planning and execution of actions, based
on knowledge about the environment, policies, etc. Another
seminal work is that of Oreizy et al. [31], which proposed
an infrastructure that relies on software agents, explicit repre-
sentation of software components and the environment, plus
messaging and event services that coordinate the adaptation.

A well-known architecture-based approach is that of Kramer
& Magee [32], which proposes a reference architecture for
self-adaptive systems based on a three-layer architecture —
from bottom to top: Component Control (reports events and
status to the upper layer and supports modification of current
component configuration); Change Management (performs
changes in the bottom layer based on situations reported by the
latter or new goals introduced by it, relying on the top layer
in case of unplanned situations); and Goal Management (pro-
duces change management plans in response to requests from
the middle layer or the introduction of new goals). Several
subsequent proposals followed this architectural foundation.

Sousa et al. [33] focus on allowing users to control Quality
of Service (QoS) trade-offs and coordinate the use of resources
in a distributed environment composed of several applications.
Utility functions for each QoS dimension express user prefer-
ences in terms of thresholds for satiation and starvation. The
SASSY framework [34] also focuses on QoS tuning, targeting
service oriented systems. The approach uses a BPMN4-based
language to represent the correct behavior of the system,
allowing domain experts to annotate such model with QoS
goals.

VI. CONCLUSIONS

In this paper we conducted a comparative study between two
adaptation approaches, one architecture-based and one RE-
based. As a reference point we used the ZNN.com exemplar,
applying both frameworks to provide adaptation mechanisms

3A BDI Agent System, see http://jadex-agents.informatik.uni-hamburg.de/.
4Business Process Model and Notation, see http://www.bpmn.org/.

according to its described scenarios. Results have shown that
both frameworks can provide significant improvement to the
system’s operation, without any human intervention.

We also performed a side by side comparison of the core
elements of both approaches. The outcome of this comparison
is that architecture models can capture all the properties and
technical restrictions of the target system and by using them
as a guide to develop adaptation strategies the reusability of
the adaptation mechanism becomes applicable.

More specifically, Rainbow captures the human experience
and expertise in its strategies and, by applying techniques from
decision theory, selects the one that is most suitable. Therefore,
the control level of Rainbow does not exceed the one of the
human intervention but automates it, offering better reaction
time and eliminating human errors.

On the other hand, a requirements model captures more
explicitly the objectives of the systems and, with the use of
quality constraints, can also express the technical restrictions.
However, the exact values of the thresholds of these constraints
can be provided either by the instantiation of the architecture
model or by the expertise of the system analyst. Moreover,
some practitioners may consider that detailed architectural
information do not belong in requirements models.

Regarding the adaptation process, the RE-based approach
presented in this paper provides higher variability by applying
EvoReqs or letting the system adjust its parameters through
a reconfiguration strategy. In this way, the system relies its
adaptation process not only on human expertise but also on
well-founded principles of control theory. The current state
of Zanshin applies these principles using qualitative control,
although deriving quantitative factors that would give precise
information about the impact of the parameter changes on the
system’s output is part of our research agenda.

In summary, this study revealed the advantages and the
vulnerabilities of two well-known approaches in the field of
software adaptation. The results suggest that requirement and
architectural models should be combined in order to capture
every detail of the target system’s adaptation needs. The
purpose of this combination is to mine all the alternatives
that are embedded in the solution and the problem space.
The requirements models can provide a broader set of al-
ternatives (e.g., in the case of ZNN.com, delegate the video
hosting to an external service, such as YouTube), while the
architectural models can provide variability in the deployment
of the solution. Moreover, AwReqs and parameters can indicate
the specific components of the system or variables of the
environment that should be monitored, instead of putting
probes empirically.

For the reasons illustrated above, our current research fo-
cuses on the derivation of architecture models from require-
ments models that include control parameters and indicators.
We are using the STREAM-A approach [35] as baseline for
this new line of work.

31

ACKNOWLEDGMENT

We are grateful to Bradley Schmerl for providing us with
valuable information and material about the Rainbow imple-
mentation to facilitate our comparative study.

This work has been supported by the ERC advanced
grant 267856 “Lucretius: Foundations for Software Evolution”
(April 2011 – March 2016, http://www.lucretius.eu) as well
as Brazilian foundations FAPES (http://www.fapes.es.gov.br)
through the PRONEX grant #52272362 and CAPES
(http://www.capes.gov.br).

REFERENCES

[1] E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou, and K. Pohl, “A
journey to highly dynamic, self-adaptive service-based applications,”
Automated Software Engineering, vol. 15, no. 3, pp. 313–341, 2008.

[2] M. C. Huebscher and J. A. McCann, “A survey of Autonomic
Computing—Degrees, Models, and Applications,” ACM Computing Sur-
veys, vol. 40, no. 3, pp. 1–28, 2008.

[3] M. Salehie and L. Tahvildari, “Self-Adaptive Software: Landscape and
Research Challenges,” ACM Transactions on Autonomous and Adaptive
Systems, vol. 4, no. 2, pp. 1–42, 2009.

[4] B. H. C. Cheng et al., “Software Engineering for Self-Adaptive Sys-
tems: A Research Roadmap,” in Software Engineering for Self-Adaptive
Systems, ser. Lecture Notes in Computer Science, B. H. C. Cheng,
R. de Lemos, H. Giese, P. Inverardi, and J. Magee, Eds. Springer,
2009, vol. 5525, pp. 1–26.

[5] R. de Lemos, H. Giese, H. A. Müller, and M. Shaw, Eds., Software
Engineering for Self-Adaptive Systems II, ser. Lecture Notes in Computer
Science. Springer, 2013, vol. 7475.

[6] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste,
“Rainbow: Architecture-Based Self-Adaptation with Reusable Infras-
tructure,” Computer, vol. 37, no. 10, pp. 46–54, 2004.

[7] V. E. S. Souza, “Requirements-based Software System Adaptation,” PhD
Thesis, University of Trento, Italy, 2012.

[8] S.-W. Cheng, “Rainbow: Cost-Effective Software Architecture-based
Self-adaptation,” Ph.D. dissertation, Carnegie Mellon University, 2008.

[9] D. Garlan, R. Monroe, and D. Wile, “Acme: an architecture description
interchange language,” in Proceedings of the 1997 conference of
the Centre for Advanced Studies on Collaborative research, ser.
CASCON ’97. IBM Press, 1997, pp. 7–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=782010.782017

[10] B. Schmerl and D. Garlan, “Exploiting Architectural Design Knowledge
to Support Self-Repairing Systems,” in Proc. of the 14th Interna-
tional Conference on Software Engineering and Knowledge Engineering.
ACM, 2002, pp. 241–248.

[11] D. Garlan, S.-W. Cheng, and B. Schmerl, “Increasing System Depend-
ability through Architecture-Based Self-Repair,” in Architecting Depend-
able Systems, ser. Lecture Notes in Computer Science, R. de Lemos,
C. Gacek, and A. Romanovsky, Eds. Springer, 2003, vol. 2677, pp.
61–89.

[12] S.-W. Cheng and D. Garlan, “Stitch: A language for architecture-based
self-adaptation,” Journal of Systems and Software, vol. 85, no. 12, pp.
2860–2875, 2012.

[13] V. E. S. Souza, A. Lapouchnian, and J. Mylopoulos, “System Identi-
fication for Adaptive Software Systems: a Requirements Engineering
Perspective,” in Conceptual Modeling – ER 2011, ser. Lecture Notes
in Computer Science, M. Jeusfeld, L. Delcambre, and T.-W. Ling, Eds.
Springer, 2011, vol. 6998, pp. 346–361.

[14] V. E. S. Souza, A. Lapouchnian, W. N. Robinson, and J. Mylopoulos,
“Awareness Requirements for Adaptive Systems,” in Proc. of the 6th
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems. ACM, 2011, pp. 60–69.

[15] V. Souza, A. Lapouchnian, K. Angelopoulos, and J. Mylopoulos,
“Requirements-driven software evolution (online first),” Computer Sci-
ence - Research and Development, pp. 1–19, 2012.

[16] V. E. S. Souza, A. Lapouchnian, and J. Mylopoulos, “Requirements-
driven Qualitative Adaptation,” in Proc. of the 20th International Con-
ference on Cooperative Information Systems (to appear). Springer,
2012.

[17] S.-W. Cheng, D. Garlan, and B. Schmerl, “Evaluating the Effectiveness
of the Rainbow Self-Adaptive System,” in Proc. of the ICSE 2009
Workshop on Software Engineering for Adaptive and Self-Managing
Systems. IEEE, 2009, pp. 132–141.

[18] I. Jureta, J. Mylopoulos, and S. Faulkner, “Revisiting the Core Ontology
and Problem in Requirements Engineering,” in Proc. of the 16th IEEE
International Requirements Engineering Conference. IEEE, 2008, pp.
71–80.

[19] S.-W. Cheng, D. Garlan, and B. Schmerl, “Self-star properties in
complex information systems,” O. Babaoglu, M. Jelasity, A. Montresor,
C. Fetzer, and S. Leonardi, Eds. Berlin, Heidelberg: Springer-Verlag,
2005, ch. Making self-adaptation an engineering reality, pp. 158–173.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2167575.2167589

[20] J. Whittle, P. Sawyer, N. Bencomo, B. Cheng, and J.-M. Bruel,
“RELAX: a language to address uncertainty in self-adaptive systems
requirement,” Requirements Engineering, vol. 15, no. 2, pp. 177–196,
2010.

[21] A. Dardenne, A. van Lamsweerde, and S. Fickas, “Goal-directed Re-
quirements Acquisition,” Science of Computer Programming, vol. 20,
no. 1-2, pp. 3–50, 1993.

[22] L. Baresi, L. Pasquale, and P. Spoletini, “Fuzzy Goals for Requirements-
driven Adaptation,” in Proc. of the 18th IEEE International Require-
ments Engineering Conference. IEEE, 2010, pp. 125–134.

[23] H. J. Goldsby, P. Sawyer, N. Bencomo, B. H. C. Cheng, and D. Hughes,
“Goal-Based Modeling of Dynamically Adaptive System Requirements,”
in Proc. of the 15th Annual IEEE International Conference and Work-
shop on the Engineering of Computer Based Systems. IEEE, 2008, pp.
36–45.

[24] B. H. C. Cheng, P. Sawyer, N. Bencomo, and J. Whittle, “A Goal-
Based Modeling Approach to Develop Requirements of an Adaptive
System with Environmental Uncertainty,” in Model Driven Engineering
Languages and Systems, ser. Lecture Notes in Computer Science,
A. Schürr and B. Selic, Eds. Springer, 2009, vol. 5795, pp. 468–483.

[25] E. S. K. Yu, P. Giorgini, N. Maiden, and J. Mylopoulos, Social Modeling
for Requirements Engineering, 1st ed. MIT Press, 2011.

[26] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos,
“Tropos: An Agent-Oriented Software Development Methodology,” Au-
tonomous Agents and Multi-Agent Systems, vol. 8, no. 3, pp. 203–236,
2004.

[27] M. Morandini, L. Penserini, and A. Perini, “Operational Semantics of
Goal Models in Adaptive Agents,” in Proc. of the 8th International
Conference on Autonomous Agents and Multiagent Systems. ACM,
2009, pp. 129–136.

[28] N. A. Qureshi and A. Perini, “Requirements Engineering for Adaptive
Service Based Applications,” in Proc. of the 18th IEEE International
Requirements Engineering Conference. IEEE, 2010, pp. 108–111.

[29] F. Dalpiaz, P. Giorgini, and J. Mylopoulos, “Adaptive socio-technical
systems: a requirements-based approach,” Requirements Engineering,
pp. 1–24, 2012.

[30] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[31] P. Oreizy et al., “An Architecture-Based Approach to Self-Adaptive
Software,” IEEE Intelligent Systems, vol. 14, no. 3, pp. 54–62, 1999.

[32] J. Kramer and J. Magee, “Self-Managed Systems: an Architectural
Challenge,” in Future of Software Engineering (FOSE ’07). IEEE,
2007, pp. 259–268.

[33] J. P. Sousa, R. K. Balan, V. Poladian, D. Garlan, and M. Satyanarayanan,
“A Software Infrastructure for User–Guided Quality–of–Service Trade-
offs,” in Software and Data Technologies, ser. Communications in Com-
puter and Information Science, J. Cordeiro, B. Shishkov, A. Ranchordas,
and M. Helfert, Eds. Springer, 2009, vol. 47, pp. 48–61.

[34] D. A. Menasce, H. Gomaa, S. Malek, and J. a. P. Sousa, “SASSY:
A Framework for Self-Architecting Service-Oriented Systems,” IEEE
Software, vol. 28, no. 6, pp. 78–85, 2011.

[35] J. Pimentel, M. Lucena, J. Castro, C. Silva, E. Santos, and F. Alencar,
“Deriving software architectural models from requirements models for
adaptive systems: the STREAM-A approach,” Requirements Engineer-
ing, vol. 17, no. 4, pp. 259–281, 2012.

32

