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Abstract. Conceptual models often capture the invariant aspects of the phe-

nomena we perceive. These invariants may be considered static when they refer 

to structures we perceive in phenomena at a particular point in time or dynam-

ic/temporal when they refer to regularities across different points in time. While 

static invariants have received significant attention, dynamics enjoy marginal 

support in widely-employed techniques such as UML and OCL. This paper 

aims at addressing this gap by proposing a technique for the representation of 

dynamic invariants of subject domains in UML-based conceptual models. For 

that purpose, a temporal extension of OCL is proposed. It enriches the ontologi-

cally well-founded OntoUML profile and enables the expression of a variety of 

(arbitrary) temporal constraints. The extension is fully implemented in the tool 

for specification, verification and simulation of enriched OntoUML models. 

Keywords: Conceptual Modeling, OntoUML, Temporal OCL 

1 Introduction 

In a broad perspective, conceptual modeling has been characterized as “the activity of 

formally describing some aspects of the physical and social world around us for pur-

poses of understanding and communication” [20]. Many of the efforts in conceptual 

modeling attempt to represent a conceptualization about a given subject domain [15], 

which is often accomplished by capturing in a model the invariant aspects of the phe-

nomena we perceive. These invariants may be considered static when they refer to 

structures we perceive in phenomena at a particular point in time or dynamic when 

they refer to regularities across different points in time.  

Take for instance a domain about persons, their stages in life and their marriages. 

At a particular point in time, a number of persons will exist, each of which may be 

male or female, may be a child, a teenager or an adult, and may be related to someone 

else by marriage. The static invariants that may be represented in a conceptual model 

of this domain include the various categories of entities in a domain (in our example, 

“person”, “man”, “woman”, “child”, “teenager”, “adult”, “elder”, “marriage”) as well 

as their relations (a “child” is a “person”, “marriage” may be established between two 

“persons”, etc.). The dynamic invariants in turn reflect the fact that across different 



points in time entities of the domain undergo change. In our example, persons are 

born and die, become teenagers and adults, marry, divorce, etc. Dynamic invariants 

represent what may change and what must remain constant in time. For example, 

children cannot suddenly become adults, adults cannot later in life become teenagers 

and elders cannot become children, teenagers or adults. 

Much attention has been given to the representation of static invariants in a number 

of modeling notations including ER diagrams, ORM diagrams [16], and UML Class 

Diagrams [23]. The UML for example has been enriched with the Object Constraint 

Language (OCL) to capture invariant expressions [22]. With respect to the dynamic 

invariants, these have been mostly confined to the representation of pre- and post-

conditions for operations or simple meta-attributes for features such as “read only” 

[23, p.125, 129]. Further, due to the strict correspondence that is often established 

between modeling languages and programming languages, many UML-based ap-

proaches lack support for dynamic classification (e.g. USE [13], HOL-OCL [5], 

UML2Alloy [1, 8]). While this facilitates the mapping to specific programming lan-

guages or formalisms, this renders these approaches less suitable to enable the expres-

sion of important conceptual structures that rely on dynamic classification (e.g., the 

classification of persons into life phases: child, teenager, and adult, the classification 

of persons into roles they play contingently such as husband and wife)
1
. 

In order to address the shortcomings of the UML and OCL specifications, many 

approaches have been proposed to extend UML and OCL with dynamic aspects. 

Some of these approaches address dynamic aspects as part of an overall approach to 

handle temporal/time aspects [3, 4, 6, 7, 9, 12, 15, 18, 19, 27]. The OntoUML [15], 

for example, introduces various dynamic aspects through stereotypes referring to 

meta-attributes of classes and properties such as rigidity and immutability. Similarly, 

[6] extends UML with stereotypes, augmenting it with dynamic notions of durability 

and frequency. Others have aimed at enriching OCL with extensions in order to cope 

with dynamic/temporal properties of systems. For example, some have extended OCL 

with Linear-Temporal Logic and Computational-Tree logic (LTL/CTL) operators [3, 

7, 19, 27], created new logic formalisms [4, 9], extended OCL with temporal patterns 

[18], defined a Real-Time extension for OCL with a temporalized CTL [12], etc.  

Despite these recent advances, a comprehensive approach to the representation of 

dynamic aspects in UML-based conceptual models is still lacking. This gap is ad-

dressed in this paper, in which we extend OCL with the capability to express rich 

dynamic invariants in OntoUML. Our approach is based on a reification of world 

states, with no specialized knowledge in tense logic required to use the approach.  

This paper is structured as follows. Section 2 presents our running example, illus-

trating the various requirements for the representation of dynamics aspects. Section 3 

introduces the proposed OCL extension. Section 4 revisits our running example to 

show how the approach meets the requirements. Section 5 discusses related work 

while Section 6 discusses the implementation and concluding remarks. 

                                                           
1 Note that while dynamic classification is supported in principle by UML diagrams, this is not 

reflected in tool support and language usage, with little mention in the UML specification. 



2 Requirements for the Representation of Dynamic Aspects 

According to [6], the UML is a non-temporal conceptual modeling language. Thus, a 

UML class diagram represents the actual state of a system assuming that the “infor-

mation base” contains only the current instances of classes and relationships. Fig. 1 

depicts a conceptual model in UML about a domain involving persons, their stages in 

life and marriages. UML multiplicities in the model define the allowable number of 

individuals to which a particular individual may be linked in any given state of the 

system. For example, a partner (husband or wife) can only be married to one other 

partner at a time. The model is silent with respect to the number of persons a person 

can marry in time, i.e., whether they may or may not divorce and remarry.  

 

Fig. 1. UML structural conceptual model example 

The model of Fig. 2 revisits the model of Fig. 1 employing the OntoUML profile. The 

profile uses class stereotypes to determine which ontological category from the UFO 

applies to each class [15]. This means that OntoUML can address some of dynamic 

aspects of this domain that are not addressed in plain UML. For example, the class 

Person is stereotyped as <<kind>>, meaning that it applies necessarily to its instances. 

Thus, a person cannot cease to be a person without ceasing to exist. This modal notion 

corresponds to what is called Rigidity in UFO. The consequence of rigidity in terms 

of dynamic aspects is that an individual of a rigid class instantiates this class through-

out its life. A kind can be used in a taxonomic structure with rigid subtypes known as 

subkinds (e.g., Man and Woman).  

 

Fig. 2. OntoUML structural conceptual model example 



Other examples of dynamic aspects expressed in Fig. 2 include the stereotypes of 

<<roles>> and <<phase>>. Husband and Wife are stereotyped as <<role>> and Child, 

Teenager, Adult and Elder as <<phase>>. Roles and phases are both anti-rigid con-

cepts (e.g. a wife can cease to be a wife without ceasing to exist). Anti-Rigidity states 

that a class C is anti-rigid iff for all its individuals, there will be a point in time w in 

which they exist but do not instantiate C, at w. The difference between the two is that 

the former defines contingent properties of an individual exhibited in a relational 

context (e.g. a person is a wife contingently and only in the context of a marriage) 

while the later through an intrinsic change of an individual’s property (e.g. a child has 

the intrinsic property of being a child). 

The class Marriage is stereotyped as <<relator>>. Relators can be viewed as ob-

jectified properties, as entities that “connect” other entities. They are the truthmakers 

of the so-called <<material>> relationships. For example, it is the existence of a par-

ticular marriage connecting man X and wife Y that makes true the relation is-married-

with(X, Y). A derivation relationship on the other hand holds between a relator and a 

material relationship and exemplifies the truth-maker relation. Relators are rigid con-

cepts and existentially dependent on the instances they connect through <<media-

tion>> relationships. A mediation is a dependency relationship that defines existen-

tial dependence from their source entity, e.g. Marriage, to their target entities, e.g., a 

Wife and a Husband. This means that a marriage only exists at some point in time, if 

wife and husband also exist at that point in time. A particular marriage then depends 

specifically on two “fixed” persons, i.e., the marriage between Bob and Alice cannot 

ever become the marriage between Bob and Anna. Mediations are thus always defined 

as readOnly at their target-side by default. From a logical point of view, this dynamic 

aspect of existential dependence can be viewed as a type of immutability (a marriage 

never changes their participating wife and husband). Immutability states that if an 

individual (e.g. marriage) exists at a point in time w, then at every subsequent time w’ 

from w that the individual exists, that individual will have in w’ the same property 

(e.g. same wife and husband) as it had in w. Finally, the classes Husband and Wife are 

related through exactly 1 Marriage, meaning that we represent monogamous hetero-

sexual marriage, i.e., a partner can only be married to one partner at a time. 

While some distinctions in OntoUML enable the representation of dynamic as-

pects of the domain, a number of other dynamic invariants cannot be expressed: 

1. A person is created in the child phase.  

2. An adult cannot become a child or teenager (a teenager cannot became a child). 

3. An elder is the last phase of a person (it cannot become adult, teenager or child). 

4. A person should eventually cease to exist at some point.  

Constraints 1-3 can be viewed as more general behaviors about classifications or 

transitions of individuals. We named these as Initial, General and Final Transition 

dynamic aspects, respectively. Constraint 4 in turn can be viewed as more general 

behavior about the existence of individuals. Transient means lasting only for a deter-

mined time. We named this as a Transient Existence dynamic aspect.  

In addition to the constraints specified above, the OntoUML model still does not 

represent how many times a person can marry throughout his/her life, and the model 



is silent about this aspect of the conceptualization. In this model, a marriage could 

still be transient (when it ceases to exist eventually) or permanent (when it never 

ceases to exist once created). The permanence view of marriages could refer, for ex-

ample, to a religious conceptualization, where marriages are divine “contracts” be-

tween two people and cannot be undone. If committed to this view, a desired dynamic 

invariant would be: 

5. If a marriage is established then it can no longer be destroyed.  

We named this as a Permanent Existence dynamic aspect. On the other hand, if a 

marriage is transient and ceases to exist, it may be desirable in a given conceptualiza-

tion to refer to ex-spouses, i.e., people who participated in a past marriage, which no 

longer exists in the present: 

6. A person will only be an ex-husband or ex-wife if he/she was a husband/wife in a 

marriage in the past which no longer exists.  

This is a common dynamic invariant that has been called Derivation by Past Speciali-

zation in [21].  

The kinds of limitations in the expressiveness of diagrammatic languages (e.g. On-

toUML, UML) we identify here are often an explicit language design decision, in 

order to manage the complexity of graphical representation. In order to complement 

the graphical representation and address the expressiveness needs, textual representa-

tions such as OCL have been proposed to enrich the model as captured in a diagram-

matic language. We also take that approach and employ OCL in order to enrich On-

toUML in other to support the representation of dynamic aspects of the domain.  

The modeling approach is required to:  

- support dynamic classification (i.e., allow for individuals to change types 

throughout their existence);  

- enable the expression of modal constraints on types (e.g., rigidity, anti-rigidity);  

- enable the expression of transition rules (constraining the order in which individ-

uals instantiate types), transient/permanent existence and past specializations; and 

- finally, enable the expression of arbitrary dynamic invariants, i.e., invariants 

whose satisfaction is determined by examining the world at more than one point 

in time.  

Transition rules include: (i) initial type rules (determining the type that is instantiated 

necessarily upon creation); (ii) final type rules (determining the types that once in-

stantiated, classify the individual); (iii) other general transition rules (constraining 

arbitrary order of instantiation). Transition rules may be expressed by behavior mod-

els such as with UML state chart diagrams. However, we are aiming here for a gen-

eral approach to define arbitrary types of dynamic constraints. Further, the modeling 

approach must not rely on operations of classes, as these are not employed by On-

toUML [15], and also not employ specialized tense/temporal logic-based operators as 

[3, 7, 19, 27], in order to retain its ease of use for UML/OCL modelers. 



3 A Standard OCL Temporal Extension  

A standard OCL invariant is a static condition that should hold for each single state of 

the model’s instances. As a consequence, the so-called “context” of a standard invari-

ant is a single state, and no notion of “state” is manipulated in standard OCL invari-

ants. In order to enable the manipulation of states and consequently the representation 

of dynamic aspects, we reify the notion of “world states” (or simply “worlds”) (Sec-

tion 3.2). Reification gives the ability of referencing, quantifying and qualifying over 

an objectified entity (in this case, the domain’s states). We use the “world” as an in-

dex to refer to the properties at a particular point in time (Section 3.3). We propose a 

branching world structure, which can be used to enable arbitrary reference to worlds 

and world paths in invariants (Section 3.4). We adjust a few standard OCL pre-

defined operations in order to support world indexing (Section 3.5). The use of the 

resulting temporal extension of OCL described in this section is shown in Section 4. 

3.1 Temporal Extension Approach 

Our approach for extending OCL with dynamic invariants consists of using a tempor-

alized UML/OCL model in the background with the notion of world states reified, 

such as illustrated by Fig. 3. The OntoUML model is translated into a world-reified 

model in plain UML. This model is enriched with constraints in standard OCL to 

ensure the former OntoUML model semantics. Arbitrary standard OCL constraints 

can then be bound to this temporalized enriched model. With this binding, only few 

adjustments in standard OCL are required in order for standard OCL to behave as a 

temporal language. Our extension employs these adjustments: (i) defining built-in 

operations for world-indexed navigations (Section 3.3) and (ii) creating support for 

world states in some pre-defined OCL object and classifier operations (Section 3.5). 

Using the binding with a world-reified model in background we are able to use stand-

ard OCL as if it was a temporal language. 

 
Fig. 3. Temporal Extension Approach 

Temporal OCL constraints are then treated as standard OCL (with only few adjust-

ments), and verified syntactically in order to be transformed to other languages such 

as Alloy [17]. The modeler expresses a conceptual model in OntoUML and Temporal 



OCL and is shielded completely from this underlying support, which ultimately gen-

erates an Alloy model for simulation and validation of constraints. 

3.2 Underlying the World-Reified Model of Background 

The idea behind world states reification is to treat the world states (or “worlds”) as 

entities. Thus we introduce the class “World” in this reification step. The OntoUML 

model example about people, their stages in life and marriages, previously depicted in 

Fig. 1, is translated into a world-reified UML model. Fig. 4 depicts only a fragment of 

that resulting UML model. In this model, UML is employed as a temporal model and 

therefore UML classes represent individuals existing at all possible states of the 

world. Every former OntoUML class (e.g. the kind Person, the relator universal Mar-

riage) now specializes UML class Individual, in order to support the existsIn relation, 

which holds for the worlds in which an individual exists. In this manner, all On-

toUML classes can be indexed in time through this relation of existence. Note that all 

UML relationships in this model are readOnly by default since time was reified and 

each property change is now characterized by a change in the world states. 

 

Fig. 4. A Fragment of the World-Reified UML Model of Background 

In order to capture the dynamics of OntoUML relationships in this reified UML mod-

el, all former relationships are reified (translated) to a UML class, with three UML 

binary relationships and OCL constraints to maintain the semantics of the original 

OntoUML relationship. The class representing that relationship defines the worlds in 

which the relationship exists. For instance, the UML class mediates_Marriage_Wife 

represents the former OntoUML mediation relation between Marriage and Wife. 

Since all wives must be related to a marriage, it existsIn a non-empty set of Worlds. In 

each world, there may be a set of relationships of this type.  

Finally, OntoUML multiplicities define actual multiplicity constraints (i.e. they re-

strict how many individuals an individual may be linked to at a single world state). 

We chose not to represent OntoUML’s actual multiplicity constraints in this reified 

model using UML because only the lower actual cardinality can be represented using 



a UML lifetime multiplicity (e.g. a wife has exactly one marriage at a time, which 

means that she has also at least one marriage in her lifetime). For this reason, we rep-

resented all OntoUML’s actual multiplicity in this reified model of Fig. 4 as addition-

al OCL constraints. Thus, the multiplicities from Wife and Marriage to the reified 

mediation in the reified model are defined as simply 0..*. Fig. 5 exemplifies these 

additional constraints specifying OntoUML’s actual multiplicity of the mediation 

between Marriage and Wife (they are embedded in the world-reified model and trans-

parent to the modeler). The first constraint states that a marriage mediates exactly one 

wife at a world i.e. for every world (self), for all marriages at self, the number of me-

diates_Marriage_Wife linked (at self) to that marriage is equal to 1. Conversely, the 

second constraint states that a wife is mediated by exactly one marriage at a world.  

context World  

inv marriage_mediates_one_wife_at_a_time:  

    self.individual->select(i | i.oclIsKindOf(Marriage))->forAll(m |  

    m.mediates_marriage_wife->select(r | r.world = self)->size() = 1) 

inv wife_is_mediated_by_one_marriage_at_a_time:  

    self.individual->select(i| i.oclIsKindOf(Wife))->forAll(h |  

    h.mediates_marriage_wife->select(r | r.world = self)->size() = 1) 

Fig. 5. World-Reified UML Model: Reflecting OntoUML Multiplicities using OCL 

In order to maintain the actual semantics of OntoUML, additional constraints are 

required in our world-reified UML model (e.g., to capture the fact that relationships, 

relators and relata co-exist in all worlds in which they exist, to reflect the immutabil-

ity of relata on which a relator depends, etc.). They are all represented in plain OCL in 

the world-reified model. We omit them here due to space constraints.  

3.3 Temporal OCL Navigations 

Usually, OCL navigations on ternary relationships can proceed in three stages: (i) 

navigating from a ternary relationship to each class it relates, (ii) from each related 

class to the ternary relationship itself, and (iii) navigating from a first related class to a 

second related class, filtering the result to a third related class. In our previous world-

reified UML model, only (iii) is allowable filtering the result of navigation with re-

spect to world states. (i) and (ii) are not supported because the reified ternary relation-

ship (i.e. the UML class acting as the relationship in our reified model) is hidden from 

the modeler (they are an implicit construct generated only in the background), and 

secondly because we want to refer to properties at a specific point in time, making 

explicit the world state. 

Fig. 6 specifies the definition of the allowable temporal OCL navigations, as (iii). 

The first navigation Wife::marriage(w) is defined from Wife to Marriage filtered by a 

specific world state. It returns all marriages of a wife at world w. The second naviga-

tion is defined from Marriage to Wife Marriage::wife(w), returning the wife related to 



a specific marriage at w. These world-indexed navigations are available to the model-

er in order to refer to the relation in a particular state. Furthermore, we also enabled a 

temporal OCL navigation without a world parameter which returns all individuals of a 

property, at all possible worlds. For example, if self is a wife, then self.marriage re-

turns all marriages of a wife in her entire life. 

context Wife  

def: marriage(w: World): Set(Marriage) =  

  self.mediates_Marriage_Wife->select(m | m.world=w)->collect(marriage)->asSet() 

context Marriage  

def: wife(w: World): Set(Wife) =  

  self.mediates_Marriage_Wife->select(m | m.world=w)->collect(wife)->asSet() 

Fig. 6. World-Reified UML Model: Definition of Temporal OCL Navigations 

3.4 World Structures 

An ordered structure of world states models how the subject domain behaves in time. 

We adopt a structure of possible worlds inspired in Kripke structures of modal logic 

semantics; more specifically, we assume the branching structure previously defined in 

[2]. Each world has a set of immediate next worlds and at most one previous world (it 

is a tree with branches towards the future, capturing the notion that the future may 

unfold in different ways). For each world state, there is only one sequence of worlds 

to a future state of the world (meaning that branches do not join again). A history, i.e., 

a path, is comprised by a non-empty set of worlds while a world must be included in 

at least one history, such as depicted by Fig. 7 using UML. This structure of worlds is 

a built-in part of every world-reified UML model, dictating how worlds are accessible 

from each other and specifying a number of pre-defined temporal operations for 

Worlds and Paths. 

 
Fig. 7. World-Reified UML Model: World Structure and Temporal Operations  

 

Differently from [2], we have reified the notion of “paths”. These are useful to ex-

press constraints which are usually expressed in the CTL tense logic, quantifying not 

only over states but also over paths of states, both universally and existentially. Quan-



tifying universally and existentially over paths is an important feature to some dynam-

ic properties of systems. Since Path is also an entity as World, several additional con-

straints are defined in standard OCL to complement this world-reified UML model in 

order to enforce properly the semantics of histories (paths). A history must contain 

exactly one initial and one terminal world, no two histories should have the same 

terminal world and every terminal world must be in exactly one history. Additionally, 

the worlds contained in a history should be derived from all previous worlds of that 

history’s terminal world. We validated our branching world structure using the light-

weight formal method of validation based on Alloy simulation and analysis [17], as a 

means to check the correct semantics of the reified histories (paths) that we intro-

duced in the world structure. The following set of temporal operations are pre-

defined: next() and previous(), which return a world’s immediate next and immediate 

previous world; hasNext() and hasPrevious(), which checks whether a world has an 

immediate previous or immediate next world; allIndividuals(), which returns all exist-

ing individuals at a specific world; existsIn(), which checks the existence of an indi-

vidual at a specific world; and allNext(), which returns all subsequent worlds of a 

particular world. This operation has two variants, allNext(w), which returns all subse-

quent worlds until a particular world w is reached (not including w) and allNext(p), 

which returns all subsequent worlds from a world, contained in a given path p. Anal-

ogously, allPrevious() returns all precedent worlds of a particular world. Finally, 

p.worlds() returns all worlds of a path p, and w.paths() returns all paths in which the 

world w is contained. These pre-defined temporal operations were all implemented 

using standard OCL (body conditions) over the world-reified UML model. For the 

sake of brevity, we omit here the Alloy code of our branching world structure and the 

implementation of these pre-defined temporal operations. 

3.5 Standard OCL Operations Revisited 

oclIsNew()is only used in post-conditions [22 p.154]. As our subset of OCL does not 

consider pre- and post- conditions (OntoUML disallows operations) oclIsNew() is not 

supported. Instead, we defined two temporal operations to check an individual’s crea-

tion and deletion at a world w. oclIsCreated(w) checks if an individual exists in world 

w but does not exist in its immediate previous world. oclIsDeleted(w) checks if and 

individual does not exist in w but does exist in its immediate previous world. These 

are Individual’s operations because existence is a characteristic of domain objects that 

persist in time. We also defined two additional operations for the classification of an 

individual at w. oclBecomes(C, w) checks whether an individual is classified as C at 

w but is not classified as C in w’s immediate previous world. oclCeasesToBe(C, w) in 

turn checks whether an individual ceases to be classified as C at w. That is, the indi-

vidual does not instantiate C in w’s immediate previous world, but instantiate C at w. 

There are only few adjustments to some built-in OCL object and classifier opera-

tions that need to be established due to our world reification approach. Type conform-

ance operations must explicit the point in time in which the types are checked. Since 

standard OCL does not natively support world states, we include a world state param-

eter at oclIsKindOf(T, w), oclIsTypeOf(T, w), oclAsType(T, w) and oclType(w). The 



allInstances() operation is still allowed and it returns the extension of a class at all 

possible worlds i.e. the set of all instances of a class independent of their actual exist-

ence in a particular point in time. Expressions such as (i) World.allInstances(), (ii) 

Path.allInstances(), or (iii) Individual.allInstances() are then all valid. They return 

respectively, the set of all possible worlds, all histories and all individuals at all 

worlds. Additionally, we assume a temporal operation allInstances(w) for every UML 

domain class. allInstances(w) returns all instances of a class at a world w (expressions 

such as World.allInstances(w) or Path.allInstances(w) are not valid constructions 

since worlds were reified and neither worlds nor paths exist within worlds). 

4 Representing Dynamic Invariants (the Modeler’s View) 

In this section, we represent the dynamic aspects which were required to model as 

accurately as possible the conceptualization presented initially in Section 2, thereby 

showing how the approach satisfies the requirements. These dynamic aspects include 

transition rules, existence of individuals and past specializations. 

Transition rules constrain the change from one (antecedent) state to another (sub-

sequent) state. The Initial Transition rule is a peculiar type of transition rule that 

mentions to antecedent state. The condition holds at the first world of an individual’s 

existence. Fig. 8 exemplifies this rule in Temporal OCL, stating that every time a 

person is created, he/she is a child at that moment.  

 

context Person  

temp initial_transition: World.allInstances()->forAll(w |  

     self.oclIsCreated(w) implies self.oclIsKindOf(Child, w)) 

Fig. 8. Temporal OCL: Initial Transition Rule 

The keyword temp defines a temporal invariant. The “context” defines a class exten-

sion at all worlds e.g. all individuals that at some point will instantiate Person. The 

condition then must hold for each of these individuals.  Fig. 9 exemplifies the Final 

Transition in Temporal OCL. It states that for every individual that will eventually be 

an Elder, for every world, if that individual is an Elder at that world, then for every 

world after that, if the individual exists, then it instantiates Elder (i.e. there is no other 

possible and allowed transition for that individual before ceasing to exist).  

Context Elder 

temp final: World.allInstances()->forAll(w | self.oclBecomes(Elder, w) implies 

     w.allNext()->forAll(n| self.existsIn(n) implies self.oclIsKindOf(Elder,n))) 

Fig. 9. Temporal OCL: Final Transition Rule  

Differently from initial transitions, final transition can be viewed as a more specific 

case of a general rule for arbitrary transitions. This general transition rule states that 



an antecedent type A1 is transitioned to one or more types S1+... +SN. This means 

that there is no allowed transition for the instance of A1, before ceasing to exist, if not 

being A1 itself, or being one of the subsequent types S1, S2…SN. The final transition 

is just a special case of this general rule where there is no subsequent type only the 

antecedent type A1. Fig. 10 exemplifies the general transition in temporal OCL stating 

that a teenager can only transit to teenager (i.e. A1) or to adult (i.e. S1) phases. 

context Teenager 

temp transition: World.allInstances()->forAll(w | self.oclBecomes(Teenager, w)   

     implies w.allNext()->forAll(n | self.existsIn(n) implies 

     self.oclIsKindOf(Teenager, n) or self.oclIsKindOf(Adult, n))) 

Fig. 10. Temporal OCL: General Transition Rule 

Fig. 11 exemplifies the Transient and Permanent Existence in Temporal OCL. The 

first invariant states that for every person that comes into existence, there will be at 

least one world after that in which that person will cease to exist. The second invari-

ant states that every marriage, once created, will exist at all possible worlds after that. 

Since a marriage is existentially dependent on a husband and a wife, by implication, 

the roles Husband and Wife are final transitions of a person and married persons are 

permanent. While the individual constraints are meaningful, they are inconsistent with 

each other, which can be checked using our support for Alloy. The analyzer would 

show that there is no valid instantiation of the model with these two constraints.  

context Person  

temp transient: World.allInstances()->exists(w | self.oclIsCreated(w) and 

     w.allNext()->exists(n | not self.existsIn(n))) 

context Marriage  

temp permanent: World.allInstances()->exists(w | self.oclIsCreated(w) and 

     w.allNext()->forAll(n | self.existsIn(n))) 

Fig. 11. Temporal OCL: Transient and Permanent Existence 

Finally, Fig. 12 exemplifies a case where ex-husbands and ex-wives are required as 

cases of a Derivation by Past Specialization. The invariant states that for every even-

tual ex-wife, for every world, if an ex-wife exists at a world then there exists a set of 

previous worlds from w in which she was a wife and her related past marriage does 

not exist in w.  

context ExWife 

temp past_spec: World.allInstances()->forAll(w | self.oclIsKindOf(ExWife, w)  

     implies w.allPrevious()->exists(p | self.oclIsKindOf(Wife, p) and not      

     self.oclAsType(Wife, p).marriage(p).existsIn(w))) 

Fig. 12. Temporal OCL: Derivations by Past Specializations 



5 Related Work 

There have been many proposals in literature that aimed at extending OCL in order to 

cope with dynamics/temporal aspects of systems [3, 4, 7, 9, 12, 18, 19, 27]. Gogolla 

and Ziemman’s extension of OCL [27] is based on a set of Linear Temporal Logic 

(LTL) operators. They introduced an environment’s index to characterize the tem-

poral evolution of the system and its current state. Conrad and Turowski [7] extended 

OCL with LTL operators to specify software contracts for business components, 

where contracts are represented as pre- and post-conditions. Bill et al. [3] presented an 

OCL extension named cOCL, based on Computational Tree Logic (CTL). Their veri-

fication framework consists of cOCL specifications and a model checker called Mo-

cOCL that can verify cOCL constraints. Flake and Mueller [12] defined a state-

oriented Real-Time extension of OCL whose semantics is given through a mapping to 

clocked CTL logics (CCTL). They focus on the specification of real-time systems. 

Differently from these approaches, we do not use tense logic operators explicitly, 

choosing to use reification of world states to obtain the expressiveness that would be 

obtained with tense operators. Extensions based on modal/tense logic operators re-

quire a level of logic expertise that most modelers are not expected to have. Distefano 

et al. [9] defined an object-based extension of CTL called BOTL (Object-Based Tem-

poral Logics), a logic formalism inspired by OCL to define specifications of static and 

dynamic properties in object-oriented systems. BOTL looks syntactically very similar 

to CTL and although BOTL’s concepts are defined clearly and precisely, no tool sup-

port is actually provided. Mullins and Oarga [19] extended OCL with CTL operators 

and some first-order features. Their extension termed EOCL is largely inspired by 

BOTL [9] and based on the framework of Bradfield et al. [4]. Their SOCLe tool 

translates exactly one UML class diagram, one state-chart and one object diagram into 

an Abstract State Model (ASM) specification, which in turn is translated into an exe-

cution graph that can verify on-the-fly EOCL constraints. Bradfield et al. [4] pro-

posed a formalism, termed Oμ(OCL) which requires such understanding of temporal 

logics (as stated by the authors) that is unrealistic to expect most developers to ac-

quire it [4, p.2]. Kanso and Taha extended OCL [18] according to the set of Dwyer’s 

temporal property patterns [10] with the explicit inclusion of events. They have fully 

implemented the OCL extension in an Eclipse/MDT OCL Plugin, which allows OCL 

temporal constraints to be defined with Ecore/UML models. However, the set of tem-

poral patterns are not suitable to OntoUML’s set of requirements, such as the initial 

transition dynamic aspect, usually, due to the pattern’s closed/open edges of intervals. 

Finally, Cabot et al. [6] extended OCL with instant reification but solely to retrieve 

immediate past values of UML model properties. 

6 Concluding Remarks 

In this paper, we have defined a temporal extension for standard OCL to cope with 

dynamics in ontologically well-founded conceptual models with OntoUML. The tem-

poral OCL extension developed requires only few adjustments to standard OCL; in 



particular, to four OCL type conformance operations and the allInstances() operation. 

Our temporal OCL is expressive not only to represent the implicit dynamics of On-

toUML (e.g. rigidity, anti-rigidity, immutability), but also to incorporate user-defined 

dynamics aspects into conceptual models, such as transitions, transience, permanence, 

past derivations, etc.  

The extension is fully incorporated into the OLED
2
 tool, which is an editor for the 

creation, development and validation of OntoUML structural conceptual models. We 

have thus extended the previous work of [14] with the support for a temporal OCL 

extension, which includes: (i) a temporal OCL editor with syntax highlighting and 

code-completion, (ii) a parser for temporal OCL constraints using Eclipse’s OCL 

support [11] and (iii) a transformation from temporal-enriched OntoUML models into 

the Alloy logic-based language, enabling simulation and verification of dynamic con-

straints written in our temporal extension.  

In the future, we plan to compare our approach with other approaches such as 

Kanso and Taha’s temporal OCL extension and their set of temporal patterns [18] and 

the ontology-based behavioral specification language (OBSL) [26]. These approaches 

trade expressiveness for ease of use, so we expect that all of the constraints that can 

be expressed in these approaches can be expressed with our OCL extension. We also 

plan to represent Sales’ simulations scenarios for semantic anti-patterns detection [24] 

as a means to further demonstrate the expressivity of our extension of OCL. 

Finally, we should investigate whether some of the dynamic aspects discussed 

here (e.g., transience and permanence) can be introduced in the graphical notation 

(e.g., as additional stereotypes) to improve the language’s usability. We should also 

investigate a combination of the approach with other notations such as state diagrams 

which could support the specification of some of the rules (e.g., transition rules). The-

se diagrams would ultimately be transformed into temporal OCL constraints. 
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