

Universidade Federal do Espírito Santo, Centro Tecnológico

Programa de Pós-Graduação em Informática

John Guerson

Representing Dynamic Invariants in

Ontologically Well-Founded

Conceptual Models

Vitória - ES, Brazil

May 2015

John Guerson

Representing Dynamic Invariants in

Ontologically Well-Founded

Conceptual Models

Dissertação apresentada ao Programa de Pós

Graduação em Informática da Universidade

Federal do Espírito Santo como requisito par-

cial para obtenção do título de Mestre em In-

formática.

ORIENTADOR

PROF. DR. JOÃO PAULO ANDRADE ALMEIDA

PROGRAMA DE PÓS GRADUAÇÃO EM INFORMÁTICA,

CENTRO TECNOLÓGICO

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

Vitória - ES, Brazil

May 2015

III

Dissertação de Mestrado sob o título “Representing Dynamic Invariants in Ontolo-

gically Well-Founded Conceptual Models”, defendida por John Guerson e aprovada

em 28 de Maio, 2015, em Vitória, Estado do Espírito Santo, pela banca examinadora

constituída pelos doutores:

Prof. Dr. João Paulo Andrade Almeida

Departamento de Informática - UFES

Orientador

Prof. Dr. Giancarlo Guizzardi

Departamento de Informática - UFES

 Examinador Interno

Prof. Dr. Clever Ricardo Guareis de Farias

Departamento de Computação – USP/Ribeirão Preto

Examinador Externo

IV

Acknowledgements

I would like to thank God, for His deep love and mercy. Thank you Jesus, for your

grace.

I thank my parents (Nélio and Cristina) and my sisters (Susie, Dianne and Cindy) for

their heart, complicity and friendship in every adversity, I love you.

I would like to honor my advisor João Paulo for his knowledge, wisdom and pa-

tience. I am glad I had the chance of working with you for two (more) years and

benefit from all of your guidance.

A special thanks to Júlio Nardi and Victorio Carvalho for their enormous support

not only in the academy but especially outside of it, You guys rock.

I would like to thank my fellow colleague and friend Tiago Sales, with whom I had

the pleasure of working with in the past two years. It is incredible doing research

with you too. The tools we have developed are just a shadow of what we can ac-

complish working together.

Finally, I would like to thank each single one from our lab, with whom I had the

pleasure of meeting and living with in a daily basis. Just to name a few Diorbert Pe-

reira, Vinicius Sobral, Ernani Santos, Laylla Duarte, Freddy Brasileiro, Victor Amo-

rim, Cássio Reginato, Pedro Paulo Barcelos, Lucas Bassetti, Bernardo Braga and

Jordana Salamon.

V

Resumo

Modelos conceituais frequentemente capturam os aspectos invariantes dos fenôme-

nos que nós percebemos. Estes invariantes podem ser considerados estáticos quan-

do se referem a estruturas que nós percebemos do fenômeno em um ponto particu-

lar do tempo ou dinâmicos/temporais quando se referem a regularidades entre pon-

tos diferentes do tempo. Enquanto invariantes estáticos têm recebido uma atenção

significativa, invariantes dinâmicos têm recebido um suporte marginal em técnicas

amplamente adotadas tais como UML e OCL. Este trabalho tem por objetivo abor-

dar esta lacuna propondo uma técnica para a representação de invariantes dinâmicos

de domínio em modelos conceituais baseados em UML. Para esse propósito, uma

extensão temporal de OCL é proposta. Ela enriquece o perfil ontologicamente bem

fundamentado OntoUML e permite a expressão de uma variedade de restrições

temporais arbitrárias. A extensão é completamente implementada em uma ferramen-

ta para especificação, verificação e simulação de modelos OntoUML temporalmente

enriquecidos.

VI

Abstract

Conceptual models often capture the invariant aspects of the phenomena we per-

ceive. These invariants may be considered static when they refer to structures we

perceive in phenomena at a particular point in time or dynamic/temporal when they

refer to regularities across different points in time. While static invariants have re-

ceived significant attention, dynamics enjoy marginal support in widely-employed

techniques such as UML and OCL. This thesis aims at addressing this gap by pro-

posing a technique for the representation of dynamic invariants of subject domains

in UML-based conceptual models. For that purpose, a temporal extension of OCL

is proposed. It enriches the ontologically well-founded OntoUML profile and ena-

bles the expression of a variety of (arbitrary) temporal constraints. The extension is

fully implemented in the tool for specification, verification and simulation of tem-

poral enriched OntoUML models.

VII

“For now we see in a mirror dimly, but then face to face;

now I know in part, but then I will know fully

just as I also have been fully known”

I Corinthians 13:12

VIII

List of Figures

Figure 1 Phenomena, Conceptualization and Conceptual Model 24

Figure 2 Tension between Intended Conceptualization and the Model 24

Figure 3 UML Class Diagram: People and Marriages ... 28

Figure 4 UML Class Diagram: Former and Current Marriages 29

Figure 5 Formal Semantics of a Current UML Class Diagram 30

Figure 6 Current UML Class Diagram: Immutability Dynamics 30

Figure 7 UML Class Diagram: Polygamy and Monogamy ... 32

Figure 8 UML Diagram: Marriage, People and Stages of Life..................................... 34

Figure 9 OntoUML Diagram: People, Stages of Life and Marriages 35

Figure 10 A Past State of the World to the Marriage Example 37

Figure 11 A Present State of the World to the Marriage Example 38

Figure 12 A Future State of the World to the Marriage Example............................... 38

Figure 13 OntoUML Diagram: People and Marriages in Presentism 48

Figure 14 OntoUML Diagram: People and Marriages as Growing Blocks 51

Figure 15 Extension Approach: World-Reified Model of Background 55

Figure 16 OntoUML Example: People, Stages in Life and Marriages 56

Figure 17 A Fragment of World-Reified Plain UML Model of Background 56

Figure 18 World Structure Fragment of the World-Reified Model 60

Figure 19 Simulation of the World Structure in Background 62

Figure 20 Simulation of Historical Relationship (with no constraint imposed) 70

Figure 21 Temporal Extension of the Alloy Simulation Approach 73

Figure 22 Marriage and Ancestry: A Past World State ... 85

Figure 23 Marriage and Ancestry: A Present World State .. 86

Figure 24 Marriage and Ancestry: A Future World State ... 86

Figure 25 Plain OCL Infrastructure for OntoUML .. 88

Figure 26 Temporal Extension of Existing Plain OCL Infrastructure....................... 91

Figure 27 Code Completion Activated at the Temporal OCL Editor 92

Figure 28 Parsing Exception Thrown at the Temporal OCL Parser 94

Figure 29 Automatically Generated Background Artifacts .. 96

IX

Figure 30 Temporal OCL Tooling Within OLED ... 97

Figure 31 Temporal Aspects of Cabot‟s Temporal Extension of UML 98

Figure 32 UFO-A Taxonomy of Endurant Types .. 122

Figure 33 UFO-A Taxonomy of Relational Types ... 124

Figure 34 Alloy Atoms and Relations ... 133

X

List of Listings

Listing 1 OCL Static Constraints about Polygamy and Monogamy 32

Listing 2 Trans-Temporal Fact in Plain OCL in the Growing Block View 52

Listing 3 Definition of Built-In World Indexed Navigations 59

Listing 4 Definition of Built-In Temporal Navigations at all Worlds 60

Listing 5 General Constraints of the World Structure in Background 61

Listing 6 Path Constraints of the World Structure in Background 61

Listing 7 Definition of World and Path Built-In Operations 63

Listing 8 Definition of oclIsCreated and oclIsDeleted Built-In Operations 64

Listing 9 Initial Classification Rule in Temporal OCL ... 66

Listing 10 Final Classification Rule in Temporal OCL... 66

Listing 11 General Classification Rule in Temporal OCL ... 67

Listing 12 Existence Rules in Temporal OCL ... 68

Listing 13 Continuous Existence Rule in Temporal OCL ... 68

Listing 14 Past Specialization Rule in Temporal OCL ... 69

Listing 15 Ancestry Historical Relationship in Temporal OCL 69

Listing 16 Trans-Temporal Fact in Temporal OCL ... 70

Listing 17 Skeleton Alloy Code .. 74

Listing 18 Model Classes as Alloy Binary Relations .. 75

Listing 19 Model Relationships as Alloy Ternary and 4-ary Relations 76

Listing 20 Alloy Functions to Manage the Path Reification .. 81

Listing 21 Alloy Functions for Temporal Navigations at all Worlds 83

Listing 22 Historical Relationships as Alloy Relation, Facts and Functions 84

Listing 23 World Reified Model: Current Multiplicity Cardinalities 130

Listing 24 World Reified Model: Existence Cycles ... 131

Listing 25 World Reified Model: Immutability of Relata ... 131

Listing 26 World Reified Model: Mediation‟s Set Type .. 132

XI

List of Axioms

Axiom 1 Current Multiplicity ... 28

Axiom 2 Lifetime Multiplicity .. 28

Axiom 3 Continuousness of Endurants ... 42

Axiom 4 Rigidity .. 125

Axiom 5 Non-Rigidity ... 125

Axiom 6 Anti-Rigidity ... 126

Axiom 7 Semi-Rigidity .. 126

Axiom 8 Existential Dependence .. 126

Axiom 9 Specific Dependence ... 127

Axiom 10 Essential Part .. 127

Axiom 11 Inseparable Whole ... 127

Axiom 12 Immutable Part .. 128

Axiom 13 Immutable Whole .. 128

Axiom 14 Immutability ... 129

XII

List of Definitions

Definition 1 Universal‟s Extension Function .. 26

Definition 2 Individual‟s Existence Function .. 27

Definition 3 Permanence .. 43

Definition 4 Transience .. 44

Definition 5 Eternity ... 45

Definition 6 Initial Classification ... 46

Definition 7 Final Classification .. 47

XIII

List of Tables

Table 1 Translation of Plain OCL Set Operations .. 78

Table 2 Translation of Plain OCL Iterators ... 79

Table 3 Translation of Temporal OCL Dynamic Invariants 80

Table 4 Translation of Temporal OCL Built-in Operations .. 80

Table 5 Translation of Temporal OCL Built-In Endurant Operations 81

Table 6 Translation of Temporal OCL Built-In World Operators 82

Table 7 Summary of Existing Approaches ... 107

XIV

Contents

ACKNOWLEDGEMENTS .. 4

RESUMO .. 5

ABSTRACT ... 6

LIST OF FIGURES .. 8

LIST OF LISTINGS .. 10

LIST OF AXIOMS ... 11

LIST OF DEFINITIONS ... 12

LIST OF TABLES ... 13

1 INTRODUCTION .. 17

1.1 BACKGROUND .. 17

1.2 OBJECTIVES .. 19

1.3 RESEARCH APPROACH .. 19

1.4 THESIS STRUCTURE ... 22

2 IMPLICIT DYNAMIC ASPECTS IN STRUCTURAL CONCEPTUAL

MODELS ... 23

2.1 PHENOMENA, CONCEPTUALIZATION AND CONCEPTUAL MODEL 23

2.2 FORMAL SEMANTICS OF A CONCEPTUAL MODEL STRUCTURE 26

2.3 CONCEPTUAL MODELS REPRESENTED AS UML CLASS DIAGRAMS 27

2.4 THE CONSTRAINT-BASED LANGUAGE (OCL) .. 31

2.5 THE ONTOLOGICALLY WELL-FOUNDED UML PROFILE ... 34

2.6 FINAL CONSIDERATIONS .. 39

3 INTRODUCING TEMPORAL ASPECTS IN CONCEPTUAL

MODELS ... 41

XV

3.1 TEMPORAL ACCESSIBILITY RELATION ... 41

3.2 UFO SEMANTICS ... 42

3.3 DURABILITY .. 43

3.4 CLASSIFICATION DYNAMICS .. 45

3.5 EXAMPLES ... 47

3.6 FINAL CONSIDERATIONS .. 52

4 OCL TEMPORAL EXTENSION FOR ONTOLOGY-DRIVEN

CONCEPTUAL MODELING ... 54

4.1 OCL EXTENSION APPROACH .. 54

4.2 WORLD-REIFIED MODEL OF BACKGROUND .. 55

4.3 BUILT-IN TEMPORAL NAVIGATIONS .. 58

4.4 BUILT-IN WORLD STRUCTURE AND OPERATIONS ... 60

4.5 REVISION OF PLAIN OCL BUILT-IN OPERATIONS ... 64

4.6 MODELER‟S VIEW .. 65

4.7 FINAL CONSIDERATIONS .. 71

5 VALIDATING ONTOLOGICALLY WELL-FOUNDED MODELS

ENRICHED WITH DYNAMICS .. 72

5.1 VALIDATION EXTENSION APPROACH .. 72

5.2 TRANSLATION OF ONTOUML CLASS DIAGRAMS ... 73

5.3 TRANSLATION OF PLAIN OCL OPERATORS .. 76

5.4 TRANSLATION OF TEMPORAL OCL CONSTRAINTS .. 79

5.5 VALIDATING THE EXAMPLE ENRICHED WITH DYNAMICS ... 84

5.6 FINAL CONSIDERATIONS .. 87

6 IMPLEMENTATION... 88

6.1 PLAIN OCL INFRASTRUCTURE FOR ONTOUML... 88

6.2 IMPLEMENTATION EXTENSION APPROACH .. 90

6.3 EXTENDING THE PLAIN OCL EDITOR WITH TEMPORAL OCL 92

6.4 PARSING THE TEMPORAL ADJUSTMENTS FOR PLAIN OCL ... 93

6.5 WORLD-REIFIED MODEL WITH CONSTRAINTS IN BACKGROUND 95

6.6 TEMPORAL TOOLING WITHIN OLED ... 96

XVI

6.7 FINAL CONSIDERATIONS .. 97

7 RELATED WORK ... 98

7.1 A TEMPORAL EXTENSION OF PLAIN UML AND OCL ... 98

7.2 A SET OF EXISTING TEMPORAL EXTENSIONS OF OCL... 100

7.3 EXISTING APPROACHES ON VALIDATION OF CONCEPTUAL MODELS USING THE

ALLOY LIGHTWEIGHT FORMAL METHOD .. 103

7.4 SUMMARY OF EXISTING APPROACHES ... 106

8 CONCLUDING REMARKS .. 111

8.1 CONTRIBUTIONS .. 111

8.2 LIMITATIONS .. 113

8.3 FUTURE WORK ... 114

BIBLIOGRAPHY .. 117

APPENDIX A: STRUCTURAL LAYER OF UFO ... 121

APPENDIX B: CONSTRAINTS TO THE REIFIED MODEL 130

APPENDIX C: ALLOY LANGUAGE AND ANALYSIS 133

P a g e | 17

1 Introduction

In this chapter, we introduce the subject of ontology-driven conceptual modeling

and the study of its dynamic aspects. In particular, we motivate the study within this

research presenting a brief background of the related field. Then we define the gen-

eral and specific objectives of this research alongside with contributions to the area.

Finally, we present the approach used to achieve such results.

1.1 Background

In a broad perspective, conceptual modeling has been characterized as “the activity

of formally describing some aspects of the physical and social world around us for

purposes of understanding and communication” [1]. Many of the efforts in concep-

tual modeling attempt to represent a conceptualization about a given subject domain

[2], which is often accomplished by capturing in a model the invariant aspects of the

phenomena we perceive. These invariants may be considered static when they refer

to structures we perceive in phenomena at a particular point in time or dynamic when

they refer to regularities across different points in time.

Take for instance a domain about persons, their stages in life and their marriages.

At a particular point in time, a number of persons will exist, each of which may be

male or female, may be a child, a teenager or an adult, and may be related to some-

one else by marriage. The static invariants that may be represented in a conceptual

model of this domain include the various categories of entities in a domain (in our

example, “person”, “male”, “female”, “child”, “teenager”, “adult”, “elder”, “mar-

riage”) as well as their relations (a “child” is a “person”, “marriage” may be estab-

lished between two “persons”, etc.). The dynamic invariants in turn reflect the fact

that across different points in time entities of the domain undergo change. In our

example, persons are born and die, become teenagers and adults, marry, divorce,

etc. Dynamic invariants represent what may change and what must remain constant

in time. For example, children cannot suddenly become adults, adults cannot later in

life become teenagers and elders cannot become children, teenagers or adults.

18 | P a g e

Much attention has been paid to the representation of static invariants in a num-

ber of modeling notations including ER diagrams, ORM diagrams [3], and UML

Class Diagrams [4]. The UML for example has been enriched with the Object Con-

straint Language (OCL) to capture static invariant expressions [5]. With respect to

the dynamic invariants, these have been mostly confined to the representation of

OCL pre- and post-conditions for operations or simple UML meta-attributes for

features such as “read only” [4, p.125, 129]. Further, due to the strict correspond-

ence that is often established between modeling languages and programming lan-

guages, many UML-based approaches lack support for dynamic classification (e.g.

USE [6], HOL-OCL [7], UML2Alloy [8, 9]). While this facilitates the mapping to

specific programming languages or formalisms, this renders these approaches less

suitable to enable the expression of important conceptual structures that rely on dy-

namic classification (e.g., the classification of persons into life phases: child, teenag-

er, and adult, the classification of persons into roles they play contingently such as

husband and wife)1.

In order to address the deficiencies of the UML and OCL specifications, many

approaches have been proposed to extend UML and OCL with dynamic aspects.

Some of these address dynamic aspects as part of an overall approach to handle

temporal/time aspects [2, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18]. The OntoUML [2],

for example, introduces various dynamic aspects through stereotypes referring to

meta-attributes of classes and properties such as rigidity and immutability. Similarly,

[12] extends UML with stereotypes, augmenting it with dynamic notions of durabil-

ity and frequency. Others have aimed at enriching OCL with extensions in order to

cope with dynamic/temporal properties of systems. For example, some have ex-

tended OCL with Linear-Temporal Logic and Computational-Tree logic

(LTL/CTL) operators [10, 13, 17, 18], created new logic formalisms [11, 14], ex-

tended OCL with temporal patterns [16], defined a Real-Time extension for OCL

with a temporalized CTL [15], etc.

1 Note that while dynamic classification is supported in principle by UML diagrams, this is
not reflected in tool support and language usage, with little mention in the UML specifi-
cation.

P a g e | 19

Despite these recent advances, most approaches are not adequate in the repre-

sentation of dynamic aspects at the conceptual level. This gap is addressed in this

research, in which we support the expression of rich dynamic constraints in onto-

logically well-founded conceptual models written with OntoUML.

1.2 Objectives

The overall aim of this research is the representation of dynamic constraints in on-

tologically well-founded structural conceptual models. As specific objectives of this

research, we aim at: (1) increasing the expressivity of the diagrammatic notation of

OntoUML with the inclusion of pre-defined dynamic aspects, considering the

amount of complexity that is reasonable to introduce in a diagrammatic notation; (2)

complementing the graphical representation of OntoUML with a textual language to

enable the representation of richer dynamic constraints; and, finally, (3) extending a

formal validation approach [19] to support the modeler in assessing whether the

resulting conceptual model represents his/her domain conceptualization.

1.3 Research Approach

In order to identify the opportunities to extend OntoUML with dynamic aspects

(specific objective 1) it is necessary to understand which properties of an OntoUML

model refer to purely static aspects and which properties refer to dynamic aspects.

Important aspects of OntoUML include its support for dynamic classification (e.g.

the classification of persons into life phases: child, teenager, and adult) and for

modal meta-properties of classes and associations such as rigidity and immutability.

With an understanding of what there is, we can explore the barriers regarding the

definition of new dynamic aspects for OntoUML. We aim at proposing a simple

extension for OntoUML to capture some additional dynamic aspects which are re-

current in some conceptualizations about subject domains, based on different views

of reality, according to different philosophical theories about time and existence

such as the Presentism theory and the Growing Block Universe theory [21]. The

additional dynamics introduced in OntoUML is important to represent as accurately

as possible conceptualizations based on any of these theories.

20 | P a g e

In order to address textual dynamic constraints (specific objective 2) and com-

plement OntoUML‟s diagrammatic notation, we identify existing approaches on

temporal (constraint-based) conceptual modeling to judge their adequacy in repre-

senting dynamics alongside OntoUML. Important dynamic aspects of a temporal

constraint language include constraining the order in which an individual instantiate

types (the change of instantiations allowed for an individual regarding different

types, e.g. an adult later in time becomes an elder but not a child), constraining the

way individuals can exist in time (if they can exist permanently or must cease to exist

at a certain time in time), defining that some population of individuals are derived

from the past (e.g. ex-spouses are people who participated in a past marriage, which

no longer exists in the present) [20], and specifying historical dependence facts [21]

(facts that cross the present time, for example, my grandfather, which does not exist

anymore, cannot be a descendant of itself). Similarly to many approaches that have

extended OCL to represent temporal/dynamic properties e.g. [10, 16, 18], we also

propose an extension of OCL in order to enrich OntoUML models with arbitrary

dynamic aspects of subject domains. This should facilitate the adoption of the ap-

proach by UML/OCL modelers.

Lastly, in order to assess whether the resulting dynamic-enhanced OntoUML

model represents the modeler‟s conceptualization, it is necessary to extend the exist-

ent formal validation approach based on Alloy simulation and analysis [22, 23] with

the inclusion of dynamic textual constraints written with a dynamic/temporal OCL

language (specific objective 3). In this technique a conceptual model is translated

into Alloy to be fed into the Alloy analyzer tool. Alloy [19] is a declarative language

based on the notion of relations and first-order logics to describe and explore struc-

ture accompanied of an automatic tool called the Alloy Analyzer. In order to extend

this approach, it is necessary to extend the current translation from OntoUML and

(static) OCL to Alloy, with the support for a dynamic/temporal OCL language. Our

aim is to leverage the use of a formal method and automatic analyzer, without ex-

posing the complexities of the formal method to the user. The experience of explor-

ing a conceptual model with an automatic analyzer (building a model incrementally

with a continual, automatic review, simulating and checking as you go along) is

P a g e | 21

thrilling and humiliating as it is highly likely to reveal flaws and omissions. This is

discussed by Jackson, the designer of Alloy, in [19, p. XIII]: “The sense of humilia-

tion sets in, as you discover that there‟s almost nothing you can do right; what you

write down doesn‟t mean exactly what you think it means, and when it does, it

doesn‟t have the consequences you expected”.

 In summary, our modeling approach is required to:

 Support dynamic classification i.e., allow for individuals to change types

throughout their existence (an assumption underlying OntoUML); (Require-

ment 1)

 Enable the expression of modal constraints on types e.g., rigidity, non-rigidity,

anti-rigidity, immutability (mechanisms underlying OntoUML); (Requirement 2)

 Enable the expression of classifications rules, constraining the order in which

individuals instantiate types e.g. elders cannot become children; (Requirement 3)

 Enable the expression of transient, permanent and eternal existence rules,

constraining the way individuals exist in time (e.g. if they should cease to ex-

ist, if they can exist permanently); (Requirement 4)

 Enable the expression of derivations by past specializations [20] e.g. ex-

spouses are derived from people who participated in a past marriage, which

no longer exists in the present; (Requirement 5)

 Enable the expression of other arbitrary dynamic invariants, i.e., invariants

whose satisfaction is determined by examining the world at more than one

point in time; (Requirement 6) and

 Finally, enable the representation of historical relationships such as the “de-

scendant” relationship between people at all times specifying that, for exam-

ple, my father, a present entity, is a descendant of my grandfather which is a

wholly past entity and no longer exists in the present, and the representation

of historic dependence facts called as trans-temporal facts by [21] (e.g. a fact

stating that people cannot be descendant of themselves); (Requirement 7)

In addition, our approach must not rely on operations of classes, as these are not

employed by OntoUML [2] and should not employ specialized tense/temporal log-

22 | P a g e

ic-based operators [10, 13, 17, 18], in order to retain its ease of use for UML/OCL

modelers. This enables the approach to be used by modelers that do not have an

advanced level of logic expertise.

We exclude as a potential solution diagrammatic languages such as UML state

chart diagrams, as we are aiming here a more general approach with the definition

of arbitrary (user-defined) dynamic constraints.

1.4 Thesis Structure

The remaining of the thesis is structured as follows. Chapter 2 investigates the dy-

namic aspects implicit in the semantics of OntoUML structural conceptual models

complemented with standard (static) OCL. We refer to Section 2.4 on the dynamics

already captured by OntoUML. Chapter 3 introduces our set of additional dynamics

for the OntoUML conceptual modeling language. We properly present and formally

characterize each one of these dynamics set out as requirements in our modeling

approach, demonstrating how they can be applied in practice, according to a set of

philosophical theories about time and existence. Chapter 4 defines a temporal ex-

tension of OCL to complement OntoUML, proposed to capture the requirements

set out previously in Section 1.3. Chapter 5 extends the existing ontology-driven

formal validation approach based on Alloy to include dynamics written with our

temporal OCL extension. Chapter 6 explains the tooling developed in this research.

Chapter 7 discusses related work and Chapter 8 presents some concluding remarks.

P a g e | 23

2 Implicit Dynamic Aspects in Structural

Conceptual Models

While structural models (such as UML class diagrams) are often thought of as repre-

senting only static aspects of a subject domain, some constructs are in fact used to

capture dynamic aspects. This chapter examines such constructs for structural con-

ceptual models written in OntoUML (as a UML profile).

As a means to establishing some conceptual basis for the rest of the work, we

start by examining the relation between phenomena, conceptualizations and struc-

tural conceptual models (Section 2.1). We then formally characterize what a struc-

tural conceptual model written in plain UML represents about the phenomena it

models (Sections 2.2 and Section 2.3). Later, we examine how OntoUML extends

UML revealing the dynamic aspects that are implied by the various stereotypes and

meta-attributes of OntoUML. We present OntoUML and its dynamic aspects by

means of a running example (Section 2.4). Finally, we present some final considera-

tions (Section 2.6) that motivate the need for additional dynamics in OntoUML

since OntoUML‟s dynamics is currently limited to a set of pre-defined constraints

implied by rigidity and immutability.

2.1 Phenomena, Conceptualization and Conceptual Model

“Conceptual Modeling is the activity of formally describing some aspects of the

physical and social world around us for purposes of understanding and communica-

tion.” [1]. Conceptual modeling results in representations (or “descriptions”) which

we call conceptual models. These are not something merely abstract but are repre-

sented in some concrete form in order to be used by and shared among humans. In

the case of structural conceptual models, they represent a category of entities of the

domain that persist (exist) in time such as “Book”, “Person”, “Group of People”,

and the relationships between those entities such as a relationship “is married with”

relating “husband” and “wife”. A structural conceptual model defines a stakehold-

er‟s view (a person, a community of people) about an abstraction of phenomena being

24 | P a g e

perceived. The stakeholder‟s abstraction of phenomena (which is in his mind) is

known as conceptualization (or domain conceptualization) and is captured in a con-

crete artifact called conceptual model. A model thus reflects one‟s view about the

phenomena. These aspects captured by a conceptual model are called invariants of a

subject domain. Figure 1 illustrates the relation between phenomena, intended con-

ceptualization (as perceived by a stakeholder) and a conceptual model artifact.

Figure 1 Phenomena, Conceptualization and Conceptual Model

Figure 1 shows that there is a tension between the intended conceptualization of a

stakeholder and what is ultimately represented in the model. Figure 2 expands Fig-

ure 1 illustrating the tension between the intended conceptualization and the result-

ing model.

Figure 2 Tension between Intended Conceptualization and the Model

P a g e | 25

The model must represent as accurately as possible the intended conceptualization

of the stakeholder. In other words, the model should ideally state only what the

stakeholder intended to state about the portion of phenomena.

The conceptualization captures invariants about the phenomena that can be con-

sidered static when they refer to structures we perceive in phenomena at a particular

point in time or dynamic when they refer to regularities across different points in

time. For example, in a domain about people and marriages, a conceptualization

may capture that in every situation of the world a person can marry with only one

partner at a time. This conceptualization admits for instance a situation wherein

Abraham is solely married with Sarah while it does not admit a situation wherein

Abraham is married with both Sarah and Hagar, at the same time. Moreover, this

conceptualization may capture that the marriage between Abraham and Sarah

should exist forever while the two are alive. This conceptualization does not admit

for instance a situation wherein Abraham and Sarah were not married, then another

situation wherein they married and later on one wherein they cease to be married

and are still alive. In this way, a conceptualization defines not only situations allowa-

ble at a time (static aspects) but also how things can behave (dynamic aspects).

 Finally, a structural conceptual model is expressed in a conceptual modeling lan-

guage. A conceptual modeling language must have a clear semantics in order to ena-

ble the accurate interpretation of its expressions (the models). Natural languages

(such as English and Portuguese) cannot be used as conceptual modeling languages

due to their ambiguity and although they are “understandable” and shared among

humans, their automatic interpretation is problematic. Mathematical languages on

the other hand lack the so-desired comprehensibility and understandability as the

models in these languages should be used by and shared among humans for com-

munication, problem solving, learning and understanding about a subject domain. In

order to fill the gap between understandability and precision, there have been sever-

al different conceptual modeling notations (e.g. UML, OCL, and OntoUML) which

embed mathematical axiomatizations underlying their (visual, textual) modeling con-

structs. In the sequel, we discuss that axiomatization i.e. we provide a formal struc-

26 | P a g e

ture for a conceptual model in order to give it a formal semantics. This notion is

important for a precise understanding of what a conceptual model represents.

2.2 Formal Semantics of a Conceptual Model Structure

Our aim is to reveal the static and dynamic aspects that are represented in a model.

To that end, the structure we use is an ordered couple 〈W, D〉, where W is a non-

empty set of possible world states deemed admissible according to the conceptual-

ization and D is the domain of quantification that includes all possible entities of a

domain, including universals (or types) and their instances [2]. The structure is for-

mally characterized by a system of modal logics called alethic (a logic of necessity and

possibility) which can define contingent and necessary truths about the entities of

the domain. All world states contained in the set W are equally accessible through a

binary accessibility relation called R defined in W x W. This means that this accessi-

bility relation links any two possible worlds, i.e. any world state w to any other world

state w’ (which can also include the very world w).

Let w ∈ W be a specific world state and G a domain entity such that G ∈ D. The

extension function ext(G, w) maps G (also called Universal) to the set of individuals

of that concept that exist (i.e. are present) in world state w. The extension function

ext(G) in turn provides a mapping to the set of individuals of the universal G that

eventually exist in W i.e. that could exist in any possible world state [2, p.100, 101]

as formalized in Definition 1.

Definition 1 Universal’s Extension Function

 () ∈ ()

The extension function maps G to the set of individuals of G that exist in a given

world state. According to this definition, if an individual does not instantiate G in

world, i.e. x ∉ ext(G, w), we cannot state that x does not exist (i.e. is not present) in

w since it might exist instantiating other universal U such that x ∈ ext(U, w). There-

fore, let the predicate “existsIn” denote existence, we can formally state that an in-

P a g e | 27

dividual x exists in world state w iff there is at least one universal G such that x be-

longs to the G‟s extension as formalized in Definition 2.

Definition 2 Individual’s Existence Function

 () ∈ ()

 ∈ () ()

Consequently, if x belongs to a universal‟s extension in world w then x also exists at

w. In the following, we will use the extension and existence functions, in order to

define the statements that are represented in a conceptual model represented in

plain UML.

2.3 Conceptual Models Represented as UML Class Diagrams

The Unified Modeling Language (UML) [4] is a language initially proposed as a uni-

fication of several different visual notations and modeling techniques used for sys-

tems design [24]. According to [12], the UML is a non-temporal conceptual model-

ing language. Thus, a UML class diagram represents the actual state of a system as-

suming that the “information base” contains only the current instances of classes

and relationships. The language has become a de facto standard for conceptual

modeling, proposed as an ontology representation language [24, 25].

Although UML class diagrams define in principle only the static aspects of con-

ceptualizations, a number of language constructs may be given a temporal interpre-

tation. Consider, for example, UML multiplicities, which may raise different tem-

poral interpretations.

Figure 3 depicts a UML class diagram about people and marriages demonstrating

the use of multiplicities with UML. A UML multiplicity defines how many elements

are valid on a set that an entity of the domain is linked to. For instance, a multiplici-

ty of “2” from a domain entity “Marriage” to “Person” means that a marriage must

be linked to exactly two persons, and the multiplicity “*” (or “0..*”) from “Person”

to “Marriage” that a person must be linked to any number of marriages (the star

28 | P a g e

character “*” is used to represent an infinite upper bound meaning that a person

may be linked to an unbound number of marriages).

Figure 3 UML Class Diagram: People and Marriages

From a pure conceptual modeling point of view, it is reasonable to interpret the dia-

gram of Figure 3 in two different ways. First, a person (let‟s say Abraham) may be

linked to several marriages at the same time e.g. Abraham could be married with

Sarah and Hagar in the same point in time (we characterize this as interpreting the

diagram with a current semantics). In a second interpretation, Abraham may be linked

to several marriages through his entire life, but not necessarily at the same time (we

characterize this as interpreting the diagram with a lifetime semantics). The different

interpretations here are crucial to establishing the intended conceptualization: in the

first case, the model admits polygamy explicitly, while the second model does not

rule it out.

In current semantics, the UML multiplicity specifies cardinality constraints that

should hold for each single point of time. In lifetime semantics, a multiplicity speci-

fies cardinality constraints that should hold considering the set of all possible in-

stants of time. Axiom 1and Axiom 2 formally characterize these two interpretations of

the UML multiplicity in the example above.

Axiom 1 Current Multiplicity

 ∈ ∈ () ()

Axiom 2 Lifetime Multiplicity

 ∈ ()

W is the set of worlds states, the operator # denotes the number of values of a set

and the expression m.person denotes the persons linked to a specific marriage. Axiom

1 states that for every world, for every marriage that exists at that world, the set of

partners (persons) that marriage is linked to, at that world, is equal to 2. Axiom 2

P a g e | 29

states that for every marriage that will eventually exist in all possible worlds, that

marriage will have in his entire existence exactly 2 partners (they may or not be the

same). Note the difference of between the two statements. In current semantics a

class has an extension at a particular world w, e.g. ext(Marriage, w), whilst in lifetime

semantics a class has the same extension at all possible worlds, e.g. ext(Marriage).

Consider the UML class diagram depicted in Figure 4. The figure shows that a

person may have several marriages where a marriage can be a current or a former

marriage (i.e. a past marriage). Here we can notice informally, looking at the classes‟

names that lifetime semantics does not seem to apply. If there is a particular entity

called “Current” Marriage, this means that the class diagram is specified with a cur-

rent semantics, i.e. for a single point in time, where “current” is the on-going (actu-

al) marriage of a person and “Former” Marriage the set of a person‟s past marriages

(which is reified in order to keep track of the past).

Figure 4 UML Class Diagram: Former and Current Marriages

What contributes for such misinterpretation of UML multiplicity/class semantics is

that the majority of conceptual models about different subject domains have the

same multiplicities in both current and lifetime semantics, and this hinders the cor-

rect interpretation of the model. For example, it is reasonable for a given domain

that a person has several marriages both at the same time and through his/her life

(polygamy). However, despite this fact, UML does assume (as it was originally creat-

ed to assume) a current semantics, intended to represent only the current state of a

system (even if the past is reified in order to keep the world‟s history as part of the

current state of the system). Therefore, classes in plain UML has extensions at a par-

ticular point in time and multiplicities specify cardinality constraints with current

semantics. Figure 5 depicts the implied formal semantics in the previous class dia-

30 | P a g e

gram of Figure 3, showing that all UML multiplicities are defined by formulae as

specified in Axiom 1 and thus classes has extensions functions at a particular world.

Figure 5 Formal Semantics of a Current UML Class Diagram

In addition to these static aspects, plain UML can represent a single type of dynamics

called immutability. Immutability is denoted in UML using the simple meta-attribute

“readOnly” into the immutable UML association end-point (or attribute), such as

exemplified in Figure 6.

Figure 6 Current UML Class Diagram: Immutability Dynamics

The UML readOnly defines that the UML association end-point (or attribute) cannot

be updated once assigned. This means that their values cannot change when time

evolve [4, p.125, 129]. The readOnly from Marriage to Person means that the partic-

ipating partners of a marriage cannot change. In other words, if a marriage exists at

a point in time w, then at every time w’ that the marriage exists, that marriage will

have in w’ the same partners as in w. Figure 6 then depicts the dynamic formal se-

mantics of immutability implied by the UML readOnly feature.

The diagrammatic notation of UML is limited with respect to the static (and dy-

namic) aspects that it can represent. Therefore, in the following, we start presenting

P a g e | 31

a constraint-based language (OCL) used to complement UML class diagrams with

static aspects in order to increase its (static) expressiveness.

2.4 The Constraint-Based Language (OCL)

The Object Constraint Language (OCL) [5] is a textual, semi-formal constraint rep-

resentation language adopted by the OMG to express restrictions on MOF-based

models e.g. UML. OCL is declarative and based on first-order logic. OCL is used

with UML to represent static aspects that cannot be represented using class dia-

grams. OCL is used to describe and complement UML models respectively with

UML (static) class invariants, derivation rules for UML association end-points and

UML attributes, pre- and post-conditions for UML operations, definition of UML

class operations, among other features [5, p.5, 6].

 OCL static invariants are conditions that must be satisfied at any time. In other

words, they are conditions that should be respected at every single state of the sys-

tem. OCL derivation rules in turn express how attributes or association end-points

(also called as “properties” using UML terminology) can be inferred from other

conceptual model elements. OCL derivations are static since the model properties

themselves are defined with a current semantics representing thus a snapshot of the

system (as discussed in previous Section 2.3). Since OntoUML disallows UML op-

erations, interfaces and association classes [2], only a subset of OCL is meaningful

to OntoUML. So, we focus here on UML class invariants and derivation rules for

UML attributes and association end-points [22].

In the following, we briefly explain OCL by means of another example about a

domain conceptualization of people and marriages. In this conceptualization, a per-

son can have at most one marriage at a time and a marriage always involves two or

more partners. A polygamous marriage is a marriage that also includes more than

two partners at a time and a monogamous marriage includes only two partners.

Moreover, every marriage has identified if it is under-aged i.e. if it has at least one

partner under the age of 18.

32 | P a g e

Figure 7 depicts this domain modeled with plain UML. It shows a class Marriage

partitioned as {Polygamous Marriage, Monogamous Marriage} and having a derived

attribute of primitive type Boolean called “isUnderAge” (derived properties in plain

UML are often denoted by a slash “/” previous to the property name). Further-

more, a person has an integer attribute denoting a person‟s age at a time.

Figure 7 UML Class Diagram: Polygamy and Monogamy

The conceptual model of Figure 7 is not able to define two desired aspects of phe-

nomena. Firstly, a derivation rule stating that the “isUnderAge” attribute of Mar-

riage is derived from the partners of that marriage, checking if there is at least one

partner under the age of 18. Secondly, two static class invariants, one stating that the

age of a person must always be greater than 0 and that a monogamous marriage

must always involve exactly two partners at a time. Listing 1 specifies these two stat-

ic aspects represented with standard (plain) OCL.

context Marriage::isUnderAge: Boolean

derive: self.partners->exists(p | p.age < 18)

context Person inv: self.age > 0

context _‘Monogamous Marriage’ inv: self.partners->size() = 2

Listing 1 OCL Static Constraints about Polygamy and Monogamy

The OCL keyword “inv” specifies an OCL invariant and the keyword “derive” an

OCL derivation rule. In the case of invariant, the keyword “context” specifies the

domain concept to which the condition must hold (in UML terms a Class). In the

case of derivation, the context specifies the UML attribute or UML association end-

point to be derived and has the format “Class::Attribute : Type”, where Class is the

owner of the Attribute and Type its respective type.

P a g e | 33

The keyword “self” represents a specific object, an individual of the context class.

In the derivation rule, this means that “self” represents an individual of “Marriage”

and in the invariants an individual of “Person” and “Monogamous Marriage” re-

spectively. OCL specifies that class or property names with spaces or accented char-

acters should be preceded by underscore inside of single quotes.

In the derivation rule, the OCL expression “self.partners” returns the set of part-

ners (people) related to a specific marriage called “self” and, in the first invariant

rule, the OCL expression “self.age” returns the integer number related to the age of

the specific person called “self”. In OCL, the dot notation (i.e. “.”) is used to navi-

gate through the association end-points or access attributes of the model. OCL also

specifies that we can use the name of the class (owner of the attribute or association

end-point) with lower case characters in order to navigate through the model, if a

name for that property is not given.

The OCL “size” operator returns the number of elements in an OCL collection.

An OCL Set is a specific type of an OCL Collection. Other OCL collections include

Bags, Ordered Sets and Sequences but Bags are only meaningful to OntoUML in

the context of material relationships. The OCL “exists” operator iterates over an

OCL collection ensuring that at least one element of the collection (e.g. the set of

partners of a specific marriage) satisfy a boolean condition, for instance, checking

whether a person‟s age is fewer than 18. It is important to emphasize that although

the derivation rule or invariant is specified for a particular individual (i.e. self), the

condition or rule must be true for every single instance of the context class.

We have seen that a conceptual model is then represented by (i) UML class dia-

grams, with its static (and very limited dynamic) constraints implied by the diagram-

matic notation and by (ii) a set of static user-defined constraints specified in plain

OCL. In the following we start incorporating additional dynamics in plain UML using

the ontologically well-founded profile for UML class diagrams.

34 | P a g e

2.5 The Ontologically Well-Founded UML Profile

Figure 8 depicts a different conceptual model in plain UML about a domain of per-

sons, their stages in life and marriages. It shows that there are people, which can be

children, teenagers, adults or elders, and orthogonally, man or woman. In the scope

of a marriage, a man can be a husband and a woman can be a wife.

Figure 8 UML Diagram: Marriage, People and Stages of Life

A partition {disjoint, complete} is a UML generalization set with attributes “isDis-

joint” and „isCovering” equal to true. For example, Person is classified by the parti-

tion {Man, Woman}. The attribute isCovering means that every instance of Person

must be either an instance of Man or Woman at a time. The attribute isDisjoint states

that, there is no person who can be both man and woman, at the same time [2].

UML has been widely used and adopted as a conceptual modeling language [26]

but as a conceptual modeling language, UML should be suitable to represent rele-

vant aspects of the phenomena of a domain and be effective and clear in represent-

ing such phenomena through the constructs of the language [27]. The class diagram

fragment of UML 2.0 was re-designed and evaluated according to the structural lay-

er of the Unified Foundational Ontology (UFO) dubbed UFO-A (which we cover

in Appendix A). The result is a well-founded version of UML for ontology-based

conceptual modeling dubbed OntoUML.

UFO gives the OntoUML language‟s constructs. Thus, while in UML the con-

structs of the language were UML classes and UML relationships, in OntoUML the-

se are refined according to the hierarchy of UFO-A. The allowed OntoUML classes

are: Kind, Collective, Quantity, Subkind, Role, Phase, RoleMixin, Category, Mixin,

P a g e | 35

Relator, Mode, Quality and PhaseMixin. The allowed set of OntoUML relationships

are: Material, Formal, Characterization, Derivation, Mediation, ComponentOf,

MemberOf, SubQuantityOf, and SubCollectionOf. OntoUML only incorporates

constructs with ontological interpretations; consequently, OntoUML disallows UML

constructs such as UML Interfaces, Association-Classes and Operations. Lastly, On-

toUML defines a number of constraints derived from UFO that restricts the ways

the OntoUML classes and relationships can be related in order to produce syntacti-

cally valid conceptual models [2, 27].

The model of Figure 9 revisits the model of Figure 8 employing the OntoUML

profile. The profile uses class stereotypes to determine which ontological category

from the UFO applies to each class [2]. This means that OntoUML can address

some of dynamic aspects of this domain that are not addressed in plain UML.

Figure 9 OntoUML Diagram: People, Stages of Life and Marriages

For example, the class Person is stereotyped as «kind», meaning that it applies nec-

essarily to its instances. Thus, a person cannot cease to be a person without ceasing

to exist. This modal notion corresponds to what is called Rigidity in UFO. The con-

sequence of rigidity in terms of dynamic aspects is that an instance of a rigid class

instantiates this class throughout its life. A kind can be used in a taxonomic struc-

ture with rigid subtypes known as subkinds (e.g., Man and Woman).

Other examples of dynamic aspects expressed in Figure 9 include those implied

by the use of the stereotypes of the classes Husband, Wife, Child, Teenager, Adult

and Elder. Husband and Wife are stereotyped as «role» and Child, Teenager, Adult

and Elder as «phase». Roles and phases are anti-rigid concepts (e.g. a wife can cease

36 | P a g e

to be a wife without ceasing to exist). Anti-Rigidity states that a class C is anti-rigid

iff for all its instances, there will be a possible world w in which they exist but do

not instantiate C, at w. The difference between roles and phases is that the former

defines contingent properties of an instance exhibited in a relational context (e.g. a

person is a wife contingently and only in the context of a marriage) while the latter

through an intrinsic change of an instance‟s property (e.g. a child has the intrinsic

property of being a child).

The class Marriage is stereotyped as «relator». Relators can be viewed as objecti-

fied properties, as entities that “connect” other entities. They are the truthmakers of

the so-called «material» relationships. For example, it is the existence of a particular

marriage connecting man X and wife Y that makes true the relation “ismarried-

with(X, Y)”. A derivation relationship on the other hand holds between a relator

and a material relationship and exemplifies the truth-maker relation. Relators are

rigid concepts and existentially dependent on the instances they connect through

«mediation» relationships. A mediation is a type of relationship that defines existen-

tial dependence from their source entity, e.g. Marriage, to their target entities, e.g., a

Wife and a Husband. This means that a marriage only exists at some point in time, if

wife and husband also exist at that point in time. A particular marriage then depends

specifically on two “fixed” persons, i.e., the marriage between Bob and Alice cannot

ever become the marriage between Bob and Anna. Mediations are thus always de-

fined as readOnly at their target-side by default. From a logical point of view, this

dynamic aspect of existential dependence can be viewed as a type of immutability (a

marriage never changes their participating wife and husband). Finally, the classes

Husband and Wife are related through exactly 1 Marriage, meaning that we repre-

sent monogamous heterosexual marriage, i.e., a partner can only be married to one

partner at a time.

In the sequel, we simulate the diagram of Figure 9 as a means to demonstrate that

even with the additional dynamics introduced in UML by the OntoUML profile, the

class diagram of Figure 9 does not represent some important dynamic constraints

that serve to rule out inadmissible situations. We generate an instantiation which is

possible according to the model. We use the existing ontology-based approach that

P a g e | 37

is based on Alloy simulation and analysis [22, 23]. In this approach, a temporal in-

terpretation is given to the model suitable for validation purposes in order to show

how the entities change from world to world in some sort of story, even though

OntoUML is neutral with respect such interpretation. This means that worlds are

not anymore equally accessible but are accessible in an ordered manner through a

binary accessibility relation called next.

The following figures: Figure 10, Figure 11 and Figure 12, represent three subse-

quent states of the world. In the first state of the world called World0 (which simu-

lates a past state of the world), there were two marriages existing in time: a marriage

Property1 between a man Object1 who was a child and a teenager woman Object2, and

a marriage Property0 between a man Object3 who was an elder and another elder

woman Object0.

Figure 10 A Past State of the World to the Marriage Example

In a second state of the world (World2, simulating a possible present world), Man1

(i.e. Object1) suddenly ceases to exist as an elder. This makes his marriage (Property1)

with Woman2 (Object2) cease to exist. His wife, Woman2, however, which was previ-

ously a teenager, continues to exist in time as a child woman. In addition, in this se-

cond world, Man3 continues married with Woman0 but Man3 turns from being an

elder to an adult while Woman0 continues to exist as an elder.

38 | P a g e

Figure 11 A Present State of the World to the Marriage Example

In the last, and third state of the world (World3, simulating a future possible world

from the present world), Woman2 suddenly ceases to exist and Man1 who was once

married with Woman2 (in the past) and ceased to exist (in the present), now suddenly

comes back into existence (in the future) as a child. The marriage Property0 between

Man3 and Woman0 continues to exist but Man3 who was in the past a child and in

the present an adult, now (in the future) suddenly turns into a child (his wife Wom-

an0 continues to be an elder).

Figure 12 A Future State of the World to the Marriage Example

Note that, while formally correct according to the model in Figure 9, these sequenc-

es of world states are clearly inadmissible according to our common sense notions

P a g e | 39

of this subject domain. For example, in the first state of the world (the past world),

only Man1 is a child. Man3, Woman0 and Woman2 are not created as child; they were

created as elders and teenagers, respectively (Initial Classification Rule). In the se-

cond state of the world (the present), Man3 turn from adult to elder (Final Classifi-

cation Rule) i.e. Man3 should, after being an elder, cease to exist of continue to be

an elder. In addition, in this present world, Woman2 turned from being a teenager to

a child and this should not happen since once teenager, a person should only be af-

ter that an adult or remain a teenager. Lastly, in the third world (the future), we see

that Man1 who once ceased to exist in the present, now in the future exist again

(Continuous Existence Rule). This is undesired since a person should not come into

existence once it ceased to exist. Also, Man3 and Woman0 always exist from the

first to the last state of the world (Transient Existence Rule), which is also undesired

since a person should eventually cease to exist at some point.

We see that OntoUML is not expressive enough to represent all relevant aspects

of a given domain conceptualization due to its nature as a diagrammatic notation

and due to its still limited support for dynamics. Even with the re-design and evalua-

tion of UML according to a foundational ontology such as UFO, the resulting lan-

guage still lacks the ability to express some important dynamic aspects. That, affects

the accuracy of models with respect to a domain conceptualization, and motivates

the extension of the language as discussed in this work.

2.6 Final Considerations

In the current semantics, a UML class diagram represents static invariants that are

implied by the diagrammatic notation (with the exception of the UML “readOnly”

feature which implies a type of dynamic invariant called immutability). UML can be

complemented with arbitrary static aspects using OCL textual constraints since

UML‟s diagrammatic notation is limited with respect to the static aspects it can rep-

resent. In OntoUML, in addition to the UML‟s static invariants, dynamic ones are

included from the ontological distinctions of UFO. The dynamic invariants captured

by OntoUML are the formulae implied by the different types of rigidity of classes

(rigidity, anti-rigidity and semi-rigidity) and dependences (immutability). However,

40 | P a g e

OntoUML is still limited with respect to dynamics. With alethic modality we can

state that there will be a point in which things can change or that, at any point,

things will be the same (this logics is called a logic of possibility and necessity). Note

that no temporal interpretation is necessary for that. However, a temporal interpre-

tation is required if we want to state how things should behave as time evolves in

some ordered manner. With a temporal interpretation, we will be able to enforce the

admissible histories for the entities in the domain, determining how they may be-

have in time throughout various world states. In order to capture these temporal

invariants, we build on UFO‟s distinctions and augment the profile to support the

representation of more accurate models. This leads to a simple extension of the On-

toUML profile capable of expressing some additional temporal notions.

P a g e | 41

3 Introducing Temporal Aspects in

Conceptual Models

In this chapter, we formally characterize some temporal dynamic aspects identified

for OntoUML conceptual models and demonstrate by examples how they can be

used within OntoUML. We first formally characterize a temporal interpretation for

our previous “alethic” model structure in order to address temporal aspects (Section

3.1). We then briefly discuss the default semantics of OntoUML‟s categories and the

need for a specific type of dynamic aspects called continuousness (Section 3.2). We

formally present the set of identified dynamic aspects according to the existence of

endurants (Section 3.3) and their change in instantiation (Section 3.4). Finally, we

demonstrate how these aspects can be included in OntoUML class diagrams in or-

der to be accurate in the representation of a subject domain (Section 3.5).

3.1 Temporal Accessibility Relation

In Section 2.2, we formally defined a semantics for a model structure using the ale-

thic modality, defining a binary accessibility relation R defined in W x W with all

worlds being equally accessible. This is the default semantics assumed for structural

OntoUML conceptual models, where no temporal modality is assumed. However, if

we want to specify the behavior of model entities in time, worlds must be accessible

following some order in a structure called World Ordered Structure or just World Struc-

ture. A world structure encompasses a set of worlds ordered together through a

temporal accessibility relation, which is a special case of the accessibility relation R.

A temporal interpretation will restrict the way R can relate worlds. Let us assume an

accessibility relation called next as a partial order relation. In other words, next is irre-

flexive (a world is not next to itself), asymmetric (if world w is next to world w’ then w’

is not next to w) transitive (any world next to any world w' which is next to world w, is

also next to w), and acyclic (a world must not be transitively next to itself). We thus

assume our world structure to be a tree wherein no joining branches are allowed.

42 | P a g e

In the following, we will use the temporal accessibility relation next to describe

dynamic aspects that were not able to be represented solely with alethic modality,

which is implicit in the OntoUML formal semantics.

3.2 UFO Semantics

In UFO, individuals that persist in time are called endurants. Endurants are divided

into substantials and moments. Moments can be seen as objectified properties that in-

here in other individuals. For example, a headache is an intrinsic property of a per-

son and does not exist by itself. A headache only exists if that particular person also

exists. A person is an example of substantial, an individual that has an identity [2], is

not existentially dependent on other individuals and as such does not inhere in any

individual. Substantials are often called objects.

UFO‟s ontological distinctions such as the different types of rigidities and de-

pendences are silent with respect to whether endurants exist continuously in time. By

continuous we mean the unbroken and constant existence of something over a period

of time. For example, UFO is silent with regard to whether a person (an object) can

cease to exist and later in time exist again, or whether a person‟s headache can cease

to exist and then exist again. If a headache is created, a new headache should be cre-

ated and not the same headache as before. It is thus undesired that a person‟s head-

ache exist intermittently in time, as it is undesired that a person (a physical object)

exists intermittently in time. In this sense, both substantials and moments (en-

durants) should have continuous existence (i.e. single existence) in time.

We formally characterize this dynamic aspect in Axiom 3. The axiom states that

an endurant universal (a type) E is continuous if for all its individuals, they exist in

all worlds between any two worlds in which they exist. In other words, if the indi-

vidual exists at any world w and w’ which are transitively next to each other, then

that individual should exist in every world between w and w’.

Axiom 3 Continuousness of Endurants

 () ∈ () () ()

 ∈ () () ()

P a g e | 43

Continuousness is addressed in [30] as a specific axiom in the formal validation ap-

proach with Alloy simulation and analysis. Although OntoUML is silent with re-

spect continuousness, the author incorporated this axiom as part of the temporal

interpretation used for validation.

Substance Sortal universals [2] are types that provide a principle of application

and identity to its instances. A principle of application supports the judgment of

whether the type applies to an individual e.g., whether an individual is recognized as

instance of the type Person. A principle of identity supports the judgment of wheth-

er two individuals are the same through their identity criteria [2, p.98]. Every sub-

stantial individual must be an instance of a Substance Sortal Universal, namely a

Kind, Collective and Quantity. Similarly, in order to a moment individual exists, it

must instantiate one of the Moment universals namely a Relator, a Mode or a Quali-

ty. Therefore, we propose that UFO should by default incorporate this axiom for

every Substance Sortal and Moment universal i.e. Endurant universal.

3.3 Durability

In the sequel, assuming that all endurants (substantials and moments) are by default

continuous in time, we define an orthogonal type of dynamics denoted Durability.

Durability refers to how long an endurant should exist over a period of time and

should not be confused with continuousness. Continuousness refers to how many

existences an endurant should have in time (i.e. only a single existence is allowed).

3.3.1 Permanence

By permanent we mean that an individual cannot be destroyed, or in other words, we

call a type G permanent when its individuals, once they exist, always exist, as for-

malized in Definition 3. The definition states that if an instance of G exists at world

w then it exists at every subsequent world w’ from w.

Definition 3 Permanence

permanent(G) ∈ () ∈

 () ∈ () ()

44 | P a g e

“Celestial Person” could be an example of a permanent person, a person whose

identity relates to a spiritual or non-physical realm, not defined by its biological body

conditions but by the existence of his/her own soul or spirit, which after conception

never ceases to be. This means that a permanent, celestial person endures in all pos-

sible worlds after existing at some world. In this conceptualization, death is a change

in phase, not the end of existence. Similarly, another example could be “Celestial

Marriage” which would in this particular religious conceptualization last forever

even in the afterlife of partners.

3.3.2 Transience

By transient we mean that an individual will eventually be destroyed, in other words,

we call a type G transient when its individuals, once they existing, cease to exist

eventually. In other words, there will be a case (some world state after it existed)

wherein the individual no longer exists, as formalized in Definition 4.

Definition 4 Transience

transient(G) ∈ () ∈

 () ∈ () ()

“Biological Person” could exemplify this type of dynamics i.e. a person whose iden-

tity relates to him/her existing as a living organism, having an identity defined by

his/her biological body conditions. A biological person should, at some point, cease

to exist. Another example could be “Civil Marriage” which is a marriage between

two people that will come to an end whether (i) with the death of at least one of the

partners (which will eventually happen assuming people to be biological beings) or

(ii) with the partner‟s divorce.

3.3.3 Eternity

By eternal we mean that an individual exists in all worlds, in all branches of worlds of

the structure adopted, in other words, we call a type G eternal when its instances

always exist and there is no world wherein an eternal individual does not exist, such

as formalized in Definition 5.

P a g e | 45

Definition 5 Eternity

Eternal(G) ∈ () ∈ ()

 “God” could be an example of such dynamic aspect if considered to always have

existed and to always exist into the future. “Planet” could also be considered eternal

in a conceptualization capturing a relatively short-term human perspective where it

would be irrelevant to define an eventual destruction/creation of planets and our

universe.

A moment in UFO is divided into intrinsic moments (modes and qualities) and

relational moments (such as relators). Intrinsic moments and substantials (kinds,

collective and qualities) can be eternal but relational moments cannot because it

would be contradictory to the anti-rigidity of role playing. Substantials are by defini-

tion externally independent individuals, as they should not depend on any other in-

dividual in order to exist. If a marriage is eternal (i.e. always existed and will always

exist) so are the two people participating in that marriage eternal as well. The two

people are bound to each other as long as the marriage exists, but as the marriage is

eternal and always exist at any time, each person is existentially dependent on each

other via eternal marriage. If so, they are not be externally independent substantials

as stated by the substantial definition, thus the contradiction.

3.4 Classification Dynamics

By classification we mean the process or a period in which an individual change from

one type or to another. In the sequel, we define two types of classification dynamics

for anti-rigid types called Initial and Final classifications.

3.4.1 Initial Classification

The Initial Classification is a peculiar type of classification rule where there is no

antecedent world state, only a subsequent world state, and the condition (the instan-

tiation of an individual at a particular type) should hold at the subsequent world

state, which is the first world of an individual‟s existence. For example, an anti-rigid

type T (namely Role, Phase, PhaseMixin, and RoleMixin) is an initial classification

46 | P a g e

type iff all their individuals are of T in the first world in which they exist, such as

formalized in Definition 6. The definition states that there will be a world w in

which if the individual exists in w and does not exist in all previous worlds from w

then it is of type T at w. As all individuals are continuous by default, this formaliza-

tion assumes that an individual will always have a single existence in time.

Definition 6 Initial Classification

Initial(T) ∈ () ∈ existsIn(x, w) and

(∈ () ()) ∈ ()

 “Fetus”, “Living” and “Baby” could be examples of initial classifications of people.

In the context of a “Human Conception”, the first role a person should play in life

could be the role of “Fetus”. In addition, if {Living, Deceased} and {Baby, Child,

Teenager, Adult and Elder} are orthogonal stages of a person‟s life, the phases Liv-

ing and Baby are examples of initial phases as a person should always be a living

baby in the first world he/she exists (we can have more than one initial role for the

same individual at the same time).

3.4.2 Final Classification

The final classification is another special case of a classification rule where there is

no subsequent world state, only an antecedent world state, and the condition (in-

stantiation of an individual at a particular type) when reached, must always hold un-

til the subsequent world is reached i.e. until an individual ceases to exist. An anti-

rigid type T is a final classification type when all their individuals, when of type T,

are always of T unless they cease to exist, as formalized in Definition 7. Considering

the phases of a person‟s life, “Elder” could be an example of final phase meaning

that a person only ceases to be an elder when he/she ceases to exist. Another exam-

ple could be “Deceased Person”, meaning that a person would not be allowed to

resurrect in the domain (once deceased always deceased). This formalization also

assumes that all individuals exist continuously i.e. have a single existence in time, as

discussed previously that this should be the default semantics of UFO.

P a g e | 47

Definition 7 Final Classification

Final(T) ∈ () ∈

 ∈ () ∈ () () ∈ ()

3.5 Examples

Given UFO‟s focus on alethic modality, OntoUML currently lacks expressivity with

regard to dynamic aspects. It cannot express (i) continuousness, (ii) durability (per-

manence, transience and eternity), and classifications (initial and final) invariants. In

the next section, we demonstrate how these dynamic aspects can be applied within

OntoUML in order to represent as accurately as possible a domain conceptualiza-

tion. We propose a simple extension to OntoUML in which these dynamic distinc-

tions are represented using UML tagged values. We demonstrate that our On-

toUML extension enables structural conceptual models to be aligned with different

philosophical views about time and existence. We first start briefly presenting a

philosophical theory about time called Presentism showing how the dynamic aspects

introduced in OntoUML can enable models aligned with this view. We later discuss

the Growing Block Universe theory, also discussing how the dynamic aspects intro-

duced in OntoUML can enable this other view.

3.5.1 Presentism

Presentism is a philosophical theory of time that states that events and entities that are

wholly past or future do not exist in the present. In Presentism, only present things

exist [21]. Let us consider that a modeler aligned with presentism produces a con-

ceptual model with all universals marked {transient}. In this view, past things such

as ex-marriages, deceased people, ex-husbands, ex-wives, deceased parents, deceased

children do not exist in the present, rather, only living people, current marriages,

husbands, wives, living parents, living children exist. Figure 13 depicts an example

about people, marriages aligned with the presentism view represented with the pro-

posed OntoUML extension. Note the syntax {transient} to denote transient exist-

ence of biological persons, monogamous marriages and current parenthoods. We

defined our own specific concrete syntax notation for the dynamics introduced in

48 | P a g e

OntoUML (the tagged value name between curly brackets at the bottom of the

class). We are not advocating that this is the best concrete syntax, but that they are

required if we want to capture accurately some dynamic invariants about that the

portion of that world.

Figure 13 OntoUML Diagram: People and Marriages in Presentism

Each person, marriage and parenthood is transient which means it ceases to exist at

some point in time. A person is considered to cease existence when all its functions

that sustain a person to exist as a living biological organism cease. We are consider-

ing that resurrection is not allowable, i.e., a deceased person (who ceased to exist)

cannot come back to existence. Similarly, a marriage that no longer holds ceased to

exist and cannot be brought back into existence. A marriage can be seen as a socially

or religiously recognized union or legal contract between husband and wife that es-

tablishes rights and obligations between them. A male spouse is called husband

whereas a female spouse wife. A marriage is defined monogamous i.e., a form of

relationship in which a husband/wife can only marry one partner at a time. The ma-

terial relationship parentOf, on the other hand, relate living existing parents to their

living existing children. It defines that a person has a set of children and one or two

parents. A person is created as a living child (note the syntax {initial}) and a

P a g e | 49

parenthood between two living parents and their child will hold until the parents or

the child cease to exist (the parenthood is existentially dependent on them).

In this “presentist model”, we do not define the notions of ex-husbands, ex-

wives, or ex-marriages. Further, we cannot refer to my grandfather (which is a father

to my father) since he does not exist in the present. We cannot refer to John Len-

non‟s father as both John and his father are deceased in the present. In presentism

what exists is what exists in the present. If we wanted to represent an ancestral rela-

tionship (to relate my grandfather which is today a wholly past entity to my father

which is a living, existing entity) that would be not possible using that “presentist

model” solely represented with OntoUML. The ancestral relationship is a type of

Historical relationship because it depends on entities that are not necessarily in the

present but in the past. Historical relationships are temporal relationships and relate

entities at all worlds. Such relationship cannot be represented in the style of “pre-

sentist model” discussed in this section, as only presently living things are consid-

ered to exist.

In order to represent as accurately as possible this particular conceptualization,

besides the historical relationship of ancestry, we would also want to represent a fact

involving that relationship, for example, an invariant stating that people cannot be

descendants/ancestors of themselves, where people here are both people from the

present and the past. This type of fact is called Trans-Temporal Fact [21] or just Histor-

ical Dependence Fact. Not only the “presentist model” cannot represent historical rela-

tionships but the OntoUML language is not sufficient to express trans-temporal

facts due to its nature as a diagrammatic notation. In this sense, we would need an

additional language to express both temporal historical relationships and trans-

temporal facts.

3.5.2 Growing Block Universe

The Growing Block Universe theory of time (or the growing block view) states that

the past and present exist and the future does not exist. By the passage of time more

of the world comes into being, therefore the block universe is “growing”. The grow-

50 | P a g e

ing block view is an alternative to both Eternalism (according to which past, pre-

sent, and future all exist together) and Presentism (according to which only the pre-

sent exists) [21]. In this view, ex-marriages, deceased people, ex-husband, ex-wives,

deceased parents and children, all exist in the present time together with current

marriages, living people, husbands, wives, living parents and living children. Figure

14 depicts our running example about people and marriages using our OntoUML

extension, now more aligned with the growing block universe view.

In this view, the “universe” is said growing with all entities. It is important to

note that the model is still a snapshot of the abstraction of phenomena. The differ-

ence is that wholly past entities are now part of what exists together in the present

with present entities. In this manner, all entities are permanent; note the syntax

{permanent} to denote permanent existence of biological persons, monogamous

marriages and parenthoods. People, marriages and parenthoods are permanent in

existence because they indeed should never leave existence i.e. the block of universe

is said to be always growing. Thus, once they are created, they can never leave exist-

ence, but they can assume different classifications with regard to the time of their

existence (e.g. living and deceased people, current and ex-marriages; living parents

and deceased parents, living children and deceased children). By defining all en-

durants as permanents we are actually defining that the set of individuals of the

model always increase in time (people always increase, marriages always increase and

etc.)

In addition, according to this “growing block model”, once people are created

they must be living people (hence living people are initial classifications) and when

they become deceased they cannot be alive again i.e. they must be deceased from

this point forward (hence deceased people are final classifications). This same “pat-

tern” is applied to other entities such as current and former marriages which are ini-

tial and final classifications of permanent marriages. Once a permanent marriage is

an ex-marriage, it will always be an ex-marriage from that point forward and thus

once a husband/wife becomes and ex-husband/ex-wife, he/she will always an ex-

husband/ex-wife, meaning they are final classifications by implication. The same

holds for current husbands/wives which are initial classifications of permanent mar-

P a g e | 51

riages i.e. a marriage must be created as a current marriage. People are created as

living children and once they are parents, they should always be parents.

Figure 14 OntoUML Diagram: People and Marriages as Growing Blocks

In this model, the material relationship descendantOf relates not only living parents

and children (as opposite to the “presentist model”), but also deceased ones. In this

manner, the relationship could be called descendantOf because it represents our for-

mer conceptualization about an ancestry relationship, which relates ancestors with

their descendants. In presentism, this relationship was considered historical because

it depended on wholly past entities. As in the growing block view past things exist as

part of the “block of universe which is always growing”, we can represent our an-

cestry relationship as an (Onto-) UML relationship that by default uses a current

semantics (Section 2.3) i.e. it relates concepts at a particular point in time. Not only

52 | P a g e

we can represent the ancestry relationship, but also our trans-temporal fact stating

that people should not be descendants/ancestors of themselves. The trans-temporal

fact can be represented as a static fact using (static) OCL as in Listing 2.

context _‘Biological Person’

inv: self->asSet()->closure(children)->excludes(self)

Listing 2 Trans-Temporal Fact in Plain OCL in the Growing Block View

Lastly, derivation by past specialization [20] is a type of dynamic aspects wherein

an existing set of entities are derived from the past. For example, for some domain

conceptualizations, past marriages are not a present existing entity but ex-husbands

and ex-wives are. Therefore, an ex-husband or ex-wife would be a person who was a

husband/wife in a marriage that existed in the past, which no longer exists in the

present. If the former (ex-) marriage is not a present entity (alignment with pre-

sentism for marriages) but the ex-husband and ex-wife are (alignment with the

growing block universe for husbands and wives) this would characterize a case of

derivation by a past specialization. Therefore, in hybrid models it would be possible

to have past specializations whilst in in the growing block view theory they do not

make sense as all past entities are indeed part of the present.

3.6 Final Considerations

In this chapter, we defined dynamic aspects that could be added in OntoUML in

order to precisely represent some dynamic invariants of conceptualizations. These

aspects regard the existence and classification of individuals. We have given a tem-

poral interpretation to the structure of world states in order to precisely define se-

mantics of the tagged values that were added to the profile. The temporal dynamic

invariants addressed in this chapter enable the specification of models in different

styles i.e. models more aligned with the presentism theory or with the growing block

universe theory. We have seen that when we adopt a model aligned with the grow-

ing block view, we have means to express trans-temporal facts, since the past is rei-

fied and considered current. Therefore, there are still a number of challenges with

respect to the representation of dynamic invariants. For example, so far, we just en-

P a g e | 53

abled the representation of trans-temporal facts in the case where existence is rei-

fied, in models aligned with the growing block universe theory while derivations by

past specialization cannot be represented in models aligned with either of the theo-

ries. We address some of the remaining challenges in the next chapter, in which we

propose that additional dynamic invariants should be specified using a complemen-

tary textual constraint language, more specifically a temporal extension of OCL.

This extension is able to represent trans-temporal facts, past specializations and

richer dynamic invariants about a subject domain without requiring the adoption of

a growing block approach.

54 | P a g e

4 OCL Temporal Extension for Ontology-

Driven Conceptual Modeling

In this chapter, we present our temporal extension of OCL. A standard OCL invari-

ant is a static condition that should hold for each single state of the model‟s instanc-

es. Consequently, the so-called “context” of a standard invariant is a single state, and

no notion of “state” is manipulated in standard OCL invariants. In order to enable

the manipulation of states and consequently the representation of dynamic aspects,

we reify the notion of “world states” (or simply “worlds”) (Section 4.2). Reification

gives the ability of referencing, quantifying and qualifying over an objectified entity

(in this case, “worlds”). We use the “world” as an index to refer to the properties at

a particular point in time (Section 4.3). We propose a temporal interpretation for

our extension as a branching world structure, which can be used to enable arbitrary

reference to worlds and branches (paths of worlds) in temporal constraints (Section

4.4). We adjust few standard OCL predefined operations in order to support world

indexing (Section 4.5). We also define a concrete syntax for the definition of histori-

cal relationships with our extension using the modeling infrastructure described here

to represent the dynamic aspects developed in this research (Section 4.6).

4.1 OCL Extension Approach

In our approach, the modeler produces an OntoUML model enriched with tem-

poral OCL constraints. This enriched OntoUML model is automatically translated

into a “world-reified model” in plain UML in order to give context to the temporal

OCL constraints attached to it, allowing the temporal constraints to be parsed and

syntactical verified against the background model (see Figure 15). This world-reified

model in plain UML is enriched with constraints in plain OCL to ensure that the

OntoUML model semantics is preserved.

Temporal OCL constraints are just constraints written in adjusted OCL in the

context of the background world-reified model. Only few adjustments in plain

(standard) OCL are required in order for OCL to behave as a temporal language.

P a g e | 55

We employ these adjustments: (i) adding built-in operations for temporal naviga-

tions (Section 4.3), (ii) adding built-in operations for manipulation of world states

and world paths (Section 4.4) and (iii) revisiting a few plain OCL built-in operations

regarding objects and the allInstances operation (Section 4.5).

Figure 15 Extension Approach: World-Reified Model of Background

These Temporal OCL constraints are parsed (syntactic verified) against the world-

reified model of background in order to be transformed to a target language such as

Alloy [19]. The modeler expresses a conceptual model in OntoUML and Temporal

OCL and is shielded completely from the underlying support, which ultimately gen-

erates an Alloy model for simulation and validation of constraints.

In the sequel, we present first a fragment of the world-reified model in plain

UML enriched with constraints in plain OCL, used as background to give context

and analyze syntactically Temporal OCL constraints. To do that, we use our previ-

ous running example of people and marriages.

4.2 World-Reified Model of Background

The idea behind world states reification is to treat the world states (or “worlds”) as

entities, thus, we introduce the class “World” in this reification step. The OntoUML

model example about people, their stages in life and marriages, of previous Section

2.4 in Figure 9 is depicted again in the sequel in Figure 16.

56 | P a g e

Figure 16 OntoUML Example: People, Stages in Life and Marriages

 This OntoUML model is (automatically) translated into a world-reified plain UML

model enriched with plain OCL constraints. Figure 17 depicts a fragment of the re-

sulting reified model. UML is employed here as a temporal model and therefore

UML classes represent instances existing at all possible states of the world. Every

OntoUML class (e.g. the kind Person, the relator Marriage) now specialize Endurant,

in order to support the existsIn relation, which holds for the worlds in which an en-

durant exists. All OntoUML classes are then indexed in time through this relation of

existence.

Figure 17 A Fragment of World-Reified Plain UML Model of Background

In order to capture the dynamics of relationships in this reified model, we basically

represented all OntoUML relationships as a pair between two types indexed by

worlds. For instance, the UML class mediates_Marriage_Wife represents the pair (the

OntoUML mediation relationship) between the types Marriage and Wife, and that

relationship (the pair) existsIn a non-empty set of Worlds. In addition, in each

P a g e | 57

world, there may be a set of relationships (pairs) relating marriage and wife. The

original OntoUML relationship is reified (translated) into a UML class, with three

UML binary relationships and additional plain OCL constraints to maintain the se-

mantics of the original OntoUML relationship. Finally, note that all UML relation-

ships in this reified model are readOnly by default since time was reified and each

property change is now characterized by a change in the world states.

Further, all original OntoUML multiplicities define current multiplicity con-

straints (i.e. they restrict how many instances an instance may be linked to at a single

world state). We chose to represent these actual multiplicity constraints of On-

toUML in our world-reified plain UML model as additional constraints using plain

OCL. We did that because only the OntoUML lower (current) cardinality can be

represented using a temporal UML multiplicity (e.g. a wife has exactly one marriage

at a time, which means that she has also at least one marriage in her lifetime). We

would not be able to represent the OntoUML upper multiplicities using plain UML

in our temporal model. For this reason, we chose to represent all original OntoUML

multiplicities as additional plain OCL constraints and therefore, in our world-reified

model, the temporal multiplicities from UML classes Wife and Marriage to the UML

reified mediation (mediates_Marriage_Wife) is defined as just 0..*.

This world-reified model of background is used as the context for navigations

and context declarations in our Temporal OCL extension. All the additional con-

straints used to maintain the semantics of this world-reified UML model according

to our OntoUML model example are presented properly in Appendix B. There, we

define additional constraints in plain OCL over the world-reified model such as to

ensure current multiplicities, existence cycles, immutability of relata, the collection

types for relationships, and the different types of rigidity, which cannot be repre-

sented using plain UML. Note that these constraints and the world-reified model are

all generated automatically as a result of our translation and are not exposed to the

modeler.

58 | P a g e

4.3 Built-In Temporal Navigations

Navigation in OCL means the task of navigating from a specific object to its set of

associated objects via an association end in order to produce an OCL expression.

The result of a navigation expression can comprise any number of associated ob-

jects (including zero, i.e., no object). In the case in which the association end is de-

fined with cardinality value greater than 1, the navigation expression always results

in a collection of elements. If no object is associated then the result is an empty col-

lection. If the association end defines a cardinality value of at most one and no ob-

ject is associated, the result of the navigation expression is an undefined value [5].

Navigations expressions are represented in OCL by the DOT notation (i.e. “.”).

For example, in our OntoUML model example, consider the variable sarah an object

of the role Wife and the predicate marriage the mediation end-point from role Wife

to relator Marriage. The navigation sarah.marriage results in the collection of marriag-

es that sarah participates with at a single world state. Single navigations in mediations

and all OntoUML relationship always result in a Set type (collection of elements

without ordering or repetition). The only exception regards OntoUML material rela-

tionships, which can result in collections of the type Bag because they are derived

relationships from their respective relator and relator‟s tying mediations.

In our reification approach, all original OntoUML relationships were reified into

a respective UML class with three UML binary associations acting as a world-

indexed pair linking domain and range classes and the world class. For example, the

UML class mediates_Marriage_Wife acts as the ternary relationship linking (via associa-

tion end) the UML classes “Marriage”, “Wife‟ and “World”, respectively. OCL nav-

igations on ternary relationships can proceed in three stages: (i) navigating from the

ternary relationship to each class it relates, (ii) from each related class to the ternary

relationship itself, and (iii) navigating from a first related class to a second related

class but filtering the result with respect to the third related class. Only (iii) is allow-

able in our temporal OCL extension and restricted to the case wherein we filter the

result of navigation with respect to a single world state. For example, we can navi-

P a g e | 59

gate from “Marriage” to “Wife” filtering the result with respect to a world w, or

vice-versa, we can navigate from “Wife” to “Marriage” filtering the result w.r.t. w.

Listing 3 defines these two temporal navigations using plain OCL in the world-

reified model of background. The idea is that these temporal navigations should be

part of the world-reified model and provided to the modeler as built-in operations,

because the generated UML class acting as the reified relationship is hidden from

the modeler and is only used at background for syntactical verification of the Tem-

poral OCL expressions. Thus, for each OntoUML relationship there are always two

world-indexed navigations for it available to the modeler.

In the listing, the first built-in operation Wife::marriage(w) is defined as a navigation

from Wife to Marriage filtered by a specific world state. It returns all marriages of a

wife at world w. The second built-in operation Marriage::wife(w) is defined as a naviga-

tion from Marriage to Wife, returning the wife related to a specific marriage at world

w. These world-indexed navigations are available to the modeler in order to refer to

the relation in a particular state. This is the implicit default in plain OCL as the ex-

pressions are always evaluated in the context of a single world state, we just made

explicit that world.

context Wife def: marriage(w: World): Set(Marriage) =

 self.mediates_Marriage_Wife‐>select(m | m.world=w)‐>collect(marriage)‐>asSet()

context Marriage def: wife(w: World): Set(Wife) =

 self.mediates_Marriage_Wife‐>select(m | m.world=w)->collect(wife)‐>asSet()

Listing 3 Definition of Built-In World Indexed Navigations

In addition to these world indexed built-in navigations, we also enabled temporal

navigations without a world parameter, which returns all instances linked to a par-

ticular association end considering all possible worlds. For example, if sarah is a wife,

then the temporal OCL expression self.marriage() (or alternatively just self.marriage)

returns all marriages of that wife in her entire life. We describe these two additional

built-in operations for temporal navigations in Listing 4 using Plain OCL. For each

OntoUML relationship, these other two built-in navigations at all worlds are availa-

60 | P a g e

ble to the modeler. It is important to emphasize that as a marriage has always the

same wife related to it (existential dependence), both navigations m.wife() and

m.wife(w) result in the same set of wives (just one).

context Wife def: marriage():Set (Marriage) =

 self.mediates_Marriage_Wife‐>collect(marriage)‐>asSet()

context Marriage def: wife(): Set(Wife) =

 self.mediates_Marriage_Wife‐> collect(wife)‐>asSet()

Listing 4 Definition of Built-In Temporal Navigations at all Worlds

4.4 Built-In World Structure and Operations

An ordered structure of world states models how the subject domain behaves in

time. We adopt a structure of possible worlds inspired in the Kripke structures of

modal logic semantics [42]; more specifically, we assume the branching structure

previously defined in [30] as part of the temporal interpretation of validation with

Alloy simulation. We represented this world structure in UML as depicted in Figure

18. This structure of worlds is a built-in part of every world-reified UML model,

dictating how worlds are accessible from each other and specifying a number of pre-

defined temporal operations for Worlds and Paths.

Figure 18 World Structure Fragment of the World-Reified Model

In this temporal interpretation, each world has a set of (immediate) next worlds and

at most one (immediate) previous world (it is a tree, with branches towards the fu-

ture, capturing that the future may unfold in different ways). For each world state,

P a g e | 61

there is only one sequence of worlds to a future state of the world (meaning that

branches do not join again). We express these additional constraints at the World

structure (which is part of the world-reified model of background) using plain OCL

as described in Listing 5.

context World inv no_cycle: self->asSet()->closure(next)->excludes(self)

context Path inv no_parallel_structure: Path.allInstances()->forAll(p |

 self.world->intersection(p.world)->notEmpty())

Listing 5 General Constraints of the World Structure in Background

Furthermore, in our world structure, a history (i.e., a path) is comprised by a non-

empty set of worlds while a world must be included in at least one history. Differ-

ently from Benevides‟s structure [30], we have reified the notion of paths. Since

Path is also an entity as World, several additional constraints are needed in order to

enforce the semantics of histories (paths). We describe these additional constraints

in Listing 6 using plain OCL.

context Path

inv one_terminal_world: self.world->one(w | w.next->isEmpty())

inv one_initial_world: self.world->one(w | w.previous.oclIsUndefined())

inv no_two_paths_with_same_end: Path.allInstances()->forAll(p | p<>self implies

 p.world->select(w |w.next->isEmpty()) <>

 self.world->select(w |w.next->isEmpty()))

inv worlds_of_a_path_derived:

 let t: Set(World) = self.world->select(w| w.next->isEmpty())

 in (self.world-t) = t->closure(previous)

inv every_end_in_one_path:

 let ts: Set(World) = World.allInstances()->select(w |w.next->isEmpty())

 in ts->forAll(t | Path.allInstances()->one(p | p.world->includes(t)))

Listing 6 Path Constraints of the World Structure in Background

These constraints specify that a history must contain exactly one initial and one ter-

minal world, no two histories should have the same terminal world and every termi-

62 | P a g e

nal world must be in exactly one history. Additionally, the worlds contained in a his-

tory should be derived from all previous worlds of that history‟s terminal world.

These constraints are added to every world-reified model of background.

Finally, path reification is useful to represent constraints usually expressed in the

CTL tense logic, quantifying not only over states but also over paths of states, both

universally and existentially. Quantifying universally and existentially over paths is an

important feature to some dynamic properties of systems. We validated this world

structure using the lightweight formal method of validation based on Alloy simula-

tion and analysis [19], as a means to check the correct semantics of the reified histo-

ries (paths) that we introduced in the world structure. A possible simulation for our

world structure is depicted below in Figure 19. Note the circles, which are world

states and boxes, which are paths. Further, the “next” accessibility relation between

worlds, and the world states ordered in the form of a branching structure.

Figure 19 Simulation of the World Structure in Background

In addition to the built-in world structure in the world-reified model of background

we define several built-in World and Path operations (which we have shown in the

UML model of Figure 18). These operations enable the manipulation of worlds and

paths which are necessary if we want to represent the behavior of model entities.

These operations are built-in, available to the modeler, and part of every world-

P a g e | 63

reified model. We define these built-in operations using Plain OCL (in particular,

body conditions) as described in Listing 7.

context World::next():Set(World) body: self.next

context World::previous():World body: self.previous

context World::paths():Set(Path) body: self.path

context Path::worlds():Set(World) body: self.world

context World::allEndurants():Set(Endurant) body: self.endurant

context World::hasNext():Boolean body: not self.next->isEmpty()

context World::hasPrevious():Boolean body: not self.previous.oclIsUndefined()

context Endurant::existsIn(w: World):Boolean body: w.endurant->includes(self)

context World::allNext():Set(World) body: self->asSet()->closure(next)->asSet()

context World::allNext(w: World):Set(World)

body: if self.allNext()->includes(w) then w.allPrevious() – self.allPrevious() –

 self->asSet() else Set{} endif

context World::allNext(p: Path):Set(World)

body: self->asSet()->closure(next)->asSet()->select(w | w.paths()->includes(p))

context World::allPrevious():Set(World)

body: self->asSet()->closure(previous)->asSet()

context World::allPrevious(w: World):Set(World)

body: if self.allPrevious()->includes(w) then self.allPrevious()–w.allPrevious()–

 w->asSet() else Set{} endif

Listing 7 Definition of World and Path Built-In Operations

The operations next and previous return an immediate next world and immediate pre-

vious world from a particular world. The operations hasNext and hasPrevious checks

whether a world has an immediate previous or immediate next world. The operation

allEndurants returns all existing endurants at a specific world. The operation existsIn

checks the existence of an endurant at a specific world. The operation allNext re-

turns all subsequent worlds of a particular world. This operation in particular has

two variants allNext(w), which returns all subsequent worlds until a particular world

w is reached (not including w) and allNext(p), which returns all subsequent worlds

from a world, contained in a given path p. Analogously, allPrevious returns all prece-

64 | P a g e

dent worlds of a particular world. Finally, worlds returns all worlds of a path, and

paths returns all paths in which the world w is contained.

4.5 Revision of Plain OCL Built-In Operations

In addition to the built-in temporal navigations, built-in world structure and the set

of world and path built-in operations, we revisit some plain OCL operations (and

define new one inspired by plain OCL) in order for OCL to behave as a temporal

constraint language. The oclIsNew operation is only allowed in post-conditions [5,

p.154]. As our subset of OCL does not consider pre-/post- conditions (OntoUML

disallows operations) oclIsNew is not supported. Instead, we define two temporal

operations (inspired by the oclIsNew operation) to check an endurant‟s creation and

deletion at a world. The operation oclIsCreated(w) checks if an endurant exists in a

world w but does not exist in its immediate previous world, checking if the endurant

was created at w. The operation oclIsDeleted(w) on the other hand checks if an en-

durant does not exist in w but does exist in its immediate previous world, checking if

the endurant was deleted in w. We specify these two endurant‟s built-in operations

in Listing 8 using plain OCL on the world-reified model of background. These are

operations on Endurants since existence is a characteristic of domain entities that

persist in time.

context Endurant

def: oclIsCreated(w: World) : Boolean = if(not w.previous.oclIsUndefined() and not

 self.existsIn(w.previous) and self.existsIn(w)) then true else false endif

def: oclIsDeleted(w: World) : Boolean = if(not w.previous.oclIsUndefined() and

 self.existsIn(w.previous) and not self.existsIn(w)) then true else false endif

Listing 8 Definition of oclIsCreated and oclIsDeleted Built-In Operations

We define two additional built-in operations for Endurants regarding the classifica-

tion of an endurant at a world. The operation oclBecomes(C, w) checks whether an

endurant is classified as class C at w but is not classified as C in w‟s immediate previ-

ous world. The operation oclCeasesToBe(C, w) on the other hand checks whether an

endurant ceases to be classified as C at w. That is, the endurant does not instantiate

P a g e | 65

C in w‟s immediate previous world, but instantiate C at w. These were inspired by

the oclIsKindOf operations in plain OCL.

There are only few adjustments to some built-in plain OCL object and classifier

operations that need to be established due to our world reification approach. Type

conformance operations must explicit the point in time in which the types are

checked. Since plain OCL does not natively support world states, we include a

world state parameter in oclIsKindOf(T, w), oclIsTypeOf(T, w), oclAsType(T, w) and

oclType(w). The plain OCL allInstances operation is still allowed and it returns the ex-

tension of a class at all possible worlds i.e. the set of all instances of a class inde-

pendent of their actual existence in a particular point in time. In this manner, Tem-

poral OCL expressions such as World.allInstances(), Path.allInstances(), or En-

durant.allInstances() are all valid constructions in our extension. They return respec-

tively, the set of all possible worlds, the set of all histories and the set of all en-

durants at all worlds. Additionally, we assume a temporal UML static operation al-

lInstances(w) for every UML domain class. The operation allInstances(w) returns all in-

stances of a class at world w. Temporal OCL expressions such as World.allInstances(w)

or Path.allInstances(w) are invalid constructions since worlds were reified and neither

worlds nor paths exist within worlds..

Lastly, all other plain OCL built-in operations which are considered in accord-

ance to their meaningfulness to OntoUML, remain the same with regard to our

temporal extension, e.g., OCL collection operations, primitive value (e.g. integers,

booleans, and strings) operations, OCL iterators. These are, by nature, mathematic

and logic operations, which do not require states reification to work appropriately.

4.6 Modeler’s View

In this section, we represent the dynamic aspects set our as requirements in Section

1.3 and in the running example initially presented in Section 2.4, thereby showing

how the approach satisfies the requirements. We thus demonstrates that all the dy-

namic aspects previously set out as UML tagged values in the proposed OntoUML

extension of chapter 3 can be expanded into Temporal OCL constraints (as the

classification rules and existence of endurants). In addition, we demonstrate that

66 | P a g e

also past specializations and trans-temporal facts can now be expressed even if a

“presentist model” is adopted.

4.6.1 Classification dynamics

Listing 9 exemplifies the Initial classification rule (formalized in Section 3.4.1) in our

OCL temporal extension. It states that there will be a world in which if the person

exists in a world but does not exist in all previous worlds from that world, then that

person is a Child. The keyword temp defines a temporal invariant. The temporal con-

text defines a class extension at all worlds e.g. all instances that at some point will

instantiate the class Person. The condition must hold for each of these instances.

context Person

temp initialChild: World.allInstances()‐>exists(w | self.exists(w) and

 w.allPrevious()->forAll(p| not self.existsIn(p)) implies

 self.oclIsKindOf(Child, w))

Listing 9 Initial Classification Rule in Temporal OCL

Listing 10 exemplifies the Final classification rule (formalized in Section 3.4.2) in

Temporal OCL. The first temporal OCL invariant states that for every person, for

every world, if that instance is an Elder at that world, then for every world after that,

if the instance exists, then it instantiates Elder or does to exist. In other words, there

is no other allowed classification for it before ceasing to exist.

context Person

temp finalElder: World.allInstances()->forAll(w |

 self.oclIsKindOf(Elder, w) implies w.allNext()->forAll(n |

 not self.existsIn(n) or self.oclIsKindOf(Elder, n)))

Listing 10 Final Classification Rule in Temporal OCL

Initial and final classifications are a special case of a classification rule; they do not

have, respectively, an antecedent and a subsequent world state. In a general type of

classification both world states are specified and an instance classified as A1 at the

antecedent world state can transition into one or more types S1+... +SN at the sub-

P a g e | 67

sequent world state. This means that an instance of type A1 can only be of one of

those types while existing or remain being A1. Listing 11 exemplifies this more gen-

eral classification rule in temporal OCL stating that a teenager (A1 = Teenager) can

only transition to Adult (S1 = Adult) or continue to be a teenager.

context Teenager

temp teenagerToAdult: World.allInstances()->forAll(w |

 self.oclIsKindOf(Teenager, w) implies w.allNext()->forAll(n |

 self.existsIn(n) implies self.oclIsKindOf(Teenager, n) or

 self.oclIsKindOf(Adult, n)))

Listing 11 General Classification Rule in Temporal OCL

Using general, initial and final classification rules, we can specify accurately the

phase transitions of a subject domain. For example, in our running example of the

domain of people, their stages in life and marriages, a person must be created as a

baby, then as a baby he/she can only be transitioned to teenager, then from teenag-

er to adult, then from adult to elder, and finally, as an elder he/she might cease to

exist. This will define a sequence of admissible phase instantiation. In fact, using this

general classification rule we can specify any phases transitions and not only sequen-

tial ones. A general transition defines that a type can transit not only to one, but to

any number of other types. If the modeler does not specify any classification con-

straint for phases, the model is assumed to allow any transition between any of the

phases e.g. a person that was deceased now comes back alive, an adult that become

a child again, and etc.

4.6.2 Existence

Listing 12 exemplifies the existence rules (formalized in Section 3.3.1, Section 3.3.2

and Section 3.3.3) using Temporal OCL. It specifies that a biological person is a

transient entity, a celestial marriage is permanent and a planet is eternal. The tem-

poral OCL invariant “transient” states that for every person that exists, there will be

at least one world after that in which that person ceases to exist. The second tem-

poral OCL invariant called “permanent” states that for every marriage that exists, it

68 | P a g e

exist at all possible worlds after that. Note that by doing this, if a marriage exists

permanently, also does husband and wife. Therefore, by implication, the roles Hus-

band and Wife are final classifications of a person and both married persons are

permanent in existence by implication. If these two invariants (transientPerson and

permanentMarriage) were represented together in a conceptualization in which biolog-

ical people are married forever, then an inconsistency would be introduced in the

model. We can check/validate that using our support for Alloy simulation (which

we develop in next chapter). Lastly, the third temporal OCL invariant called “eter-

nal” states that all instances of Planet exist in all possible worlds.

context _‘Biological Person’

temp transientPerson: World.allInstances()->forAll(w | self.existsIn(w) implies

 w.allNext()->exists(n | not self.existsIn(n)))

context _‘Celestial Marriage’

temp permanentMarriage: World.allInstances()‐>forAll(w | self.existsIn(w) implies

 w.allNext()->forAll(n | self.existsIn(n)))

context Planet

temp eternalPlanet: World.allInstances()->forAll(w | self.existsIn(w))

Listing 12 Existence Rules in Temporal OCL

 For the sake of completeness, we also specify the Continuous Existence rule (as

formalized in Section 3.2) in Temporal OCL as described in Listing 13. It states that

a person has a continuous existence in time (i.e. a person is not allowed to be re-

created). That temporal OCL invariant states that all instances of Person exist in all

worlds between any two worlds in which they exist.

context Person

temp continuousPerson: World.allInstances()‐>forAll(w,w2 |

 w.allNext()->includes(w2) and self.existsIn(w) and self.existsIn(w2)

 implies w.allNext(w2)->forAll(b | self.existsIn(b)))

Listing 13 Continuous Existence Rule in Temporal OCL

P a g e | 69

4.6.3 Past Specializations

Listing 14 exemplifies a case where ex-husbands and ex-wives are required in the

model as cases of a Derivation by Past Specialization [20] (as discussed in previous

Section 3.5.2). The temporal invariant states that for every wife at w, for every sub-

sequent world to w, if she exists at that world but her marriage does not exist at that

world, then she is an ex-wife at that world.

context _‘Person’

temp past_spec: World.allInstances()‐>forAll(w | self.oclIsKindOf(Wife, w) implies

 w.allNext()->forAll(n | not self.oclAsType(Wife, w).marriage(w).existsIn(n)

 and self.existsIn(n) implies self.oclIsKindOf(ExWife, n)))

Listing 14 Past Specialization Rule in Temporal OCL

4.6.4 Historical Relationships

Historical relationships are a type of dependence between present and past entities.

As structural conceptual models (e.g. OntoUML, UML) represent a snapshot of a

conceptualization of a subject domain, they only define relationships between pre-

sent entities, unless past entities also exist in the model, for instance, a model

aligned with the Growing Block Universe Theory as discussed in Section 3.5.2. List-

ing 15 specifies historical relationships in our Temporal OCL. We defined our own

concrete syntax as plain OCL does not support this definition.

context Person::descendantOf : Person

temp: { children: Person[0..*]; parents: Person[2]; }

Listing 15 Ancestry Historical Relationship in Temporal OCL

The listing describes a relationship descendantOf between people at all worlds. The

context is defined in the form Source::relationship:Target. The brackets states that there

will be two ends (i.e. domain and range) for that relationship, each one is named and

a multiplicity is given. The descendantOf relationship has an end-point called children

that relates a person to its set of children (any number of children) and end-point

called parents that relates a person to its parents (exactly two). The multiplicities fol-

70 | P a g e

low the UML standard such as “0..*”, “1” ,“0..1”, “1..*”, and etc. We demonstrate

the semantics of this historical relationship in Figure 20. The figure depicts a graph-

ical simulation using Alloy according to the technique developed in next chapter. It

shows an object 0 (a person) which exists at world state 0 and two persons, 1 and 2,

existing at the next world 1. Assuming that world 1 is the present state of the world,

person 0, which is a past object, is the parent of both persons 1 and 2. Note that we

only defined the historical relationship with no constraint imposed on it. Hence,

person 0 is allowed to be a descendant of his/herself.

Figure 20 Simulation of Historical Relationship (with no constraint imposed)

4.6.5 Trans-Temporal Facts

Listing 16 specifies a trans-temporal fact [21] stating that a person cannot be the

descendant/ancestor of itself. A trans-temporal fact (or just historical dependence

fact) is a type of constraint that involves historical relationships. For example, the

descendantOf relationship that was previously created using our temporal OCL.

context Person temp: self->asSet()->closure(parents)->excludes(self)

Listing 16 Trans-Temporal Fact in Temporal OCL

Note that the temporal navigation in historical relationships is not defined at a par-

ticular world since they are not defined within time; they relate class extensions at all

worlds. Further, the same keyword temp is used for trans-temporal facts since this is

a normal temporal constraint; the difference is that it uses a historical navigation

P a g e | 71

returning the set of elements independent of a world parameter. Note also the sim-

plicity of this rule and similarity with plain OCL as it is almost identical to the repre-

sentation of trans-temporal facts using OCL in a model aligned with the Growing

Block Universe Theory (Section 3.5.1); instead of keyword inv we just use temp.

4.7 Final Considerations

In this chapter, we have defined a temporal extension for OCL to cope with dynam-

ic aspects in ontologically well-founded conceptual models with OntoUML. The

temporal OCL extension developed requires only few adjustments to standard

OCL; in particular, to few OCL type conformance operations and a classifier opera-

tion. Our temporal OCL is expressive to enable user-defined dynamics aspects to be

incorporated into conceptual models. The main core of plain OCL is maintained the

same i.e. OCL iterators, OCL collections, and OCL primitive types. In addition, we

defined temporal built-in objet operations such as oclIsCreated, oclIsDeleted, oclBecomes,

and oclCeasesToBe, respectively. We included a set of built-in operations for worlds,

paths and endurants, explaining temporal built-in navigations and historical relation-

ships. We adopted a temporal interpretation based on Kripke structure of possible

worlds, which was already addressed in [30] as a temporal approach for model simu-

lation with the Alloy lightweight formal method of validation. Our temporal inter-

pretation is a tree, with branches of worlds towards the future, which do not join

together, capturing that the future may unfold in different ways. We have shown

that all requirements can be expressed with this extension of OCL, from the trans-

temporal facts to derivation by past specializations and all the dynamics elicited as

requirements and represented as tagged values from our proposed OntoUML ex-

tension. However, there are still a number of challenges regarding the understanding

of the implications these temporal constraints impose on structural conceptual

models, for instance, validating whether the model becomes inconsistent and

whether it reflects one‟s domain conceptualization. This challenge is addressed in

the next chapter, in which we present an approach to validate OntoUML models

enriched with Temporal OCL constraints (via visual simulation and model check-

ing).

72 | P a g e

5 Validating Ontologically Well-Founded

Models Enriched with Dynamics

In this chapter, we present a technique based on Alloy simulation and analysis used

to validate structural conceptual models written with OntoUML enriched with dy-

namic OCL constraints. By validation, we mean the task in which we judge whether

the conceptual model represents the intended conceptualization. In this technique,

we compare if the world states that are admissible by the conceptual model are in

pace with the world situations admissible in the domain conceptualization. In par-

ticular we first present the validation approach (Section 5.1). We then describe a

fragment of the translation from OntoUML class diagrams to Alloy (Section 5.2)

that is relevant to the understanding of the mappings from static OCL operators

(Section 5.3) and from our temporal OCL extension to Alloy (Section 5.4). We illus-

trate the results by executing a simulation for our running example of people, their

stages in life and marriages enriched with dynamics written in Temporal OCL (Sec-

tion 5.5).

5.1 Validation Extension Approach

The previous existing approach to support the validation of OntoUML conceptual

models complemented with static OCL constraints [22, 23] was defined by a seman-

tic preserving transformation from OntoUML class diagrams [23] and plain OCL

constraints [22] into Alloy. The resulting Alloy specification is fed into the Alloy

Analyzer tool to generate and visually confront the stakeholder with possible in-

stances of the model. The Alloy instances and relations displayed by the Alloy Ana-

lyzer tool represent the classes and relationships of the OntoUML model. We ex-

tend this approach with the support for dynamic OCL constraints written in our

Temporal OCL extension, as illustrated in Figure 21. The OntoUML diagram is

translated into what we called here Alloy Structure meaning that it generates an Alloy

structure served as a basis for other constraint translations. Plain OCL constraints

are in turn translated as Alloy statements, which need to the added to the Alloy

structure, while our extension of the current approach will define a semantic pre-

P a g e | 73

serving mapping from Temporal OCL constraints into Alloy statements, adding

them into the Alloy structure. The mappings must be in pace with the mappings

from OntoUML of [23] and plain (“static”) OCL of [22], as Temporal OCL encom-

passes all static OCL operators as part of the language and is written (at the model-

er‟s view) in the context of the OntoUML model.

Figure 21 Temporal Extension of the Alloy Simulation Approach

These mappings to Alloy will enable the model (enriched with constraints) to be

visually simulated and checked against the stakeholder‟s conceptualization. Before

introducing these mappings, we refer to Appendix C to a briefly introduction about

the Alloy language and analysis for the reader unfamiliar with them. The reader fa-

miliar with Alloy may skip that introduction and follow the next section to all of our

mappings to Alloy.

5.2 Translation of OntoUML Class Diagrams

In the sequel we explain a fragment of the translation from OntoUML class dia-

grams to Alloy as developed by Sales [23]. In particular, we demonstrate (i) the skele-

ton Alloy code generated which forms what we called previously as the Alloy struc-

ture and serves as a basis to the class diagram translation and the other constraint

translations, and (ii) the translation of model classes and relationships to Alloy with

regard their existence within world states.

74 | P a g e

5.2.1 Skeleton Alloy Code

The skeleton code is specified in Listing 17. In the first line, the skeleton defines the

name of the produced Alloy specification as the name of the respective class dia-

gram being translated. In the second line, the skeleton imports the world structure

[30] as an Alloy library alongside with common Alloy libraries such as

“util/relation”, “util/boolean” and “util/ternary” to deal respectively with Alloy

boolean types, and common operations of Alloy binary and ternary relations. The

skeleton then imports a pre-defined module for ontological properties defining

UFO‟s distinctions such as rigidity, anti-rigidity, and immutability (dependences) in

Alloy.

module running_example

open world_structure[World]

open util/relation

open util/ternary

open util/boolean

open ontological_properties[World]

sig Object{}

sig Property {}

sig DataType {}

abstract sig World { } {}

run {}

Listing 17 Skeleton Alloy Code

We can view the concept of Alloy signatures as “classes” and atoms as “instances”.

The “Object” signature then defines all atoms that will represent substantials (com-

monly referred as just objects), the „Property‟ signature all moments (moments are

commonly referred as just objectified properties) and the “DataType” signature all

the data-type instances from the model. Lastly, the abstract signature called World

represents world states whilst the command called “run” tells the analyzer to find a

possible instantiation logically valid according to the specification. This skeleton is

also used as a basis to the translation of OntoUML class diagrams because each

class and relationship at the diagram is generated into an Alloy code that is intro-

duced inside this skeleton [23].

P a g e | 75

5.2.2 Classes as Alloy Binary Relations

For example, Listing 18 specifies a fragment of the mapping from OntoUML clas-

ses of our running example of Figure 9 into Alloy. Each class is translated as an Al-

loy binary relation between signatures World and existing Objects/Properties. Since

Marriage is a moment type (i.e. relator) it is translated as a relation between signa-

tures World and Property. The “exists” relation relates signature “World” and the

union of signatures “Object” and “Property”. In other words, it relates world states

with the endurants existent in each world i.e. substantials and moments. The Alloy

operator “:>” filters the range of the relation “exists” w.r.t. specific signatures e.g.

(Object + Property). The Alloy keyword “some” defines that the set of all en-

durants‟ existent in a world is a non-empty set whilst the keyword “set” that any

number of atoms is allowed in the set.

abstract sig World {

 exists: some Object+Property,

 Adult: set exists:>Object,

 Husband: set exists:>Object,

 Marriage: set exists:>Property,

 Person: set exists:>Object,

 ...

}

Listing 18 Model Classes as Alloy Binary Relations

5.2.3 Relationships as Alloy Ternary and 4-ary Relations

With regard to the relationships, Listing 19 specifies a fragment of the mappings

from OntoUML relationships of the previous running model example of Figure 9 to

Alloy. Each relationship is translated as an Alloy ternary or 4-ary relation (except for

OntoUML derivations) [23]. Material relationships are 4-ary tuples between a world,

a relator, and the domain and range of the relationship e.g. the relationship “is mar-

ried with” between Husband and Wife is derived from the relator Marriage and exist

at a particular world state. All other relationships are mapped as ternary Alloy rela-

tions e.g. the mediation between Marriage and Husband, the mediation between

Marriage and Wife. The Alloy operator “->” is the cartesian product between two

sets and the keyword “one” specifies that a set must have exactly one element.

76 | P a g e

Additionally, each relationship end-point is translated as an Alloy function that

receives a world state and the type of the end-point, and returns the end-point op-

posite type. For instance, the end-point “wife” from class Marriage to Wife receives

a world and a marriage and returns a set of wives related to that marriage, as de-

scribed in Listing 19. The Alloy expression “w.Mediation1” returns all the media-

tions between marriages and husbands at w. The expression “World.Mediation1”

returns all mediation relations between marriages and husbands at all possible

worlds. Finally, the OntoUML derivation relationship is translated as an Alloy fact

stating that the material relationship is derived from the relator‟s relata and their ty-

ing mediations.

abstract sig World {

 exists: some Object+Property,

 ismarriedwith: set Husband -> Marriage -> Wife,

 Mediation1: set Marriage one -> one Husband,

 Mediation2: set Marriage one -> one Wife

}

fact derivation_relationship {

 all w: World, x: w.Husband, y: w.Wife, r: w.Marriage | x->r->y in

 w.ismarriedwith iff x in r.(w.Mediation1) and y in r.(w.Mediation2)

}

fun wife [x: World.Marriage, w: World] : set World.Wife {

 x.(w.Mediation2)

}

fun marriage [x: World.Wife, w: World] : set World.Marriage {

 (w.Mediation2).x

}

Listing 19 Model Relationships as Alloy Ternary and 4-ary Relations

5.3 Translation of Plain OCL Operators

With an understanding that classes and relationships from the OntoUML class dia-

gram are translated as Alloy binary, ternary and 4-ary relations, all indexed by a

world state, we now present the mappings from static OCL operators into Alloy.

Most static (plain) OCL operations and expressions do not require a world parame-

ter in order to function since these are by nature mathematic operations e.g. OCL

iterators, OCL primitive value operations, OCL collection operations.

P a g e | 77

5.3.1 Primitive Values

Alloy natively supports only the Integer and Boolean OCL primitive types. The

supported OCL Boolean operations are and, or, implies, not and xor. They are directly

represented in Alloy (with the same concrete syntax), with exception of xor which is

not natively supported in Alloy but can be implemented through other boolean Al-

loy operators [22, Table 4]. The supported OCL Integer operations are the compari-

son operations <, >, <=, and >=, and are directly represented in Alloy with that

same concrete syntax. Only some arithmetic operations are supported such as +

(sum), - (subtraction), * (multiplication), div, floor, round, max, min and abs. They are

represented in Alloy respectively as the Alloy predicates plus, minus, mul, div, max, min

and abs. The latter three are not supported natively in Alloy but can be implement-

ed through other Alloy logic operators [22, Table 4] whilst OCL floor and round are

directly mapped to their source value since Alloy only support integers. Finally, the

bit width for integers in Alloy is by default 7, which means that integer values range

from -63 to 64.

5.3.2 Sets

Alloy supports all the OCL Set operations since it is a set-based language, as shown

in Table 1. The symbol [[]] denotes a function that receives OCL concrete syntax

and returns Alloy textual code. Given the set-based nature of Alloy, the following

mappings are straightforward. The operation size is represented with the # (cardinal-

ity) Alloy operator, the operation isEmpty and notEmpty with the Alloy keywords no

and some, respectively. The operation includes, excludes and includesAll with the Alloy

set operators in and not in. The operation excludesAll with the Alloy operators #, &

(intersection) and = (equality). The operations union, intersection, difference (i.e. “-”),

including, excluding, and symmetricDifference with the Alloy Set operators - (difference), +

(union) and & (intersection). The operation asSet and flatten are directly represented

by their source object. Finally, product is represented by the Alloy cartesian product

and sum by the respective Alloy sum operator.

78 | P a g e

Table 1 Translation of Plain OCL Set Operations

OCL Set Operation Alloy expression

size() # [[self]]

includes(obj: T) [[obj]] in [[self]]

includesAll(s: Set(T)) [[s]] in [[self]]

excludes(obj: T) [[obj]] not in [[self]]

excludesAll(s: Set(T)) # ([[s]] & [[self]]) = 0

isEmpty() no [[self]]

notEmpty some [[self]]

union(s: Set(T)) [[self]] + [[s]]

intersection(s: Set(T)) [[self]] & [[s]]

- (s: Set(T)) [[self]] - [[s]]

including(obj: T) [[self]] + [[obj]]

excluding(obj: T) [[self]] – [[obj]]

symmetricDifference(s: Set(T)) ([[self]] + [[s]]) – ([[self]] & [[s]])

asSet() [[self]]

product(s: Set(T2)) [[self]] → [[s]]

sum() sum [[self]]

flatten() [[self]]

5.3.3 Iterators

Table 2 shows the mappings from OCL iterators into Alloy. The word col represents

OCL expressions that result in collections and the character v variables. These map-

pings are not straightforward as the Set mappings presented previously. OCL itera-

tors are represented in Alloy as quantified formulae and comprehension sets. The

iterator forAll and exists iterators are represented as Alloy formulae quantified uni-

versally (keyword all) and existentially (keyword some). The iterators select and reject

iterators are represented as Alloy comprehension sets (denoted by curly brackets)

whilst iterator one is also represented as an comprehension set but using operators

such as # (cardinality) and = (equality) to state that the resulting set must be equal

to 1. The iterator collect is represented combining comprehension sets, the keyword

univ, the dot notation and a logical true Alloy primitive value (expressed in terms of

keywords no none). The iterator isUnique is represented as an Alloy formula universal-

ly quantified plus the disjointness keyword disj. The iterator any is represented by an

Alloy comprehension set but with a restriction of usage: the modeler must ensure

P a g e | 79

that the boolean expression evaluates to true in exactly one element of the source

collection. Finally, the iterator closure combines Alloy comprehension sets, the transi-

tive closure operator (^) and the Alloy true primitive value, similar to the collect

mapping.

Table 2 Translation of Plain OCL Iterators

OCL Iterator Alloy expression

col->forAll(v1,..,vn | be) all v1,..,vn: [[col]] | [[be]]

col->exists(v1,..,vn | be) some v1,..,vn: [[col]] | [[be]]

col->select(v | be) { v: [[col]] | [[be]] }

col->reject(v | be) { v: [[col]] | not [[be]] }

col->one(v | be) #{ v: [[col]] | [[be]] } = 1

col->collect(v | expr) univ.{ v: [[col]], res: [[expr]] | no none}

col->isUnique(v | expr) all disj v, v’: [[col]] | [[expr]](v)!= [[expr]](v’)

col->any(v | be) { v: [[expr]] | [[be]] }

col->closure(v| expr) [[col]].^{v: univ, res: [[expr]] | no none}

5.4 Translation of Temporal OCL Constraints

Our Temporal OCL extension includes all plain OCL operations except for type

conformances and the allInstances operation which needed to be revisited. In this

manner, Temporal OCL mappings include all mappings previously discussed from

static OCL operators. In this section thus we define all remaining mappings from

our Temporal OCL to Alloy such as from (i) OCL dynamic invariants, (ii) adjust-

ments of Plain OCL type conformances and allInstances built-in operations, (iii) tem-

poral OCL built-in operations, (iv) temporal OCL built-in navigations, and (v) tem-

poral OCL historical relationships.

5.4.1 Dynamic Invariants as Facts

Table 3 specifies a mapping from an OCL dynamic invariant to Alloy. As [22], a

constraint is represented as an Alloy fact and thus all instantiations of the On-

toUML model must conform to that constraint.

80 | P a g e

Table 3 Translation of Temporal OCL Dynamic Invariants

Dynamic OCL Invariant Alloy Statement

context Class

temp invariant_name: OclExpression

fact invariant_name {

all self: World.[[Class]] | [[OclExpression]] }

context World/Path

temp invariant_name: OclExpression

fact invariant_name {

all self: World/Path | [[OclExpression]] }

However, the temporal OCL context defines a class extension at all possible world

(assuming that the context is not a World or a Path). Worlds were reified and there-

fore any reference to the classes of the model are not bound to a specific point in

time (in contrast with static Standard OCL) but to all instances at all times.

5.4.2 Adjusted OCL Built-in Operators

Table 4 depicts the translation of our revision of OCL built-in operations of previ-

ous Section 4.5 into Alloy. The mappings follow the mapping of standard OCL

from [22, Table 5] but now making explicit the world (time) parameter. The

oclIsKindOf operation is represented as the Alloy subset operator (i.e. in), the oclIs-

TypeOf operation into the combination of operators in, and, # (cardinality), & (inter-

section), + (union) and = (equality). The oclAsType and the allInstances operations are

mapped as their respective source object/type in Alloy, since Alloy is by default a

set-based language.

Table 4 Translation of Temporal OCL Built-in Operations

Adjusted OCL Operation Alloy Expression

oclIsKindOf(T, w: World) [[self]] in w.[[T]]

oclIsTypeOf(T, w: World) [[self]] in w.[[T]] and # (w.[[T]] & w.[[subT1]] +..+

w.[[subTN]] = 0)

oclAsType(T, w: World) [[self]]

T.allInstances() [[T]]

Class.allInstances(w: World) w.[[Class]]

Additionally, our temporal extension of OCL defines four object temporal opera-

tions. Their mappings are shown below in Table 5.

P a g e | 81

Table 5 Translation of Temporal OCL Built-In Endurant Operations

OCL Operation Alloy Expression

oclIsCreated(w: World) [[self]] in w.exists and [[self]] not in (next.w).exists

oclIsDeleted(w: World) [[self]] not in w.exists and [[self]] in (next.w).exists

oclBecomes(T, w: World) [[self]] in w.[[T]] and [[self]] not in (next.w).[[T]]

oclCeasesToBe(T,w: World) [[self]] not in w.[[T]] and [[self]] in (next.w).[[T]]

All these mappings use a combination of Alloy operators in, not in, and to access,

respectively, if the endurant was created (oclIsCreated), deleted (oclIsDeleted), classified

(oclBecomes) or ceased to be classified (oclCeasesToBe) at a particular world.

5.4.3 Temporal Built-In Operators

The structure of possible worlds adopted in the existing approach of validation with

Alloy [23] does not reify the notion of paths that is part of our OCL temporal ex-

tension. For this reason, the mappings from our temporal OCL operators to Alloy

are not straightforward. We assume that a Path in Temporal OCL is characterized in

the existing structure as a terminal world in order to enable the mappings from our

OCL‟s world structure to that existing structure. Listing 20 specifies four Alloy

functions that will be used to manipulate paths (i.e. terminal worlds) in the existing

world structure of Alloy as if a reified concept of Path existed.

fun Path : set World {

 World.next - (World.next & next.World)

}

fun Path [w: World] : set World {

 w.(^next) & Path

}

fun allNext [w1, w2: World] : set World {

 w2 in w1.(^next) implies ((^next).w2 - (^next).w1 - w1) else none

}

fun allPrevious [w1, w2: World] : set World {

 w2 in (^next).w1 implies ((^next).w1 - (^next).w2 - w2) else none

}

Listing 20 Alloy Functions to Manage the Path Reification

82 | P a g e

The Alloy function Path returns all possible terminal worlds (i.e. all possible paths of

the structure). The second Alloy function Path is parameterized with a world state. It

returns all paths (histories) in which a world state is at (i.e. all terminal worlds acces-

sible from that world state). The third and fourth Alloy functions are used to facili-

tate the mappings from operations such as allNext(w), allPrevious(w) and allNext(p).

The third Alloy function returns all next worlds from a world w1 until a world w2 is

reached, using an open interval (i.e. neither w1 nor w2 are included). Similarly, the

fourth Alloy function returns all previous from w1 until w2 is reached.

Table 6 then presents the mappings from our set of temporal OCL operators to

Alloy. The next, previous and allEndurants are direclty mapped using the Alloy rela-

tions of next, previous and exists. The allNext and allPrevious are mapped to a forward

and a backward Alloy transitive closure, respectively, over the Alloy relation of next.

The hasNext and hasPrevious are mapped using the Alloy keyword some to check if the

set of next/previous worlds are empty. The existsIn is mapped using the Alloy in op-

erator. The operations paths, allNext(w), allPrevious(w) and allNext(p) are mapped using

the additional Alloy functions defined previously in Listing 20. Finally, worlds gives

all worlds of a path (i.e. all previous worlds from terminal world plus the terminal

world itself). It uses a backwards Alloy transitive closure over the next relation, unit-

ing the result with the world self.

Table 6 Translation of Temporal OCL Built-In World Operators

OCL Temporal

Operation

Alloy

Expression

OCL Temporal

Operation

Alloy

Expression

next() [[self]].next allNext(w: World) allNext[[[self]], w]

previous() [[self]].previous allPrevious(w: World) allPrevious[[[self]] , w]

allNext() [[self]].^next existsIn(w: World) [[self]] in w.exists

allPrevious() ^next.[[self]] allEndurants() [[self]].exists

hasNext() some [[self]].next worlds() ^next.[[self]] + [[self]]

paths() Path[[[self]]] hasPrevious() some [[self]].previous

 allNext(p: Path) allNext[[[self]], p]

P a g e | 83

5.4.4 Temporal Built-In Navigations

The existent translation from class diagrams already generates an Alloy function for

each navigable end-point of a (static) OntoUML relationship (Section 5.2.3). This

Alloy function however is bound to a specific point in time i.e. it receives as param-

eter, a particular world state in which the navigation must be evaluated. Temporal

navigations were properly defined in previous Section 4.3 and may be indexed in

time or not. In Listing 21, we define an additional Alloy function to specify a navi-

gation at all possible world, which is not bound to a particular world. We use the

running example of Figure 9 about people and marriages to demonstrate these

mappings. The listing shows a temporal navigation from a specific marriage to the

set of wives of that marriage at all worlds, and a temporal navigation from wife to all

the marriages of that wife at all worlds.

fun wife [x: World.Marriage] : set World.Wife { x.(World.Mediation2) }

fun marriage [x: World.Wife] : set World.Marriage { (World.Mediation2).x }

Listing 21 Alloy Functions for Temporal Navigations at all Worlds

5.4.5 Historical Relationships

Finally, historical relationships are a type of dependence between entities at all

worlds. The ancestry historical relationship relates people at all possible worlds, for

example, my father, which is a present entity, is a descendant of my grandfather

which is a wholly past entity and does not exist in the present. Listing 22 specifies

the mapping from the descendantOf historical relationship to Alloy. The relationship is

mapped as an Alloy binary self-relationship between Objects, plus four additional

constraints (i.e. the Alloy fact historical_descendantOf) to ensure respectively (i) the cor-

rect types at the domain and range of that relationship (i.e. domain and range as

class extensions at all worlds), and (ii) cardinality values at each relationship‟s end-

point. Finally, the two end-points are also mapped as Alloy functions ensuring the

navigability at all worlds.

84 | P a g e

sig Object {

 descendantOf: set Object

}

fact historical_descendantOf {

 descendantOf.univ in World.Person

 univ.descendantOf in World.Person

 # descendantOf.univ <= 2

 # univ.descendantOf >= 0

}

fun children [src: World.Person] : set World.Person {

 src.descendantOf

}

fun parents [tgt: World.Person] : set World.Person {

 descendantOf.tgt

}

Listing 22 Historical Relationships as Alloy Relation, Facts and Functions

5.5 Validating the Example Enriched with Dynamics

In the sequel, we validated our running example about people and marriages of pre-

vious Figure 9 with the addition of some of the OCL dynamic invariants as those

aforementioned in this work such as the allowable phase transitions of a person‟s

life, the continuous and transient existence of people and marriages, past derivations

of ex-husbands/ex-wives, historical relationship of ancestry/descendants and a

transtemporal-fact forbidding cycles of ancestry. We used the mappings specified in

this chapter to translate the respective dynamic OCL invariants to Alloy.

In Figure 22 we depict a first possible world state (a past world) of that On-

toUML class diagram enriched with dynamic invariants. In this world, there existed

two marriages, Property3 between husband Object2 and wife Object1, and Property4 be-

tween husband Object3 and wife Object0. Both marriages Property3 and Property4 were

established between spouses that were children. In addition to this, the husband in

Property4 was a direct descendant of his wife and of the wife from the other marriage

Property3 and the spouses (husband and wife) in Property3 were descendants of the

wife from marriage Property4. This is clearly not our intention for the historical an-

cestry relationship between people. People that are married with each other cannot

be descendants of each other. Note that we have only forbidden cycles in the histor-

P a g e | 85

ical relationship and therefore this is a possible situation that may validly occur in

our domain. Also, we clearly did not state anything about children possibly getting

married in our domain.

Figure 22 Marriage and Ancestry: A Past World State

In Figure 23, a present world is depicted (a next world from the past world). In this

world, man Object3 remains married with woman Object0 through marriage Property4

but the man Object3 comes from being a child to being a teenager. With regard to

the other marriage (Property3), it ceases to exist and a new marriage between man

Object2 and woman Object1 is created. Thus, both man Object2 and woman Object1 are

still a husband and wife but w.r.t. a different marriage (Property1). Additionally, they

are classified as ex-husband and ex-wife as their previous marriage (Property3) does

not exist anymore in the future.

 In Figure 24, we depict a possible future world (a next world from the present

world). The figure depict that the new marriage Property1 between Object2 and Object1

suddenly ceases to exist as well as both spouses suddenly ceases to exist. Only hus-

band Object3 and wife Object0 remain married with each other. However, their previ-

ous marriage Property4 ceased to exist and a new marriage between then are created.

86 | P a g e

In other words, they simultaneously ceased to be married and got married again. In

addition, the man, husband Object3 comes from being a teenager to an adult whilst

his wife remains a child.

Figure 23 Marriage and Ancestry: A Present World State

Figure 24 Marriage and Ancestry: A Future World State

The reader can notice that the former dynamic invariants such as classifications, ex-

istences, past derivations, and trans-temporal facts are all respected in this graphical

P a g e | 87

simulation which is generated by executing the Alloy specification resultant from

our translations to Alloy. For example, we can note that a person is always created

in the child phase, there are no cycles in the ancestry relationship and all the phase

transitions are respected alongside the transient existence of the individuals. In order

to generate cases wherein adult, teenagers and elders exist in time, marring and ceas-

ing to be married with each other, it is required to increase the scope of the Alloy

simulation, for instance, generating more than four states of the world, or a specific

number of existing men, women, husbands, wives, and so on and so forth. Due to

the lack of space and for the sake of brevity, we only executed the simulation with 4

worlds. However, the scope configuration in Alloy can be fully customized setting

the Alloy run command as usually defined in Alloy [19]. Finally, it is important to

mention that OCL dynamic invariants can be used not only to avoid a forbidding

situation from occurring (translating them to Alloy facts) but to check if a particular

desired dynamic property is already captured by the model. In other words, we fol-

low the same approach as [22] translating OCL dynamics invariants as (i) Alloy

facts, (ii) Alloy predicates (for running simulations) or (iii) Alloy assertions for mod-

el checking. We omit them here due to their straightforwardness.

5.6 Final Considerations

In this chapter, we have presented a validation approach based on automatic genera-

tion of instances of the model. We then defined a translation from Temporal OCL

to Alloy building up from an OntoUML and standard static OCL translation to Al-

loy. Using a semantics-preserving mapping to Alloy the stakeholder can graphically

visualize the possible world situations according to the model enriched with dynam-

ics and check if indeed the conceptual model represents truthfully the subject do-

main. In the next chapter, we discuss the implementation of our temporal OCL ex-

tension and of the extension of the validation approach with Alloy in a tool to aid

modelers to create and validate structural OntoUML conceptual models enriched

with dynamics in Temporal OCL.

88 | P a g e

6 Implementation

In this chapter, we explain the implementation of this work. In particular, we first

present the existing plain OCL infrastructure developed for the OntoUML structur-

al conceptual modeling language (Section 6.1). We then present and discuss how we

extend it with a support for our Temporal OCL extension (Section 6.2) pointing

some important issues about the development of some of the components of the

temporal infrastructure (Section 6.3, Section 6.4 and Section 6.5). Finally, we show

how the entire temporal tooling is incorporated and available to the modelers in the

OLED tool (Section 6.6).

6.1 Plain OCL Infrastructure for OntoUML

Figure 25 depicts the current OCL infrastructure for OntoUML [22] which is de-

fined by a textual plain OCL editor, a plain OCL parser and an Alloy Translator. The-

se three components work together in order to provide edition, syntax verification,

and validation (via visual simulation and model checking) for plain OCL constraints

in the context of OntoUML models. These plain OCL components are part of an

OntoUML modeling tool called OLED (OntoUML Lightweight Editor) [34], a

model-based environment to build, validate and implement OntoUML models.

Figure 25 Plain OCL Infrastructure for OntoUML

P a g e | 89

Plain OCL Editor

The current plain OCL editor supports features such as syntax highlight, code-

completion and theme customization which were implemented using three open-

source Java components (projects) called RSyntaxTextArea2, AutoComplete3 and To-

kenMaker. These projects practically define (i) a custom Swing text area that can cus-

tomize a language‟s syntax highlight and vocabulary through Flex configuration files;

(ii) a custom Swing code-completion component that can customize a language‟s

completions using a library of custom completion providers; and (iii) a simple soft-

ware interface to help generating a .flex and .java file for the custom Swing text area

highlighting the language. This plain OCL editor enable the edition of plain OCL

constraints using a textual editor.

Plain OCL Parser

The current OCL parser is that of Eclipse Foundation and verifies syntactically plain

OCL textual constraints according to OMG‟s specification. The implementation of

OCL used is termed “Classic OCL” by Eclipse. It binds OCL textual constraints

with UML/Ecore models, meaning that Eclipse‟s OCL parser tries to match all clas-

ses and navigations present in OCL expressions with the respective UML (or Ecore)

model elements. If a particular type or navigation is found in an OCL expression

but is not found in the UML (or Ecore) model a parser exception is thrown. Not

only the parser checks the constraints with the model being enriched but especially,

it checks the plain OCL textual constraints against the standard concrete syntax de-

fined by the OMG. In order to enable the syntactic verification and analysis of these

constraints with the OntoUML model, the current infrastructure defines a transla-

tion from plain OntoUML models to plain UML models (this is necessary since the

current OntoUML infrastructure is not implemented as a UML profile i.e. an exten-

sion of UML, but as an independent Ecore metamodel [35]). We called this transla-

tion Plain UML Translation. With OntoUML models represented in terms of plain

2 http://bobbylight.github.io/RSyntaxTextArea/

3 https://github.com/bobbylight/autocomplete

90 | P a g e

UML, all OCL textual constraints can be syntactically checked through that back-

ground UML model using Eclipse‟s built-in OCL parser. The plain OCL parser thus

enable the syntactical verification of plain OCL constraints.

Alloy Translator

The translation from plain OCL to Alloy uses and extends an Eclipse‟s built-in visi-

tor pattern called “AbstractVisitor”, defined implicitly by Eclipse to debug plain

OCL constraints. When OCL constraints are being visited, each OCL construct on

the constraint refers to one of the methods of the visitor pattern. For example, the

type Person in the OCL expression self.oclAsType(Person) refers to the visitor method

called TypeExp(…) which in turn reflects the meta-class TypeExp of the abstract syn-

tax of plain OCL as defined by the OMG [5]. The dot notation on the other hand

refers to the visitor method called PropertyCallExp(…) reflecting the meta-class Prop-

ertyCallExp at the OCL abstract syntax. In the existing plain OCL infrastructure, an

extension of this visitor called “OCL2AlloyVisitor” is defined to develop a trans-

formation from OCL textual constraints into Alloy textual statements. This means

that when OCL constructs are being visited the Alloy visitor generate as output the

respective Alloy mappings for each construct. The Alloy translator thus enable the

validation of plain OCL constraints via Alloy simulation and analysis.

6.2 Implementation Extension Approach

Our approach for extending this existing plain OCL infrastructure with our Tem-

poral OCL language encompasses three temporal extensions of the three compo-

nents presented previously such as the plain OCL editor, plain OCL parser and the

Alloy translator, as depicted in Figure 26, respectively.

 We extend the plain OCL editor with a support for Temporal OCL‟s syntax

highlight and code-completion; the modeler is thus able to write/edit textual tem-

poral constraints in that editor with both feature supports.

P a g e | 91

Figure 26 Temporal Extension of Existing Plain OCL Infrastructure

We extend the plain OCL parser so that the temporal textual constraints in that edi-

tor can be analyzed syntactically in accordance with our set of adjustments for OCL

and the OMG‟s specification. This extension of the plain OCL parser (i) incorporate

the few adjustments in OCL such as with type conformances and allInstances built-in

operations, (ii) implement a syntactical analysis for our own concrete syntax in the

definition of trans-temporal facts, and (iii) extend the translation to plain UML in

background using our world reification approach (called here as World-Reified UML

Translation). The result should be a temporal OCL parser that incorporates these ad-

justments, definitions and translation but that still uses the plain OCL parser (in

other words the Eclipse‟s OCL parser) to syntactically verify all remaining plain

OCL constructs. The temporal parser thus should receive temporal constraints in

textual form (from the editor or as text documents) and returns the respective

parsed constraints as Java objects to other constraint translations.

Lastly, we extend the existing transformation to Alloy to include, besides the

plain OCL operators, our set of Alloy mappings from the adjustments made in

OCL, our built-in world operations and built-in temporal navigations, and our defi-

nition of historical relationships and dynamic constraints. The analyzed temporal

92 | P a g e

OCL constraints are transformed to Alloy textual code and added to the resulting

Alloy specification in order to be fed into the Alloy Analyzer tool.

In the sequel, we present and discuss some important points about (i) the imple-

mentation of the temporal extension of the plain OCL editor (Section 6.3), (ii) the

implementation of the syntactical analysis of our set of adjustments for the built-in

operations of plain OCL (Section 6.4) and finally (iii) the implementation of a trans-

lation to a world-reified model in background in plain UML (Section 6.5).

6.3 Extending the Plain OCL Editor with Temporal OCL

We extended the plain OCL editor with the support for additional constructs de-

fined by our temporal OCL language. We defined our language‟s syntax highlight,

vocabulary and code completion using a .flex and .java files that are generated au-

tomatically by the software called TokenMaker. The custom Swing text area used as

our editor accepts a language‟s configuration through those files4. We thus extended

the previous code-completion feature, which only supported plain OCL constructs

to support our own set of code-completions such as the built-in operations for

worlds, paths and endurants, plus dynamic invariants and historical relationships, as

demonstrated in Figure 27.

Figure 27 Code Completion Activated at the Temporal OCL Editor

4 http://fifesoft.com/

http://fifesoft.com/

P a g e | 93

The figure shows the code-completion feature activated in the temporal OCL edi-

tor. In the list of possible constructs that can be used are all temporal elements

alongside plain OCL elements, with a proper description for each of operation, ex-

pression and constraint supported in the language. We believe that this feature may

facilitate the learning process of the Temporal OCL language.

6.4 Parsing the Temporal Adjustments for Plain OCL

Eclipse‟s OCL language implementation called Classic OCL is currently used in the

OCL infrastructure to analyze plain OCL constraints with OntoUML models

(through a background translation to plain UML). It analyzes if the constraints are

syntactically valid according to the concrete syntax defined by the OMG. Our Tem-

poral OCL requires only few adjustments to plain OCL defined by OMG such as

with type conformance built-in operations (i.e. oclIsKindOf, oclIsTypeOf, oclAsType and

oclType) and the allInstances built-in operation. Only these few adjustments are re-

quired for OCL to behave as a temporal language (besides the inclusion of an entire

world structure, temporal navigations and world operations as discussed in this

work). In this sense, the only modification required in plain OCL is to male explicit

a world parameter in the object built-in operations and allInstances. Classic OCL does

not allow us extend and modify this OCL meta-operations as they are built-in in the

language. Our solution to this was to define a (automatic) textual processing of the

temporal OCL textual constraints before the Eclipse‟s OCL syntactical verification

as executed by the Eclipse‟s OCL built-in parser (using our World-Reified plain

UML model of background as the context to the analysis).

For example, in the parsing of the temporal OCL expression oclIsKindOf(Child, w)

we textually process that expression by storing the world parameter w, passing for-

ward only the expression oclIsKindOf(Child) to Eclipse‟s built-in OCL parser. The

built-in operation oclIsKindOf(T, w) is not supported natively in plain OCL and there-

fore Eclipse‟s parser cannot parse it. On the other hand, oclIsKindOf(T) can be syn-

tactically checked with the world-reified UML model of background using Eclipse‟s

OCL parser. This means that our temporal parser guarantees that the world parame-

ter introduced is always valid (i.e. it is already declared in previous expressions at

94 | P a g e

that same OCL document and does not have any invalid character as defined by the

OMG). We practically simulated the parsing of Eclipse with respect to that parame-

ter. We can access, later on, that world parameter in our temporal parser. For exam-

ple, when that expression needs to be transformed to Alloy, we need to use that

world parameter in the Alloy mapping generating the Alloy expression “self in w.T”.

The same pattern of textual processing is applied to the remaining temporal OCL

built-in object operations such as oclIsTypeOf, oclAsType and oclType and the classifier

built-in operation allInstances, as they all receive an additional world parameter. In

Figure 28 we demonstrate the parser exception thrown at our temporal parser ac-

cording to these adjustments in these OCL built-in operations. The figure shows a

parsing error in which oclIsKindOf misses a world parameter.

Figure 28 Parsing Exception Thrown at the Temporal OCL Parser

In addition, Temporal OCL defines two built-in operations, which are inspired by

the previous built-in operation oclIsKindOf(Child, w). These operations are oclBe-

comes(Child, w) and oclCeasesToBe(Child, w). They receive a Classifier T (e.g. Child) and

a World w, as parameters, and check if the object is classified (or ceased to be classi-

fied) as T at w. We apply the same idea of textual processing for these additional

operations but the storage is performed regarding the other parameter (the type pa-

rameter). The temporal parser store the parameter Child passing forward only the

expression oclBecomes(w) or oclCeasesToBe to Eclipse‟s built-in OCL parser. As far as

we know, Classic OCL does not allow a new operation to be defined using the Clas-

sifier UML meta-class. We have thus defined oclBecomes and oclCeasesToBe in our

world-reified plain UML model of background using only the world parameter such

as Endurant::oclBecomes(w: World) and Endurant::oclCeasesToBe(w: World) (we did not

P a g e | 95

show these definitions implemented in OCL in previous chapter since their defini-

tion in OCL were driven by implementation concerns). In the same way, we can

access that operation‟s type parameter with our temporal parser, for example, in the

mapping to Alloy where that parameter needs to be mapped in an Alloy expression.

Finally, we used this textual processing approach to parse syntactically historical

relationships defined using our concrete syntax in Temporal OCL. After parsed at

an OCL document, these historical relationships are created at the world-reified

plain UML model of background. They are also stored in our temporal OCL parser

in order to further be mapped to the Alloy logic language.

6.5 World-Reified Model with Constraints in Background

The existing OntoUML infrastructure was developed by Carraretto [35] using an old-

er version of Ecore/OCL (Eclipse Galileo5). The OntoUML metamodel was de-

signed in Ecore but not implemented as an extension of UML. With regard to im-

plementation, OntoUML is not strictly speaking a UML profile. OntoUML cannot

natively benefit from Eclipse‟s OCL support, which is only available to UML and

Ecore. The OntoUML Ecore metamodel specifies models in Eclipse‟s XMI format.

As XMI models, OntoUML does not support OCL. In order to simulate that sup-

port as a native support, the authors in [22] defined that each OntoUML domain

model should have a background UML model correspondent to orchestrate the

binding between OntoUML and OCL. We extended the existing translation to a

plain UML background model with the inclusion of our world reification approach.

We include in the UML model a world structure, a set of temporal built-in naviga-

tions, and world, path and endurants built-in operations. This enables our temporal

OCL constraints to be analyzed syntactically with that world-reified UML model for

evaluation of OCL contexts, navigations and expressions. The background model is

additionally enriched with several constraints to ensure that the OntoUML model

semantics is preserved. The background model is a UML artifact and the constraints

a separate OCL textual document such as showed in Figure 29. We depict the back-

5 https://eclipse.org/galileo

96 | P a g e

ground model enriched with constraints for our running example about people and

marriages using the Eclipse Platform. Each time a domain model is written in On-

toUML and the (temporal) OCL parsing is required, we transform the OntoUML

model into UML (with worlds-reified in case of Temporal OCL).

Figure 29 Automatically Generated Background Artifacts

6.6 Temporal Tooling Within OLED

We have incorporated our temporal extensions for the plain OCL editor, plain OCL

parser and translation to Alloy within the OLED Tool. We depict a screenshot of

the tool with regard to the Temporal OCL support in Figure 30. The figure shows

our temporal OCL editor opened at the center of the tool and the project browser

at the right side showing all elements pertaining to the OntoUML diagram. At the

bottom there are three tabs opened. First the welcome page of the tool, second the

OntoUML diagram called “Diagram0” with our running example of people and

marriages and third the dynamic constraints written in Temporal OCL as discussed

in this work opened in an OCL document called “Document0”. It is interest to

mention that the temporal OCL editor, as an extension of the plain OCL editor not

only supports dynamic constraints but also plain OCL constraints. There is no need

to separate them (unless by a decision of the modeler). The figure shows also the

successful message displayed at the temporal parsing of the dynamic constraints

thus validating our approach for the adjustments made in OCL and our world reifi-

cation approach. The figure finally shoes the Alloy dialog to configure the visual

P a g e | 97

simulation. The user might translate dynamic constraints into Alloy facts, predicates

(for running simulations) and assertions (for checking assertions). With this tech-

nique, the user can validate if the model is under-constrained or over-constrained

according to one‟s domain conceptualization

Figure 30 Temporal OCL Tooling Within OLED

6.7 Final Considerations

In this chapter, we have discussed our approach for the implementation of this

work. In particular, we have extended the former plain OCL support in the OLED

tool to include a support for our Temporal OCL language. We extended the plain

OCL editor, the plain OCL parser (with a background translation to UML with a

word reification approach) and the translation to Alloy. All the details and source

code of our implementation is available at the host site of OLED [34]. In particular,

we developed and extended the following projects: /br.ufes.inf.nemo.ocl, and

/br.ufes.inf.nemo.ontouml2uml. We have thus validate our modeling approach by incor-

porating Temporal OCL into the OLED tool. In the next chapter, we discuss relat-

ed work regarding other temporal conceptual modeling languages and other ap-

proaches that use the Alloy lightweight formal method for validation.

98 | P a g e

7 Related Work

In this chapter, we examine the state-of-the-art in temporal extensions and valida-

tion approaches of conceptual modeling languages such as OCL and UML. In par-

ticular, we discuss a temporal extension for plain UML and OCL that was proposed

by Cabot et al. [12] (Section 7.1) and a set of existing temporal extensions for OCL

(Section 7.2). We then discuss some related work regarding the validation of (tem-

poral) conceptual modeling languages using a lightweight formal method (Section

7.3). Finally, we present a summary of the existing approaches on conceptual model-

ing with UML and OCL evaluating each set of approach with regard to some de-

fined criteria (Section 7.4).

7.1 A Temporal Extension of plain UML and OCL

In [12], Cabot et al. extended both plain UML and static OCL with temporal notions

in order to cope with the representation of temporal information in UML models.

In particular, they extended UML with a set of temporal aspects and OCL with no-

tational devices aiming to refer to immediate past values of model properties. They

argue that using this extension, a modeler may use UML/OCL, which are primarily

static modeling languages, as if they were indeed temporal modeling languages. The

dynamic aspects introduced in UML by Cabot and colleagues are classified in two

major sets: durability and frequency as depicted in Figure 31.

Figure 31 Temporal Aspects of Cabot’s Temporal Extension of UML

 Durability refers to the persistence of the instances of a UML type (a class or a rela-

tionship). These aspects can be applied not only to UML classes but to UML rela-

tionships as well. In UML terminology, a class and a relationship are both UML

P a g e | 99

types. Durability can be divided into the dynamic aspects of Instantaneous and Dura-

ble. If an instance (or relation) is classified in a single point in time not persisting to

the next instant after that, the instance or relation is called instantaneous. If an in-

stance or relation is classified during a certain interval, then they are called durable.

Durable in turn may be classified as Permanent or Constant. Permanent means that

once an instance or relation is classified as a type, the instance or relation will be

always of that type from that point forward. Constant on the other hand states that

the instance or relation will be always classified as that type. Frequency refers to how

many times the instance or relation appears to be of a type. For example, a Single

frequency defines that the instance or relation is classified only during a single time

interval. Intermittent means that the instance or relation is classified during as many

time intervals as desired. Using these set of dynamics as UML tagged values, the

modeler can restrict the way the instances behave with time. The authors defined all

six valid combinations w.r.t. these dynamic features (there are some combinations

that are logically invalid together). The valid combinations are (i) instantaneous single,

(ii) instantaneous intermittent, (iii) durable single, (iv) durable intermittent, (v) permanent and

(vi) constant.

Since we have focused here on endurants, which are all considered continuous

and non-instantaneous, we have not included the frequency intermittent or the dis-

tinction concerning durability. We thus rule out the combinations (i), (ii), (iii) and (iv),

as they would not make sense in UFO. The frequency single is analogous to our con-

tinuous dynamic aspect and permanent and constant are analogous to our permanent and

eternal dynamic aspects. We thus encompass combinations (v) and (vi).

With regard to the authors‟ temporal extension of OCL, they indexed all UML

attributes and UML relationships as well as the allInstances built-in OCL operation

with a time parameter. Any UML attribute or relationship in their approach has two

implicit operations. For example, for an UML attribute called salary, owned by a

class Employer, there are implicit operations such as salaryAt(t: Instant) and salaryA-

tOrBefore(t: Instant). The former operation retrieves the salary of an employer at a

time t whilst the latter, if no value exists at t, retrieves the latest value before t. The

class Instant is a time instant which was reified (but the authors did not provide fur-

100 | P a g e

ther details about their time reification). Further, they also showed how these tem-

poral and implicit OCL operations could be expanded into standard OCL expres-

sions [12]. Our approach for extending OCL on the other hand, allows a built-in

world structure and thus allows retrieval of past values at any past time as well as

many other temporal operations which include a temporal version for the allInstances

built-in OCL operation.

Finally, with regard to implementation, the authors implemented their temporal

extension of plain UML and OCL in a CASE tool called Objecteering/UML6. This

tool shows the validity of the approach providing the users the ability to graphically

specify the dynamic features as UML tagged values and retrieve past values using

the implicit OCL pre-defined temporal operations. Objecteering/UML however is

limited to an older version of UML, only supported by another tool called Ar-

goUML7. We in contrast, implemented our OCL temporal extension in a tool called

OLED which supports the OntoUML conceptual modeling language and can ex-

port OntoUML models as UML profiles as supported by the Eclipse UML2 project.

OLED can also import models designed with the Enterprise Architect (EA) tool

and provide a full support for both static OCL and our temporal extension of OCL

with parsing, edition, code-completion and language syntax-highlight.

7.2 A Set of Existing Temporal Extensions of OCL

There have been many proposals in literature that aimed at extending OCL in order

to cope with dynamics/temporal aspects of systems [10, 11, 13, 14, 15, 16, 17, 18].

Gogolla and Ziemman‟s extension of OCL [18], named TOCL, is based on a set of (fi-

nite-) Linear Temporal Logic (LTL) operators. They formally extended the syntax

and semantics of OCL invariants and pre- and post-conditions with LTL logic oper-

ators such as “always”, “sometime”, “next” and the concept of process types [18].

They introduced an environment‟s index to characterize the temporal evolution of

6 http://www.objecteering.com

7 http://argouml.tigris.org/

P a g e | 101

the system and its current state. They give no explanation of how the presented

formal notions can be implemented.

Conrad and Turowski [13] extended OCL with Linear Temporal Logic (LTL) oper-

ators in order to specify software contracts for business components, where con-

tracts are mainly OCL pre- and post-conditions. They used future and past opera-

tors of LTL such as “always” and “sometime”, and future operators of LTL such as

“until” and “before”. However, they did not consider the logic operators “next” and

“previous” [13, p. 162] but introduced the “initially‟ operator to refer to the initial

state of the system/business component.

Bill et al. [10] presented an OCL extension named cOCL, based on computational

tree logic (CTL). Their approach is very similar to that of Gogolla and Ziemman as

they formally extended OCL‟s syntax and semantics with logic operators. They con-

sidered CTL operators such as “next”, “weak until” and “strong until”, which can

be quantified either existentially or universally. Their verification framework consists

of cOCL specifications and a model checker called MocOCL that can verify cOCL

constraints.

Flake and Mueller [15] defined a state-oriented Real-Time extension of OCL

whose semantics is given through a mapping to clocked CTL logics (CCTL). They

focus on the specification of real-time systems. They extended OCL by describing a

UML profile for specification of state-oriented real-time constraints demonstrating a

M2 layer-based extension. Furthermore, they formalized UML State-charts and add-

ed it to (Ritcher‟s) object model definition as a means to complete the formal se-

mantics of OCL, which lacked precise meaning with respect to dynamic behavior in

UML models.

Differently from these approaches, we do not use tense logic operators explicitly,

choosing to use reification of world states to obtain the expressiveness that would

be obtained with tense operators. Extensions based on modal/tense logic operators

re-quire a level of logic expertise that most modelers are not expected to have.

102 | P a g e

Distefano et al. [14] defined an object-based extension of CTL called BOTL (Ob-

ject-Based Temporal Logics), their own logic formalism inspired by OCL, to define

specifications of static and dynamic properties in object-oriented systems. However,

they did not consider inheritance or subtyping. The mainly concern is to apply mod-

el checking approaches into object-oriented systems. They presented a mapping

from part of OCL onto BOTL providing formal semantics to a large part of OCL.

There is no extension of OCL by temporal operators, but a theoretical precise map-

ping of a part of OCL into BOTL. BOTL “looks syntactically very similar to CTL”

[14] and although BOTL‟s concepts are defined clearly and precisely, no tool sup-

port is actually provided.

Mullins and Oarga [17] extended OCL with CTL operators and some first-order

features. Their extension termed EOCL is largely inspired by BOTL [14] (but in-

cluding inheritance) and based on the OCL extension framework of Bradfield et al.

[11] which defines the language as a two-level logic, wherein the upper level is CTL

extended with quantifiers and the lower level is a significant fragment of OCL. The

SOCLe tool translates exactly one UML class diagram, one state-chart and one ob-

ject diagram into an Abstract State Model (ASM) specification, which in turn is

translated into an execution graph (an Object-Oriented Transition System-OOTS

implementation) that can verify on-the-fly EOCL constraints. Their extension is

briefly presented with verification issues in mind. There is no tool available at their

project site8.

Bradfield et al. [11] proposed a formalism, termed Oμ(OCL), which is a two-level

logic language called Observational Mu-Calculus, where the modal mu-calculus is

the upper level language and OCL is the lower-level logic language. However,

Oμ(OCL) requires such understanding of temporal logics that is unrealistic to ex-

pect most developers to acquire it [11, p.2]. In order to remedy this issue, the au-

thors suggested the design of OCL temporal templates by users, with users-own

friendly syntax, and that they automatic translate from the templates into Oμ(OCL).

They give no means to OCL developers to implement such templates.

8 http://www.polymtl.ca/crac/socle/index.html

P a g e | 103

Kanso and Taha‟s extension of OCL [16] committed to a different approach as it

was based on Dwyer‟s property specification patterns [28] i.e. the temporal OCL

constraints are based on a set of temporal patterns rather than in a set of temporal

logic operators or formalisms. Dwyer et al. created a number of mappings from the

temporal and real-time property patterns to corresponding formulae in CTL, LTL

and Mu-Calculus9. Kanso and Taha extension of OCL introduced the notion of

events (such as the operation and state-change events) in the Dwyer‟s patterns. They

introduced keywords to increase the former Dwyer patterns expressivity, for exam-

ple, the “at most” or “at least” keywords, which limits the number of times that an

event can happen in a given scope. They implemented the pattern-based OCL ex-

tension in an Eclipse/MDT OCL Plugin, which allows OCL temporal constraints to

be defined with Ecore/UML models. However, the set of temporal patterns are not

suitable to OntoUML‟s set of requirements, such as the initial classification dynamic

aspect, usually, due to the pattern‟s closed/open edges of intervals

7.3 Existing Approaches on Validation of Conceptual Models

Using the Alloy Lightweight Formal Method

Several approaches in the literature have aimed the analysis and validation of plain

UML conceptual models and standard (static) OCL constraints e.g. HOL-OCL [7],

USE [6], CD2Alloy [29], UML2Alloy [8]. In particular, a number of them [8, 9, 29,

31, 32] have used Alloy as a lightweight formal method for validating structural con-

ceptual models written with UML/OCL. In [8], Anastasakis et al. present one of the

first extensive approaches for automatic translation of UML+OCL models into Al-

loy for purposes of model verification and validation. Their tool is called

UML2Alloy and although it considers both UML and OCL, it does not support

several standard OCL operators while just a subset of UML is considered. Cunha et

al. [9] extended the mappings of Anastasakis et al. to support UML qualified associa-

tions and dynamics of properties such as the UML read-only feature (immutability).

9 http://patterns.projects.cis.ksu.edu/

104 | P a g e

They defined a state local signature called Time in the Alloy resulting specification

to handle correctly dynamics of properties and pre- and post- conditions.

Maoz et al. [29] translated UML, particularly class diagrams, to Alloy and then

from Alloy‟s instances back to UML object diagrams, considering both multiple in-

heritance and interface implementation. They use a deeper embedding strategy as

not all UML concepts are translated directly to a semantically equivalent Alloy con-

structs. For instance, UML multiple inheritance is transformed to a combination of

Alloy facts, predicates and functions. This strategy enables the support of analysis of

class diagrams, checking if one class diagram is a refinement of some other class

diagram [29, p.2]. Their translation is implemented fully in a prototype plugin in

Eclipse called CD2Alloy, which can (optionally) hide the Alloy resulting specifica-

tion from the modeler. However, the translation does not consider standard OCL.

Besides, the Alloy resulting specification is difficult to read, less understandable and

computationally more complex than other approaches [29].

Massoni et al. [32] proposed a transformation of only a small subset of UML (class

diagrams with classes, attributes and associations) annotated with OCL standard

invariants to Alloy. They specify the translation merely systematically and manually.

Kuhlmann et al. [31] on the other hand defined a translation from UML and standard

OCL to Relational Logics and a backwards translation from relational instances to

UML model instances. Relational Logics is the source for the Kodkod SAT-based

model instance finder used by Alloy.

None of these approaches completely supports dynamic and multiple classifica-

tions, which is essential for ontology-driven conceptual modeling with OntoUML.

In fact, besides dynamic and multiple classifications, the meta-properties that char-

acterize many of the ontological categories and relations in an ontologically well-

founded language are modal in nature. As discussed in [2], the modal distinctions

among object types and part-whole relations are paramount from an ontological

perspective and play a fundamental role in ontology engineering and semantic in-

teroperability efforts. Moreover, none of these approaches has fully coped with dy-

P a g e | 105

namics. The only support for dynamics is the UML read-only feature i.e. immutabil-

ity, proposed by Cunha et al..

There exists mainly two approaches for the validation of OntoUML structural

conceptual models, one based on Ontological Semantic Anti-Patterns [23] and another

based on Alloy simulation [22, 23, 30, 33]. A semantic anti-pattern [23] is a recurrent

conceptual modeling decision, that although syntactically valid, it is prone to lead to

domain misrepresentations, i.e., it might indicate that the model is under-

constrained, over-constrained, or that an element is classified with the wrong cate-

gory or that there might be elements missing from the model. In this approach, the

conceptual model is checked against a catalogue of semantic anti-patterns. If an an-

ti-pattern is found, the approach suggests a wizard to aid evaluation and if necessary,

correct the anti-pattern occurrence, for instance, by adding constraints or changing

an elements‟ category.

Benevides et al. [30] and Braga et al. [33] were the first to propose Alloy as a formal

method of validation of OntoUML structural conceptual models. The Alloy tech-

nique used to validate OntoUML structural conceptual models is different from

those based on UML because all OntoUML‟s modal features and the language con-

structs affected by them require a special treatment in Alloy. In this technique, it

should be considered the dynamics implicit in OntoUML, such as the different

types of rigidity and immutability, and a support for a world states structure. Sales

[23] recently combined these former approaches in order to address several issues

that hindered their usage in practice, issues involving performance, coverage, map-

pings and implementation. In addition, Sales introduced some features such as UML

redefinition and UML subsetting [23] while keeping the branching world structure

of Benevides et al. [30]. Guerson et al. [22] in turn extended Sales‟ approach in order to

support standard OCL domain constraints in the validation with Alloy. They de-

fined a translation from standard OCL constraints into Alloy in pace with all On-

toUML‟s modal features and existing OntoUML mappings. However, their ap-

proach does not support richer dynamic aspects as OntoUML was still limited w.r.t.

to dynamic aspects while OCL, in the context of OntoUML, was yet simply a static

constraint language.

106 | P a g e

7.4 Summary of Existing Approaches

We can view all the existing approaches of conceptual modeling languages with

UML and OCL (including the existing temporal extensions) into four major sets:

 The pure (plain) UML/OCL approach [4, 5] using standard UML and OCL

as defined by OMG to represent static structural aspects of conceptual mod-

els (Existing Approach 1);

 The pure (plain) OntoUML/OCL approach [2, 5] applying a foundational on-

tology to evaluate and give semantics to UML class diagrams increasing its

expressivity but with limited dynamic aspects such as rigidities and depend-

ences (Existing Approach 2);

 The temporal UML/OCL approach of Jordi Cabot [12] which extends UML

with dynamic features and OCL with devices to retrieve immediate past val-

ues (Existing Approach 3); and

 The temporal OCL approaches [10, 11, 13, 14, 15, 16, 17, 18] which extends

OCL based on a logic language, created new logic formalisms inspired by

OCL, defined an OCL extension based on a set of temporal property patterns

and etc. (Existing Approach 4);

Table 7 presents an overview of these four major sets of approaches according to

some defined criteria. With regard to documentation of the formal semantics of the

respective conceptual modeling languages, plain UML and OCL are defined by the

Open Management Group (OMG) [4, 5] whilst OntoUML was defined by

Guizzardi in his PhD thesis [2]. The semantics of the temporal extension of plain

UML and OCL developed by Jordi Cabot and colleagues [12] is not fully character-

ized. The authors formalized only the instantaneous dynamic aspect whilst the other

aspects were explained only intuitively using natural language. They also presented

only one type of expansion to standard OCL and two examples of implicit OCL

temporal operations used to retrieve past values. We thus judged that this was suffi-

cient to meet only partially the criteria of formal semantics documentation.

P a g e | 107

Table 7 Summary of Existing Approaches

 Existing Approaches

 x

Criteria

1. UML +

OCL

(OMG)

2. OntoUML +

OCL

(Guizzardi)

3. Temporal

UML + OCL

(Cabot et al.)

4. Temporal

OCL

(Extensions)

D
o

cu
m

en
ta

ti
o

n

Formal

Semantics

Yes.

(OMG Spec)

Yes.

(Guizzardi)

(PhD Thesis)

Partially.

(Extension of

UML/OCL)

Partially.

(e.g. Kanso and Taha)

V
al

id
at

io
n

Alloy Simulation

and Analysis

Yes.

(CD2Alloy,

UML2Alloy)

Yes.

(OntoUML2Alloy)

No. No.

E
xp

re
ss

iv
en

es
s

Dynamic

Classification

No. Yes. No. Not

Applicable

Multiple Static

Classification

No. Yes No. Not

Applicable

Richer

Temporal

Constraints

No. Partially.

(Only Rigidity and

Dependences)

Partially.

(Only Durability

and Frequency)

Yes.

(Logic-based

Extensions)

Time Structure No. No. No.

Yes.

(Linear,

Branching)

Trans-Temporal

Facts

No. Yes.

(Growing Block

View Theory)

No. No.

Im
p

le
m

en
ta

ti
o

n

Tool Support Yes.

(Eclipse)

Yes.

(OLED)

Yes.

(Objecteering)

Partially.

(e.g. Kanso and Taha)

Regarding the set of OCL temporal extensions, they were mostly defined by short

publications which we judged not having a complete formal characterization of the

language‟s semantics. Only Kanso and Taha‟s extension of OCL formalized their

108 | P a g e

extension recently in [16]. Some of the other extensions do not extend standard

OCL e.g. BOTL, Oμ(OCL), and thus do not benefit from OMG‟s documentation

while others lack tool support that could help us in understand more clearly the lan-

guage. We thus judged that the set of existing OCL extensions achieves only partially

the criteria of formal semantics documentation. Our modeling approach, in con-

trast, meet this criteria as we provide proper formalization for all the dynamics in-

troduced in Chapter 3 and explain our OCL temporal extension in Chapter 4, which

is a very similar extension to standard OCL with very few adjustments to it. We thus

also benefit from standard OCL semantics and documentation.

Our second criteria concerns the validation of conceptual models created in these

approaches using the Alloy logic-based language. There have been several ap-

proaches for Alloy simulation with UML [8, 9, 29] and OntoUML [22, 23] but with

regard to temporal extensions, none of these approaches support Alloy simulation.

Therefore, our approach meets this requirement by extending the existent On-

toUML and OCL approach [22, 23] to Alloy Simulation as discussed in Chapter 5.

With respect to the expressiveness of these (temporal) conceptual modeling lan-

guages, as only OntoUML [2] supports dynamic classification (e.g. the classification

of persons into life phases: child, teenager and adult; the classification of persons

into roles in particular contexts) and multiple classification (e.g. the classification of

person according to orthogonal classification schemes such as {healthy, sick} and

{man, woman}). Although dynamic and multiple classifications are in principle sup-

ported by UML, most UML approaches that establish formal semantics and analy-

sis/simulation do not address these features. This renders the UML approach less

suitable to enable the expression of important conceptual structures that rely on dy-

namic and multiple classifications. Dynamic and multiple classifications are thus

features of diagrammatic modeling languages such as UML and OntoUML, and as

such, they are not applicable to textual constraint languages such as OCL (and ex-

tensions). Our modeling approach meets this requirement extending OntoUML and

using an additional temporal OCL extension that complements OntoUML.

P a g e | 109

With respect to temporal constraints, UML is purely a static modeling language.

OntoUML [2] introduces dynamic aspects but only the different types of rigidity

and immutability. The temporal extension of plain UML and OCL of Jordi Cabot

and colleagues [12] supports a limited number of dynamic aspects such as different

types of durability and frequency as their temporal extension of OCL is only able to

retrieve past values. The other existing OCL temporal extensions are (a priori) ex-

pressive enough to represent richer logic temporal constraints. This may only vary

depending on the OCL extension used, according to the expressiveness of each ap-

proach, for example, Taha‟s extension of OCL [16] is based on a set of Dwyer‟s pat-

terns and is not suitable to OntoUML‟s set of requirements, such as the initial classi-

fication dynamic aspect. Our modeling approach is thus able to represent richer dy-

namic constraints using a temporal OCL extension as discussed in this work.

With concern to the time structure embedded in these approaches. Plain UML

does not support any. OntoUML reflects a notion of possible worlds from the ale-

thic modality (the logics of necessity and possibility) with no temporal interpreta-

tion. A temporal structure of worlds is important if we want to express the behavior

of model entities. The temporal extension of plain UML and OCL of Cabot et al. [12]

does not specify any structure of time. The other existing OCL extensions define

mostly linear and branching structures of time such as those from LTL and CTL

[10, 15, 18]. Our modeling approach, adopts a temporal interpretation similar to

CTL logics i.e. a structure of branching worlds (a tree with branches towards the

future).

The OntoUML approach is able to express historical relationships and trans-

temporal facts [21] but only if existence is reified w.r.t. all entities of the domain

(OntoUML models aligned with the growing block universe view theory). None of

the other three approaches is able to represent transtemporal relationships and facts.

Our modeling approach in contrast is able to support both of them, regardless of

whether the model is aligned with the growing block universe theory.

Finally, with respect to tool support, there are many CASE tools to support

standard UML (e.g. Eclipse, Astah, Enterprise Architect, Visual Studio, ArgoUML)

110 | P a g e

and OCL (e.g. Eclipse). From those, Eclipse10 provides a full support to both UML

and OCL, according to the OMG specification. OntoUML in turn has a tool called

OLED11 (OntoUML Lightweight Editor) which is an editor to build, validate and

implement domain ontologies (i.e. ontology-based conceptual models). The tem-

poral extension of plain UML and OCL of Jordi Cabot and colleagues is imple-

mented into a tool called Objecteering/UML12. However, they still use an older ver-

sion of UML (version 1.4). Most OCL temporal extensions do not provide tool

support e.g. [11, 14, 18], they do not allow their respective language to be used with

conceptual modeling languages such as UML or OntoUML, with the exception of

Kanso and Taha‟s extension of OCL [16], which is implemented in an Eclipse

Plugin to represent temporal properties on UML/Ecore models. We implement full

support for temporal OCL in the OLED tool, including syntax verification and val-

idation using a lightweight formal method.

10 http://eclipse.org/eclipse/

11 https://code.google.com/p/ontouml-lightweight-editor/

12 http://www.objecteering.com/

P a g e | 111

8 Concluding Remarks

In this chapter, we present concluding remarks of this work. In particular, we dis-

cuss our contributions to the area (Section 8.1), limitations of our approach (Section

8.2) and future works (Section 8.3) pointing research directions in which we can ad-

dress in a near future.

8.1 Contributions

Despite the recent advances in Conceptual Modeling, current approaches were not

adequate to the representation of dynamic aspects in ontology-driven conceptual

models, specifically, those written with OntoUML. The majority of existing ap-

proaches for dynamic aspects are concerned with temporal properties of computa-

tional systems, not with domain invariants. Further, some of them are defined as

logic-based extensions, which require a level of logic-expertise of their users that we

do not expect UML/OCL modelers to have. Other approaches focus on an exten-

sions based on a set of temporal patterns, which are either restrictive or are not ap-

plicable to OntoUML. Finally, none of existing approaches is able represent facts

involving historical dependences such as the so-called trans-temporal facts [21]. This

research addresses these gaps supporting the expression of arbitrary dynamic invari-

ants and historical relationships in OntoUML structural conceptual models.

This research contributes to increase the expressiveness of OntoUML proposing

a simple extension that incorporates some additional dynamic invariants as part of

OntoUML‟s modeling constructs in order to represent as accurate as possible con-

ceptualizations about subject domains. We have formally characterized these addi-

tional dynamic aspects representing domain conceptualizations aligned with differ-

ent philosophical theories about time and existence such as Presentism and the

Growing Block Universe theory [21]. The constructs proposed for OntoUML re-

flect existence rules (permanence, transience and eternity) as well as classification

dynamics (initial, final and general classifications).

This research contributes with a temporal OCL extension to cope with dynamic

invariants and historical dependences in structural OntoUML conceptual models.

112 | P a g e

Our OCL extension requires only few adjustments to standard OCL; in particular,

to four OCL type conformance operations and the “allInstances” operation. Our

temporal OCL is expressive not only to incorporate user-defined dynamic aspects

into structural conceptual models written with OntoUML but also to represent ex-

plicitly the implicit dynamic aspects of OntoUML stereotypes (i.e. rigidity, anti-

rigidity, non-rigidity, semi-rigidity, immutability). We have demonstrated the expres-

siveness of our approach satisfying the requirements listed in Section 1.3, which in-

clude: representing existence rules (permanence, transience, eternity, and continu-

ousness), classification rules (initial, final and general classification), derivations by

past specializations [20], and specially, historical relationships and trans-temporal

facts [21] (not addressed in any existing approach of conceptual modeling language).

We have developed a temporal OCL editor as an extension of the previous plain

OCL editor [22]. Our OCL editor extension is embedded in the OLED tool, which

is the existing model-based environment for modeling with OntoUML+OCL. Our

temporal OCL editor‟s features include syntax verification, syntax highlight and

code-completion, which are key to a productive environment for writing textual

constraints.

This research contributes to facilitate the validation process developing a tool to

aid modelers in checking if the dynamic constraints they have written indeed repre-

sent their intended conceptualization. The validation activity is a challenging activity

since it requires trying to foresee all instantiations that can be allowed in a model.

The validation of structural conceptual models enriched with plain constraints was

already a hard task due to the complexity of the set of distinctions embedded in On-

toUML‟s categories plus the new OCL constraints that can be added to the model.

The validation enriched with dynamic constraints and historical relationships is thus

even harder since it requires foreseeing not only a single world state deemed allowed

by the model, but several states showing how entities undergo change. We contrib-

ute with a tool for the validation of dynamic OCL invariants and historical relation-

ships using the existing validation approach based on Alloy. That is, we defined a

semantics-preserving mapping from dynamic constraints and historical relationships

to Alloy, in accordance with previous mappings from OntoUML+OCL [22, 23]. We

P a g e | 113

have thus incorporated our translation into the OLED tool, alongside with previous

approaches, enabling the simulation/analysis of models enriched with dynamic in-

variants, contributing to the definition of highly accurate, ontology-based structural

conceptual models written with OntoUML. In this tool, modelers can enforce a

specific behavior for a certain entity of the model using our temporal OCL exten-

sion, but can also execute specific simulations by generating model instantiations as

examples and checking assertions by generating model instantiations as counter-

examples of desired and undesired behaviors according to a certain domain concep-

tualization.

 Finally, this research contributes with a set of dynamic patterns for ontology-

driven conceptual modeling. We have provided these dynamic aspects represented

in temporal OCL as templates that can be added to OCL textual documents in the

OLED tool through our code-completion feature at the editor. The code comple-

tion provides, alongside the pattern, a proper description for it. In this approach,

users do not need to write again any of the dynamic rules in Temporal OCL dis-

cussed in this work. Users can simply use the templates from the code-completion

feature, customizing them according to their own need and conceptualization.

8.2 Limitations

Our main objective in this research was to enable the representation of dynamic as-

pects in ontology-driven conceptual models. We have met this goal by proposing a

simple dynamic extension for OntoUML, defining, and implementing a temporal

extension for OCL. We have also provided a tool for the validation of models en-

riched with dynamics. However, we did not implement the OntoUML extension

addressed in Chapter 3, as we did not incorporate the dynamic distinctions in the

existing OntoUML infrastructure [35]. We judge that there is a trade-off regarding

the amount of dynamics we can include in OntoUML‟s diagrammatic notation so

that the resulting language can still be understandable and comprehensible. We be-

lieve further investigation is required to propose a suitable concrete syntax for On-

toUML with respect to both categories of UFO and additional dynamic aspects

proposed as part of our OntoUML extension. We judge that perhaps general classi-

114 | P a g e

fication rules (e.g. transitions of phases) could be better represented in a separate

diagram instead of temporal OCL rules, such as for instance proposing a version of

UML state-chart diagrams for OntoUML‟s phase transitions.

Our temporal OCL extension needs to adjust four plain OCL built-in type con-

formances operations and the allInstances built-in operation with the inclusion of a

World parameter. However, we did not extend the OCL metamodel implementation

to include that new WorldType meta-class to serve as a parameter for these new

world-parameterized operations. We processed these adjusted plain OCL operations

base on their textual syntax guaranteeing that they are syntactically valid when used

in the context of temporal OCL expressions. A more systematic approach could

lead to adjustments to the OCL metamodel in the future.

The existing validation approach with Alloy is currently limited w.r.t. the scope of

simulation and analysis i.e. how many instances of each class and how many rela-

tions can be displayed at the visual simulation. An OntoUML model should not ex-

ceed fifteen to twenty classes (approximately) in order to be simulated and checked

with Alloy (according to some of our own experience in practice). Our temporal

interpretation assumes a world branching structure in the Alloy simulation. In this

validation approach, Worlds are reified, model classes are Alloy binary relations and

model relationships are Alloy ternary (and 4-ary) relations. The Alloy scope increas-

es very rapidly using this mapping as the scope is set to each top-level Alloy signa-

ture, not to each OntoUML class represented as an Alloy binary relation. Our vali-

dation approach is thus limited w.r.t. scope since in order to simulate and check a

behavior we need a considerable number of world states, endurants and their rela-

tions. Consequently, modelers are limited to simulate only parts of the models [23].

Further investigation is required to determine how to approach this sort of partial

simulation.

8.3 Future Work

We plan further to investigate the application of temporal constraints on quality

structures and regions of subject domains. Qualities structure and regions were left

out in the scope of this research as they were recently addressed in [36] with the def-

P a g e | 115

inition of an infrastructure for qualities in OntoUML. We believe there are dynamic

aspects of conceptual spaces, which needed to be specified in order to be represent-

ed as accurately as possible to a given conceptualization.

We plan to further investigate the quality of UFO-S (the foundational ontology

of services [41]) and O3 (the organization foundational ontology recently developed

in [40]) with regard to missing dynamic aspects using our modeling approach with

temporal OCL and Alloy simulation. UFO-S and O3 were previously represented

using only the limited dynamic aspects of OntoUML and the static aspects embed-

ded in plain OCL. UFO-S and O3 were validated using the previous existing ap-

proach on Alloy simulation that dealt mostly with static aspects of phenomena.

With our support for dynamic aspects, we should be able to represent dynamic as-

pects detected by desired and undesired behaviors in the respective foundational

ontologies. We can thus contribute to enhance the quality of UFO-S and O3.

In order to further demonstrate the expressivity of our extension of OCL, we

plan to compare our approach with other approaches such as (i) the temporal pat-

tern-based OCL extension of [16], and (ii) the ontology-based behavioral specifica-

tion language (OBSL) [39]. These approaches trade expressiveness for ease of use,

so we expect that all of the constraints that can be expressed in these approaches

can be also expressed with our temporal OCL.

OWL is an extension of RDF based on Description Logics to represent content

in the context of Semantic Web. It has been used to implement reference ontologies

to discover knowledge, annotate semantically its content and to publish it on the

web. OWL does not support temporal aspects by nature and thus some reification

approach is necessary in order to handle temporal aspects as the approach of [38].

We thus plan to investigate the representation of our reification approach and our

temporal OCL extension into OWL building up from an OntoUML translation.

We plan to represent simulations scenarios [23] with our temporal OCL exten-

sion. Simulation scenarios define desired model properties as pre-defined test cases

in Alloy simulation, enhancing the process of validation with Alloy making it easier

and more accessible for users. We can improve even more this process if we provide

116 | P a g e

these simulations scenarios in a conceptual level (using temporal OCL) rather than

in Alloy, an implementation level.

 Finally, we plan to vary the temporal structure of our OCL extension in order to

express temporal constraints based on other time structures such as linear structures

and circular structures. We plan to generalize our infrastructure in order to allow the

definition of time structures in a conceptual level, handling them at the model.

P a g e | 117

Bibliography

1. Mylopoulos, J.: Conceptual Modeling, Databases, and CASE: An Integrated

View of Information Systems Development; chapter Conceptual Modeling and

Telos; Wiley, Chichester (1992).

2. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models.

Telematica Instituut, The Netherlands (2005).

3. Halpin, T. and Morgan T.: Information modeling and relational databases. Mor-

gan Kaufmann (2010).

4. OMG: UML Superstructure v2.4.1 (2012).

5. OMG: OCL Specification v2.4.1 (2014).

6. Gogolla, M., Bohling, J., Richters, M.: Validating UML and OCL models in

USE by automatic snapshot generation. Softw. Syst. Model. 4, 4, 386–398

(2005).

7. Brucker, A.D., Wolff, B.: HOL-OCL: a formal proof environment for

UML/OCL. In: Fiadeiro, J.L. and Inverardi, P. (eds.) 11th International Con-

ference on Fundamental Approaches to Software Engineering, FASE 2008. pp.

97–100 Springer Berlin Heidelberg (2008).

8. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On challenges of model trans-

formation from UML to Alloy. Softw. Syst. Model. 9, 1, 69–86 (2010).

9. Cunha A., Garis A., Riesco D.: Translating between Alloy specifications and

UML class diagrams annotated with OCL. Softw. Syst. Model. (2013).

10. Bill, R., Gabmeyer, S., Kaufmann, P., Seidl, M.: OCL meets CTL - Towards

CTL-Extended OCL Model Checking. In MoDELS, 1092, pp. 13–22 (2013).

11. Bradfield, J.C., Filipe, J.K., Stevens, P.: Enriching OCL Using Observational

Mu-Calculus. In FASE, 2306, 203–217 (2002).

12. Cabot, J., Olivé, A., Teniente, E.: Representing Temporal Information in UML.

In UML‟03, 2863, 44–59 (2003).

13. Conrad, S., and Turowski, K.: Temporal OCL Meeting Specification Demands

for Business Components. In UML‟01, 2185, 151–165 (2001).

118 | P a g e

14. Distefano, S., Katoen, J.P., Rensink, A.: On a temporal logic for object-based

systems. In Fourth International Conference on Formal methods for open ob-

ject-based distributed systems IV, 49, 305-325 (2000).

15. Flake, S., and Muller, W.: Formal semantics of static and temporal state-oriented

ocl constraints. Software and System Modeling 2(3), 164–186 (2003).

16. Kanso, B., and Taha, S.: Specification of temporal properties with OCL. Science

of Computer Programming 96, 527-551 (2014).

17. Mullins J. and Oarga R.: Model Checking of Extended OCL Constraints on

UML Models in SOCLe. In FMOODS, 4468, 59–75 (2007).

18. Ziemann, P., and Gogolla, M.: OCL Extended with Temporal Logic. In 5th In-

ternational Andrei Ershov Memorial Conference, PSI, 2890, 351-357 (2003).

19. Jackson, D.: Software Abstractions-Logic, Language, and Analysis, Revised Edi-

tion. The MIT Press (2012).

20. Olivé A., and Teniente, E.: Derived types and taxonomic constraints in concep-

tual modeling. Information Systems 27(6), 391–409 (2002).

21. Sider T.: Quantifiers and Temporal Ontology. Mind 115(457), 75-97 (2006).

22. Guerson, J., Almeida, J. P. A., Guizzardi, G.: Support for Domain Constraints

in the Validation of Ontologically Well-Founded Conceptual Models. In 19th

International Conference, EMMSAD, 302-316 (2014).

23. Sales T.P.: Ontology Validation for Managers, MSc Thesis, Federal University

of Espírito Santo, UFES (2014).

24. Guizzardi G., Wagner G., Herre H.: On the foundations of UML as an ontolo-

gy representation language. Engineering Knowledge in the Age of the Semantic

Web, 47-62 (2004).

25. Cranefield, S., Purvis M.: UML as an ontology modelling language. Proceedings

of the Workshop on Intelligent Information Integration, 16th International

Joint Conference on Artificial Intelligence (IJCAI-99), Germany, University of

Karlsruhe, 46-53, (1999).

26. Olivé, A.: Conceptual modeling of information systems. Springer Science &

Business Media, (2007).

P a g e | 119

27. Guizzardi G., and Wagner G.: Using the unified foundational ontology (UFO)

as a foundation for general conceptual modeling languages. Theory and Appli-

cations of Ontology: Computer Applications, 175-196 (2010).

28. Dwyer, M.B., Avrunin, G.S., Corbett J.C.: Patterns in property specifications for

finite state verification. In Proceedings of the 21st International Conference on

Software Programming, 411–420 (1999).

29. Maoz, S., Ringert, J., Rumpe, B.: CD2Alloy: Class Diagrams Analysis Using Al-

loy Revisited. In: Whittle, J. et al. (eds.) 14th International Conference,

MODELS 2011. pp. 592–607 Springer Berlin Heidelberg (2011).

30. Benevides, A.B., Guizzardi, G., Braga, B.F.B., Almeida, J.P.A.: Validating modal

aspects of OntoUML conceptual models using automatically generated visual

world structures. J. Univers. Comput. Sci. 16, 2904–2933 (2011).

31. Kuhlmann, M., Gogolla, M.: From UML and OCL to Relational Logic and

Back. In: France, R.B. et al. (eds.) 15th International Conference, MODELS

2012. pp. 415–431 Springer Berlin Heidelberg (2012).

32. Massoni, T., Gheyi, R., Borba, P.: Formal Refactoring for UML Class Diagrams.

19th Brazilian Symposium on Software Engineering (SBES). pp. 152–167

(2005).

33. Braga, B. F. B., Almeida, J. P. A., Guizzardi, G., Benevides, A. B.: Transforming

OntoUML into Alloy: towards conceptual model validation using a lightweight

formal method. Innov. Syst. Softw. Eng. 6, 1-2, 55–63 (2010).

34. OLED: OntoUML Lightweight Editor, https://code.google.com/p/ontouml-

lightweight-editor (2015).

35. Carraretto, R.: A Modeling InfraStructure for OntoUML, BSc Thesis, Federal

University of Espírito Santo, UFES (2010).

36. Albuquerque, A.: Ontological Foundations for Conceptual Modeling Datatypes,

MSc Thesis, Federal University of Espírito Santo, UFES (2013).

37. Barcelos, P.P.F., Santos, V. A. dos, Silva, F.B., Monteiro M.E., Garcia A.S.:

An Automated Transformation from OntoUML to OWL and SWRL (2013).

120 | P a g e

38. Zamborlini V.: Estudo de Mapeamento de Ontologias da Linguagem On-

toUML para OWL, MSc Thesis, Federal University of Espírito Santo, UFES

(2011).

39. Wiegers, R.: Behavior Specification for Ontologically Grounded Conceptual

Models. MSc Thesis, University of Twente (2014).

40. Pereira D.C.: Representing Organizational Structures in Enterprise Architecture:

an Ontology-based Approach. MSc Thesis, Federal University of Espírito Santo

(UFES) (2015).

41. Nardi J.C.: Commitment-Based Reference Ontology for Service: Harmonizing

Service Perspectives. PhD Thesis, Federal University of Espírito Santo (UFES)

(2014).

42. Hughes, G. E.; Cresswell, M. J.: A Companion to Modal Logic. London:

Routledge and Kegan Paul (1985).

P a g e | 121

Appendix A: Structural Layer of UFO

The Unified Foundational Ontology (UFO) [2] is a foundational ontology that pro-

vides a sound ontological basis to evaluate and give real-world semantics for con-

ceptual modeling language‟s constructs such as those from UML. A foundational

ontology is comprised by a set of categories (concepts) based on a number of theo-

ries from Formal Ontology, Philosophical Logics, Philosophy of Language, Linguis-

tics and Cognitive Psychology. UFO synthesizes results from other foundational

ontologies such as the Generalized Formalized Ontology (GFO), the top-level on-

tology underlying OntoClean and the foundational ontology DOLCE, solving a

number of problematic issues regarding the coverage of these existing foundational

ontologies in the development of ontological foundations for conceptual modeling

languages such as UML, ORM and EER [27].

UFO consists of two compliance sets of concepts. The first deals with the onto-

logical category of “endurants” (objects) (dubbed UFO-A) and the second with the

categories of “perdurants” (events and processes) (termed UFO-B). Here, we will

briefly present the first set i.e. a foundational set of concepts that persists in time

called endurants and their relations.

Taxonomy of Endurant Types

Figure 32 depicts the taxonomy of endurant universals of UFO-A. Each of these

types is defined by specific distinctions, which are based on various formal theories

such as mereology, essentiality, identity criteria, dependences, rigidity, and inherence,

among others. Our main objective here is to provide a full overview of the different

entities that UFO-A categorizes.

A fundamental distinction in UFO-A is between the categories of “Particular”

and “Universal”. Particulars are entities that exist in reality possessing a unique iden-

tity, roughly speaking, one can think about instances. Universals, on the other hand,

are patterns of features, which can be realized in a number of different particulars

usually referred as concepts or types [27].

122 | P a g e

A “Monadic” universal is a universal that defines patterns of features to a single

type of individual. Conversely, the “Relation” universal defines patterns of features

to more than one type of individual. This reassembles the difference between con-

cepts, such as classes, and relations, which relates two or more concepts.

Another important distinction is between “Substantial” and “Moment” univer-

sals. Moment individuals can be seen as objectified properties of other individuals,

which inhere in those individuals. For example, the age of an individual John is a

property of John. The same holds for John‟s headache, which inheres in John. This

creates a chain of existential dependence between moments that terminates in a sub-

stantial individual, which does not inhere in any other individual. Therefore, a mo-

ment universal defines patterns of features to moment individuals (in which the in-

herence dependence holds).

Figure 32 UFO-A Taxonomy of Endurant Types

“Sortal” universals define patterns of features to individuals with the same identity

criteria and Mixin universals to those with different identities. “Rigid” universals in

turn define that its instances will be of that specific type while they exist. For in-

P a g e | 123

stance, for an individual John to be instance of a rigid sortal universal named Person

means that John will be a person while he exists. “Anti-Rigid” universals on the

other hand define that there will be a time in which their instances are not of that

type. For example, for John to be instance of an anti-rigid sortal universal named

Student means that he will be a student in a time and cease to be student at another

time. “Semi-Rigid” universals define that, part of its instances will be rigid instances,

while others anti-rigid instances. For example, Seatable is a mixin universal because

rigid individuals such as a chair are always seatable (considering that it cannot be

broken) while a crate (which can be broken) is not i.e. there are times in which a

crate is a solid crate and thus seatable and others in which it is broken and not seat-

able [2, p.113]. Moreover, a “Substance Sortal” universal, also referred as “Ultimate

Sortal” universal, defines that its individuals pursues an identity criteria while Sub-

kind universals only inherit the criteria from other substance sortal universals they

must specialize.

“Intrinsic” moment universals such as a “Quality” defines that its instances are

objectified properties that can be measured, for instance, the John‟s age or weight.

Contrariwise, “Mode” universals define that its instances are objectified properties

that cannot be measured such as for example John‟s headache. Finally, “Relator”

universals define that their instances are a composition of objectified properties that

inheres in more than one individual. For instance, the marriage between Abraham

and Sarah is composed by certain externally dependent modes (intrinsic moments)

of both Abraham and Sarah named qua-individuals. A qua-individual i.e. the indi-

vidual qua-Abraham or qua-Sarah, exemplify all the properties that an individual has

in the scope of a certain material relationship [2].

Taxonomy of Relational Types

Figure 33 depicts the taxonomy of relational universals of UFO-A. “Formal” rela-

tions hold between two or more entities without any further intervening individual.

Conversely, “Material” relations require another individual to intervene in the rela-

tion called relators; these relators induce material relations.

124 | P a g e

“Basic” and “Comparative” Formal relations comprise formal relations. Basic

Formal relations are types of existential dependence relations such as “Mediations”,

“Characterizations” and “Derivations” whilst Comparative Formal relations are

founded in qualities, which are intrinsic to the relation‟s relata [2]. Characterizations

define the inherence relation between intrinsic moments and their bearers (substan-

tials), e.g., a Symptom characterizes what means to be a sick person. Mediations de-

fine the intermediation between a relator and its inhered individuals e.g. a marriage

mediates both Abraham and Sarah. Derivations define the relator from which the

material relation it is induced by e.g. the material relation “is married with” between

Abraham and Sarah is derived by their particular marriage.

Finally, a “Meronymic” relation is a part-whole relation and is comprised by four

types of relations. “MemberOf” are relations that hold between functional complex-

es [2] and collectives e.g. John is a member of a Band. “SubQuantityOf” relations

hold between quantities e.g. alcohol composes wine. “SubCollectionOf” relations

hold between collectives e.g. the collection of male individuals in a crowd is part of

that crowd. “ComponentOf” relation holds between functional complexes e.g. a

heart is part of a person.

Figure 33 UFO-A Taxonomy of Relational Types

In the sequel, we formally characterize the dynamics already captured by these onto-

logical categories, such as rigidity, anti-rigidity, non-rigidity, semi-rigidity, existential

and specific dependences, essentiality, inseparability and finally, immutability.

P a g e | 125

Rigidity

Rigidity is one of the main meta-properties of UFO and distinguishes different types

of endurants. There are endurant types that are rigid, non-rigid, anti-rigid, and semi-

rigid. Sortal universals such as a Kind, Quantity, Collective and Subkind, Moment

universals such as a Mode, Quality and Relator, and Mixin universals such as a Cate-

gory, are all types of rigid universals.

A rigid universal defines that all of its individuals will continue to be so as long as

they exist [2, p. 42, 101]. In other words, a universal G is rigid iff, for all G‟s indi-

viduals (individuals belonging to the extension of G), if they exist in a world w, then

they must belong to G‟s extension in that world, as formalized in Axiom 4.

Axiom 4 Rigidity

 () ∈ () ∈ () ∈ ()

Non-rigidity on the other hand states that at least one of its individuals will not con-

tinue to be so [2, p.101]. In other words, a universal G is non-rigid iff, for some of

G‟s individuals (individuals belonging to the extension of G), there will be at least

one world w in which they exist but do not belong to G‟s extension, as formalized in

Axiom 5.

Axiom 5 Non-Rigidity

 () ∈ () ∈ ∉ () ()

Non-rigidity is divided in two types: Anti-Rigidity and Semi-Rigidity. An anti-rigid

universal defines that for all its individuals there will be a world in which they do not

continue to be so [2, p.102]. Sortal universals such as a Role and Phase, and Mixin

universals such as Role-Mixin are all types of anti-rigid universals. In other words, a

universal G is anti-rigid iff, for all G‟s individuals (individuals belonging to the ex-

tension of G), there will be at least one world w in which they exist but do not be-

long to G‟s extension, as formalized in Axiom 6. Notice that anti-rigidity is a specif-

ic case of non-rigidity. In other words, non-rigidity constitutes a weaker constraint

than what is imposed by anti-rigidity [2, p.102].

126 | P a g e

Axiom 6 Anti-Rigidity

 () ∈ () ∈ ∉ () ()

Mixins in turn are the only semi-rigid universals. A universal is semi-rigid iff it is

non-rigid but not anti-rigid [2, p.102] as formalized in Axiom 7. Therefore, a univer-

sal G is semi-rigid iff

Axiom 7 Semi-Rigidity

 () () ()

Dependences

Dependences are another main meta-property of UFO and distinguish different

types of relationships. Dependence, in its more general form, is a relationship that

holds between two universals X and Y stating that necessarily, whenever x (individ-

ual of X) exists, y (individual of Y) must also exist, without specifying which times

each entity must exist. In other words, if x exists at some world state, then y exists at

some world state. The world which y must exist may be prior to, coincident with or

even subsequent to the world state in which x exists. Here we name of instantane-

ous dependence the type of dependence that holds in a coincident world state, i.e.,

for any world state w at which x exists, y must also exist in w. For the sake of sim-

plicity, from this point forward the term instantaneous dependence is only referred

as dependence.

A dependency is classified into “rigid specific” or “specific” dependence. A rigid

specific dependence states that if an individual x exists at world state w, then y must

also exist in w i.e. Existential Dependence as formalized in Axiom 8. A Specific De-

pendence on the other hand states that if an individual x exists as an instance of a

universal G at a world w, then y must also exist in w, as formalized in Axiom 9.

Axiom 8 Existential Dependence

 () () ()

P a g e | 127

Axiom 9 Specific Dependence

 () ∈ () ()

Let the predicate partOf(y, x, w) denote the parthood relation in which an individual

y is part of an individual x. A parthood relation between individuals y and x holds at

world w if both y and x exist at w and are connected through a parthood relation.

An Essential Part means that a whole is existentially dependent on its part i.e.

whenever the whole exists at a world, its part must also exist at that world. For in-

stance, a person only exists in a world if a brain also exists at that world and was

related to that person via parthood relation, which means that this very brain is es-

sential to the existence of that person. Formally, we can state essentiality of parts as

in Axiom 10.

Axiom 10 Essential Part

 () ∈ () () ()

An Inseparable Whole means that it is the part that is existentially dependent on

the whole i.e. whenever the part exists at a world, its whole must also exists at that

world. For example, a brain only exists at a world if a person also exists at that

world and is related to that brain via parthood relation, which means that this very

person is inseparable from that brain, as formalized in Axiom 11. Essentiality and

inseparability are all types of existential dependence. An essential part is always a

rigid universal as well as an inseparable whole [2].

Axiom 11 Inseparable Whole

 () ∈ () () ()

Essential parts and inseparable wholes must be rigid universals [2] but in the case

where they are anti-rigid universals, the parts are called immutable parts and the

wholes immutable wholes, respectively.

An Immutable Part means that the whole is specifically dependent on the part i.e.

whenever the whole instantiate the anti-rigid universal G at a world, its part must

128 | P a g e

also exist at that world as formalized by Axiom 12. If the whole ceases to instantiate

G, then the dependence no longer holds.

Axiom 12 Immutable Part

 () ∈ ∈ () () ()

An Immutable Whole on the other hand is just the other way around, meaning

that the part that is specifically dependent on the whole i.e. whenever the part in-

stantiate the anti-rigid universal G at a world, the whole must also exist at that world

as formalized by Axiom 13. Immutability of parts and wholes are types of specific

dependence. Thus, an immutable part is always an anti-rigid universal as well as an

immutable whole [2].

Axiom 13 Immutable Whole

 () ∈ ∈ () () ()

Immutability

From an equivalent logic point of view, essentiality and inseparability state that an

individual x, which is a part or a whole, will always be connected to the same whole

or part, respectively, at any time (world state) that it exists. This dynamic aspect is

called here of Immutability and in UML is defined using the readOnly UML meta-

property. The readOnly meta-property defines that a UML an association end-point

(or attribute) cannot be updated once assigned. This means that their values cannot

change.

“isReadOnly: Boolean - if true, the attribute may only be read, and

not written. The default value is false.” “If a navigable property is

marked as read-only, then it cannot be updated once it has been as-

signed an initial value.” [4, p.125, 129]

Essentiality and inseparability should thus imply that the respective ends of the par-

thood relations are readOnly by default. In other words, if a part is essential, this

means that the property that leads the whole to its part is immutable i.e. readOnly (a

whole cannot change its part), and if the whole is inseparable, this means that the

P a g e | 129

property that leads the part to its whole is readOnly (the part cannot change its

whole).

Analogously, immutable parts and wholes also state immutability. This means

that an individual x, which is a part or a whole, will always be connected to the same

whole or part, respectively, while instantiating the anti-rigid universal. In this man-

ner, the property that leads the whole to its immutable part must also be set as

readOnly and the property, which leads the part to its immutable whole must also

be readOnly by default.

Therefore, let x be an individual which is instance of the rigid universal G and

the expression “x.P(w)” be a property of the individual x at world w, we can formal-

ize immutability as formalized in Axiom 14.

Axiom 14 Immutability

 () ∈ ∈ ()

 ∈ ∈ () () ()

Lastly, dependency binary relationships in UFO are Characterizations, Mediations

and Derivations relationships, and all of them stand for relations of existential de-

pendence. This means that they also define immutability on their target-end point.

Characterizations are always readOnly by default on the characterized side and me-

diations on the mediated side [2, p.334-336]. Moreover, derivation relationships be-

tween relators and material relationships are also readOnly on the material relation-

ship side [2, p.337]. The semantics applied to the UML readOnly meta-property will

depend on the rigidity of the universal from/of the property.

130 | P a g e

Appendix B: Constraints to the Reified Model

Here we list all constraints (of our running example) that are (automatically) added

to the world-reified plain UML model of background so that the OntoUML model

semantics is preserved in the reification step. Listing 23 exemplifies the first set of

constraints enforcing actual multiplicity constraints using plain OCL on the world-

reified background model. It specifies actual multiplicity cardinalities of the original

OntoUML mediation relationship between relator Marriage and role Wife on the

word-reified UML model.

context World

inv marriage_mediates_one_wife_at_a_time:

 self.endurant->select(i | i.oclIsKindOf(Marriage))->forAll(m |

 m.mediates_marriage_wife->select(r | r.world = self)->size() = 1)

inv wife_is_mediated_by_one_marriage_at_a_time:

 self.endurant->select(i| i.oclIsKindOf(Wife))->forAll(h |

 h.mediates_marriage_wife->select(r | r.world = self)->size() = 1)

Listing 23 World Reified Model: Current Multiplicity Cardinalities

The first OCL constraint states that for every world (self), for all marriages at that

world, the number of “mediates_Marriage_Wife” linked (at that world) to that mar-

riage is equal to one. Conversely, the second OCL constraint states that a wife is

mediated by exactly one marriage at a particular world. The same pattern is applied

to the other mediation between Marriage and Husband, in fact, to every OntoUML

relationship, with the exception of the OntoUML derivation relationships, which we

assume to be non-navigable.

The next set of additional constraints capture the fact that relationships, relators

and relata co-exist in all worlds in which they exist. In other words, a constraint en-

suring the cycle between the reified relationship (e.g. mediates_Marriage_Wife), the

elements they connect (e.g. Wife) and the worlds in which they exist (e.g. World),

such as described in Listing 24. The same pattern is applied to the other mediation

P a g e | 131

between Marriage and Husband (i.e. to every OntoUML relationship except for On-

toUML derivations as they are not translated).

context mediates_Marriage_Wife

inv wife_exists_same_world_as_mediation:

self.world.endurant->select(i |i.oclIsKindOf(Wife))->includes(self.wife)

inv marriage_exists_same_world_as_mediation:

self.world.endurant->select(i |i.oclIsKindOf(Marriage))->includes(self.marriage)

Listing 24 World Reified Model: Existence Cycles

The world-reified model also needs constraints to ensure the immutability on the

mediated side from the OntoUML mediation, as described in Listing 25. For exam-

ple, the first OCL invariant states that for every world self, for every marriage at that

world, for every subsequent world n, the wife related to that marriage in n is the

same as in self. Analogously, the same holds for the immutability of husbands.

context World

inv immutable_wife:

self.endurant->select(I | i.oclIsKindOf(Marriage))->forAll(m |

self->asSet()->closure(next)->asSet()->forAll(n |

m.oclAsType(Marriage).mediates_marriage_wife->select(r | r.world = n).wife =

m.oclAsType(Marriage).mediates_marriage_wife->select(r | r.world = self).wife))

inv immutable_husband:

self.endurant->select(I | i.oclIsKindOf(Marriage))->forAll(m |

self->asSet()->closure(next)->asSet()->forAll(n |

m.oclAsType(Marriage).mediates_marriage_husband->select(r|r.world=n).husband =

m.oclAsType(Marriage).mediates_marriage_husband->select(r|r.world=self).husband))

Listing 25 World Reified Model: Immutability of Relata

Finally, the world-reified model needs to reflect the Set type as the default collection

type of original OntoUML relationships. This means that by default, in mediations,

no two relations (at an instance level) are allowable between the same instances.

132 | P a g e

Therefore we need to ensure that no two reified mediations have the same world,

domain and range elements such as described in Listing 26.

context World

inv no_duplicated_mediations_between_marriage_and_wife:

 not self.mediates_Marriage_Wife->exists(m1, m2 |

 m1<>m2 and m1.marriage = m2.marriage and m1.wife = m2.wife)

inv no_duplicated_mediations_between_marriage_and_husband:

 not self.mediates_Marriage_Wife->exists(m1, m2 |

 m1<>m2 and m1.marriage = m2.marriage and m1.husband = m2.husband)

Listing 26 World Reified Model: Mediation’s Set Type

Lastly, although we only demonstrated the world reification of mediation relation-

ships, the same holds for all the other OntoUML relationships. We were restricted

to our running example which only used two mediations. The only exception re-

gards OntoUML material relationships, which may have duplicates at an instance

level (the default collection type are Bag types). For this reason, uniqueness con-

straints are not applied to material relationships.

P a g e | 133

Appendix C: Alloy Language and Analysis

Alloy [19] is a declarative and first-order logic based language to describe and ex-

plore structures. Alloy models (often called specifications) can be viewed as a set of

constraints (axioms) that describe (implicitly) a set of structures. A model is com-

prised basically by declaration of signatures, relations, facts, predicates, assertions

and functions. The Alloy tool supports a solver responsible for finding structures

that satisfy the specification i.e. the constraints implied by the Alloy specification.

The Alloy analyzer (how the tool is called) uses predicates to explore the model,

generating sample structures in conformity with the model, and assertions to check

properties of the model, generating counter-examples of it. The result is displayed

graphically to the user. Alloy structures are composed by atoms and the relations

between these atoms:

Atoms and Relations

An atom is a primitive entity which is indivisible (it cannot be broken into little

pieces), immutable (its properties does not change with time), and non-interpretable

(it does not have built-in properties such as the numbers). Few things in reality are

atomics, therefore, in order to create structures that are divisible, mutable and inter-

pretable; relations are introduced. A relation is a structure that relates atoms. It con-

sists of a set of tuples, where each tuple is a sequence of atoms. For example, in

Figure 34 we have the atoms A2 e B4 and a relation between them, i.e. the tuple

(A2, B4). The relation “r” is therefore the set of tuples r = {(A2, B4), (A1, B4), (A3,

B1), (A3, B2), (A3, B3)}.

Figure 34 Alloy Atoms and Relations

134 | P a g e

Signatures and Fields

A set of atoms is declared through a signature declaration. For instance, the declara-

tion “sig A {}” declares a set of atoms named “A”. A signature is more than just a

set of atoms because it can include relations declarations. The relations are declared

as fields in the signatures. For example, the declaration “sig A {r: set B}” introduces

a relations “r” whose domain is the set “A” and range the set “B”, as showed in

previous Figure 34.

Facts, Functions, Predicates and Assertions

Alloy structures are accompanied of properties i.e. restrictions and assertions about

the structure itself. These properties are organized into paragraphs. The paragraphs

can contain four types of properties: facts, functions, predicates and assertions.

Facts specify restrictions that must always hold in any circumstance. For instance,

in Figure 34, we could specify a restriction stating that the set of atoms “A” cannot

be an empty set. In this manner, at any possible instantiation (structure) generated

according to the declarations in the model, the set “A” will always be a set with the

minimum 1 atom. In Alloy, this can be represented as “fact {some A}”.

Functions specify expressions to be reused in different parts of the model (similar-

ly to the methods/functions in programming languages). For example, in Figure 34

we could specify a function named “getBs” that given an atom from the set “A” i.e.

A1, it would return all atoms from the set “B” related to A1 through relation “r”. In

Alloy, this would be represented as “fun getBs [x: A]: set B {x.r}”.

Predicates specify restrictions that can be used in different parts of the model. For

instance, in Figure 34 we could specify a predicate named “only2Bs” defining that

an atom of the set “A” (e.g. A1) is related to exactly two atoms of the set “B”

through relation “r”. This would be represent in Alloy as “pred only2Bs [x: A] {#

x.B = 2}”. We could thus use this predicate to state that all atoms of the set “A”

satisfy this restriction i.e. using this predicate inside a fact such as “fact {all x: A |

only2Bs[x]}”.

P a g e | 135

Assertions specify properties that we desire to be valid from the facts of the mod-

el. The Analyzer can then check the assertions. If an assertion is invalid from the

facts, or a failure of the project was exposed or there have been an error from the

formulation of the assertion. For instance, we could specify an assertion named

“notEmptyBs” to state that the set “B” will always be a non-empty set, such as “as-

sert notEmptyBs {some B}”. If, according to the facts of the model, the analyzer

finds an example in which this assertion does not hold, the tool will show this case

as a counter-example. Otherwise, the assertion can be valid, or invalid.

Commands and Scopes

An Alloy model is comprised by basically sets and relations (forming the structure

of the model) and facts, predicates, assertions and functions (specifying the (un-)

desired properties of the model). The tool then searches for (counter-) examples

through Alloy commands. In particular, using the Alloy “run” command, specified

over predicates, and the Alloy “check” command, specified over assertions.

In case of running simulation (i.e. using the run command), the tool search for ex-

amples that should be in conformity with the predicate inside the run command and

all the facts from the model. An example is a scenario in which both, facts and that

predicate are valid. For example, the execution of the predicate “only2Bs” would be

defined as “run {only2Bs} for 5”, where the number 5 specifies the scope of the

command i.e. all top-level signatures will have at most 5 atoms.

In case of checking an assertion, the analysis considers the negation of the assertion

being checked, and all the facts from the model. A counter-example is a scenario in

which the assertion fails from the facts of the model. For instance, the checking of

the assertion “notEmptyBs” would be defined as “check notEmpty2Bs for 5”.

Through a scope definition i.e. the maximum number of atoms of each top-level

signature of the model, the tool provides a possible instantiation, in visual form, that

satisfies the model.

136 | P a g e

Simulation and Analysis

It is impossible to guarantee where an assertion is valid since it requires to cover the

entire space of solution. Instead, the analysis in Alloy is based on the instance find-

ing, which is an attempt to find a refutation checking an assertion against a huge

number of test cases (a tiny model with only four relations in Alloy can have a space

of solution over billions of test cases) [19, p.141, 142]. The analysis executed by

the Alloy tool is based on the SAT (boolean satisfiability) technology. The analyzer

translates the Alloy restrictions to boolean restrictions which are given to an effi-

cient SAT solver. This solver can examine spaces over a hundred of bits (i.e., 10^60

cases or more) [19, Preface]. The analysis of an assertion finishes when the first in-

stance is found. If none instance is found, it is still possible that an instance exists in

a greater test case than considered [19, p.141, 142]. The size of the test case can be

increase by changing the value of the scope. A scope determines the maximum

number of atoms of each top-level signature of the model. [19, p.130]. It is true that

the assertion is checked against a finite number of test cases that occupies only a

small portion of all the possible space of cases. However, the analysis tends to be

more effective to find specification problems. The search for an instance that satis-

fies the invalid assertion is realized exhaustively inside the tiny set of test cases de-

fined by the scope. The small scope hypothesis states that the majority of problems

in specifications have tiny counter-examples, i.e., if an assertion is invalid, then it has

probably a counter-example with a small scope among all the test cases considered

[19, p.143].

	Acknowledgements
	Resumo
	Abstract
	List of Figures
	List of Listings
	List of Axioms
	List of Definitions
	List of Tables
	Contents
	1 Introduction
	1.1 Background
	1.2 Objectives
	1.3 Research Approach
	1.4 Thesis Structure

	2 Implicit Dynamic Aspects in Structural Conceptual Models
	2.1 Phenomena, Conceptualization and Conceptual Model
	2.2 Formal Semantics of a Conceptual Model Structure
	2.3 Conceptual Models Represented as UML Class Diagrams
	2.4 The Constraint-Based Language (OCL)
	2.5 The Ontologically Well-Founded UML Profile
	2.6 Final Considerations

	3 Introducing Temporal Aspects in Conceptual Models
	3.1 Temporal Accessibility Relation
	3.2 UFO Semantics
	3.3 Durability
	3.3.1 Permanence
	3.3.2 Transience
	3.3.3 Eternity

	3.4 Classification Dynamics
	3.4.1 Initial Classification
	3.4.2 Final Classification

	3.5 Examples
	3.5.1 Presentism
	3.5.2 Growing Block Universe

	3.6 Final Considerations

	4 OCL Temporal Extension for Ontology-Driven Conceptual Modeling
	4.1 OCL Extension Approach
	4.2 World-Reified Model of Background
	4.3 Built-In Temporal Navigations
	4.4 Built-In World Structure and Operations
	4.5 Revision of Plain OCL Built-In Operations
	4.6 Modeler’s View
	4.6.1 Classification dynamics
	4.6.2 Existence
	4.6.3 Past Specializations
	4.6.4 Historical Relationships
	4.6.5 Trans-Temporal Facts

	4.7 Final Considerations

	5 Validating Ontologically Well-Founded Models Enriched with Dynamics
	5.1 Validation Extension Approach
	5.2 Translation of OntoUML Class Diagrams
	5.2.1 Skeleton Alloy Code
	5.2.2 Classes as Alloy Binary Relations
	5.2.3 Relationships as Alloy Ternary and 4-ary Relations

	5.3 Translation of Plain OCL Operators
	5.3.1 Primitive Values
	5.3.2 Sets
	5.3.3 Iterators

	5.4 Translation of Temporal OCL Constraints
	5.4.1 Dynamic Invariants as Facts
	5.4.2 Adjusted OCL Built-in Operators
	5.4.3 Temporal Built-In Operators
	5.4.4 Temporal Built-In Navigations
	5.4.5 Historical Relationships

	5.5 Validating the Example Enriched with Dynamics
	5.6 Final Considerations

	6 Implementation
	6.1 Plain OCL Infrastructure for OntoUML
	6.2 Implementation Extension Approach
	6.3 Extending the Plain OCL Editor with Temporal OCL
	6.4 Parsing the Temporal Adjustments for Plain OCL
	6.5 World-Reified Model with Constraints in Background
	6.6 Temporal Tooling Within OLED
	6.7 Final Considerations

	7 Related Work
	7.1 A Temporal Extension of plain UML and OCL
	7.2 A Set of Existing Temporal Extensions of OCL
	7.3 Existing Approaches on Validation of Conceptual Models Using the Alloy Lightweight Formal Method
	7.4 Summary of Existing Approaches

	8 Concluding Remarks
	8.1 Contributions
	8.2 Limitations
	8.3 Future Work

	Bibliography
	Appendix A: Structural Layer of UFO
	Appendix B: Constraints to the Reified Model
	Appendix C: Alloy Language and Analysis

