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RESUMO 

Estratégias de modelagem conceitual e representação de conhecimento frequentemente 

tratam entidades em dois níveis: um nível de classes e um nível de indivíduos que 

instanciam essas classes. Em vários domínios, porém, as próprias classes podem estar 

sujeitas a categorização, resultando em classes de classes (ou metaclasses). Ao representar 

estes domínios, é preciso capturar não apenas as entidades de diferentes níveis de 

classificação, mas também as suas relações (possivelmente complexas). No domínio de 

taxonomias biológicas, por exemplo, um dado organismo (por exemplo, o leão Cecil morto 

em 2015 no Parque Nacional Hwange no Zimbábue) é classificado em diversos táxons 

(como, por exemplo, Animal, Mamífero, Carnívoro, Leão), e cada um desses táxons é 

classificado por um ranking taxonômico (por exemplo, Reino, Classe, Ordem, Espécie). 

Assim, para representar o conhecimento referente a esse domínio, é necessário 

representar entidades em níveis diferentes de classificação. Por exemplo, Cecil é uma 

instância de Leão, que é uma instância de Espécie. Espécie, por sua vez, é uma instância de 

Ranking Taxonômico. Além disso, quando representamos esses domínios, é preciso capturar 

não somente as entidades diferentes níveis de classificação, mas também suas 

(possivelmente complicadas) relações. Por exemplo, nós gostaríamos de afirmar que 

instâncias do gênero Panthera também devem ser instâncias de exatamente uma instância 

de Espécie (por exemplo, Leão). A necessidade de suporte à representação de domínios que 

lidam com múltiplos níveis de classificação deu origem a uma área de investigação 

chamada modelagem multi-nível. Observa-se que a representação de modelos com múltiplos 

níveis é um desafio em linguagens atuais da Web Semântica, como há pouco apoio para 

orientar o modelador na produção correta de ontologias multi-nível, especialmente por 

causa das nuanças de restrições que se aplicam a entidades de diferentes níveis de 

classificação e suas relações. A fim de lidar com esses desafios de representação, 

definimos um vocabulário que pode ser usado como base para a definição de ontologias 

multi-nível em OWL, juntamente com restrições de integridade e regras de derivação. É 

oferecida uma ferramenta que recebe como entrada um modelo de domínio, verifica 

conformidade com as restrições de integridade propostas e produz como saída um 

modelo enriquecido com informações derivadas. Neste processo, é empregada uma teoria 



axiomática chamada MLT (uma Teoria de Modelagem Multi-Nível). O conteúdo da 

plataforma Wikidata foi utilizado para demonstrar que o vocabulário poderia evitar 

inconsistências na representação multi-nível em um cenário real.  



ABSTRACT 

Often, subject domains are conceptualized with entities in two levels: a level of classes, 

and a level of individuals which instantiate these classes. In several subject domains, 

however, classes themselves may be subject to categorization, resulting in classes of 

classes (or metaclasses). To represent these domains, one needs to capture not only 

entities of different classification levels, but also their (possibly intricate) relations. In the 

domain of biological taxonomies, for instance, a given organism (e.g. Cecil, the lion killed in 

the Hwange National Park in Zimbabwe in 2015) is classified into taxa (such as, e.g., 

Animal, Mammal, Carnivoran, Lion), each of which is classified by a biological taxonomic rank 

(e.g., Kingdom, Class, Order, Species). Thus, to represent the knowledge underlying this 

domain, one needs to represent entities at different (but nonetheless related) classification 

levels. For example, Cecil is an instance of Lion, since he exhibits those common features. 

For example, Cecil is an instance of Lion, which is an instance of Species. Species, in its turn, 

is an instance of Taxonomic Rank. Moreover, when representing these domains, one needs 

to capture not only entities of different classification levels, but also their (possibly 

intricate) relations. For example, we would like to state that instances of the genus 

Panthera must also be instances of exactly one instance of Species (e.g. Lion). The need to 

support the representation of knowledge domains dealing with multiple classification 

levels has given rise to an area of investigation called multi-level modeling. We observe that 

the representation of multi-level domains is challenging in current Semantic Web 

languages, as there is little support to guide the modeler in producing correct multi-level 

ontologies, especially because of the nuances in the constraints that apply to entities of 

different classification levels and their relations. In order to address these representation 

challenges, we define a vocabulary that can be used as basis for the definition of multi-

level ontologies in OWL. This vocabulary is accompanied by integrity constraints to 

prevent the construction of inconsistent models as well as derivation rules to derive 

knowledge that is not explicit in the model. We offer a tool that receives as input a 

domain model, checks its conformance with the proposed integrity constraints and 

produces an output model containing the original domain model plus derived 

information. In this process, we employ an axiomatic theory called MLT (a Multi-Level 



Modeling Theory). We use Wikidata content to demonstrate that the approach can 

prevent the construction of inconsistent multi-level representations in a realistic setting.  
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1 INTRODUCTION 

1.1 MOTIVATION 

The Semantic Web, or Web of Data, provides a common framework that allows data to 

be shared across application, enterprise, and community boundaries [1]. This is achieved 

by linking and publishing structured data using RDF (Resource Description Framework) 

languages, which provide a basis for producing reusable vocabularies for various domains 

of interest [2]. 

The notion of class is a key concept for representing vocabularies in Semantic Web 

approaches, such as RDF Schema (RDFS) [3] and Web Ontology Language (OWL) [4]. 

Class (or type) is a ubiquitous notion in modern conceptual modeling approaches and is 

used to establish invariant features of the entities in a domain. For example, a class Lion 

can capture common features of a specific set of animals that are felines and that have a 

specific set of morphological characteristics (such as weight, height, length, tail size, 

longevity). Then, Cecil (the lion killed in the Hwange National Park in Zimbabwe in 2015) 

is an instance of Lion, since it exhibits those common features. 

Often, subject domains are conceptualized with entities in two levels: a level of classes, 

and a level of individuals which instantiate these classes. In many subject domains, 

however, classes themselves may also be subject to categorization, resulting in classes of 

classes (or metaclasses). For instance, consider the domain of biological taxonomies [5]. 

In this domain, a given organism is classified into taxa (such as, e.g., Animal, Mammal, 

Carnivoran, Lion), each of which is classified by a biological taxonomic rank (e.g., Kingdom, 

Class, Order, Species). Thus, to represent the knowledge underlying this domain, one needs 

to represent entities at different (but nonetheless related) classification levels. For 

example, Cecil is an instance of Lion, which is an instance of Species. Species, in its turn, is an 

instance of Taxonomic Rank. Other examples of multiple classification levels come from 

domains such as software development [6] and product types [7].  
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The need to support the representation of knowledge domains dealing with multiple 

classification levels has given rise to an area of investigation called multi-level modeling [7], 

[8]. A number of research initiatives have also been conducted to support multi-level 

modeling in the Semantic Web (e.g., [9]–[13]). These approaches exploit the fact that a 

class is itself an RDF resource and may thus be the subject or object of RDF triples. 

OWL 2 explicitly adopts this strategy under the term “metamodeling”, enabling the 

representation of facts that are stated about classes [4].  

Despite these developments, the current support for the representation of domains dealing 

with multiple levels of classification in the Semantic Web still lacks a number of important 

features. In some cases, there are no criteria or principles for the organization of 

vocabularies into levels, leading to problematic classification and taxonomic statements 

(see, e.g. [14]). Further, there has been no attention to the representation of the relations 

between types at different levels. For example, in the biological domain, it is key to 

represent that all instances of Species are subtypes of Organism (even when particular 

species are not represented explicitly), and that all instances of Organism belong to one and 

only one Species. Representing these relations between entities at different levels of 

classification is not possible in current approaches. 

Finally, knowledge bases, such as Wikidata [15] and DBPedia [16], have a lot of 

taxonomic hierarchies with entities at different classification levels (particular individuals, 

types of individuals, types of types of individuals, etc.). Aside from the recurrence of 

domains that deal with multiple levels of classification, what also makes it of great 

importance is the fact that multi-level modeling seems to pose a significant challenge to 

modelers. For instance, analyzing Wikidata, we identified a significant number of 

problematic classification and taxonomic statements especially when involving multiple 

levels of classification and instantiation [14]. We hypothesize this can be explained by the 

lack of adequate support for the representation of multi-level domains in the Semantic 

Web. Thus, in order to allow the proper representation of multi-level domains in the 

Semantic Web, this thesis puts forward a vocabulary, guidelines and tools for representing 

multi-level domains in the Semantic Web. 
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1.2 OBJECTIVES 

The overall aim of this research is to provide mechanisms to support the representation 

of expressive multi-level models in the Semantic Web. As specific objectives of this 

research, we aim at:  

1. Defining requirements for the representation of multi-level domains, emphasizing 

the expressiveness and quality of the resulting multi-level models;  

2. Reviewing the current Semantic Web approaches concerning their adherence to 

these requirements; 

3. Providing an approach to support the expressive representation of multi-level 

domains on the web; 

4. Providing guidelines and tools for modelers, in order to ensure the soundness of 

multi-level models;  

5. Evaluate items 3 and 4 in a real knowledge base. 

1.3 APPROACH 

In order to meet the overall aim of this research, we investigate both multi-level modeling 

approaches in general (such as the powertype pattern [17], [18] and clabjects [19]), and those 

specifically targeted for the Semantic Web. In this investigation, we identify a number of 

common features of multi-level modeling approaches, as well as a number of recurrent 

limitations. This forms the basis for us to formulate requirements for a desirable multi-

level modeling approach (specific objective 1). 

We evaluate a number of initiatives that have been conducted to support multi-level 

modeling in the Semantic Web, including the native support of RDFS [3] and OWL 2 [4] 

standards proposed by W3C (World Wide Web Consortium), and further approaches that 

aimed at improving them, namely: RDFS(FA) [9] and OWL FA [11]. We further evaluate 

independent approaches such as PURO [12] and the representation strategy underlying 

Wikidata [15]. In each case, we point out which requirements are supported by each 

approach, also discussing their limitations (specific objective 2). We are concerned mainly 
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with their support for the representation of domain metaclasses as opposed to language 

metaclasses. 

We base our approach on a well-founded multi-level theory that captures the 

foundational concepts underlying multi-level modeling, a multi-level modeling theory 

called MLT [20]. The choice for MLT as semantic foundations for this work is due to the 

fact it aims to achieve the requirements we deem desirable for an expressible multi-level 

modeling approach. This theory formally characterizes the nature of classification levels, 

and precisely defines the relations that may occur between elements of different 

classification levels, which aims to fill the gap of existent approaches. The proposed 

representation maintains correspondence with MLT as a foundational theory, in line with 

the reasoning defended in [21], [22], that a modeling representation ought to provide 

primitives that reflect categories in a foundational theory.  

We propose an OWL vocabulary reflecting MLT distinctions (MLT-OWL), that can be 

used as a basis for multi-level ontologies (specific objective 3). Axioms and theorems of 

MLT are incorporated into integrity constraints which are applied to multi-level 

vocabularies that employ MLT-OWL, offering thus guidance to prevent the construction 

of inconsistent vocabularies. MLT rules are further employed to perform the derivation 

of knowledge about the relations between elements that are not explicitly stated (specific 

objective 4). 

In the proposed solution, we opt to conform to the existing metamodeling structure that 

is imposed by RDFS/OWL. Further, since the expressiveness of OWL does not allow us 

to represent all applicable multi-level modeling rules, we adopt a complementary strategy: 

we represent some of the MLT rules in native OWL when possible, and complement 

those with  SPARQL [23] queries when necessary.  

Finally, to illustrate the applicability of the approach in a realistic setting, we evaluate it 

using real-world data obtained from Wikidata content (specific objective 5). We analyze 

occurrences of violations of MLT integrity constraints and show how our approach could 

provide guidance to populate knowledge bases avoiding the identified problems. Our 

approach is capable of warning users, showing which statements are problematic in light 

of MLT.  
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1.4 STRUCTURE 

This thesis is further structured as follows: Chapter 2 presents a brief introduction to 

multi-level modeling and discusses the multi-level modeling theory employed in this work 

(MLT) along with the basic requirements for the representation of multi-level domains; 

Chapter 3 reviews the current support for multi-level modeling in the Semantic Web as 

well as in related work in the literature; Chapter 4 presents our approach to represent 

multi-level domains in the Semantic Web reflecting the rules of MLT, including the OWL 

vocabulary and integrity and derivations rules implemented in SPARQL; Chapter 5 

presents results of our analysis of current Wikidata content; Chapter 6 presents 

concluding remarks. 
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2 MULTI-LEVEL MODELING 

The need to support the representation of knowledge domains dealing with multiple 

classification levels has given rise to an area of investigation called multi-level modeling [7], 

[8]. The interest in multi-level modeling has led to a number of research initiatives in this 

subject (e.g. [6]–[8], [17], [18]). We present here first two influential approaches for multi-

level modeling research: the powertype pattern (discussed in Section 2.1) and the approaches 

based on the notion of clabject (discussed in Section 2.2). These approaches have 

influenced the MLT axiomatic theory we employ further in this work (described in 

Section 2.3). Since there is yet no consensus on the requirements that multi-level 

modeling approaches must satisfy [24], we define desirable requirements for our own 

multi-level modeling approach (Section 2.4) based on the common features and 

limitations of current approaches. 

2.1 POWERTYPE PATTERN 

A seminal approach to the representation of domains with multiple levels of classification 

relies on the notion of powertype. This approach raised from the identification of patterns 

to represent the relationship between a class of categories (the powertype) and a class of 

more concrete entities (the base type) [20]. Odell [17] defines a powertype as a type whose 

instances are subtypes of another type. For example, if we consider Sugar Maple, Apricot, 

American Elm and Saguaro as subtypes of Tree and as instances of Tree Species, then Tree 

Species is a powertype of Tree according to Odell’s definition.  

Cardelli [18], in its turn, defines powertype in an analogy with the notion of powerset. 

Observing that the powerset of a set A, is the set whose elements are all possible subsets of 

A including A itself, Cardelli defines that the powertype of T is a type whose instances are 

all possible specializations of T, including T itself. For example, we can define a type Tree 

Powertype having as instances all possible specializations of Tree, including all instances of 

Tree Species and Tree itself as well as all other specializations of tree with any criteria such as 

Big Tree, Small Tree, Tree Seedling, Old Tree, Blooming Tree. Note that, differently from 
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Cardelli, Odell admits the existence of specializations of the base type that are not instances 

of the powertype.  

Following Odell’s notion of powertype, the UML (Unified Modeling Language) 2.4.1 

specification [25] includes means to relate a powertype to a generalization set, meaning that 

all the subtypes involved in such generalization set are instances of the related powertype. In 

Figure 2-1, the generalization set is composed by the specializations of Tree (namely Sugar 

Maple, Apricot, American Elm and Saguaro), and the text “:Tree Species” means that these 

subtypes are instances of Tree Species. In this case, the disjoint constraint means that Tree 

specializations have no instances in common, and the incomplete constraint means that 

there are instances of Tree that are not instances of Sugar Maple, Apricot, American Elm and 

Saguaro.  

 

Figure 2-1. The UML notation for the powertype pattern 

2.2 CLABJECTS AND DEEP INSTANTIATION 

In [19], Atkinson and Kühne argue that to model instantiation between arbitrary adjacent 

levels, it is necessary to follow two fundamental properties of multi-level modeling: strict 

metamodeling [26] and adhering to the notion of clabjects. In the strict metamodeling 

principle, every element of an Mn level model is an instance of exactly one element of an 

Mn+1 level model (except for the top level).  

The authors coined the term clabject to refer to elements that have two facets: a type (or 

class) facet and an instance (or object) facet. For example, we may consider that iPhone 5 

has both an instance facet (it is instance of Mobile Phone Model) and a type facet (some 

mobile phones, such as my iPhone, are instances of iPhone 5). The type facet of iPhone 5 

captures some regularities that its instances have (e.g. every iPhone 5 has a 4-inch screen 

class fig2-1

Tree Species Tree

Sugar Maple Apricot American Elm Saguaro 

:Tree Species

{disjoint, incomplete}

+tree species

1

+tree

*
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and each one has a particular imei number) while the instance facet defines values for 

some attributes captured by Mobile Phone Model (e.g. considering that each Mobile Phone 

Model has a launch date, iPhone 5 is an instance of Mobile Phone Model and has launch date 

equals to “21 Sept, 2012”). 

Atkinson and Kühne also proposed in [8], [27] the notion of deep instantiation as a means 

to provide multiple levels of classification whereby an element at some level can describe 

features of elements at each level beneath that level. They introduce the notion of potency 

that is assigned to every model element at every model level. Potency defines the length 

of the instantiation chain that is allowed below the element, in such way that an element 

of potency 0 corresponds to a concrete individual and cannot be instantiated (i.e., an 

element of potency 0 is not a clabject). When a clabject instantiates another clabject, the 

potency of the clabject being instantiated is given by the potency of the clabject being 

instantiated minus one. For example, considering the cited example of mobile phone 

model, Mobile Phone Model, iPhone 5 and myiPhone5 have potencies 2, 1 and 0, respectively. 

Finally, in contrast with the powertype pattern, deep instantiation does not obligate the 

modeler to represent the base type. This design decision has the general purpose of 

reducing the number of modeled concepts. Even when the base type is represented, the 

approach does not support the representation of the relation between the base type and 

the higher-order type. In the aforementioned example, we would be unable to express 

that each instance of Mobile Phone must also be an instance of exactly one instance of 

Mobile Phone Model (e.g. iPhone 5) (that specializes Mobile Phone). 

2.3 MLT: A THEORY FOR MULTI-LEVEL MODELING 

Motivated by the lack of theoretical foundations for multi-level modeling, Carvalho and 

Almeida have proposed a formal axiomatic theory called MLT [20]. MLT formally 

characterizes the nature of classification levels, and precisely defines the relations that may 

occur between elements of different classification levels. The authors conceived MLT to 

be a foundational theory useful to guide the development of well-founded languages for 

multi-level conceptual modeling and to provide the modeler with basic concepts and 
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patterns to conceptualize domains that require multiple levels of classification. 

Corroborating the authors original intentions, MLT has been successfully used to analyze 

and improve the UML support for modeling the powertype pattern [28], to uncover 

problems in multi-level taxonomies on the web [14] and to provide conceptual 

foundations for dealing with types at different levels of classification both in core [29] and 

in foundational ontologies [30]. 

The theory is founded on the notion of (ontological) instantiation and characterizes the 

concepts of individuals and types, with types organized in levels related by instantiation. It is 

defined using first-order logic, quantifying over all possible entities (individuals and types). 

The instance of relation is represented in this formal theory by a binary predicate iof(e,t) that 

holds if an entity e is instance of an entity t (denoting a type). In order to accommodate the 

varieties of types in the multi-level setting, the notion of type order is used. Types having 

individuals as instances are first-order types, types whose instances are first-order types are 

second-order types and so on. 

The logic constant “Individual” is used to define the conditions for entities to be 

considered individuals: an entity is an instance of “Individual” iff it does not have any possible 

instance (Axiom A1 in Table 2-1). Two types are considered equal iff the sets of all their 

possible instances are the same (Axiom A2). The constant “First-Order Type” (or shortly 

“1stOT”) categorizes the type that applies to all entities whose instances are instances of “Individual” 

(A3 in Table 2-1). Analogously, each entity whose possible extension contains exclusively instances of 

“1stOT” is an instance of “Second-Order Type” (or shortly “2ndOT”) (A4 in Table 2-1). 

Further, instances of “Third-Order Type” are defined analogously to 1stOT and 2ndOT 

(see Axiom A5). It follows from axioms A1, A3, A4 and A5 that “Individual” is instance 

of “1stOT” (Theorem T1 in Table 2-1), which is instance of “2ndOT” (Theorem T2 in 

Table 2-1). “2ndOT”, in its turn, is instance of “3rdOT” (T3). We call “Individual”, 

“1stOT”, “2ndOT” and “3rdOT” the basic types of MLT. From the combinations of A1 

to A5, MLT states that the basic types have no instances in common, i.e., their extensions 

are disjoint (Theorem T4). According to MLT, every possible entity must be instance of 

exactly one of its basic types (except the topmost type) (A6 in Table 2-1). Finally, axioms 

A1 to A6 prescribe a strictly stratified organization of entities into orders, which results 

that the instance of relation is asymmetric (Theorem T5) and anti-transitive (T6). 
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Table 2-1. MLT Rules 

A1 ∀x iof(x, Individual) ↔ ∄y iof(y, x) 

A2 ∀t1, t2 (¬iof(t1, Individual) ∧ ¬iof(t2, Individual)) → ((t1 = t2) ↔ (∀e  iof(e, t1) ↔ iof(e, t2))) 

A3 ∀t iof(t, 1stOT) ↔ (∃y iof(y, t) ∧ (∀x iof(x, t) → iof(x, Individual))) 

A4 ∀t iof(t, 2ndOT) ↔ (∃y iof(y, t) ∧ (∀t′iof(t′, t) → iof(t′, 1stOT))) 

A5 ∀t iof(t, 3rdOT) ↔ (∃y iof(y, t) ∧ (∀t′iof(t′, t) → iof(t′, 2ndOT))) 

A6 ∀x (iof(x, Individual) ∨ iof(x, 1stOT) ∨ iof(x, 2ndOT) ∨ iof(x, 3rdOT) ∨ (x = 3rdOT)) 

D1 ∀t1, t2 specializes(t1, t2) ↔ (∃y iof(y, t1) ∧ (∀e iof(e, t1) → iof(e, t2))) 

D2 ∀ t1, t2  properSpecializes(t1, t2) ↔ (specializes(t1, t2) ∧ t1 ≠ t2) 

D3 
∀t1, t2 isSubordinateTo (t1, t2)

↔  (∃x iof(x, t1) ∧ (∀t3 iof(t3, t1) → (∃t4 iof(t4, t2) ∧ properSpecializes(t3, t4)))) 

D4 ∀t1, t2 isPowertypeOf(t1, t2) ↔ (∃x iof(x, t1) ∧ (∀t3 iof(t3, t1) ↔ specializes(t3, t2))) 

D5 ∀t1, t2 categorizes (t1, t2) ↔ (∃x iof(x, t1) ∧ (∀t3 iof(t3, t1) → properSpecializes(t3, t2))) 

D6 ∀t1, t2 completelyCategorizes(t1, t2) ↔  (categorizes(t1, t2) ∧ (∀e iof(e, t2) → ∃t3 (iof(e, t3) ∧ iof(t3, t1)))) 

D7 
∀t1, t2 disjointlyCategorizes (t1, t2) ↔  

(categorizes(t1, t2) ∧ ∀e, t3, t4 ((iof(t3, t1) ∧ iof(t4, t1) ∧ iof(e, t3) ∧ iof(e, t4)) → t3 = t4)) 

D8 ∀t1, t2 partitions(t1, t2) ↔ (completelyCategorizes(t1, t2) ∧ disjointlyCategorizes(t1, t2)) 

T1 𝑖𝑜𝑓(𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙, 1𝑠𝑡𝑂𝑇) 

T2 𝑖𝑜𝑓(1𝑠𝑡𝑂𝑇, 2𝑛𝑑𝑂𝑇) 

T3 𝑖𝑜𝑓(2𝑛𝑑𝑂𝑇, 3𝑟𝑑𝑂𝑇) 

T4 

∄x (iof(x, Individual) ∧ iof(x, 1stOT)) ∨ (iof(x, Individual) ∧ iof(x, 2ndOT))

∨  (iof(x, Individual) ∧ iof(x, 3rdOT)) ∨ (iof(x, 1stOT) ∧ iof(x, 2ndOT))

∨  (iof(x, 1stOT) ∧ iof(x, 3rdOT)) ∨ (iof(x, 2ndOT) ∧ iof(x, 3rdOT)) 

T5 ∄x, y (iof(x, y) ∧ iof (y, x)) 

T6 ∄x, y, z (iof(x, y) ∧ iof(y, z) ∧ iof (x, z)) 

T7 ∀t iof(t, 1stOT) ↔ specializes(t, Individual) 

T8 ∀t iof(t, 2ndOT) ↔ specializes(t, 1stOT) 

T9 ∀t iof(t, 3rdOT) ↔ specializes(t, 2ndOT) 

T10 isPowertypeOf(1stOT, Individual) 

T11 isPowertypeOf(2ndOT, 1stOT) 

T12 isPowertypeOf(3rdOT, 2ndOT) 

T13 ∀p, t  isPowertypeOf(p, t) →  ∄p′(p ≠ p′) ⋀ isPowertypeOf(p′, t) 

T14 ∀p, t  isPowertypeOf(p, t) →  ∄t′(t ≠ t′)⋀ isPowertypeOf(p, t′) 

T15 ∀t1, t2, t3, t4(specializes(t2, t1) ∧ isPowertypeOf(t4, t2) ∧ isPowertypeOf(t3, t1)) → specializes(t4, t3) 

T16 ∀t1, t2, t3 (isSubordinateTo(t1, t2) ∧ categorizes(t2, t3))  →  categorizes(t1, t3) 

T17 ∀t1, t2, t3 (isPowertypeOf(t2, t1) ∧ categorizes(t3, t1)) → properSpecializes(t3, t2) 

T18 ∀ t1, t2, t3 (partitions(t1, t3) ∧ partitions(t2, t3)) → ¬properSpecializes(t1, t2) 
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Some structural relations to support conceptual modeling are defined in MLT, starting 

with the ordinary specialization between types. A type t1 specializes another type t2 iff all 

instances of t1 are also instances of t2 (see definition D1 in Table 2-1). Since the reflexivity of 

the specialization relation may be undesired in some contexts, we define in MLT the proper 

specialization relation as follows: t1 proper specializes t2 iff t1 specializes t2 and t1 is different from 

t2 (see D2 in Table 2-1). The definition D1 and the Axioms A3, A4 and A5 lead to a basic 

pattern in MLT: every type that is not one of MLT’s basic types (e.g., a domain type) is an 

instance of one of the basic higher-order types (e.g., “1stOT”, “2ndOT” and “3rdOT”), 

and, at the same time proper specializes the basic type at the immediately lower level 

(Theorems T7, T8 and T9). Additionally, MLT defines a subordination relation. Subordination 

between two higher-order types implies specializations between their instances, i.e., t1 is 

subordinate to t2 iff every instance of t1 proper specializes an instance of t2 (see D3 in Table 2-1). 

The definitions presented thus far guarantee that both specializations, proper specializations 

and subordinations may hold exclusively between types of the same order. We term these 

intra-level relations. 

MLT also defines relations that occur between types of adjacent orders, the so-called cross-

level structural relations. These relations are inspired on different notions of powertype in the 

literature. Based on the notion of powertype proposed by Cardelli [18], MLT defines a 

powertype relation between a higher-order type and a base type at a lower order: a type t1 is 

powertype of a base type t2 iff all instances of t1 specialize t2 and all possible specializations of t2 

are instances of t1 (see D4). Note that it follows from the axioms and definitions presented 

so far that “1stOT” is powertype of “Individual” (T10), i.e. all possible instances of “1stOT” 

specialize “Individual” and all possible specializations of “Individual” are instances of 

“1stOT”. Analogously, “2ndOT” is powertype of “1stOT” (T11), and so on (T12). Thus, 

every instance of a basic higher-order type (“1stOT”, “2ndOT” and “3rdOT”) must 

specialize the basic type at the immediately lower level (respectively, “Individual”, 

“1stOT” and “2ndOT”). In other words, the notion of orders or levels in MLT can be 

seen as a result of the iterated application of Cardelli’s notion of powertype to the basic 

types. According to MLT, each type has at most one powertype (Theorem T13) and that each type 

is powertype of, at most, one other type (Theorem T14), which is a concrete syntactic constraint 

for a multi-level model: each type could have exactly one powertype. Finally, from the 
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powertype definition of Cardelli [18], MLT states that if a type t2 specializes a type t1 then the 

powertype of t2 specializes the powertype of t1 (T15).  

Differently from Cardelli, Odell [17] defined powertype simply as a type whose instances are 

subtypes of another type (the base type), excluding the base type from the set of instances of 

the powertype. Inspired on Odell’s definition for powertypes, MLT defines the categorization 

relation between types at adjacent levels: a type t1 categorizes a type t2 iff all instances of t1 are 

proper specializations of t2 (definition D5). The categorizes relation occurs between a higher-

order type t1 and a base type t2 when the instances of t1 specialize t2 according to a specific 

classification criteria. Thus, differently from the cases involving (Cardelli’s) is powertype of 

relation, there may be specializations of the base type t2 that are not instances of t1. For 

example, we may define a type named “Organism by Habitat” (with instances “Terrestrial 

Organism” and “Aquatic Organism”) that categorizes “Organism”, but is not a powertype of 

“Organism” since there are specializations of “Organism” that are not instances of 

“Organism by Habitat” (e.g. “Plant” and “Golden Eagle”). From the definitions D3 and 

D5 and, further, D2, it is concluded that if a type t1 is subordinate to t2 and t2 categorizes a 

type t3 then t1 categorizes t3 (Theorem T16). Now, considering D4, D5 and D2, if a type t2 

is powertype of a type t1 and a type t3 categorizes the same base type t1 then all instances of t3 

are also instances of the powertype t2 (T17). 

MLT defines some refinements of the cross-level relation of categorization, which are 

useful to capture further constraints in multi-level models. We consider that a type t1 

completely categorizes t2 iff t1 categorizes t2 and every instance of t2 is instance of, at least, an instance of 

t1 (D6). Moreover, iff t1 categorizes t2 and every instance of t2 is instance of, at most, one instance of 

t1 it is said that t1 disjointly categorizes t2 (D7). Finally, a common use for the notion of 

powertype in the literature considers a higher-order type that, simultaneously, completely 

and disjointly categorizes a lower-order type. To capture this notion MLT defines the 

partitions relation. Thus, t1 partitions t2 iff each instance of the base type t2 is an instance of exactly 

one instance of t1 (D8). For example, considering the biological taxonomy for living beings 

we have that “Species” (and all other biological ranks) partitions “Organism”. Finally, a 

consequence of the partitions definition is that, if two types t1 and t2 both partitions the same type t3 then 

it is not possible for t1 to specialize t2 (T18). A complete formalization of MLT in first-order 

logic can be found in [20].  
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2.4 REQUIREMENTS FOR A MULTI-LEVEL APPROACH 

We establish here four requirements we judge important for multi-level modeling 

approaches, and that will guide the solutions proposed in this work. These requirements 

focus on the expressiveness of the resulting models to capture knowledge in multi-level 

domains. We indicate sources in the literature that establish similar requirements to 

corroborate the relevance of the requirements identified here.   

First of all, we consider an essential requirement for a multi-level modeling approach the 

ability to represent entities of multiple (related) classification levels ([6], [7]), capturing chains of 

instantiation between the involved entities (requirement R1). (This requirement is also 

suggested by Gonzalez-Perez and Henderson-Sellers [6] and Neumayr et al. [7].) To 

comply with it, the approach must admit entities that are, simultaneously, type (class) and 

instance (object), complying thus to the notion of clabject [19]. This means that a multi-

level approach differs from the traditional two-level scheme, in which classification 

(instantiation) relations can only be established between classes and individuals.  

A second requirement we establish is that a multi-level modeling approach should define 

principles for the organization of entities into levels (R2). These principles should guide the 

modeler on the adequate use of classification (instantiation) relations. An example of this 

sort of principle, which is adopted in some prominent multi-level modeling approaches, is 

the so-called strict metamodeling principle [19]. It assumes that each element of a level 

must be an instance of an element of the level above. Our motivation for these 

requirements is has an empirical nature, since we have observed that the lack of principles 

to guide organization of entities into levels often leads to the construction of unsound 

multi-level models [14].  

Another important characteristic of domains with multiple levels of classification is that 

there are domain rules that apply to the instantiation of types of different levels. This kind 

of rule is suggested by Gonzalez-Perez and Henderson-Sellers [6], inspired in the powertype 

pattern [17], [18]. For example, all instances of Dog Breed (e.g. Collie and Beagle) specialize 

the base type Dog. It is thus key that multi-level modeling approaches support the 

representation of what kind of relationship exists between Dog Breed and Dog (we call this 
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sort of relation a structural relation, as it governs the instantiation of types at different 

levels). For instance, one may need to represent whether an instance of Dog may 

instantiate: (i) only one, or (ii) more than one Dog Breed. Moreover, we would like to 

represent whether an instance of Dog must instantiate at least one Dog Breed. In this case, 

an instance of Dog must instantiate exactly one (i.e., at least one and only one) Dog Breed. 

In biological taxonomy, another rule concerning instantiation of types at different levels is 

that the instances of Biological Taxonomic Rank obey a sort of subordination chain such that 

every instance of Phylum specializes one instance of Kingdom (e.g., Chordate phylum 

specializes Animal kingdom), every instance of Class specializes one instance of Phylum 

(Mammal class specializes Chordate phylum), and so on. Thus, an expressive multi-level 

approach should be able to capture rules for the instantiation of types at different levels (R3).  

Finally, in various domains, there are relations which may occur between entities of 

different classification levels. For example, consider the following domain rules: (i) each 

Car has an owner (a Person), (ii) each Car is classified as instance of a Car Model, and (iii) 

each Car Model is designed by a Person. In this domain, instances of Person (individuals) 

must be related simultaneously with instances of Car Model (which are classes) and also 

with instances of Car, i.e., instances of instances of Car Model. Thus, a multi-level modeling 

approach should allow the representation of domain relations between entities in different classification 

levels (R4). (A requirement also identified by Neumayr et al. [7].)  

The characterization of MLT basic types in tandem with the definition that every entity 

must be instance of one basic type, provide support for the representation of multiple 

levels of classification (R1) as well as guidelines for the organization of entities into levels 

(R2). Further, the MLT structural relations provide expressive support to capture rules for 

the instantiation of types at different levels (R3). Finally, according to MLT, domain 

relations between entities in different levels are allowed (R4). Thus, since MLT is a well-

founded theory which satisfies the four requirements, we choose it as semantic 

foundation for our approach. 

In Chapter 3, we review the current Semantic Web approaches concerning their 

adherence to these requirements. They are later satisfied by the approach proposed in 

Chapter 4.  
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In order to show the limitations of the various approaches in the representation of a 

multi-level domain, we used as a paradigmatic example the domain of biological 

taxonomies [5]. In this domain, a given organism is classified into taxa (such as, e.g., 

Animal, Mammal, Carnivoran, Lion), each of which is classified by a biological taxonomic rank 

(e.g., Kingdom, Class, Order, Species). For example, Cecil is an instance of Lion, which is an 

instance of Species. As consequence of being an instance of Lion, Cecil is also instance of 

Panthera (instance of Genus), Felidae (instance of Family), Carnivoran (instance of Order), 

Mammal (instance of Class), Chordata (instance of Phylum), Animal (instance of Kingdom), 

and Organism. Species, Genus, Family, Order, Class, Phylum and Kingdom, in its turn, are 

instances of Taxonomic Rank. Moreover, in this domain, all instances of Species are subtypes 

of Organism, and all instances of Organism belong to one and only one Species. The same 

occurs from Genus, Family, Order, Class, Phylum and Kingdom to Organism. For example, all 

instances of Genus are subtypes of Organism, and all instances of Organism belong to one 

and only one Genus. Further, all instances of Species are subtypes of instances of Genus, all 

instances of Genus are subtypes of instances of Family, all instances of Family are subtypes 

of instances of Order, and so on. For example, Lion (instance of Species) is subtype of 

Panthera (instance of Genus), Panthera is subtype Felidae (instance of Family), Felidae is 

subtype of Carnivoran (instance of Order), and so on. Finally, an instance of Species is named 

by a Person. For instance, the researcher Lessner named the Vivaron haydeni species, an 

extinct reptile related to crocodiles [31]. 
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3 RELATED WORK: CURRENT APPROACHES TO MULTI-

LEVEL MODELING IN THE SEMANTIC WEB 

In this chapter, we examine the state-of-the-art in approaches that support multi-level 

modeling in the web. Initially, we discuss one of the main recommendations of W3C for 

the Semantic Web, namely, RDFS (Section 3.1). We then discuss a related work regarding 

improvements in this recommendation: RDFS(FA) (Section 3.2), which proposes 

improvements in RDFS. Further, we discuss other main recommendation of W3C: OWL 

(Section 3.3); for then discuss OWL FA (Section 3.4), which proposes improvements in 

OWL. Moreover, we present PURO (Section 3.5), which is implemented in OWL, and 

the Wikidata approach (Section 3.6), which underlies the Wikidata knowledge base and 

defines its own vocabulary and vocabulary structuring mechanisms. Finally, in Section 3.7, 

we present a summary of the existing approaches and their evaluation according to the 

requirements for multi-level modeling approaches previously defined in Chapter 2. 

3.1 RDFS 

RDF (Resource Description Framework) and RDFS (RDF Schema) [3] are languages 

proposed by W3C for use in the Semantic Web. They are intended for creating 

vocabularies and for publishing and linking data on the web. RDFS extends the basic 

vocabulary of RDF aiming to provide terms for creating domain vocabularies.  

First of all, RDF uses the notion of “triple” to represent information. In a triple, a 

resource (the subject) is connected to a literal or to other resource (the object) through a 

property (the predicate). For RDF, a resource is anything identified by an IRI 

(Internationalized Resource Identifier) [32] (e.g., the IRI http://www.wikidata.org/entity/Q80 

identifies Tim Berners-Lee in Wikidata [15]). Thus, to represent that Tim Berners-Lee was 

born in London, for example, we must create a triple which states that Tim Berners-Lee 

(subject) was born in (predicate) London (object). Figure 3-1 shows a labeled graph 

representing this statement.  
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Figure 3-1. Labeled graph representing a triple about Tim Berners-Lee 

The notion of class (rdfs:Class) is introduced in RDFS to represent specific sets of 

individuals that share the same characteristics. Thus, domain classes (such as Person) are 

represented as instances of rdfs:Class through the rdf:type property. rdfs:Class is the main 

primitive of RDFS, such that other important primitives are defined as its instances 

(including rdfs:Class itself): these include rdfs:Resource, which represents anything that has an 

IRI (e.g. Tim Berners Lee, London, Person or “was born in”), and rdf:Property. It is important to 

note that both rdfs:Class and rdf:Property are subclasses of rdfs:Resource. Thus, domain classes 

and properties are considered special kinds of resources, along with concrete individuals. 

Further, RDFS also introduces rdf:Property to represent predicates (such as “was born in”). 

Finally, rdfs:subClassOf and rdf:type properties are two important primitives of RDFS that 

are instances of rdf:Property. rdfs:subClassOf is used to represent that all instances of a class 

must be instances of other class. Figure 3-2 shows this fragment of RDFS. In Figure 3-2 

we use a notation that is largely inspired in UML. We use UML specialization to represent 

the rdfs:subClassOf properties, and dashed arrows to represent instantiation statements, 

with labels to denote the names of the predicates that apply. For instance, a dashed arrow 

labeled rdf:type between rdfs:subClassOf and rdf:Property represents that the former is an 

instance of the latter. The notation used to elaborate Figure 3-2 is used in all further 

diagrams. 

  

Figure 3-2. Fragment of RDFS vocabulary 

class RDFS Class

rdfs:Class

rdfs:Resource

rdf:Property

rdfs:subClassOf rdf:type

rdf:type

rdfs:subClassOf
rdf:type

rdf:type

rdf:type

rdf:type
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We could extend the information about Tim Berners-Lee to say that he is an instance of 

Person and that London is an instance of City. For that, we must state that Tim Berners-Lee 

and London are instances of (through rdf:type) Person and City, respectively. With RDFS, we 

are able to extend Figure 3-1, and explicitly represent the classes in the domain. For 

example, we could represent Person and City as instances of the language primitive 

rdfs:Class, since these represent sets of individuals that share the same characteristics. 

Figure 3-3 shows this example.   

 

Figure 3-3. Labeled graph representing triples about Tim Berners-Lee, London, Person and City 

Note that, the fact Tim Berners-Lee is an instance of Person concerns information about the 

domain, while Person being an instance of rdfs:Class is related to its representation in a 

language (RDFS). Observing these two different cases of instantiation, Atkinson and 

Kühne proposes the Orthogonal Classification Architecture (OCA) [33]. OCA is a 

modeling framework that distinguishes domain-oriented ‘‘ontological’’ classification 

relationships from language-infrastructure-oriented ‘‘linguistic’’ classification relationships 

and organizes them according to the tenets of strict metamodeling [33]. While “linguistic” 

metamodeling is concerned with language definition issues, “ontological” metamodeling 

is concerned with classification relations that may occur between domain types.  

The rdf:type property is used indistinctively to represent both ontological and linguistic 

instantiations.  Considering the usage of rdf:type to represent ontological instantiation, we 

can state that RDFS provides support for representing multiple levels of classification, 

satisfying the requirement R1. Moreover, as aforementioned, the only constraint for 

building triples in RDFS is that the subject must be a resource (i.e., something identified 

by an IRI) and that the object can be a resource or a literal. Thus, triples can link any pair 
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of resources, without restrictions, allowing the representation of domain relations 

between entities of different orders (requirement R4). Further, no rules are defined to 

guide the use of rdf:type property nor to support the organization of entities into 

classification levels. Therefore, we conclude that RDFS does not satisfy the requirement 

R2. A consequence of this to the biological taxonomy example described in Chapter 2 is 

that RDFS provides no guidelines concerning the possible relations between Cecil, Lion, 

Species and Taxonomic Rank. Note that, according to MLT we can identify that these are 

entities at different orders and that there are rules that apply to them (such as, e.g., that 

Lion cannot be an instance of Taxonomic Rank, that Species cannot subclass Taxonomic 

Rank). Finally, RDFS does not provide constructs to express, for example, that every 

instance of an instance of a powertype must also be instance of the base type (the power 

type pattern), not satisfying thus the requirement R3. In the biological taxonomy example, 

the lack of support for R3 makes it impossible to represent that all instances of Species 

must specialize exactly one instance of Genus. 

3.2 RDFS(FA) 

In an early effort to organize the metamodeling architecture for RDFS 1.0, Pan and 

Horrocks proposed RDFS(FA) [9]. They observed that “RDFS uses a single primitive 

rdfs:Class to implicitly represent possibly infinite layers of classes” (as it is an instance of 

itself) and that this creates barriers for understanding. They show examples on how this 

lack of a principle of organization for levels creates a so-called “layer mistake”, where the 

modeler ends-up making inadequate ad hoc language extensions. The authors argue that 

these extensions are undesirable and that the modeler may confuse language extension 

with domain modeling, since the same mechanisms can be used for both. Inspired by the 

fixed UML metamodeling architecture [34], they proposed the use of four layers: 

Metalanguage (M), Language (L), Ontology (O) and Instance (I). The M Layer is 

responsible for defining the language, where modeling primitives of this topmost layer 

have no types. The L Layer defines a language for specifying vocabularies and each entity 

in this layer is an instance of an entity in the M Layer. Vocabularies are defined in the O 

Layer (“Person” and “Animal” are examples of classes in this layer) and each element in 
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this layer is an instance of an element in the L Layer. Lastly, the I Layer is populated with 

concrete individuals, which are instances of the vocabulary defined in O Layer. 

Figure 3-4 shows the result of applying this architecture to RDFS. RDFS classes are 

replicated in the M and L Layers with the respective prefix (M and L). In O layer, Animal 

and Person are represented as instances of rdfsfa:LClass (instead of rdfs:Class); and John and 

Mary in the Instance Layer, as an instance of Person. 

 

Figure 3-4. Example of Directed Labeled Graph of RDFS(FA) (from [9]) 

This architecture organizes the language engineering effort, but it does not aim to address 

the representation of domains with multiple levels of classification. In fact, it is based on 

the two-level scheme for the representation of domains in the O and I layers, with classes 

at the O layer, and individuals at the I layer, related through rdfsfa:otype (which represents 

what is known as ontological instantiation [33]). Metaclasses are only used in the domain-

independent L layer; classes at the O layer are related to classes at the L layer through 

rdfsfa:ltype (which represents what is known as linguistic instantiation [33]). In order to 

represent a domain type such as Species one would be forced to include it in the L layer, 

specializing rdfsfa:LClass, which would be inadequate according to [9], as language and 

ontology issues would be confused. In this case, one would have to instantiate Species 

using rdfsfa:ltype, clearly misusing linguistic instantiation [33]. In conclusion, RDFS(FA) 

satisfies requirements R1 and R2 only for linguistic instantiation, but not for ontological 

instantiation. A consequence of this limitation is that in the biological taxonomy example 

described in Chapter 2, RDFS(FA) does not allow modelers to represent that Lion is an 

instance of Species (R1). Since RDFS(FA) does not support R1 for ontological 

instantiation, then it does not offer special support for expressing: (i) the relations 
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between a higher-order class and a base class in the powertype pattern (failing thus to 

satisfy R3); and domain relations crossing levels (not satisfying R4). As a consequence, 

important multi-level constraints cannot be represented in the biological taxonomy 

scenario. For example, it is not possible to capture the constraint that every instance of 

Organism must be instance of exactly one instance of Species. 

3.3 OWL 2 

OWL 2 [4] is also a language proposed by W3C, which is defined in terms of RDFS. 

OWL introduces new terms (besides the existing ones in RDFS), with the purpose of 

increasing the expressiveness of domain vocabularies, while maintaining key choices in 

the Semantic Web underlying RDF and RDFS. We focus here on the features of OWL 

that can be used to represent multi-level models. 

OWL introduces a new term for representing classes: owl:Class, which is an instance of 

rdfs:Class. Moreover, these terms are declared as subclasses (specializations) of each other, 

which makes them equivalent. OWL introduces a superclass of rdfs:Resource which is used 

to classify everything: owl:Thing. Since RDFS allows properties to connect a resource to a 

literal or to a resource, OWL introduces terms which specializes rdf:Property to distinguish 

each of these cases: (i) instances of owl:DatatypeProperty connect a resource to a literal, and 

(ii) instances of owl:ObjectProperty connect a resource to a resource. Thus, domain relations 

(such as “was born in”) are represented as instances of owl:ObjectProperty. Further, instances 

of (i) rdfs:Class/owl:Class and (ii) owl:ObjectProperty are instances of owl:Thing, since all of 

them are (indirectly) subclasses of it. And, since concrete individuals are included as 

resources, they are also instances of owl:Thing. This fragment of OWL is presented in 

Figure 3-5. To increase the readability of the diagram, we omitted the representation of 

rdf:type from owl:Thing to owl:Class and from all other elements to rdfs:Class. 
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Figure 3-5. Fragment of OWL vocabulary 

Similarly to RDFS, OWL supports the representation of classes of classes, but explicitly 

under the term metamodeling. For example, in Figure 3-6, two subclasses of Eagle, namely 

Golden Eagle and Steppe Eagle are defined as instances of Species, which means that they are 

members of the set of all species. Finally, we use the instance specification notation of 

UML (i.e., underlining an element’s name) to represent an individual (e.g. Harry).  

 

Figure 3-6. OWL representation for biological taxonomic domain 

Despite introducing new elements, the OWL metamodeling architecture is similar to 

RDFS’s. However, since OWL was designed with concerns for the tractability of 

reasoning and inference, the designers have opted to constrain the language’s 

expressiveness. Because of this, OWL’s multi-level modeling support is based on the 

notion of contextual semantics [10], often referred to as punning. According to punning 

principles, (i) a class is seen as an individual when it is an instance of another class, and (ii) 

the interpretation of an entity as a class and it is completely independent of its 

interpretation as an individual. This “independent” interpretation means that a constraint 
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stated to the interpretation of an entity as a class will not be considered when this entity is 

seen as an individual, which leads to non-intuitive interpretations [11]. For instance, 

consider the following statements: (i) Harry is an instance of Golden Eagle, and; (ii) Golden 

Eagle is the same as Aquila chrysaetos. Statement (i) treats Golden Eagle as a class, while 

statement (ii) treats Golden Eagle as an individual. These two aspects of Golden Eagle are 

never considered at the same time for reasoning. Thus, in this approach, it is impossible 

to derive that Harry is an instance of Aquila chrysaetos, which violates our intuition with 

respect to the multi-level model. We can say that while OWL seems to satisfy R1 

(admitting classes that are also instances), it does so only partially, given the notion of 

contextual semantics employed. The same can be said for the representation of relations 

between entities of different levels (partially satisfying R4).  

OWL offers no principle of organization into levels (failing to satisfy R2). Further, 

punning also prevents us from correctly expressing the relation between a higher-order 

class and a base class in the powertype pattern, which inevitable involves considering the 

specializations of the base class as types and instances simultaneously (failing thus to 

satisfy R3). Finally, considering the open world assumption, it is also impossible to 

formally identify in this fragment above that Harry is an individual, as there could be 

unstated rdf:type declarations involving Harry as a class. Further, given the same 

assumption, it would be impossible to identify that Species (in isolation) is a metaclass; in 

other words, we cannot express when modeling Species (and omitting its instances) that all 

its instances are classes (in particular subclasses of Organism). 

3.4 OWL FA 

Pan and Horrocks also proposed OWL FA [11], [13], a metamodeling extension of OWL 

1 DL, with an architecture based on RDFS(FA). They argue that OWL 1 Full supports 

some metamodeling by allowing users to use the built-in vocabulary without restrictions, 

but that leads to undecidability (as Motik pointed out [10]). They then propose a 

decidable extension of OWL 1 DL allowing the reuse of existing reasoners.  
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While RDFS(FA) uses prefixes (M, L, O and I) to indicate the layer to which a class or 

axiom belongs, OWL FA intuitively introduces a layer number in its constructors and 

axioms, through annotations. The semantics of OWL FA [13], [35] take into account 

elements that share the same URIs (Uniform Resource Identifier) and interpret them 

dependently (in contrast to OWL). For instance, if Golden Eagle and Aquila chrysaetos are 

stated as the same and Harry is an instance of Golden Eagle, OWL FA assumes that Harry 

must be an instance of Aquila chrysaetos. However, it does not allow property assertions 

between layers except for instantiation. For example, subclassing and domain relations 

must be between classes at the same layer (failing thus to satisfy R4). As a consequence, in 

the paradigmatic example described in Chapter 2, it is not possible to represent who 

named the Golden Eagle species. 

The numbered layers appear to merge Ontology and Instance Layers of RDFS(FA). Thus, we 

understand here that identifying layers by numbers addresses the limitation of RDFS(FA) 

(see 3.2) thus satisfying R1 fully. Moreover, as advantages when compared to the current 

multi-level modeling support of OWL (see 3.3), OWL FA: (i) interprets dependently elements 

that share the same URI, and; (ii) it introduces restrictions for instantiation and 

subclassing, providing some criteria for the organization into levels (R2). Finally, OWL 

FA offers no special support for the representation of constraints for the instantiation of 

types at different levels (not satisfying R3).  

3.5 PURO 

Svatek et al. [12] propose the PURO approach which includes an OWL vocabulary that 

can be used as a basis for multi-level domain vocabularies. In PURO, each entity of a 

domain vocabulary can be annotated with a PURO term in order to clarify the entity’s 

ontological status. The term B-object is used to refer to concrete individuals in the world 

(such as Harry). In contrast, the term B-type is used to refer to classes (such as Eagle). A B-

type is analogous to an OWL class, however, B-types are organized into strata: instances of 

1st order B-types are B-objects, instances of nth-order B-types are (n−1)th-order B-types (for n > 1). 

The OWL vocabulary supporting the PURO approach only deals with B-objects and first-, 
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second- and third-order B-types. B-relationship is analogous to an object property assertion 

and there are variations: (i) B-instantiation is an assertion to indicate that an entity 

instantiates a B-type; (ii) B-axiom express a relationship between the extensions of two B-

types (e.g., subclassing); and (iii) B-fact express information about an entity, e.g., who 

discovered certain species. Finally, B-relation is analogous to OWL Object Property. 

Similarly to OWL and OWL FA, PURO has the required expressivity for representing 

multiple levels of instantiation (R1) through the notions of B-object and the B-types. 

Moreover, PURO defines rules for the organization of entities along levels (R2). Finally, 

PURO allows modelers to express domain relations between entities of different levels 

(R4); an example is provided in [12] in which a musician is considered an expert in a type 

of instrument (e.g., the musician Yo-Yo Ma is an expert in Violin). However, similarly to 

OWL and OWL FA, PURO offers no special support for the representation of 

constraints for the instantiation of types at different levels (not satisfying R3). 

3.6 THE WIKIDATA APPROACH 

The importance of structured data on the web has become clear in the recent years, and 

has fed developments to make it possible for data to be shared and reused across 

application, enterprise, and community boundaries [1]. Currently, many initiatives focus 

on structured data in an effort to facilitate the automated processing of data, as opposed 

to human consumption through natural language. One prominent initiative with this 

focus is Wikidata [15]: a project of the Wikimedia Foundation to capture the structured 

data underlying Wikipedia, the popular online encyclopedia, and other Wikimedia sister 

projects. The content of Wikidata is available under a free license, and can thus be 

consumed and linked to other data sets on the linked data web.   

The Wikidata repository consists mostly of items and statements about these items. Items are 

used “to represent all the things in human knowledge, including topics, concepts, and objects”, and are 

given a unique identifier, a label and a description [36]. Statements are used “for recording data 

about an item”, and “consist of (at least) one property-value pair”; they serve to “connect items to each 

other, resulting in a linked data structure” [37].  
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In order to organize Wikidata’s content, some items (termed classes) may be used to 

classify other items through the instance of property (which has the unique identifier P31). 

For example, the item London (Q84) is related to the item city (Q515) through the instance 

of property, to represent the fact that London is a city. Further, classes can be related 

through the subclass of (P279) taxonomic property, defining thus hierarchies of classes, 

from more general to more specific ones [38]. For example, city and country (Q6256) are 

subclasses of administrative territorial entity (Q56061), which is a subclass of human-geographic 

territorial entity (Q15642541). The definition of instance of provided in Wikidata is informal 

and silent about its formal logic properties (symmetry, reflexivity and transitivity). 

Moreover, Wikidata declares that instance of and rdf:type are equivalent properties (P1628). 

Further, subclass of is characterized as transitive and asymmetric (i.e., antisymmetric and 

irreflexive) and as equivalent property of rdfs:subClassOf. 

To illustrate this, we extracted from Wikidata a fragment of a biological taxonomy and the 

classification of Cecil (the lion) in such taxonomy. Cecil is instance of Panthera Leo, which is 

instance of Species. Species, in its turn, is instance of Taxonomic Rank. Considering the definition 

of subclass of, we can conclude that Cecil is also instance of Panthera and, consequently, of all 

its super classes. See Figure 3-7. Additionally, in order to increase the readability of the 

diagram, we use dashed rectangles to group elements that instantiate the same other 

element and draw only one arrow from the border of the rectangle to the other element. 

While, in the model of Figure 3-7, modelers have been able to organize the model 

adequately into strata, there is no support to prevent a Wikidata contributor from 

violating this conformant structure. For example, a clearly incorrect modification 

introducing a new entity (e.g. “Simba”) which is both an instance of Panthera Leo and 

Species would go undetected, and would result in an inconsistent hierarchy1. 

                                              

1 In fact, we have detected a large number of those problematic hierarchies (see Chapter 5). 
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Figure 3-7. Short representation for Taxonomic Biological Domain in Wikidata 

Similarly with the previously presented approaches, Wikidata provides support for 

representing many levels of instantiation (R1) through the possibility of chains of the 

instance of property. Like RDFS, Wikidata allows statements between any pair of items, 

thus it is possible to represent domain relations between entities in different levels (R4). 

However, since Wikidata is silent about formal logic properties of instance of, it offers no 

special support both for organization of entities along levels (not satisfying R2) and for 

the representation of constraints for the instantiation of types at different levels (not 

satisfying R3).  

3.7 CONCLUDING REMARKS 

Here, we summarize the review of the current Semantic Web approaches concerning their 

adherence to the four requirements we established for multi-level approaches in  

Chapter 2. Table 3-1 summarizes the analysis, classifying their support for each 

requirement considering three categories: fully covered, partially covered and not covered. 
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Table 3-1. Support for multi-level modeling in RDFS languages 

Requirement RDFS RDFS(FA) OWL 2 OWL FA PURO  Wikidata 

R1 – represents entities 

of multiple levels of 

classification 

Yes. Partially. Partially. Yes. Yes. Yes. 

R2 – offers guidance for 

the organization of 

entities into levels 

No. Partially. No. Yes. Yes. No. 

R3 – represents rules for 

the instantiation of types 

at different levels 

No. No. No. No. No. No. 

R4 – supports domain 

relations between entities 

of different levels  

Yes. No. Partially. No. Yes. Yes. 

We consider that RDFS provides support for representing multiple levels of classification 

(R1) and that it allows the representation of domain relations between entities of different 

orders (R4). However, no specific rules are defined to guide the use of the rdf:type property 

(not satisfying R2) and no mechanism is provided to constrain the instantiation of types at 

different classification levels (R3).  

The Wikidata approach is quite similar to RDFS. Two of its main properties, instance of 

(P31) and subclass of (P279), are said to be equivalent to (P1628) RDFS properties rdf:type 

and rdfs:subClassOf, respectively. Similarly to RDFS, the Wikidata approach supports 

multiple levels of classification (R1) and domain relations crossing levels (R4). However, it 

offers no special support concerning the usage of instantiation and the relation between 

higher-order types and base types, failing to support both R2 and R3. 

RDFS(FA) provides support and guidance for representing multiple levels of 

classification, however focusing on linguistic instantiation instead of ontological 

instantiation. Because of this focus, when compared with RDFS, RDFS(FA) sacrifices R1 

(which we consider only partially addressed) as well as R4, while providing support for 

R2. Since RDFS(FA) does not support R1 for ontological instantiation, it does not offer 

special support for expressing the relations between a higher-order class and a base class 

in the powertype pattern (not satisfying R3).  
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Similarly to RDFS, OWL supports the representation of classes of classes, but under the 

term metamodeling. Because of the need to maintain tractable inferencing mechanisms, 

OWL metamodeling is based on the contextual semantics [10] (punning). This choice affects 

the representation of relations and constraints crossing levels and hence offers only partial 

support for R1 and R4 in contrast with RDFS, which we consider offers full support for 

R1 and R4. OWL fails to support R2 and R3. 

Finally, OWL FA and PURO offer full support for R1 and R2. However, OWL FA 

restricts domain relations only for entities in the same level, while PURO supports 

domain relations crossing levels (R4). Thus, PURO appears as the approach that meets 

the largest number of requirements we have identified. 

Despite the efforts in all these approaches, none of them support the representation of 

constraints involving instantiation relations across levels (i.e., none of them satisfy R3). 

The shortcomings of the existing approaches motivate our investigation into a novel 

approach for multi-level modeling for the Semantic Web. 
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4 EXPRESSIVE MULTI-LEVEL MODELING FOR THE 

SEMANTIC WEB 

In this chapter, we present our approach to improve the expressivity of multi-level 

modeling in the Semantic Web. For that, we first present and justify some basic choices 

for the approach (Section 4.1). Then, we show the proposed vocabulary based on 

distinctions put forth by MLT (Section 4.2), and a number of integrity (Section 4.3) and 

derivation (Section 4.4) rules reflecting axioms and theorems of MLT. Further, we explain 

how the vocabulary and rules are combined in an application that helps modelers to 

produce sound models (Section 4.5). Finally, we present some conclusions regarding the 

usage of our approach (Section 4.6). 

4.1 PRELIMINARY CONSIDERATIONS 

In this thesis, we are interested in providing expressiveness for representing multi-level 

domains in the Semantic Web satisfying the four requirements for multi-level modeling 

approaches defined in Section 2.4 and maintaining the current standards of Semantic Web 

languages and metamodeling infrastructures.  

We use MLT as foundation for this approach, since MLT achieves the four-requirements. 

Then, considering that RDFS has the ability to represent entities of multiple (related) 

classification levels (satisfying R1) we maintain the use of rdf:type to represent the 

instantiation relations. This design decision corroborates with the principle of Linked 

Data of reusing terms from widely deployed vocabularies whenever their semantics 

correspond to the intended ones [39]. 

To provide some organization for the multi-level models (in order to satisfy R2), we: (i) 

represent the basic types of MLT as instances of owl:Class (adhering to the infrastructure 

standard), and (ii) provide queries implementing MLT rules to ensure that the 

stratification into orders is respected by domain vocabularies that instantiate and 

specialize these basic types.  
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To provide support to capture rules for the instantiation of types at different levels (in 

order to satisfy R3) we: (i) incorporate the MLT relations representing them as instances 

of owl:ObjectProperty (adhering to the infrastructure standard), and (ii) provide queries to 

verify the soundness of vocabularies that use these relations. 

Finally, considering that OWL supports the representation of domain relations between 

entities in different classification levels, the domain relations in our approach are 

represented as instances of owl:ObjectProperty adhering, thus, to the infrastructure standard 

and satisfying to R4. 

4.2 THE MLT VOCABULARY FOR THE SEMANTIC WEB 

The proposed vocabulary encompasses the representation of the basic types of MLT and 

the relations defined in the theory. The basic types of MLT are represented as instances 

(rdf:type) of owl:Class. The class representing the MLT Individual basic type is named 

mlt:TokenIndividual2, the class representing the First-Order Type is named mlt:1stOrderClass, 

and the classes mlt:2ndOrderClass and mlt:3rdOrderClass represent, respectively, the Second-

order and Third-order basic types. Considering that, according to MLT, instances of Individual 

are not instantiable (i.e. are not types), mlt:TokenIndividual does not specialize owl:Class. In 

contrast, the classes representing all other basic types have an rdf:subClassOf relation with 

owl:Class capturing the fact that their instances are classes (i.e. their instances are 

instantiable) (see Figure 4-1). 

                                              
2 The term “TokenIndividual” was adopted here to avoid confusion with the term “Individual” in the OWL 

specification. “TokenIndividual” corresponds to what we call “Individual” in [20]. The choice for the prefix “token” 

comes from its use in linguistics. In linguistics, the term refers to entities that do not have instances, contrasting with 

the notion of types [51]. 
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Figure 4-1. Fragment of MLT Vocabulary for Order Classes and Individual. 

Concerning the MLT relations, instance of relations are represented as rdf:type properties 

and specialization relations are represented as rdfs:subClassOf properties. All other intra- and 

cross-level relations of MLT are represented in this vocabulary in a hierarchy of instances 

of owl:ObjectProperty, including at the top: mlt:intraLevelProperty, which is as a super property 

for all MLT intra-level relations; and mlt:crossLevelProperty, which is a super property for all 

MLT cross-level relations. The subordination relation of MLT is then represented by the 

property mlt:isSubordinateTo as a sub-property of mlt:intraLevelProperty, while the categorization 

(mlt:categorizes) and the is powertype of (mlt:isPowertypeOf) relations are represented as sub-

properties of mlt:crossLevelProperty. Finally, each variation of categorization (e.g. complete 

categorization, disjoint categorization and so on) is represented as a sub-property of 

mlt:categorizes.  

These properties are also used in the vocabulary definition to represent relations that 

occur between the basic types of MLT. To capture the fact that the basic type in one 

order is instance of the basic type in an immediately higher order, statements with rdf:type 

are defined between the classes representing the basic types (e.g., mlt:TokenIndividual rdf:type 

mlt:1stOrderClass, mlt:1stOrderClass rdf:type mlt:2ndOrderClass), capturing thus the MLT 

Theorems T1-T3. Further, mlt:isPowertypeOf is used to represent that a basic type in an 

order is the powertype of the basic type in the immediately-lower order (Figure 4-1), 

capturing thus the Theorems T10-T12. Finally, we use owl:AllDisjointClasses to capture in 

OWL the MLT Theorem T4, which states that MLT basic types are disjoint. The 

vocabulary is available at [40] and at Appendix I. 

The MLT vocabulary allows the representation of domain rules concerning the 

instantiation of types in different levels. For example, Figure 4-2 illustrates a fragment of 

an ontology in the biological taxonomy domain applying this vocabulary. In such an 



47 

ontology, Genus and Species are represented as instances of mlt:2ndOrderClass (and, thus, as 

subclasses of mlt:1stOrderClass) meaning that their instances (e.g. Panthera, Panthera Onca, 

and so on) must specialize mlt:TokenIndividual, i.e. instances of their instances are non-

instantiable elements (e.g. Cecil (the lion) which does not possibly have instances). The 

domain rule that every instance of Species must be a subclass of an instance of Genus is 

captured by the mlt:isSubordinateTo property between Species and Genus. Further, the 

mlt:partitions property between Species and Panthera captures the rule that every instance of 

Panthera must be instance of exactly one instance of Species. Finally, Genus mlt:partitions 

Organism and Species mlt:partitions Organism, to capture that every organism must be instance 

of exactly one Genus and instance of exactly one instance of Species. Note that domain 

modelers only need to declare their domain classes as instances and/or specializations of 

the MLT basic types. (As we shall discuss later in section 4.4, some of these relations can 

be inferred automatically, using derivation rules reflecting MLT axioms and theorems.) 

 

Figure 4-2. Illustrating the use of mlt:isSubordinateTo and mlt:partitions properties. 

Figure 4-3 shows an example of an ontology representing employees and their roles in a 

company to illustrate the use of variations of categorization relations to capture domain 

rules. To capture the rule that each Employee must play one or more Business Roles in the 

company, Business Role mlt:completelyCategorizes Employee meaning that every instance of 

Employee must be instance of at least one instance of Business Role. Further, to represent 

that an Employee may play at most one Management Role, Management Role 

mlt:disjointlyCategorizes Employee. 
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Figure 4-3. Illustrating the use of mlt:completelyCategorizes and mlt:overlappinglyCategorizes. 

4.3 INTEGRITY CONSTRAINTS BASED ON MLT 

An important aspect of the proposed vocabulary is that it allows us to leverage rules of 

the MLT formalization in order to guide modelers in producing sound models. The rules 

discussed in this section ensure that the domain classes respect the stratification into 

orders. Some of these rules are expressible in pure OWL and thus were directly included 

in the vocabulary. For example, a disjointness constraint (owl:AllDisjointClasses) is 

introduced to reflect the fact that the basic types of MLT are all mutually disjoint 

(Theorem T4 - Table 2-1).  

The majority of the MLT rules, though, are not expressible directly in OWL, and are 

represented here in SPARQL. This is the case of constraints concerning the domain and 

range of MLT structural relations. For example, mlt:isPowertypeOf, mlt:categorizes and all its 

variations must occur between classes of adjacent levels, i.e., if the domain is a 

2ndOrderClass, then the range must be a 1stOrderClass, if the domain is a 3rdOrderClass, then 

the range must be a 2ndOrderClass, and so on. Table 4-1 shows the domain/range 

restrictions for MLT relations. 

 

 



49 

Table 4-1. Domain and range restrictions for multi-level relations. 

Relation name Domain and Range 

rdfs:subClassOf 
Classes of the same order  

(instances of 1st, 2nd or 3rd Order Classes) 

isSubordinateTo 
Higher-order classes of the same order  

(2ndOrderClass or 3rdOrderClass)  

rdf:type Elements of adjacent levels.  

isPowertypeOf 

Classes of adjacent levels: 

- 2ndOrderClass → 1stOrderClass 

- 3rdOrderClass → 2ndOrderClass 

categorizes 

completelyCategorizes 

incompletelyCategorizes 

disjointlyCategorizes 

overlappinglyCategorizes 

SPARQL queries are also provided to allow the verification of rules concerning the nature 

of the basic types of MLT. For example, considering that instances of Individual must 

have no instances, we provide an integrity constraint to verify if there are instances of 

instances of mlt:TokenIndividual (see IC1 in Table 4-2, which would detect violations of this 

constraint). 

According to the definition of categorization (see D5) the instances of the higher-order type 

are proper specializations of the base type, i.e. the base type cannot be an instance of the 

higher-order type that categorizes it. The integrity constraint IC2 captures this issue.  

Furthermore, axioms A1 and A6 (see Table 2-1) prescribe a strictly stratified organization 

of entities into orders, which is called strict metamodeling principle. As a result, the strict 

metamodeling principle is also guarantee through two SPARQL queries checking 

properties of instantiation: (i) asymmetry (see IC3 in Table 4-2), and (ii) and anti-

transitivity (see IC4 in Table 4-2). 

Integrity constraints are also provided to verify MLT theorems concerning characteristics 

of structural relations. For instance, given the definition of the is powertype of relation, a 

base class can have, at most, one higher-order class as powertype and a higher-order class 

may be the powertype of at most one base class. This suggests two clear integrity 
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constraints: (i) a class can be the subject of at most one triple having mlt:isPowertypeOf as 

predicate (violations detected by IC6 in Table 4-2), and (ii) a class can be the object of at 

most one triple having mlt:isPowertypeOf as predicate (see IC5 in Table 4-2).  

Another example is a constraint provided to allow the verification of the MLT theorem 

that states that if two classes t1 and t2 both partition the same class t then it is not 

possible for t1 to be subclass of t2 (IC7 in Table 4-2). 

Table 4-2. Integrity Constraints Corresponding to MLT Rules 

MLT 

Rule 
#Query Integrity Constraint SPARQL query 

A1 IC1 

#Integrity constraint IC1 based on MLT Axiom A1 
#This query checks scenarios where individuals have instances 
SELECT DISTINCT * 
WHERE { 
 ?x rdf:type mlt:TokenIndividual . 
 ?y rdf:type ?x  
} 

D5 IC2 

#Integrity constraint IC2 based on MLT Definition D5 
#This query checks scenarios where a type t1 categorizes t2 and  
#t2 instantiates t1 
SELECT DISTINCT * 
WHERE { 
 ?t1 mlt:categorizes ?t2 .  
 { 
  ?t2 rdf:type ?t1 .  
 }UNION{ 
  ?t3 rdfs:subClassOf ?t2 .  
  ?t2 owl:sameAs ?t3 .  
  ?t3 rdf:type ?t1 .  
 } 
} 

T5 IC3 

#Integrity constraint IC3 based on MLT Theorem T5 
#This query checks scenarios where asymmetry is violated 
SELECT DISTINCT * 
WHERE { 
 ?x rdf:type ?y . 
 ?y rdf:type ?x  
} 

T6 IC4 

#Integrity constraint IC4 based on MLT Theorem T6 
#This query checks scenarios where stratification is violated 
SELECT DISTINCT * 
WHERE { 
 ?x rdf:type ?y . 
 ?y rdf:type ?z . 
 ?x rdf:type ?z  
} 

T13 IC5 

#Integrity constraint IC5 based on MLT Theorem T13 
#This query checks scenarios where a type has more than one powertype 
SELECT DISTINCT * 
WHERE { 
 ?p mlt:isPowertypeOf ?t . 
 ?p1 mlt:isPowertypeOf ?t . 
 FILTER (?p NOT IN (?p1))  
} 
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MLT 

Rule 
#Query Integrity Constraint SPARQL query 

T14 IC6 

#Integrity constraint IC6 based on MLT Theorem T14 
#This query checks scenarios where a type is powertype of more than one 
#type 
SELECT DISTINCT * 
WHERE { 
 ?p mlt:isPowertypeOf ?t . 
 ?p mlt:isPowertypeOf ?t1 . 
 FILTER (?t NOT IN (?t1))  
} 

T18 IC7 

#Integrity constraint IC7 based on MLT Theorem T18 
#This query checks scenarios where a type t3 is partitioned by two  
#other types t1 and t2, and t1 is subclass of t2 
SELECT DISTINCT * 
WHERE { 
 ?t1 mlt:partitions ?t3 .  
 ?t2 mlt:partitions ?t3 .  
 ?t1 rdfs:subClassOf ?t2  
} 

4.4 MODEL COMPLETION BASED ON MLT 

Considering that models built using our MLT vocabulary may exhibit incomplete 

information, we leverage MLT axioms and theorems to allow the inference of 

information not represented explicitly. For instance, it follows from the axioms of MLT 

that, instances of a basic higher-order type are entities whose instances are instances of a 

type at the immediately lower level. And the inverse is also valid, instances of a basic type 

are entities whose types are instances of a type at the immediately higher level. For 

example, query DR1 (Table 4-3) allows the identification of instances of 

mlt:TokenIndividual whose types are not represented as instances of mlt:1stOrderClass. While 

the query DR2 (Table 4-3) allow the identification of instances of mlt:1stOrderClass whose 

instances are not represented as instances of mlt:TokenIndividual. The same pattern occurs 

for the queries DR3 and DR4, and DR5 and DR6 (Table 4-3). 

MLT also defines some structural relations which occur between types of the same order 

(intra-level relations) and between types of adjacent levels (cross-level relations). The first 

intra-level relation is the ordinary specialization between types, which defines that a type 

specializes other type, then every instance of the former is also instance of the last. The 

query DR7 (Table 4-3) allows the identification of cases in which the subclassing of two 

types is represented but the instances of the subtypes are not represented as instances of 



52 

the super type. Note that this derivation could be made using existent reasoners, since this 

rule is intrinsic of the definition of rdfs:subClassOf. However, since we deal with multiple 

levels of classification, we are not dealing with OWL-DL. Thus, the current reasoners 

cannot guarantee evaluation in a viable time. 

According to the definition of the first cross-level relation, when t1 is the powertype of t2 

and exists a t3 which is instance of t1, then t3 specializes t1. The query DR8 (Table 4-3) 

identifies cases in which t1 is represented as the powertype of t2 and t3 is represented as 

instance of t1, but t3 is not represented as subclass of t1. Even in the definition of the 

powertype of relation, if t1 is the powertype of t2 and t3 specializes t1, then t3 is an instance of 

t1. The query DR9 (Table 4-3) allows the identification of cases where the instantiation is 

not represented. 

Now, the definition of the categorize relation states that all instances of a class must 

specialize other class. For that, query DR10 (Table 4-3) identifies cases when a type t1 

categorizes a type t2 and the instances of t1 are not represented as subclasses of t2. 

Further, this relation has two specializations: completelyCategorizes and disjointlyCategorizes. 

The queries DR11 and DR12 (Table 4-3) identify cases when these variations are 

represented but the categorize relation is not. Lastly, the partitions relation is a specialization 

of both completelyCategorizes and disjointlyCategorizes. Thus, the query DR13 (Table 4-3) looks 

for cases when the super relations are represented but the sub relation is not, and the 

query DR14 (Table 4-3) looks for cases when the sub relation is represented but the super 

relations are not. 

Further, since every instance of a basic higher-order type must specialize the basic type at 

the immediately lower level, we can identify some missing relations. For example, query 

DR15 (Table 4-3) allows the identification of cases in which types are represented as 

instances of mlt:1stOrderClass but their subclass relations with mlt:TokenIndividual are not 

represented. Even more, DR16 (Table 4-3) works inversely, it allows the identification of 

subclasses of mlt:TokenIndividual which are not represented as instances of 

mlt:1stOrderClass. The pattern occurs between the queries DR17 and DR18, and between 

DR19 and DR20. 
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It follows from the axioms of MLT that, if t is subclass of t1 then the powertype of t is 

subclass of the powertype of t1. This is reflected in a query to identify cases in which the 

subclass of relation is not represented between the powertypes (DR21 in Table 4-3).  

Even more, according to MLT, if t1 is subordinate to t2 and t2 categorizes t3, then t1 

categorizes t3. The query DR22 (Table 4-3) identifies cases where the subordination 

between t1 and t2, and the categorization between t2 and t3 occurs, but the categorization 

between t1 and t3 is not represented. 

Finally, according to MLT, if t2 is powertype of t1 and t3 categorizes t1, then t3 is subclass 

of t2, we provide a SPARQL query to identify cases in which the isPowertypeOf and the 

categorization relations are represented but the subclass relations are not (DR23 in Table 

4-3).  

Table 4-3. Derivation Rules Corresponding to MLT Rules 

MLT 

Rule 
Query Derivation SPARQL query 

A3 

DR1 

#Derivation rule DR1 based on MLT Axiom A3 
#This query derives instances of instances of 1stOrderClass 
#as instances of TokenIndividual 
CONSTRUCT { 
 ?x rdf:type mlt:TokenIndividual  
}WHERE { 
 ?t rdf:type mlt:1stOrderClass . 
 ?x rdf:type ?t  
} 

DR2 

#Derivation rule DR2 based on MLT Axiom A3 
#This query derives types of instances of TokenIndividual 
#as instances of 1stOrderClass 
CONSTRUCT { 
 ?t rdf:type mlt:1stOrderClass 
}WHERE { 
 ?x rdf:type ?t . 
 ?x rdf:type mlt:TokenIndividual . 
 filter(?t != mlt:TokenIndividual)  
} 

A4 DR3 

#Derivation rule DR3 based on MLT Axiom A4 
#This query derives instances of instances of 2ndOrderClass 
#as instances of 1stOrderClass 
CONSTRUCT { 
 ?t1 rdf:type mlt:1stOrderClass 
}WHERE { 
 ?t rdf:type mlt:2ndOrderClass .  
 ?t1 rdf:type ?t  
} 
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MLT 

Rule 
Query Derivation SPARQL query 

DR4 

#Derivation rule DR4 based on MLT Axiom A4 
#This query derives types of instances of 1stOrderClass 
#as instances of 2ndOrderClass 
CONSTRUCT { 
 ?t  rdf:type mlt:2ndOrderClass 
}WHERE { 
 ?t1 rdf:type ?t .  
 ?t1 rdf:type mlt:1stOrderClass . 
 filter(?t != mlt:TokenIndividual)  
} 

A5 

DR5 

#Derivation rule DR3 based on MLT Axiom A4 
#This query derives instances of instances of 3rdOrderClass 
#as instances of 2ndOrderClass 
CONSTRUCT { 
 ?t1 rdf:type mlt:2ndOrderClass 
}WHERE { 
 ?t rdf:type mlt:3rdOrderClass .  
 ?t1 rdf:type ?t  
} 

DR6 

#Derivation rule DR4 based on MLT Axiom A4 
#This query derives types of instances of 2ndOrderClass 
#as instances of 3rdOrderClass 
CONSTRUCT { 
 ?t rdf:type mlt:3rdOrderClass 
}WHERE { 
 ?t1 rdf:type ?t .  
 ?t1 rdf:type mlt:2ndOrderClass . 
 filter(?t != mlt:TokenIndividual)  
} 

D1 DR7 

#Derivation rule DR7 based on MLT Definition D1 
#This query derives as instances of t2 
#the instances of t1 which is subclass of t2 
CONSTRUCT { 
 ?e rdf:type ?t2 
}WHERE { 
 ?t1 rdfs:subClassOf+ ?t2 . 
 ?e rdf:type ?t1  
} 

D4 

DR8 

#Derivation rule DR8 based on MLT Definition D4 
#This query derives as subclass of t2 
#the instances of t1 which is powertype of t2 
CONSTRUCT { 
  ?t3 rdfs:subClassOf ?t2 
}WHERE { 
 ?t1 mlt:isPowertypeOf ?t2 . 
 ?t3 rdf:type ?t1 . 
 ?t1 rdf:type ?t1Type .  
 filter(?t1Type != mlt:TokenIndividual)   
} 

DR9 

#Derivation rule DR9 based on MLT Definition D4 
#This query derives as instances of t1 
#the subclasses of t2, in which t1 is powertype of t2 
CONSTRUCT { 
 ?t3 rdf:type ?t1 
}WHERE { 
 ?t1 mlt:isPowertypeOf ?t2 . 
 ?t3 rdfs:subClassOf* ?t2 . 
 ?t1 rdf:type ?t1Type .  
 filter(?t1Type != mlt:TokenIndividual)  
} 
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MLT 

Rule 
Query Derivation SPARQL query 

D5 DR10 

#Derivation rule DR10 based on MLT Definition D5 
#This query derives as subclasses of t2 
#the instances of t1 which categorizes t2 
CONSTRUCT { 
 ?t3 rdfs:subClassOf ?t2 
}WHERE { 
 ?t1 mlt:categorizes ?t2 . 
 ?t3 rdf:type ?t1 . 
 ?t1 rdf:type ?t1Type .  
 filter(?t1Type != mlt:TokenIndividual)  
} 

D6 DR11 

#Derivation rule DR11 based on MLT Definition D6 
#If t1 completelyCategorizes t2 
#this query derives that t1 categorizes t2 
CONSTRUCT { 
 ?t1 mlt:categorizes ?t2 
}WHERE { 
 ?t1 mlt:completelyCategorizes ?t2  
} 

D7 DR12 

#Derivation rule DR12 based on MLT Definition D7 
#if t1 disjointlyCategorizes t2 
#this query derives that t1 categorizes t2 
CONSTRUCT { 
 ?t1 mlt:categorizes ?t2 
}WHERE { 
 ?t1 mlt:disjointlyCategorizes ?t2  
} 

D8 

DR13 

#Derivation rule DR13 based on MLT Definition D8 
#if t1 partitions t2 
#this query derives that 
#t1 completelyCategorizes t2 and that t1 disjointlyCategorizes t2 
CONSTRUCT { 
 ?t1 mlt:completelyCategorizes ?t2 . 
 ?t1 mlt:disjointlyCategorizes ?t2 
}WHERE { 
 ?t1 mlt:partitions ?t2  
} 

DR14 

#Derivation rule DR14 based on MLT Definition D8 
#if t1 completelyCategorizes t2 and that t1 disjointlyCategorizes t2 
#this query derives that t1 partitions t2 
CONSTRUCT { 
 ?t1 mlt:partitions ?t2 
}WHERE { 
 ?t1 mlt:completelyCategorizes ?t2 . 
 ?t1 mlt:disjointlyCategorizes ?t2  
} 

T7 

DR15 

#Derivation rule DR15 based on MLT Theorem T7 
#if t is an instance of 1stOrderClass 
#this query derives that t is subclass of TokenIndividual 
CONSTRUCT { 
 ?t rdfs:subClassOf mlt:TokenIndividual 
}WHERE { 
 ?t rdf:type mlt:1stOrderClass  
} 

DR16 

#Derivation rule DR16 based on MLT Theorem T7 
#if t is a subclass of TokenIndividual 
#this query derives that t is an instance of 1stOrderClass 
CONSTRUCT { 
 ?t rdf:type mlt:1stOrderClass 
}WHERE { 
 ?t rdfs:subClassOf+ mlt:TokenIndividual 
} 
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MLT 

Rule 
Query Derivation SPARQL query 

T8 

DR17 

#Derivation rule DR17 based on MLT Theorem T8 
#if t is an instance of 2ndOrderClass 
#this query derives that t is subclass of 1stOrderClasss 
CONSTRUCT { 
 ?t rdfs:subClassOf mlt:1stOrderClasss 
}WHERE { 
 ?t rdf:type mlt:2ndOrderClass  
} 

DR18 

#Derivation rule DR18 based on MLT Theorem T9 
#if t is a subclass of 1stOrderClass 
#this query derives that t is an instance of 2ndOrderClass 
CONSTRUCT { 
 ?t rdf:type mlt:2ndOrderClass 
}WHERE { 
 ?t rdfs:subClassOf+ mlt:1stOrderClass  
} 

T9 

DR19 

#Derivation rule DR19 based on MLT Theorem T9 
#if t is an instance of 3rdOrderClass 
#this query derives that t is subclass of 2ndOrderClass 
CONSTRUCT { 
 ?t rdfs:subClassOf mlt:2ndOrderClasss 
}WHERE { 
 ?t rdf:type mlt:3rdOrderClass  
} 

DR20 

#Derivation rule DR20 based on MLT Theorem T9 
#if t is a subclass of 2ndOrderClass 
#this query derives that t is an instance of 3rdOrderClass 
CONSTRUCT { 
 ?t rdf:type mlt:3rdOrderClass 
}WHERE { 
 ?t rdfs:subClassOf+ mlt:2ndOrderClass  
} 

T15 DR21 

#Derivation rule DR21 based on MLT Theorem T15 
#if t3 is powertype of t1, t4 is powertype of t2,  
#and that t2 is subclass of t1 
#this query derives that t4 is subclass of t3 
CONSTRUCT { 
 ?t4 rdfs:subClassOf ?t3 
}WHERE { 
 ?t2 rdfs:subClassOf+ ?t1 . 
 ?t4 mlt:isPowertypeOf ?t2 . 
 ?t3 mlt:isPowertypeOf ?t1  
} 

T16 DR22 

#Derivation rule DR22 based on MLT Theorem T16 
#if t1 is subordinate to t2 and t2 categorizes t3 
#this query derives that t1 categorizes t3 
CONSTRUCT { 
 ?t1 mlt:categorizes ?t3 
}WHERE { 
 ?t1 mlt:isSubordinateTo ?t2 . 
 ?t2 mlt:categorizes ?t3  
} 

T17 DR23 

#Derivation rule DR23 based on MLT Theorem T17 
#if t2 is powertype of t1 and t3 categorizes t1 
#this query derives that t3 is subclass of t2 
CONSTRUCT { 
 ?t3 rdfs:subClassOf ?t2 
}WHERE { 
 ?t2 mlt:isPowertypeOf ?t1 . 
 ?t3 mlt:categorizes ?t1  
} 
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4.5 IMPLEMENTATION 

In order to facilitate the combined usage of the MLT vocabulary in OWL and the MLT 

rules in SPARQL (described in Sections 4.2-4.4), we developed an application that 

receives as input an OWL file describing a domain ontology. It detects violations of MLT 

rules and, in the case of valid models, it produces an OWL output file containing the 

original domain ontology plus derived information following MLT rules. 

Our application is developed using Jena [41], which is a widely used Java API 

(Application Programming Interface) that provides support to manipulate RDF models 

(which includes RDFS and OWL) and to execute SPARQL queries into these models. 

For that, we used two bundles: jena-core-2.10.1 and arq-2.8.7. The former is the core 

RDF API, provides mechanisms to handle RDF models and its triples. For example, with 

the core RDF API we are able to handle OWL’s classes, properties and individuals. The 

latter, ARQ is a SPARQL Processor for Jena, i.e., a query engine for Jena that supports 

the SPARQL. Moreover, we use the reasoner Hermit [42] (version 1.3.8.4) in order to 

check MLT rules expressed in OWL, such as the disjointness of the MLT basic types 

(Theorem T4 in Table 2-1).  

The application loads a domain model in order to execute the MLT rules. First, MLT 

rules implemented in OWL, such as Theorem T4 (Table 2-1) which is implemented 

through owl:AllDisjointClasses, are checked. Then, MLT integrity constraints are checked 

running SPARQL queries. If any inconsistency is found, a diagnosis is shown and the 

application ends. Further, knowledge is derived from the execution of MLT derivation 

rules also implemented in SPARQL. Derivation rules are executed repeatedly, until no 

new statements are generated. This is because knowledge derived in an iteration may 

trigger new derivations. MLT integrity constraints and rules implemented in OWL and in 

SPARQL are checked again in order to verify whether any inconsistent information was 

introduced during the execution of derivation rules. Again, if any consistency is found, a 

diagnosis is shown and the application ends. Finally, the enriched domain model is 

serialized. These steps are shown in the tool’s flowchart presented in Figure 4-4. 
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Figure 4-4. Tool’s flowchart 

It is key that these models have statements involving MLT, e.g. that a resource is an 

instance of or subclass of the MLT basic types. Otherwise, our application will check only 

Theorems T5 and T6 (Table 2-1) about strict metamodeling, which are independent of 

MLT’s basic types and relations.  

4.6 CONCLUDING REMARKS 

Despite being the standard for representing vocabularies on the Web, OWL lacks 

expressivity for representing all MLT integrity constraints and derivation rules. Thus, only 

MLT basic types and relations, and a few set of theorems (T1-T4 and T10-T12) have 

been represented directly in OWL. Some of other MLT rules (A1, A3-A5, D1, D4-D8, 

T5-T9 and T13-T18) have been implemented using SPARQL, using SELECT and 

CONSTRUCT primitives.  
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A few rules could not be (fully- or partially-) implemented, neither in OWL or SPARQL, 

due to the Open World Assumption (OWA). This is the case for rules A2, A6 and D3, 

which could not be fully-implemented, and D1, D4-D7, which were only partially 

implemented. This is because since MLT is formalized quantifying over all possible entities, 

some MLT definitions are not expressible considering the OWA. For instance, according 

to MLT, two types are equal iff the sets of all their possible instances are the same (A2 in 

Table 2-1). Further, if t1 has instances such that all of them are also instances of t2, then we 

can conclude that t1 is a subclass of t2 (D1 in Table 2-1). Again, according to MLT, if all 

possible instances of a type t1 also specializes a type t2, then t1 is the powertype of t2 (D4). 

Analogously to Definitions D5, D6 and D7 from Table 2-1. These rules could not be 

captured in our approach since, considering the OWA, we cannot assume that all instances 

of an entity are represented in the knowledge base. Thus, these rules cannot be reflected 

in the implementation.  

Since the notion of equality between types (defined in axiom A2, which cannot be 

implemented) is central to capture the difference between specialization and proper 

specialization (D2 in Table 2-1), it was not possible to reflect definition D2 in the 

implementation. Although, the notion of proper specialization is used in MLT definition of 

categorization (D5) to capture that the base type itself is not an instance of the higher-order 

type that categorizes it. This issue has given rise to integrity constraint IC2 presented in 

Section 4.3. Finally, the notion of proper specialization is also central to the definition of 

subordination (D3), which was not reflected in the implementation.  

According to MLT, each entity in our domain of inquiry is necessarily an instance of 

exactly one of its basic types. However, due to OWA, we cannot assume that all 

instantiation relations are represented and, thus, it is not possible to capture this MLT rule 

as a constraint. When the information about the basic type instantiated by a domain entity 

is neither declared nor derived, a warning is given to the modeler. 

Thus, to accomplish the requirements defined in Section 2.4 our approach defines an 

OWL vocabulary representing MLT and implements MLT rules in SPARQL. The choice 

for MLT is due to the fact MLT met these requirements. As discussed in Section 4.5, we 

developed this approach into an application, which receives an OWL model as input and 



60 

run MLT rules, in order to check consistency and to derive knowledge. With this 

application, we are now able to assess a real knowledge base for its conformance with 

MLT rules. 

We have refrained from an annotation-based approach such as that of OWL FA [43] and 

PURO [12]). An annotation-based approach deviates from the standard use of rdf:type for 

representing instantiation, and a key aspect of the multi-level model ends up in 

annotations outside the model. Moreover, the OWL specification [4] recommends that 

metamodeling should be done through punning, while annotations should be used when 

the added information is not part of the domain (e.g. the date that John included an 

information). The use of punning makes a model incompatible with OWL-DL and 

unfortunately DL-reasoners do not support reasoning on cross-level constraints (punning 

included). Thus, it is not possible to run MLT rules through an existing DL-reasoner. 

Moreover, the contextual semantics [10] of OWL also makes impossible to represent 

MLT rules in SWRL [44] (Semantic Web Rule Language), since it is based on OWL DL. 

Therefore, considering our focus on supporting expressive multi-level modeling, since the 

DL-reasoners do not support the expressivity needed to represent the rules of MLT our 

approach relies on SPARQL queries to check constraints and to derive information. 



61 

5 VALIDATING THE APPROACH WITH TAXONOMIC 

HIERARCHIES FROM WIKIDATA  

To provide empirical evidence of the applicability of MLT-OWL approach to assess real-

world content dealing with multiple classification levels, in this chapter we apply this 

approach to assess the Wikidata content from the perspective of multi-level modeling. 

First, we present our considerations of semantic correspondence between Wikidata 

properties and MLT relations, and the problems found in the multi-level taxonomic 

hierarchies in Wikidata (Section 5.1). Then, we present some anti-patterns that occur in 

Wikidata and that violate the aforementioned stratification into classification levels 

(Section 5.2). Further, we show how the MLT approach can be used for avoiding these 

anti-patterns and how it can be used in valid ontologies (Section 5.3). Finally, we present 

some conclusions of the usage of MLT-OWL approach in Wikidata content (Section 5.4). 

5.1 A DIAGNOSIS OF MULTI-LEVEL TAXONOMIC HIERARCHIES IN WIKIDATA  

The definition of instance of provided in Wikidata is informal and silent about its formal 

logic properties (symmetry, reflexivity and transitivity). However, observing its use in 

Wikidata content, we have concluded that its purpose is similar to the iof relation of MLT: 

to denote that a type applies to an element. Therefore, in order to apply MLT to validate 

taxonomic hierarchies in Wikidata, we consider the semantics of its instance of property to 

correspond to that of the iof relation in MLT. Further, subclass of provided in Wikidata is 

characterized as transitive and asymmetric (antisymmetric and irreflexive). We consider 

the semantics of the subclass of property in Wikidata to correspond to that of the proper 

specialization relation in MLT. The establishment of the semantics of instance of and subclass 

of properties in terms of MLT allow us to use the MLT rules to validate Wikidata content.  

Considering the chain of instantiations in Figure 3-7 (page 41) we can clearly detect a 

notion of levels: Cecil, Organism, Taxon and Taxonomic Rank are at different levels of 

classification. If we assume Cecil as an instance of Individual (of MLT), since we know that it 
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has no instances, we can apply the MLT basic pattern (Theorems T7, T8 and T9, Table 

2-1) to deduce new information from the diagram in Figure 3-7. First, we can derive that 

Panthera Leo and all its super classes are both instances of 1stOT (from Axiom A3) and then 

subclasses of Individual (from Theorem T7). Consequently, the classifiers of Organism types 

(e.g., Taxon, Domain, Species) are both instances of 2ndOT (from Axiom A4) and then 

subclasses of 1stOT (from Theorem T8). Finally, Taxonomic Rank is derived as instance of 

3rdOT (from Axiom A5) and then subclass of 2ndOT (from Theorem T9).  

The example of biological taxonomic rank illustrated in Figure 3-7 conforms to the 

stratification underlying MLT rules, following its basic pattern. However, there is no 

automated support or guidelines to prevent a Wikidata contributor from violating this 

conformant structure. For example, a clearly incorrect modification introducing a new 

entity (e.g. “Simba”) which is both an instance of Panthera Leo and Species would go 

undetected, and would result in an inconsistent hierarchy. In fact, we have observed many 

occurrences of such problematic hierarchies in current Wikidata content. 

For example, take Wikidata information about Tim Berners-Lee and his professional 

occupation (a fragment of which is depicted in Figure 5-1). Tim is considered instance of 

Computer Scientist. In its turn, Computer Scientist is indirectly subclass of Profession. Thus, we can 

conclude Tim is an instance of Profession(!), which clearly violates our sense of what a 

Profession is. Formally, these statements could be considered inconsistent in the light of 

MLT: since instance of is anti-transitive (Theorem T6, Table 2-1) and Computer Scientist is 

instance of Profession, Tim cannot be instance of Profession. 

 

Figure 5-1. Wikidata information about Tim Berners-Lee and his professional occupation 
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Now, considering Tim Berners-Lee as an Individual (of MLT), since it has no instances, we 

can apply the MLT basic pattern to deduce information. First, we conclude that Computer 

Scientist and all its super classes are both instances of 1stOT (from Axiom A3) and subclasses of 

Individual (from Theorem T7). Consequently, since instances of Profession are instances of 

1stOT, Profession is both instance of 2ndOT (from Axiom A4) and subclass of 1stOT (from 

Theorem T8). Here, we realize that Profession is instance of both 1stOT and 2ndOT, which is 

invalid by A6 (see Table 2-1). 

We have observed similar problems concerning multiple levels of classification in other 

domains represented in Wikidata, such as transport, software and sports. In section 5.2, 

we present the results of some queries we have submitted to Wikidata in order to detect 

potential problematic scenarios. We highlight some issues identified and discuss them in 

the light of MLT. 

5.2 APPROACH: DETECTION OF ANTI-PATTERNS 

In order to obtain some indication of the use of multi-level hierarchies in Wikidata, we 

have queried for three simple cases of anti-patterns that violate the aforementioned 

stratification. Figure 5-2 illustrates Anti-Pattern 1 (AP1) that looks for pairs of items (A, 

Z) such that one (Z) is simultaneously a subclass of and an instance of the other (A). This 

anti-pattern can appear under many configurations, i.e., one (Z) can be a direct subclass of 

the other (A) or there may be a chain of subclass of properties between the involved items. 

The fragment illustrated in Figure 5-1 (concerning Tim Berners-Lee’s professional 

occupation) includes two occurrences of this anti-pattern with chains of subclass of 

properties of length 2 and 3. Regardless of the size of this chain, the occurrence of this 

pattern prevents stratification into classification levels, and creates a formal contradiction: 

classes A and Z would be simultaneously at the same level (because they are related by 

specialization) and at adjacent levels (because they are related by instantiation). Table II-1 

(Appendix II) shows the SPARQL query associated to AP1 that considers a transitive 

closure for subclass of statements. For this anti-pattern, we have found 14320 occurrences, 

covering many domains, such as software, sports, biology, food, profession. 
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Figure 5-2. Illustration of Anti-Pattern 1 

Figures Figure 5-3 and Figure 5-4 show examples of problematic fragments identified 

through Anti-Pattern 1. Figure 5-3 shows that earthquake (Q7944) is both instance of and 

subclass of natural disaster (Q8065). This fragment seems to have an unclear interpretation. 

Does the Wikidata contributor consider earthquake to be a natural disaster or a special type 

of natural disaster?  

 

Figure 5-3. Scenario about earthquake found in Wikidata for AP1 

This lack of clarity that results from the occurrence of AP1 has practical implications for 

the properties of the items involved. For instance, considering that instances of natural 

disaster are specific events (Q1190554), i.e., specific occurrences of natural disasters, then 

these instances may be represented as having a point in time feature (P585). For example, 

we can say that the 1985 Mexico City earthquake took place on September 19th, 1985. 

However, since earthquake is also declared to be an instance of natural disaster and, thus, an 

instance of event, earthquake itself could also be associated to a point in time. Notice, however, 

that earthquake is more naturally thought of as a subclass of natural disaster, i.e., as a specific 

kind of natural disaster, and a specific kind of event. But, in this case, it would be 
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problematic to attribute a specific point in time to this particular class of events. So, in this 

example, it seems that the undesired relation is the instance of relation between earthquake 

and natural disaster.  

Analogously, Figure 5-4 shows that Egg waffle (Q837620) is both instance of and indirectly a 

subclass of food (Q375). In this case, it is unclear whether an instance of food, waffle and Egg 

waffle would represent a particular portion of food (the egg waffle John had for breakfast), 

or a kind of food (such as waffle or Egg waffle).  

 

Figure 5-4. Scenario about egg waffle found in Wikidata for AP1 

A second anti-pattern (AP2) is illustrated in Figure 5-5. In this case, we have that an item 

(C) has two direct super classes (A and B) such that one of the super classes is an instance 

of the other (B is instance of A). Similarly to AP1, the occurrences of AP2 present logical 

inconsistencies that rise from the violation of the stratification into classification levels. In 

this case, all instances of C are also instances of A and B. However, instances of B cannot be 

instances of A, since B is itself instance of A. Table II-1 (Appendix II) presents the SPARQL 

query that can be used to detect occurrences of AP2. By running this query, we have 

found 257 occurrences, covering domains, such as diseases, biology, food and colors.  

 

Figure 5-5. Illustration of Anti-Pattern 2 
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Figure 5-6 illustrates that crawler excavator (Q5182961) is declared to be a subclass of both 

excavator and heavy equipment, and excavator (Q182661) is an instance of heavy equipment 

(Q874311).  

 

Figure 5-6. Scenario about excavator found in Wikidata for AP2 

Finally, a third anti-pattern (AP3) is illustrated in Figure 5-7. This anti-pattern represents 

cases in which the anti-transitivity of the instance of relation is violated, making 

stratification unfeasible. In the case depicted in Figure 5-7, C would have to be 

simultaneously one and two classification levels below A. The query shown in Table II-1 

(Appendix II) can be used to detect instances of AP3. By running it, we have found 6708 

occurrences of AP3. 

 

Figure 5-7. Illustration of Anti-Pattern 3 

Figure 5-8 illustrates an example of AP3. Central Park (Q160409), the public park at the 

center of Manhattan in New York City, is considered an instance of both urban park 

(Q22746) and park (Q22698), while urban park is also an instance of park. As a subclass of 

geographic location (Q2221906), park defines the property coordinate location (P625). Thus, we 

could state that Central Park and urban park have values for this, which is plausible for 

Central Park that has coordinate location 40°46'57"N, 73°57'58"W. In this, it sounds 
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problematic to attribute a value of coordinate location to urban park. So, in this example, it 

seems that the undesired relation is the instance of relation between urban park and park, 

which should possibly be replaced by a subclass of relation. This anti-pattern often occurs 

in chains with terms such as: award (Q618779), Chinese surname (Q1093580), family 

name (Q101352), Voivodeship road (Q1259617), Mikroregion (Q11781066) and natural 

region (Q1970725).  

 

Figure 5-8. Scenario about urban park found in Wikidata for AP3 

Table 5-1 summarizes the results we have obtained from our queries into the Wikidata 

simplified dump for AP1 and AP2. The total number of classes involved in taxonomic 

hierarchies is 337102. This number is obtained by counting the items that are either a 

subject or an object in “subclass of” statements. From this total number of items, 17819 

classes are also the object of “instance of” statements, which means they are 

simultaneously classes and instances of other classes, and thus involved in hierarchies 

spanning more than one level of classification (our target classes for this investigation). 

From this number of classes, we have found 15177 classes involved in AP1 (85%) and 

441 classes involved in AP2 (2.5%). Thus, a significant percentage of the classes involved 

in hierarchies spanning more than one level of classification violate the stratification of 

classification levels. 

Table 5-1. Results for AP1 and AP2 

Number of classes in any taxonomic hierarchy 337,102 

Number of classes in taxonomic hierarchies spanning more than one level 17,819 

Number of classes involved in AP1 15,177 

Number of classes involved in AP2 441 
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Table 5-2 summarizes the results for AP3. Here, we contrast: (i) the total number of items 

in chains of instantiation with three levels (items A, B, and C, where C is an instance of B 

and B is an instance of A) with: (ii) the number of those items in occurrences of AP3, in 

which the third item in the chain (C) is also an instance of the first item in the chain (A), 

violating the stratification. Only 0.1% of the items that occur in these instantiation chains 

violate the stratification. The relatively low number of occurrences of this anti-pattern 

when contrasted with AP1 and AP2 corroborates our intuition that it is the combined use 

of sub classification and instantiation (a characteristic of AP1 and AP2) that is most 

challenging to Wikidata contributors. 

Table 5-2. Results for AP3 

Number of items in chains of instantiation with three items 6,963,059 

Number of items in AP3 in these chains 7,082 

5.3 APPLYING MLT RULES TO WIKIDATA CONTENT 

Here, we aim to show how the proposed MLT-OWL approach is capable of preventing a 

number of issues found in Wikidata multi-level taxonomical hierarchies. As reported in 

Section 5.2, there are over 22,000 occurrences of three anti-patterns related to multi-level 

modeling in current Wikidata content; all these occurrences would have been prevented 

by using MLT-OWL. We show how each of three anti-patterns can be detected using 

MLT-OWL. In addition, we demonstrate how MLT-OWL approach could be used to 

complete valid models using fragments of Wikidata content. 

The full set of integrity constraints and derivation rules, and the MLT vocabulary 

(described in Section 4.1) are combined in a tool, described in section 4.5. The tool 

receives as input an OWL file describing a domain ontology. It detects violations of MLT 

rules and, in the case of valid models, it produces an OWL output file containing the 

original domain ontology plus derived information following MLT rules.  

The following subsections are organized as follows: subsection 5.3.1 shows how the 

problems detected in the example ontologies extracted from Wikidata content (presented 
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in Section 5.2) could be avoided through the analyze of MLT-OWL tool (which detects 

the multi-level modeling problems); and subsection 5.3.2 presents other examples in 

which the tool is used to derive additional information, based on the MLT rules, from 

valid domain ontologies. 

5.3.1 Examples on Avoiding Anti-Patterns 

Tim Berners-Lee’s profession  

In Figure 5-1 we present the example about Tim Berners-Lee profession, which is referent 

to AP1. As we said, to make MLT rules useful, at least one entity of the domain model 

must be instance of or subclass of the MLT basic types (otherwise, only IC3 and IC4 will be 

checked). Then, in addition to the information presented in the example, we added the 

information that Tim Berners-Lee is an instance of mlt:TokenIndividual, since we know that 

he is a concrete individual and he has no instances. This example is serialized in the file 

named tim-berners-lee-profession.owl and it is available at [40] and at Appendix III. Selecting 

the file containing this example, our implementation runs the MLT derivation rules and it 

shows the messages presented in Figure 5-9. 
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Figure 5-9. Derivation messages for the example of Tim Berners-Lee profession from Wikidata 

Further, our implementation runs the MLT integrity constraints and it shows the 

messages presented in Figure 5-10. Note that there are occurrences of inconsistency from 

three integrity constraints. In Figure 5-9, we have from DR2 (A3) that ComputerScientist 

and Profession are derived as instances of mlt:1stOrderClass, since they have a 

mlt:TokenIndividual as its instance (Tim Berners-Lee). However, then, we have from DR1 

(A3) that ComputerScientist is an instance of mlt:TokenIndividual, since it is an instance of 

Profession (which is an instance of mlt:1stOrderClass). This scenario is not allowed according 

to Integrity Constraint IC1 (Axiom A1), where instances of mlt:TokenIndividual cannot 

have instances. 

In the second occurrence of inconsistency, the message shows that this model violates 

IC4 (T6), about stratification. Note that Tim is an instance of Computer Scientist and, 

transitively, he is also instance of Profession. However, Computer Science also is instance of 

Profession. Then, IC4 is useful to avoid AP3. 

Finally, this model also violates Theorem T4. This is due to the fact that the basic types of 

MLT are disjoint (Theorem T4). Thus, since ComputerScientist, Scientist, Profession and Creator 
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are derived as instances of more than one MLT basic type, this model is inconsistent 

according to MLT. 

 

Figure 5-10. Inconsistency messages for the example of Tim Berners-Lee profession from Wikidata 

Earthquakes 

In Figure 5-4 we present the example about earthquakes, which is referent to AP1. In 

addition to the information presented in the example, we added the information that 

earthquake is an instance of mlt:1stOrderClass. This example is serialized in the file named 

earthquakes.owl and it is available at [40] and at Appendix III. Selecting the file containing 

this example, our implementation shows the messages presented in Figure 5-11. Note that 
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there are occurrences of inconsistency from one integrity constraint. Since earthquake and 

natural disaster are derived as instances of more than one MLT basic type, this model 

violates Theorem T4 and it is inconsistent according to MLT. 

 

Figure 5-11. Derivation messages for the example of earthquakes from Wikidata 

Excavator 

In Figure 5-6 we present the example about excavator, which is referent to AP2. In 

addition to the information presented in the example, we added the information crawler 

excavator is an instance of mlt:1stOrderClass. This example is serialized in the file 

excavator.owl and it is available at [40] and at Appendix III. Selecting the file containing this 

example, our implementation shows the messages presented in Figure 5-12. Note that 

there are occurrences of inconsistency from one integrity constraint. Since crawler excavator 

is derived as instance of more than one MLT basic type, this model violates Theorem T4 

and it is inconsistent according to MLT. 
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Figure 5-12. Derivation messages for the example of excavators from Wikidata 

Urban Park 

In Figure 5-8 we present the example about the Central Park, which is referent to AP3. In 

addition to the information presented in the example, we added the information that 

Central Park is an instance of mlt:TokenIndividual. This example is serialized in the file 

named urban-park.owl and it is available at [40] and at Appendix III. Selecting the file 

containing this example, our implementation runs the MLT derivation rules and it shows 

the messages presented in Figure 5-13.  

 

Figure 5-13. Derivation messages for the example of urban parks from Wikidata 

Further, our implementation runs the MLT integrity constraints and it shows the 

messages presented in Figure 5-14. Note that there are occurrences of inconsistency from 
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three integrity constraints. We have, in Figure 5-13, that from DR2 (A3) that urban park 

and park are derived as instances of mlt:1stOrderClass, since they have a mlt:TokenIndividual 

as its instance (Central Park). However, from DR1 (A3) we have that urban park is an 

instance of mlt:TokenIndividual, since it is an instance of park. This scenario is not allowed 

according to IC (A1), where instances of mlt:TokenIndividual cannot have instances.  

In the second occurrence of inconsistency, Figure 5-14 shows that this model violates IC4 

(T6), about stratification. Note that Central Park is an instance of both park and urban park, 

and urban park is also an instance of park.  

Finally, this model also violates Theorem T4, this is due to the fact that the basic types of 

MLT are disjoint. Thus, since urban park, Central Park and park are derived as instances of 

more than one MLT basic type, this model is inconsistent according to MLT 

 

Figure 5-14. Inconsistency messages for the example of urban parks from Wikidata 

5.3.2 Example on Deriving Data from Valid Models 

In Figure 3-7, we present the example about Cecil (the lion) which is available at the 

Wikidata content. For this example, we introduced the information that Cecil is an 
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instance of mlt:TokenIndividual, since we know that he is a concrete individual and he has 

no instances. Moreover, we also introduced in this example the MLT structural relations 

isSubordinateTo and partitions, as we exemplified in Figure 4-2. This example is serialized in 

the file named biological-taxonomy.owl and it is available at [40] and at Appendix III. 

Selecting the file containing this example, our implementation shows the messages 

presented in Figure 5-15. 

Note that, as said in Section 4.1, this is an example of a valid model. From the 

information that Cecil is an instance of mlt:TokenIndividual, all other entities are derived as 

subclasses of or instances of MLT basic types. Further, from D8, which defines mlt:partitions, 

the tool derives that PantheraSpecies is related to Panthera through both 

mlt:completelyCategorizes and mlt:disjointlyCategorizes.  

 

Figure 5-15. Derivation messages for the example of Biological Taxonomy with MLT relations 

5.4 CONCLUDING REMARKS 

We have analyzed Wikidata content from the perspective of multi-level modeling. We 

have observed a number of occurrences of violations of the stratification of levels in 

Wikidata, which indicate that some support for multi-level modeling could be beneficial 

in order to support contributors in the collaborative creation of multi-level taxonomies. 
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The queries we have used are the first step in automating this support. In addition to 

identifying possible problematic occurrences, we understand that more methodological 

guidance is required for contributors to understand the challenges in multi-level 

taxonomies and in particular to distinguish clearly between instantiation and 

specialization.  

Future work is required in order to assess whether the items of “class” (Q16889133) and 

“metaclass” (Q19361238) could be used to provide more explicit support for multi-level 

modeling in Wikidata. In any case, we have found that these items are rarely employed, 

and that they seem limited by a three level system (instances, class and metaclass). In the 

biological taxonomy domain, we see that a fourth level is required (where “Taxonomic 

Rank” lies).  
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6 CONCLUSIONS 

In this chapter, we present the conclusions of this thesis. In particular, we discuss our 

contributions (Section 6.1), the limitations of our approach (Section 6.2) and future work 

pointing directions for improvements of this research (Section 6.3). 

6.1 CONTRIBUTIONS 

Multi-level modeling addresses phenomena dealing with a number of complex notions 

and subtle relations that cross multiple levels of instantiation. These phenomena are 

ubiquitous in application domains, ranging from biology, to software engineering, from 

enterprise modeling to product classification [20]. Aside from the recurrence of these 

phenomena in practical cases, what also makes it of great importance is the fact that 

multi-level modeling seems to pose a significant challenge to modelers. As previously 

mentioned, in [14] (discussed in Chapter 5), we have empirically analyzed the presence of 

three anti-patterns related to multi-level modeling in Wikidata, finding over 22,000 

occurrences of these anti-patterns. In fact, for one these anti-patterns, we found its 

manifestation in 85% of the cases of taxonomic hierarchies spanning more than one level 

in Wikidata! That study clearly indicates that for complex modeling phenomena such as 

these, an expressive engineering support must be offered for vocabulary engineers as well 

as Semantic Web application developers. In Chapter 5, we also provide a technical report 

showing how each of these anti-patterns found in Wikidata could be avoided by using the 

artifact proposed in this thesis, demonstrating the relevance of MLT-OWL using real-

world data.  

The recognition of the importance of offering support for multi-level modeling led many 

researchers in the Semantic Web community to propose solutions addressing this issue. 

Some prominent results in that respect are reviewed in this thesis, namely, RDFS, 

RDFS(FA), metamodeling (punning) in OWL, OWL FA, PURO and Wikidata. We have 

shown in our analysis of these related works that all of them fail to fully support the 

identified modeling desiderata.  
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We adopted as a basis for our work a theoretically sound and well-tested formal theory 

(MLT) that was shown to be able to address all these multi-level modeling requirements. 

We then decided to offer a set of engineering tools that together would implement the 

modeling distinctions and axiomatization of this theory. These tools include: (i) an OWL 

vocabulary (capturing the formal relations put forth by this theory); (ii) a set of OWL 

axioms that would capture derivation and integrity rules over this vocabulary put forth by 

the theory; and (iii) a set of SPARQL queries that would capture those derivation and 

integrity rules put forth by this theory but that could not be represented in OWL directly. 

We strongly believe that these tools amount to an important methodological and 

computational contribution for guiding modelers to produce sound multi-level models in 

the Semantic Web.  

6.2 LIMITATIONS 

Currently, our approach only checks MLT rules in batch style. Alternately, some of the 

rules could be checked in real-time if embedded properly in a modeling environment. A 

real-time verification strategy could bring some benefits to both the usability and 

performance of the approach. Concerning the usability, if the problems are identified at 

the moment they arise it is easier to the user to understand and fix them. Further, the 

strategy of facing the users with the errors in real-time could help them to learn the MLT 

rules, avoiding thus the recurrence of errors. Concerning performance issues, the 

execution time and the amount of memory required to execute queries drastically 

increases according to the number of triples in the dataset. This problem is highlighted in 

queries using transitive closure (such as DR9, DR18, DR20 and DR21 in Table 4-3). 

Using a real-time strategy, we could verify the impact of an inserted statement considering 

only the portion of data affected by it, avoiding the need of a complete verification. 

Applying this strategy, the execution time of the complete verification would be split and 

the required amount of memory would decrease. Thus, a natural extension to this work 

could be to implement a real-time strategy to check MLT rules. Such strategy could be 

implemented embedding the MLT rules in a Semantic Web modeling environment, such 
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as Protégé [45] or Wikidata [15], or implementing from scratch a new modeling 

environment which incorporates these rules. 

6.3 FUTURE WORK 

The reason why these phenomena are recurrent in a large variety of practical application 

domains is because they are genuine ontological phenomena (from a philosophical point 

of view) [30]. As such, we advocate that truly ontological considerations cannot be 

eschewed from a fuller analysis of multi-level modeling. Additionally, some initiatives 

have demonstrated that the systematic evaluation of the ontological consistency of 

Semantic Web ontologies and vocabularies can greatly benefit from the use of 

foundational distinctions and axioms ([46], [47]). In order to leverage the benefits of both 

a foundational ontology and a multi-level modeling theory, in [48] Guizzardi et al. have 

already combined MLT and the foundational ontology UFO [22]. A natural extension of 

this work is to enrich the set of engineering tools proposed here with support for the 

ontological distinctions and axiomatization of UFO (e.g., dealing with temporal aspects of 

anti-rigid concepts). Incorporating UFO in our approach would also lead to the need of 

incorporating MLT aspects in the current transformations from OntoUML (a language 

for ontology-driven conceptual modeling based on UFO) to OWL (such as [49], [50]). 

Moreover, this work could be extended to cover the MLT accounts for attributes and 

relationships reflecting a mechanism that has been called “deep instantiation” in the 

multi-level modeling literature. An attribute such as the height of a person or a relation of 

friendship in a social network, has effects only at the immediately lower level, complying 

to what has been called “shallow instantiation” [8]. MLT intends to cover attributes and 

relationships of higher-order types that aim at capturing regularities over instances of its 

instances. Following [48] these attributes are classified as regularity attributes. For example, 

consider we would like to state that all instances of iPhone 5 must have screen size equals to 

4 inches. Considering that Mobile Phone Model defines the attribute model screen size and its 

instance iPhone 5 defines the attribute screen size, we could state that the attribute model 

screen size somehow constrains the attribute screen size. Thus, if iPhone 5 has model screen size 
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equals to 4 inches, it means that all instances of iPhone 5 must have screen size equals to 4 

inches. The representation of regularity attributes, and the constraints that arise from the 

use of regularity attributes are not yet addressed in the present work. 

Finally, since we rely minimally on inferential mechanisms for OWL, the approach can be 

easily applied to RDF(S). In that case, the MLT basic types can be represented as 

instances of rdfs:Class (instead of owl:Class) and MLT structural relations can be 

represented as instances of rdf:Property (instead of owl:ObjectProperty). We intend to report 

on a version of the vocabulary for RDF(S) in order to benefit a wider range of users. 
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APPENDIX I - THE MLT VOCABULARY FOR THE 

SEMANTIC WEB 

@prefix mlt: <http://www.nemo.inf.ufes.br/mlt#> . 
@prefix owl: <http://www.w3.org/2002/07/owl#> . 
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> . 
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . 
 
mlt:TokenIndividual rdf:type owl:Class ; 

owl:equivalentClass [  
rdf:type owl:Restriction ; 
owl:onProperty [  

owl:inverseOf mlt:isPowertypeOf 
  ] ; 
  owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ; 

owl:onClass mlt:1stOrderClass 
] ; 

 rdf:type mlt:1stOrderClass . 
 
mlt:1stOrderClass rdf:type owl:Class ; 
 owl:equivalentClass [  

rdf:type owl:Restriction ; 
owl:onProperty [  

owl:inverseOf mlt:isPowertypeOf 
] ; 
owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ; 
owl:onClass mlt:2ndOrderClass 

] ; 
       rdfs:subClassOf rdfs:Class , 

[ rdf:type owl:Restriction ; 
owl:onProperty mlt:isPowertypeOf ; 
owl:maxQualifiedCardinality "1"^^xsd:nonNegativeInteger ; 
owl:onClass mlt:TokenIndividual 
] ; 

rdf:type mlt:2ndOrderClass ; 
mlt:isPowertypeOf mlt:TokenIndividual . 

 
mlt:2ndOrderClass rdf:type owl:Class ; 

owl:equivalentClass [  
rdf:type owl:Restriction ; 
owl:onProperty [  

owl:inverseOf mlt:isPowertypeOf 
] ; 
owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ; 
owl:onClass mlt:3rdOrderClass 

] ; 
rdfs:subClassOf rdfs:Class , 

[ rdf:type owl:Restriction ; 
owl:onProperty mlt:isPowertypeOf ; 
owl:maxQualifiedCardinality "1"^^xsd:nonNegativeInteger ; 
owl:onClass mlt:1stOrderClass 
] ; 

rdf:type mlt:3rdOrderClass ; 
mlt:isPowertypeOf mlt:1stOrderClass . 

 
mlt:3rdOrderClass rdf:type owl:Class ; 

rdfs:subClassOf rdfs:Class , 
[ rdf:type owl:Restriction ; 
owl:onProperty mlt:isPowertypeOf ; 
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owl:maxQualifiedCardinality "1"^^xsd:nonNegativeInteger ; 
owl:onClass mlt:2ndOrderClass 
] ; 

mlt:isPowertypeOf mlt:2ndOrderClass . 
mlt:mltProperty rdf:type owl:ObjectProperty ; 
 
mlt:intraLevelProperty rdf:type owl:ObjectProperty ; 

rdfs:subPropertyOf mlt:mltProperty . 
 
mlt:crossLevelProperty rdf:type owl:ObjectProperty ; 

rdfs:subPropertyOf mlt:mltProperty . 
 
mlt:isSubordinatedTo rdf:type owl:ObjectProperty ; 

rdfs:subPropertyOf mlt:intraLevelProperty ; 
 
mlt:isPowertypeOf rdf:type owl:ObjectProperty ; 

rdfs:subPropertyOf mlt:crossLevelProperty ; 
 
mlt:categorizes rdf:type owl:ObjectProperty ; 

rdfs:subPropertyOf mlt:crossLevelProperty ; 
 
mlt:completelyCategorizes rdf:type owl:ObjectProperty ; 

rdfs:subPropertyOf mlt:categorizes ; 
owl:propertyDisjointWith mlt:incompletelyCategorizes . 

 
mlt:disjointlyCategorizes rdf:type owl:ObjectProperty ; 

rdfs:subPropertyOf mlt:categorizes ; 
owl:propertyDisjointWith mlt:overlappinglyCategorizes . 

 
mlt:incompletelyCategorizes rdf:type owl:ObjectProperty ; 

rdfs:subPropertyOf mlt:categorizes . 
 
mlt:overlappinglyCategorizes rdf:type owl:ObjectProperty ; 

rdfs:subPropertyOf mlt:categorizes ; 
 
mlt:partitions rdf:type owl:ObjectProperty ; 

rdfs:subPropertyOf mlt:completelyCategorizes,  
mlt:disjointlyCategorizes . 

 
[  

rdf:type owl:AllDisjointClasses ; 
owl:members (  

mlt:TokenIndividual 
mlt:1stOrderClass 
mlt:2ndOrderClass 
mlt:3rdOrderClass 
) 

] . 
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APPENDIX II - SPARQL QUERIES FOR WIKIDATA ANTI-

PATTERNS 

To access data from Wikidata, we used the Simplified and derived RDF dumps of Wikidata 

from January 4th, 2016, available at RDF Exports from Wikidata3. Moreover, we have 

queried these using SPARQL, where instance of and subclass of are represented as rdf:type and 

rdfs:subClassOf, respectively. Note that, in this dump, whenever an item is subclass of 

another item or when it has subclasses or instances, then it is declared to be an instance of 

owl:Class (through the rdf:type property). 

Note that since we are concerned only with the instance of properties occurring between 

items in Wikidata, the SPARQL query ignores the triples that declare resources to be 

instances of owl:Class; these are artificial triples introduced in the dump as part of the RDF 

representation strategy and do not correspond to instance of statements in Wikidata. 

Table II-1. SPARQL query for Wikidata Anti-Patterns 

Anti-Pattern SPARQL query 

AP1 

SELECT DISTINCT *  
WHERE { 
  ?Z rdf:type ?A .  
  ?Z rdfs:subClassOf+ ?A .  
} 

AP2 

SELECT DISTINCT *  
WHERE { 
  ?B rdf:type ?A .  
  ?C rdfs:subClassOf ?A .  
  ?C rdfs:subClassOf ?B .  
} 

AP3 

SELECT DISTINCT *  
WHERE { 
  ?C rdf:type ?B .  
  ?B rdf:type ?A .  
  ?C rdf:type ?A .  
  filter(?A != owl:Class) .  
} 

                                              
3 http://tools.wmflabs.org/wikidata-exports/rdf/ 
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APPENDIX III - OWL FILES FOR EMPIRICAL 

EVALUATION 

TIM BERNERS-LEE PROFESSION 

@prefix wd: <http://www.wikidata.org/entity/> . 
@prefix mlt: <http://www.nemo.inf.ufes.br/mlt#> . 
@prefix owl: <http://www.w3.org/2002/07/owl#> . 
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . 
 
wd:Profession rdf:type owl:Class . 
 
wd:Creator rdf:type owl:Class ; 
 rdfs:subClassOf wd:Profession . 
 
wd:Scientist rdf:type owl:Class, 
   wd:Profession; 
 rdfs:subClassOf wd:Creator . 
 
wd:ComputerScientist rdf:type owl:Class, 

wd:Profession; 
 rdfs:subClassOf wd:Scientist . 
 
wd:TimBernersLee rdf:type mlt:TokenIndividual , 
   wd:ComputerScientist . 

EARTHQUAKES 

@prefix wd: <http://www.wikidata.org/entity/> . 
@prefix mlt: <http://www.nemo.inf.ufes.br/mlt#> . 
@prefix owl: <http://www.w3.org/2002/07/owl#> . 
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . 
 
wd:earthquake rdf:type owl:Class , 
   mlt:1stOrderClass , 
                     wd:natural_disaster; 

rdfs:subClassOf wd:natural_disaster . 
 
wd:natural_disaster rdf:type owl:Class . 
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EXCAVATOR 

@prefix wd: <http://www.wikidata.org/entity/> . 
@prefix mlt: <http://www.nemo.inf.ufes.br/mlt#> . 
@prefix owl: <http://www.w3.org/2002/07/owl#> . 
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . 
 
wd:crawler_excavator rdf:type owl:Class ; 

rdfs:subClassOf wd:excavator , 
  wd:heavy_equipment . 

 
wd:excavator rdf:type owl:Class, 

mlt:1stOrderClass , 
                     wd:heavy_equipment . 
 
wd:heavy_equipment rdf:type owl:Class . 

URBAN PARK 

@prefix wd: <http://www.wikidata.org/entity/> . 
@prefix mlt: <http://www.nemo.inf.ufes.br/mlt#> . 
@prefix owl: <http://www.w3.org/2002/07/owl#> . 
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . 
 
wd:park rdf:type owl:Class . 
 
wd:urban_park rdf:type owl:Class, 
   wd:park . 
 
wd:CentralPark rdf:type mlt:TokenIndividual , 

wd:park , 
wd:urban_park . 
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BIOLOGICAL TAXONOMY 

@prefix wd: <http://www.wikidata.org/entity/> . 
@prefix mlt: <http://www.nemo.inf.ufes.br/mlt#> . 
@prefix owl: <http://www.w3.org/2002/07/owl#> . 
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> . 
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . 
 
wd:TaxonomicRank rdf:type owl:Class . 
 
wd:Genus rdf:type owl:Class , 
   wd:TaxonomicRank . 
 
wd:Species rdf:type owl:Class, 

wd:TaxonomicRank ; 
mlt:isSubordinatedTo wd:Genus . 

 
wd:Organism rdf:type owl:Class . 
 
wd:Panthera rdf:type owl:Class, 
   wd:Genus ; 

rdfs:subClassOf wd:Organism . 
 
wd:PantheraLeo rdf:type owl:Class, 

wd:PantheraSpecies; 
rdfs:subClassOf wd:Panthera . 

 
wd:PantheraOnca rdf:type owl:Class ; 

rdfs:subClassOf wd:Panthera . 
 
wd:PantheraTigris rdf:type owl:Class ; 

rdfs:subClassOf wd:Panthera . 
 
wd:PantheraSpecies rdf:type owl:Class ; 

rdfs:subClassOf wd:Species ; 
mlt:partitions wd:Panthera . 

 
wd:Cecil rdf:type mlt:TokenIndividual , 

wd:PantheraLeo . 


