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Abstract. In recent years, there has been a growing interest in the use of ref-
erence conceptual models to capture information about complex and sensitive
business domains (e.g., finance, healthcare, space). These models play a funda-
mental role in different types of critical semantic interoperability tasks. There-
fore, it is essential that domain experts are able to understand and reason with
their content. In other words, it is important for these reference conceptual mod-
els to be cognitively tractable. This paper contributes to this goal by proposing a
model clustering technique that leverages the rich semantics of ontology-driven
conceptual models (ODCM). In particular, the technique employs the notion of
Relational Context to guide automated model breakdown. Such Relational Con-
texts capture all the information needed for understanding entities “qua players
of roles” in the scope of an objectified (reified) relationship (relator).

Keywords: Conceptual Model Clustering, Complexity Management in Concep-
tual Modeling

1 Introduction

In recent years, there has been a growth in the use of reference conceptual models, in
general, and domain ontologies, in particular, to capture information about complex and
critical domains [11]. However, as the complexity of these domains grows, often so does
the sheer size and complexity of the artifacts that represent them. Moreover, in sensitive
domains (e.g., finance, healthcare), these models play a fundamental role in different
types of critical semantic interoperability tasks, therefore, it is essential that domain
experts are able to understand and accurately reason with the content of these models.
The human capacity for processing unknown information is very limited, containing
bottlenecks in visual short-term memory and causing problems to identify and hold
stimuli [18]. Therefore, there is an evident need for developing adequate complexity
management mechanisms for reference conceptual models.

One type of such complexity management mechanisms is conceptual model modu-
larization or Conceptual Model Clustering (henceforth CMC) [1]. CMC is the process



by which a model is fragmented into smaller interconnected parts [17], each of which
can be more easily manipulated by a model user than the entire model. The greatest
challenge in CMC is the process for module extraction, namely, coming up with ade-
quate criteria for dividing the model into modules that ease model understanding.

Traditionally, different techniques have been used for module extraction (e.g., [1,
16]). However, almost the totality of these approaches address modularization in lan-
guages that are ontologically-neutral [14] such as UML, ER diagrams or OWL* .While
these languages may have a well-defined abstract syntax and a formal (logical) seman-
tics, in general, they lack an ontological semantics. Consequently, the modularization
techniques developed for them rely on criteria that leverage almost exclusively on the
syntactical properties of the models, typically, topological ones [28].

In contrast, ontology-driven conceptual modeling (ODCM) languages are systemat-
ically designed to conform to an underlying ontological theory. In particular, an ODCM
language contains exactly the modeling primitives that are necessary to represent the
ontological distinctions put forth by its underlying ontology. ODCM approaches have
enjoyed an increasing adoption by the Conceptual Modeling community as a num-
ber of independent results consistently show their benefits for improving the quality of
conceptual models (e.g., [27]). An example of an ODCM language is OntoUML [10],
whose primitives reflect the underlying UFO foundational ontology [10].

In this paper, we leverage the ontologically well-founded semantics of OntoUML
to propose a formal approach for automated modularization in conceptual models.
The proposed approach breaks down an OntoUML model in a number of Relational
Contexts. Intuitively, Relational Contexts are modules that capture all the information
needed for understanding entities qua players of roles in the scope of an objectified
(reified) relationship (ontological speaking, the so-called relators).

As reported in [23], Relators and Roles are clearly the most used OntoUML con-
structs in conceptual models. This is unsurprising, given the strong adoption of On-
toUML/UFO in Business (Organizational/Social/Legal) domains [26], as well as the
fact that in these realms the bulk of the domain knowledge is concentrated in relation-
ships and roles. As argued in [12], specially in these realms, “we seldom interact with
these entities qua-themselves, but we frequently conceive objects qua-playing-certain-
roles in given ‘contexts’... For example, most of our interactions with other human
beings and, hence, our conceptualizations of these interactions are thought in terms of
roles such as parent, employee, student, president, citizen, customer, etc. Analogously,
when thinking about, for instance, cars, we think about them as means of transporta-
tion, insurable items, work-related resources, product offerings, etc. Moreover, we often
conceive these ‘contexts’ as relational ones: marriages, employments, enrollments, and
presidential mandates are themselves concrete ‘object-like’ entities that define a scope
in which ordinary objects play complementary roles interacting with each other”. This
view is also defended by other authors such as [4], who go as far as to claim that “[r]oles
are useful not only to model domains that include institutions and organizations. Rather,
every object can be considered as an institution or an organization structured in roles”.

4 There is a long debate in philosophy regarding the ontological neutrality (or lack thereof) of
formal languages. We simply mean here that they commit to a simple ontology of formal
structures (e.g., that of set theory) in which sorts of types and relations are undifferentiated.



The proposal advanced here is, thus, aimed at conceptual models in business (orga-
nizational, social and legal) domains, which form the bulk of the Information Systems
discipline. For models that are centered on taxonomic relations (e.g., product types, bi-
ological taxonomies), we recommend alternative complexity management techniques,
in particular, the static onfological views as proposed in [6]. In fact, this paper can be
seen as a companion to [6] and [13] in a general research program of defining ontology-
driven complexity management theories, techniques and tools. While in these two pa-
pers the focus is on model recoding with ontology-design patterns, and on model ab-
straction, respectively, here we propose the notion of relationship-centric conceptual
model modularization (or clustering).

The contributions of this paper are two-fold: (i) firstly, we proposed a formaliza-
tion of the notion of Relational Context by leveraging on the theory of relators from
UFO/OntoUML,; We then use this notion to propose a strategy for relationship-centric
modularization termed Relator-Centric Clustering; (ii) secondly, we provide an imple-
mentation of this strategy integrated in the OntoUML toolset.

The remainder of the paper is organized as follows. Section 2 positions our work
in reference to related efforts; Section 3 briefly presents the OntoUML language and
some of the ontological notions underlying it; Section 4 presents the contributions of
this paper. Firstly, it defines the notions of Ontological Views, Relational Contexts, and
Modular Breakdown. This is done both formally, in terms of a precise definition of
these notions, as well as intuitively by making use of a running example in the domain
of Car Rental. In addition, we report on an implementation of this approach as a plug-in
to a model-based OntoUML editor. finally, Section 5 presents some conclusions of the
presented approach and some intended directions for future work.

2 Complexity Management of Conceptual Models

The discipline of complexity management of large conceptual models (henceforth CM-
CM) has been around for quite some time and has been represented in the literature
by a series of different approaches and techniques. In fact, [28] claims that “one of the
most challenging and long-standing goals in conceptual modeling... is to understand,
comprehend and work with very large conceptual schemas”.

The challenge and importance of this discipline lie in the following. On one hand,
real information systems often have large and extremely complex conceptual mod-
els [28]. On the other hand, this complexity poses a serious additional challenge in the
comprehension and, consequent, quality assurance of these models. For example, [21]
reports on an empirical study conducted with a large and professionally constructed
conceptual model.> In that study, the authors managed to show that the model con-
tained 879 occurrences of error-prone structures (anti-patterns), 52.56% of which really
introduced representation errors according to the creators of the model.

According to [28], the methods for CM-CM can be classified in three areas, namely,
Clustering Methods, Relevance Methods, and Summarization Methods. Clustering is
about classifying the elements of a conceptual model into groups, or clusters, according

5 This model consisted of 3,800 classes, 61 datatypes, 1,918 associations, 3,616 subtyping rela-
tions, 698 generalization sets, 865 attributes, i.e., navigable association ends [21].



to some criteria (e.g., a similarity function); Relevance Methods are about the applica-
tion of ranking functions to the elements of a model in order to obtain ordered lists (i.e.,
a ranking) of model elements according to their perceived relevance in representing
the domain at hand; finally, Model Summarization is about producing from an origi-
nal model a reduced version consisting only of the elements that are judged to be of
more relevance for representing the domain at hand. In clustering methods, the goal is
to break down a model in fragments such that the sum of these fragments should be in-
formationally equivalent to the whole (i.e., to the original model). In contrast, relevance
and summarization methods (including model abstraction) aim to produce partial views
of the original model at hand. In other words, while clustering methods have lossless
model transformations, the latter classes of methods are based on lossy transformations.
A drawback that is common to the majority of existing methods in all these classes
is that they are based on classic conceptual modeling notations (e.g., UML, ER) [28],
they are constrained to rely almost exclusively on syntactic (mainly topological) prop-
erties of the addressed models. These properties include closeness (a quantitative evalu-
ation of the links among elements in the model) [8], hierarchical distance (length of the
shortest relationship path between entities), structural-connective distance (elements
are considered closer if they are neighbors in a hierarchy mereological or subtyping
structure), or category distance (elements are considered to be closer if one subtypes
the other) [1]. For example, [5] proposes a (relevance) method based on the assumption
that the number of attributes and relations characterizing an element in a model can be
used as a (heuristic) measure of its relevance for that model. In the same spirit, [24,25]
go as far as proposing PageRank-style algorithms to infer the relevance of elements in
entity-relationship diagrams and RDF schemas (even ignoring the difference between
association and subtyping relations). The problem with relying solely on these prop-
erties is that there is no guarantee that a model element satisfying some topological
requirement (e.g., a node with more edges connected to it) by necessity represents the
model’s most important concepts. This is related to the work by [19, 20], that while
criticizing existing CM-CM methods, referred to it as lack of cognitive justification.
The method proposed here is a type of clustering method. However, in contrast
with all the aforementioned approaches, our proposal focuses mainly on the ontolog-
ical semantics [10] of the elements represented in a conceptual model. As previously
discussed, the idea is to use a formal and ontological notion of Relational Context (see
section 4) as a clustering mechanism. Relational Contexts are built from a focal reified
relationship (relator), and extrapolating from there on to the different roles played by
entities in the scope of that relationship, the kinds defining the essential properties and
identity principle characterizing the entities playing these roles, among other aspects.
This approach (detailed in section 4) is only made possible because it is based on a
non-classical CM language, namely, the ODCM language OntoUML (briefly presented
in section 3). There are three CM-CM methods in the literature that are based on the
same language, namely, the approaches of (i) [6], (ii) [13], and (iii) [16, 17]. The first
method is the one that is closer to work presented here, since it is also a clustering
method and, hence, a lossless approach. What is presented there is an approach for
what the authors name Model Recoding. The method takes a conceptual model and
produces a series of views constituted by ontological design patterns centered around



general (as opposed to model specific) ontological constructs. So, for example, it groups
all the kinds of things the model in one view, all the roles played by things in a relational
context in another view, etc. So, instead of breaking down the model into clusters that
correspond to what one could intuitively call sub-domains, that approach brakes down
the model in terms of general ontological categories. In contrast, the approaches of [13]
and [16, 17] differ from the approach presented here since these are approaches for
model summarization and hence lossy approaches. Finally, [16, 17] also differs from
our approach since it requires user input in selecting a set of entities in the model that
are of particular relevance. Our approach, instead, is a fully automated one, which we
argue is an important feature in methods dealing with large-scale models.

3 A Whirlwind Introduction to UFO and OntoUML

OntoUML is a language whose meta-model has been designed to comply with the on-
tological distinctions and axiomatization of a theoretically well-grounded foundational
ontology named UFO (Unified Foundational Ontology) [10, 15]. UFO is an axiomatic
formal theory based on contributions from Formal Ontology in Philosophy, Philosoph-
ical Logic, Cognitive Psychology, and Linguistics. A recent study shows that UFO is
the second-most used foundational ontology in conceptual modeling and the one with
the fastest adoption rate [26]. That study also shows that OntoUML is among the most
used languages in ontology-driven conceptual modeling.

In the sequel, we briefly explain a selected subset of the ontological distinctions put
forth by the Unified Foundational Ontology (UFO). We also show how these distinc-
tions are represented by the modeling primitives of OntoUML (as a UML profile). For
an in-depth discussion, philosophical justifications, formal characterization and empir-
ical support for these categories one should refer to [9, 10].

Take a domain in reality restricted to endurants [10] (as opposed to events or occur-
rents). Central to this domain we will have a number of object Kinds, i.e., the genuine
fundamental types of objects that exist in this domain. The term “kind” is meant here in
a strong technical sense, i.e., by a kind, we mean a type capturing essential properties
of the things it classifies. In other words, the objects classified by that kind could not
possibly exist without being of that specific kind.

Kinds tessellate the possible space of objects in that domain, i.e., all objects belong
to exactly one kind and do so necessarily. Typical examples of kinds include Person,
Organization, and Car (see Figure 1; stereotypes reflect the correspondence between the
UML profile and UFO®). We can, however, have other static subdivisions (or subtypes)
of a kind. These are naturally termed Subkinds. As an example, the kind ‘Person’ can
be specialized in the subkinds ‘Man’ and “Woman’ (Figure 1).

6 The model of Figure 1 is used here for illustration purposes only, as it is a much simplified
version of a proper model in this domain. For example, in a more realistic model, we would
have cases of “relators mediating relators” (e.g., a car rental mediating a car ownership and an
employment). The example avoids these for the sake of space limitations. Our formal definition
of RCC (see section 4.7), however, has no such a limitation, thus, addressing these cases that
result in nested contexts (i.e., contexts including other contexts).



Object kinds and subkinds represent essential properties of objects (they are also
termed rigid or static types [10]). We have, however, types that represent contingent
or accidental properties of objects (termed anti-rigid types [10]). These include Phases
(for example, in the way that ‘being a living person’ captures a cluster of contingent
intrinsic properties of a person, or in the way that ‘being a puppy’ captures a cluster of
contingent intrinsic properties of a dog) and Roles (for example, in the way that ‘being
a husband’ captures a cluster of contingent relational properties of a man participating
in a marriage, or that ‘being a rental car’ captures contingent intrinsic properties of a
car participating in a car rental, see Figure 1). In other words, the difference between
the contingent properties represented by a phase and a role is the following: phases
represent properties that are intrinsic to entities (e.g., ‘being a puppy’ is being a dog
that is in a particular developmental phase; ‘being a living person’ is being a person
who has the intrinsic property of being alive; ‘being an available car’ is being a car
that is functional and, hence, can be rented); roles, in contrast, represent properties that
entities have in a relational context, i.e., contingent relational properties (e.g., ‘being a
husband’ is to bear a number of commitments and claims towards a spouse in the scope
of a marital relationship; ‘being a student’ is to bear a number of properties in the scope
of an enrollment relationship with an educational institution.)

Kinds, Subkinds, Phases, and Roles are categories of object Sorzals. In the philo-
sophical literature, a sortal is a type that provides a uniform principle of identity, persis-
tence, and individuation for its instances [10]. To put it simply, a sortal is either a kind
(e.g., ‘Person’) or a specialization of a kind (e.g., ‘Student’, ‘“Teenager’, “Woman’), i.e.,
it is either a type representing the essence of what things are or a sub-classification
applied to the entities that “have that same type of essence”.

Relators (or relationships in a particular technical sense [9]) represent clusters of
relational properties that “hang together” by a nexus (provided by a relator kind). More-
over, relators (e.g., marriages, enrollments, presidential mandates, citizenships, but also
car rentals, employments, and car ownerships, see Figure 1) are full-fledged Endurants.
In other words, entities that endure in time bearing their own essential and accidental
properties and, hence, first-class entities that can change in a qualitative manner while
maintaining their identity.

As discussed in depth in [9], relators are the truth-makers of relational propositions,
and relations (as classes of n-tuples) can be completely derived from relators [10]. For
instance, it is ‘the marriage’ (as a complex relator composed of mutual commitments
and claims) between ‘John’ and ‘Mary’ that makes true the proposition that “John is the
husband of Mary”. Relators are existentially dependent entities (e.g., the marriage be-
tween John and Mary can only exist if John and Mary exist) that bind together entities
(their relata) by the so-called mediation relations - a particular type of existential depen-
dence relation [10]. As discussed in depth in [9], like in the MERODE approach [22]
(but here for ontological reasons), all domain relations in business models (the so-called
material relations) can be represented exclusively by employing relators and these ex-
istential dependence relations (mediation).

Objects participate in relationships (relators) playing certain “roles”. For instance,
people play the role of spouse in a marriage relationship; a person plays the role of
president in a presidential mandate; a car plays the role of a rental car scope of a car
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Fig. 1. A conceptual model in OntoUML in which relators are highlighted.

rental, see Figure 1. ‘Spouse’ and ‘President’ (but also typically student, teacher, pet)
are examples of what we technically term a role in UFO, i.e., a relational contingent
sortal (since these roles can only be played by entities of a unique given kind). There
are, however, relational and contingent role-like types that can be played by entities of
multiple kinds. An example is the role ‘Customer’ (which can be played by both people
and organizations), see Figure 1. We call these role-like types that classify entities of
multiple kinds RoleMixins.

4 Views, Relational Contexts, and Relator-Centric Clustering

In this section, we present a formal definition of our structure of ontological views,
which are then used to formally define our notion of Relational Context (RC) and of
Relator-Centric Clustering (RCC). Built over UFO’s distinctions and for the OntoUML
language, the approach presented here proposes rules to extract modules (clusters) from
a conceptual model expressed in OntoUML.

4.1 Basic Definitions

Let a Model M be a graph defined such that M = (0,X,®) , where ©® = {C,..C,,}
is the (non-empty) set of concepts in the model M), X = {r;..r,} is the set of di-
rected relations in the model and @ = {gs;..gs,} is the set of Generalization Sets
in the model. Let CT (Concept Type), RT (Relation Type) and GST be domains of
types such that CT = {SORTAL, NON-SORTAL, KIND, SUBKIND, PHASE, ROLE,

|«mediation» «mediation»



ROLEMIXIN, RELATOR}, RT = {MEDIATION, SUBTYPING}, and GST = {PHASE-
PARTITION, SUBKIND-PARTITION} . Now, let < be partial order relation defined in
CT in the following way to reflect the specializations in the taxonomy of types in UFO:
KIND < SORTAL, SUBKIND < SORTAL, ROLE < SORTAL, PHASE < SORTAL,
ROLEMIXIN < NON-SORTAL. Finally, we define a number of auxiliary functions:

— C(M) is a function that maps a model M to its associated set @;

— R(M) is a function that maps a model M to its associated set Z;

— GS(M) is a function that maps a model M to its associated set &;

— EHasTypeT is a relation connecting an element £ to a type 7 in the following
manner: if £ is a concept, then T € CT; if E is arelation then T € RT, and if E is a
generalization set, then E € GST. We should also add that for any two types T and
T’ such that T < T',if E HasTypeT then E HasTypeT;

— t(r) is a function that maps a relation r to the target (destination) of that directed
relation;

— s(r) is the complementary function that maps a relation r to the source (origin) of
that directed relation;

— ri>gs connects a relation r with a generalization set gs such that r HasType SUB-
TYPING and: if gs HasType PHASE-PARTITION then s(r) HasType PHASE; if
gs HasType SUBKIND-PARTITION then s(r) HasType SUBKIND. Moreover, for
any two relations r| and r, such that r; > gs and r, > gs, we have thatz(r;) =¢(rp).

As expected, we have that for every model M and every relation such that r € R(M),
we have that both s(r) € C(M) and #(r) € C(M). Moreover, every generalization set
gs € GS(M) is such that all ri> gs implies that r € R(M).

For example, let M be the model depicted in Figure 1. Then, C(M) amounts to ex-
actly the types represented there, while R(M) includes all the mediation and UML sub-
typing relations. Finally, GS(M) amounts to the generalization sets: gender (a subkind
partition comprising the subtyping relations connecting Man to Person, and Woman
to Person); developmental status (a phase partition comprising the subtyping relations
connecting Child to Person, Teenager to Person, and Adult to Person); Life Status (a
phase partition comprising subtyping relations connecting Living Person to Person, and
Deceased Person to Person); Operational Status (a phase partition comprising subtyp-
ing relations connecting Available Car to Car, and Under Maintenance Car to Car).

4.2 Direct Subtyping and (Indirect) Subtyping

Let the functions ST (C,C") (symbolizing that C is a direct subtype of C"), ST+(C,C’)
(symbolizing that C is a subtype of C) and IST*(C,C’) (symbolizing that C is an im-
proper subtype of C’) be defined as follows:

- ST(C,C') iff there is an r such that r HasType SUBTYPING and s(r) = C and
t(ry==C"

- STx(C,C') iff ST(C,C") or there is a C” such that ST (C,C") and ST(C",C’); and,

— IST*(C,C") iff ST+(C,C") or C = C'.

We also define the following auxiliary function:



— K(C) mapping a sortal C to its unique supertyping KIND, i.e., we have that K(C) =
C'iff C" HasType KIND and IST*(C,C"). (Notice that if C is a KIND, then C =C".)

Again, using the model M of Figure 1 as an example, we have that, for instance,
K(CarAgency) = Organization and K (PersonalCustomer) = Person.

4.3 View

Let M and M’ be models as previously defined. It follows that M is a view of M’ (sym-
bolized as V (M, M) iff:

- C(M)CC(M’) and
- R(M) CR(M') and
- GS(M) C GS(M').

Notice that, given our definition of a model, we have that all » € R(M) are such that
s(r) € C(M) and #(r) € C(M), but also that for all r>GS(M) we have that r € R(M). In
other words, M is necessarily an original subgraph of M’.

The views we are ultimately interested in are the so-called Relational Contexts (RC),
which will be defined in sub-section 4.6. Nevertheless, before we reach that, we need
to establish two types of auxiliary views: Sortal Identity Paths and Non-Sortal Identity
Paths. They are used later to support the definition of Relational Contexts.

4.4 Sortal Identity Path

We define that a view M is a Sortal Identity Path of M’ based on a focus type ¢ (sym-
bolized as SIP(M,M’,c), where ¢ HasType SORTAL iff:

- V(M,M') and
- ' e C(M) iff (ISTx(c,c’) and IST*(c’,K(c)) and
- r € R(M) iff r HasType SUBTYPING and s(r) € C(M) and ¢(r) € C(M).

SIP is a generic parameterizable view definition that, given a sortal type c, it provides
with a view that includes that type and all its supertypes (if any) until its correspond-
ing kind is reached. Taking the model of Figure 1 and picking, for instance, Personal
Customer as focus type, the corresponding SIP would be constituted by the types that
generalize Personal Customer, i.e., Adult, Living Person, and, finally, Person. Later,
we use SIP to determine which supertypes should be included in a Relational Context,
namely those that reveal the nature of the entities in the context.

4.5 Non-Sortal Identity Paths

We define that the view M is a Non-Sortal Identity Paths of M’ based on a focus type ¢
(symbolized as NSIP(M,M’,c), where ¢ HasType NON-SORTAL iff:

- V(M,M’) and



- ¢ € C(M)iff IST*(c',c) or (there is a ¢’ such that IST*(c”, c) and IST*(c”,c") and
IST+(c’,K(c"))) and
— r€R(M) iff r HasType SUBTYPING and (s(r) € C(M)) and (¢(r) € C(M))).

The intention of the NSIP can explained as follows. Take a non-sortal type c in the
model M’, this view should include: (i) c itself and all its non-sortal subtypes; (ii) the
first sortal specializing c as well as the path from this sortal to the unique kind provid-
ing its identity principle [10]. Taking the model of Figure 1 and picking, for instance,
Customer as focus type, in the corresponding NSIP, we have, besides the rolemixin
Customer, the sortals that immediately specialize it (the roles Personal Customer and
Corporate Customer) as well as the supertypes of each of these sortals that are in the
path between them and their kinds (Person and Organization, respectively, in this case).

4.6 Relational Context

We define that M is a Relational Context of M’ with focus on a relator type rel, where
(rel HasType RELATOR) (symbolized as RC(M,M’, rel)) iff the following conditions
are satisfied:

- V(M,M');
c € C(M) iff:
e c—vel,or
e thereisar € R(M) and ¢(r) = ¢, or
e thereisaview M” andac’ € C(M) such that (SIP(M" ,M',c") or NSIP(M" M’ ;"))
and c € C(M"), or
o thereis a gs € GS(M) and a ri>gs and s(r) = c, or
r € R(M) iff:
e (r HasType MEDIATION and s(r) € C(M)) or
o (r HasType SUBTYPING and s(r) € C(M)) and (((r) HasType RELATOR)
ort(r) € C(M)), or
e there is a gs € GS(M) such that r>gs
gs € GS(M) iff:
o gs HasType PHASE-PARTITION and there is an r such that »>gs and r €
R(M), or
o gs HasType SUBKIND-PARTITION and for all r such that ri>gs then r €
R(M).

Now, this definition can benefit from some unpacking. The Relational Context (RC)
starts by (naturally) including the focal relator rel (¢ = rel). In addition, it includes all
types that are connected by that relator via MEDIATION relations (henceforth, medi-
ated types) (r € R(M) and t(r) = ¢) and (r HasType MEDIATION and s(r) € C(M))).
For example, if we take the relator Car Rental as focus, the corresponding RC would
also include the types of entities that are bound by instances of Car Rental in that con-
text, i.e., Customer and Rental Car.

Furthermore, this RC should include in this context all the types going from these
mediated types to their respective kinds. The rationale here is that in order to under-
stand the nature of the entities connected by instances of the relator at hand, one must



understand what kinds of things those entities essentially are, i.e., what sort of prin-
ciple of identity they obey. In case any of these mediated types ¢’ is a sortal, then the
RC will include all types in its SIP (¢’ € C(M) and there is and a view M” such that
SIP(M",M',c") and ¢ € C(M")). So, in this example, for the sortal type Rental Car, it
would include also the types Available Car and Car. In contrast, if any of the medi-
ated types is a Non-Sortal, then the relational context will include all types in its NSIP
(¢’ € C(M) and there is a view M"” such that NSIP(M" ,M’,c’) and ¢ € C(M")). The
rationale here is analogous. However, since different instances of a non-sortal might
take their identities from different kinds, in order to understand that context, we need
to include all the information in the identity path between that non-sortal mediated type
and the relevant kinds. For instance, for a Car Rental Relational Context, we need to
understand the notion of Customer and, in order to understand this notion we have to
understand the notions of Personal Customer and Corporate Customer. Finally, in or-
der to understand the latter, we need to understand Organizations, and to understand the
former, the notions of Adult, Living Person and Person. After all, instances of Personal
Customer are adult living people.

Besides the types in SIP and NSIP of mediated types, the Relational Context should
also include all types that appear in phase partitions standing in the path between a me-
diated type and its identity supplier (i.e., its associated kind). The idea is that these
types offer a contrast background that helps in the clarification of the semantics of the
types in these paths. For example, in the Car Rental context, in order to understand that
personal customers must be living adults, it is important to understand that they cannot
be other alternatives of instances of Person, namely, living children, living teenagers,
as well as deceased person. In particular, given the anti-rigidity of these types (phases),
all instances of living person can cease to be so, thus, becoming deceased people, in
which case they can no longer play the role of Personal Customer. Formally, if one of
the subtyping relations in a (N)SIP is part of a phase partition, then that phase parti-
tion generalization set is included in the view (gs HasType PHASE-PARTITION and
there is an r such that ri>gs and r € R(M)). Additionally, all other types that share the
common supertype in that generalization set are also included in the view (there is a
gs € GS(M) and a ri>gs and s(r) = ¢), and so are all these supertyping relations in that
same generalization set (r HasType SUBTYPING and #(r) € C(M) and (there is a gs
such that gs € GS(M) and r> gs)). Notice that subkind partitions are only included (a
posteriori) if all subtyping relations comprising it are already included in the view (e.g.,
gender in an RC with Car Rental as the focus).

Furthermore, we include in a relational context all subtyping relations involving
two types included in that view (r HasType SUBTYPING and s(r) € C(M) and #(r) €
C(M)). Finally, we include all supertypes of relators already included in the view (r
HasType SUBTYPING and s(r) € C(M) and t(r) HasType RELATOR). This is be-
cause a subtype inherits all the properties of its supertypes, and thus to understand the
context of a sub-relator we must understand the general notion (e.g., to understand ‘for-
eign marriage’ as a ‘marriage’ recognized abroad, we must understand ‘marriage’ as a
relation binding spouses).



4.7 Relator-Centric Clustering

We are now in position to define the notion of a Relator-Centric Clustering:

— RCC Definition: a Relator-Centric Clustering of a model M is a set of views sym-
bolized as RCC(M) = {M,..M,} such that for every M; € RCC(M) there is a type
rel such that rel € C(M) and RC(M;, M, rel).

Figure 2 depicts the application of this notion of RCC to the model of Figure 1.
Here we represent each Relational Context using UML packages and name these pack-
ages with the homonymous focal relator. As one can observe, the original model can be
broken down into four contexts, namely: the Car Rental, the Marriage, the Car Own-
ership, and the Employment contexts. Each of these modules contains a view of the
original model with all the information required to understand each of the contexts.

The Car Rental RC shows the roles (and role mixin) directly mediated by the Car
Rental relator (Responsible Employee, Rental Car, Customer). The kinds involved are
made explicit: Person, Car and Organization (when playing the role of Corporate Cus-
tomer). Important business rules the model imposes on a Car Rental are revealed: only
an Adult (a Living Person) can rent a car, and only a car that is in the Available Car
phase can be rented. A similar observation can be made for the Marriage RC, as it re-
veals that the original model reflects a heteronormative setting and with gender in static
classification. Finally, the Car Ownership and the Employment RCs are examples of
simpler views, as the path from directly mediated entities to the involved kinds is short.

We implemented this approach for relational context identification and relator-centric
clustering in Javascript as a service within ontouml-js’, an open source library we
have been developing for OntoUML. Currently, this library supports programatically
manipulating OntoUML models, automatically verifying their syntax, and automati-
cally transforming them into OWL specifications compatible with gUFO (the reference
implementation of the Unified Foundational Ontology in OWL [3]). These services are
then made available to final users via the OntoUML plugin® for Visual Paradigm.

5 Final Considerations

In this paper, we propose a formal approach for conceptual model clustering by leverag-
ing on the ontologically well-founded semantics of the modeling language OntoUML.
In particular, we rely on the theory of relators underlying OntoUML to present a full
formal account of the notions of Relational Context and Relator-Centric Clustering. An
RCC is a model modular breakdown in terms of a number of adequate RCs. Each RC,
in turn, captures all the information needed to understand the maximal scope of objects
in the way they participate in certain relationships. The approach is formally character-
ized (claim to formal precision) and it is based on a well-founded ontological theory of
relators (claim to ontological adequacy).

Additionally, we have reported on a fully implemented plug-in tool for a Model-
Based OntoUML Editor that automates this approach (claim to practical realizability).

7 See source code at https://github.com/OntoUML/ontouml- js.
8 See source code at https://github. com/0ntoUML/ontouml-vp-plugin.
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Fig. 2. An RCC for the model of Figure 1 organized as (Onto)UML packages.




Following the formal characterization of this framework, the algorithm implement-
ing it is a deterministic one (i.e., it generate the same RCC for a given model in ev-
ery execution) and, in the worst possible case, the algorithm would execute a total of
(ne —n,) x n, operations (where n, is the total number of model elements in the model
and n, is the total number of classes stereotyped as relators). So, even in the worst pos-
sible case, the algorithm is tractable (claim to computational efficiency and scalability).
In practice, n, is on average circa 6% of n, (as observed by analyzing 54 OntoUML
models in different domains in the OntoUML repository [21, 23]), and RCs are often
largely disjoint with minimal intersections only in the level of kinds. In other words, in
practice, the algorithm will often execute approximately 7, steps as the different RCs
tessellate the original model. Despite these encouraging results, we intend to subject it
to a more comprehensive and systematic analysis and series of tests.

In [2], the authors present an approach for representing reified events (occurrences)
as first-class citizens in structural conceptual models. In those models, events have their
own properties and can form taxonomic and temporal ordering structures. Moreover,
objects participate in these events playing a number of ‘processual roles’ (e.g., the roles
of victim and perpetrator in a crime). As an extension of the approach presented here,
we intend to characterize contexts and clusters centered around this notion of events.

The notion of Relational Context proposed here bears a resemblance also to the no-
tion of Frames in C.J. Fillmore’s Frame Semantics [7]. In fact, we first considered using
the term Ontological Frame (or Relational Frame) for this notion. Frames, in that tradi-
tion, are patterns that describe situations, events or relationships and in which elements
appear playing interconnected and mutually dependent (semantic) roles. However, un-
like our approach, frames have the primary goal of providing a background structure
for the interpretation of lexical terms. RCs, in contrast, have as primary goal ontolog-
ical transparency, focusing on connecting the entities playing complementary roles in
the scope of bundles of relational properties (relators) to their identity-providing kinds.

Finally, in order to properly evaluate the cognitive effectiveness of these contribu-
tions, we are already in the process of designing a series of empirical studies. The core
focus concerns speed and recall in obtaining information from the business conceptual
model, as well as naturalness to domain experts of the resulting breakdowns.
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