
RASO: an Ontology on Requirements for the
Development of Adaptive Systems

Cássio Capucho Peçanha, Bruno Borlini Duarte, and Vı́tor E. Silva Souza

Ontology & Conceptual Modeling Research Group (NEMO)
Department of Computer Science

Federal University of Esṕırito Santo (UFES) — Vitória, ES, Brazil
cassiocpecanha@gmail.com, bruno.b.duarte@ufes.br, vitorsouza@inf.ufes.br

Abstract. There is growing interest in software that can adapt their
behavior to deal with deviations between their outcome and their re-
quirements at runtime. A systematic mapping of the literature on self-
adaptation approaches based on requirements models revealed over 200
papers on this subject. However, there is still a lack of a formal and ex-
plicit representation of the concepts in this domain, which can lead to
problems in communication, learning, problem-solving, interoperability,
etc. To make a clear and precise description of this domain, this pa-
per proposes RASO: the Requirements for Adaptive Systems Ontology.
RASO was built using a well-established Ontology Engineering method,
is grounded on a foundational ontology and reuses concepts from other
software-related ontologies. The ontology was evaluated by mapping con-
structs from the most referenced approaches from the literature to its
concepts, thus creating a path for interoperability among them.

Keywords: Adaptive Systems · Requirements · Models · Ontology.

1 Introduction

For the past decades, there is growing interest in self-adaptation — systems
that are able to modify their behavior/structure in response to the environment,
itself and its goals — as a way to manage the ever increasing complexity and
the many other challenges involved in the development and management of cur-
rent software systems [23]. Some academic efforts in this direction (e.g., [2, 35,
8, 33]) focus on Requirements Engineering (RE) for Adaptive Systems, attempt-
ing to address what adaptations are possible and how they can be realized [7].
A systematic mapping of the literature on requirements-based self-adaptation
approaches revealed over 200 publications on this subject.

Each of these proposals may use different kinds of models and terms to
represent what are the system requirements and prescribe how it should self-
adapt in given situations. As result, the vocabulary used by these methods may
be very similar, but the semantics of the entities present in their models are
not always the same, thus resulting in problems such as concept overloading:
the same name being used to identify things that are ontologically different,



2 C. Capucho Peçanha et al.

i.e., that have different natures and identities in the real world. Other problems,
such as construct excess, construct redundancy and incompleteness [15] may
lead to difficulties in communication, learning, problem-solving, interoperability,
etc., especially among Requirements Engineers and other actors involved in the
construction of adaptive systems.

An ontology as a computational artifact, i.e., a “formal specification of a
shared conceptualization” [3], can help mitigate these problems and has been
attracting interest in the RE community [9]. In particular, a domain ontology
is a conceptual model developed with the goal of making a clear and precise
description of domain entities, representing the consensus within a community.
More specifically, domain reference ontologies are solution-independent speci-
fications and, thus, do not maximize computational properties at the cost of
truthfulness to the domain [16].

In a previous work [10], we have proposed a domain reference ontology on
the use of Requirements at Runtime (RRT), a subject that is at the core of RE
for Adaptive Systems [7]. Hence, we set out to extend this ontology towards
the domain of requirements-based development of adaptive systems, with the
purpose of establishing a clear and precise description of this domain.

In this paper, we present the Requirements for Adaptive Systems Ontology
(RASO). RASO was built using a well-established Ontology Engineering method,
is grounded on a foundational ontology and reuses concepts from other software-
related ontologies. To establish consensus about the domain, we performed a
systematic mapping of the literature on requirements-based approaches for the
development of adaptive systems and used selected publications as sources for
capturing the ontology’s concepts. Finally, the ontology was evaluated by ver-
ifying if it satisfied its own requirements and validating its concepts against
real-world entities extracted from well-known approaches in its domain.

The remainder of the paper is structured as follows: Section 2 describes
the ontological foundations (method and reused ontologies) of RASO; Section 3
presents the RASO ontology itself and the process through which it was built;
Section 4 explains how RASO was evaluated; Section 5 compares our work to
similar proposals in the field; and, finally, Section 6 concludes.

2 Ontological Foundations

The Requirements for Adaptive Systems Ontology (RASO) was built using
SABiO: a Systematic Approach for Building Ontologies [11], a well-established
Ontology Engineering method. We chose SABiO because it is focused on the
development of domain ontologies and has been successfully used for developing
several ontologies in the Software Engineering domain (e.g., [5, 30]).

SABiO’s development process is composed of five phases — (1) purpose iden-
tification and requirements elicitation; (2) ontology capture and formalization;
(3) design; (4) implementation; and (5) testing — accompanied by well-known
support processes, such as knowledge acquisition, reuse, documentation and eval-
uation. For a reference ontology, we focus on the first two phases of the method.



RASO 3

At the first phase, requirements for the ontology are elicited in the form
of Competency Questions (CQs), which are questions that the ontology should
answer [14]. In the following phase, relevant concepts and relations for the do-
main should be identified and organized. Requirements elicitation and ontology
capture for RASO are presented in Section 3.

SABiO explicitly recognizes the importance of using foundational ontologies
in the ontology development process to improve the ontology quality, represen-
tativity and formality. We thus grounded RASO on the Unified Foundational
Ontology (UFO) [15], a well-established foundational ontology. UFO offers a
complete set of categories to tackle the specificities of the targeted domain and,
as SABiO, it has been successfully employed in the development of several on-
tologies in the Software Engineering domain (e.g., [5, 30]), including the ones
that were reused/extended in this work.

SABiO also suggests that existing ontologies on related domains should be
reused. The Software Engineering Ontology Network (SEON) [30] includes a
few ontologies that were reused by RASO (which also facilitates the future in-
tegration of RASO into the ontology network), namely: the Software Ontology
(SwO), the Reference Software Requirements Ontology (RSRO) and the Run-
time Requirements Ontology (RRO) [10], all of which are connected to SEON’s
core ontology: the Software Process Ontology (SPO) [5]. We decided to reuse
concepts from these ontologies as their domains are intrinsically related to the
domain of requirements for the development of adaptive systems. Moreover, they
are all founded on UFO, guaranteeing compatibility at the foundational level.
Among these ontologies, RRO has a particular prominent role, given that it
describes the use of requirements artifacts at runtime, which is key to our do-
main. Given how close RASO is of RRO, we could also consider the former as
an extension of the latter.

Figure 1 shows fragments of these ontologies, presenting the concepts reused
by RASO, using a UML (Unified Modeling Language) class diagram primarily
for visualization (for an in-depth discussion and a more formal characterization,
refer to [10]). As shown, these concepts derive from the notion of Artifact from
SPO, i.e., an Object (in the sense of UFO) intentionally made to serve a given
purpose in the context of a software product or organization. We are particu-
larly interested in three types of Artifacts: Software Items — pieces of software
produced at a software process —, Documents — any written or pictorial in-
formation related to the software development — and Information Items — any
relevant information produced at the software process for human use.

As defined in SwO [10], a Software System is a Software Item that intends
to implement a System Specification, which is a Document containing a set of
requirements for a system, defining its desired functions and features in an ab-
stract way, without constraining its behavior. Software Systems are constituted
of Programs, a Software Item which aims at producing results through execution
on a computer, as prescribed by the Program Specification, i.e., a Document that
describes the structure and functions of a Program. Finally, a Program is consti-
tuted of Code, a Software Item representing a set of computer instructions and



4 C. Capucho Peçanha et al.

Fig. 1. Fragments of SwO, RSRO and RRO, showing concepts reused by RASO.

data definitions expressed, e.g., in a programming language. A Program is con-
stituted by Code, but it is not identical to Code. Code can be changed without
altering the identity of its Program, which is anchored to the program’s essential
property: its intended Program Specification, which the Code implements.

Given our focus on requirements-based approaches, we reuse from RSRO
the concept of Requirement Artifact, an Information Item that describes a stake-
holder’s requirement (concepts also present in RSRO, but out of the scope of this
paper), most likely as the result of some requirements documentation activity in
the Requirements Engineering process. In the context of adaptive systems, we
are particularly interested in a Requirement Artifact specified in RRO, namely, a
Runtime Requirement Artifact (RRA). Unlike Design Time Requirement Artifacts,
RRAs are manipulated by running Programs, i.e., at runtime. Such Programs
are defined as RRT (Requirements at Runtime) Programs, which intend to satisfy
one or more RRAs, acting over other running Programs, referred to as Target
Programs. RRO specifies two particular types of use of requirements at run-
time: Compliance Programs intending to satisfy Monitoring RRAs and Adaptation
Programs intending to satisfy Change RRAs.

3 Requirements for Adaptive Systems Ontology

In this section we present the Requirements for Adaptive Systems Ontology
(RASO) a domain ontology about requirements-based approaches for the devel-
opment of adaptive systems. Following the first steps o SABiO, we defined the
purpose of RASO:

1. To serve as conceptual basis to solve interoperability problems among dif-
ferent requirements-based approaches for the development of adaptive sys-
tems, thus serving as a well-founded vocabulary to improve understanding



RASO 5

and knowledge sharing in the domain of requirements for adaptive systems,
being especially helpful for Requirements Engineers in this domain;

2. To serve as a supporting tool for the creation or reengineering of requirements-
based approaches for the development of adaptive systems;

3. To serve as conceptual model for the creation and/or integration of tools
that aid in the activities (1) and (2) above.

Given its puposes, requirements for RASO were elicited and documented in
the form of Competency Questions (CQs) through a highly iterative process
of requirements elicitation/documentation and ontology capture/formalization.
The CQs for RASO are: CQ1: What is an adaptive system? CQ2: What is an
adaptive system constituted by? CQ3: What kind of control is performed by
an adaptive system? CQ4: How are adaptive systems specified? CQ5: What
requirements at runtime does the adaptive system manipulate?

In order to elicit and understand the concepts involved in approaches that use
requirements models for the development of adaptive systems, we conducted a
systematic mapping of the literature [21] and analyzed the state-of-the-art in this
particular field. Figure 2 shows an overview of this process, which is summarized
next. A complete description of the mapping is available in https://goo.gl/fpYdpH.

Fig. 2. Overview of the systematic mapping protocol for RASO.

Based on the requirements for RASO, research questions were defined for the
systematic mapping and a search string was elaborated and tested against a set
of control articles that were supposed to return when the string was used in the
selected publication sources, namely ACM Digital Library, Engineering Village,
IEEE Xplore, Science Direct and Scopus. The set of control articles was taken
from a previous systematic mapping effort on the broader topic of requirements
at runtime [10], by selecting publications that were classified as Change Require-
ments, i.e., in which requirements are used as guidelines to monitoring and as
rules on how the system should adapt to keep satisfying its requirements. In
an iterative process, the search string was refined with key terms present in the



6 C. Capucho Peçanha et al.

meta-data (title, abstract, keywords) of control articles that were missing from
the first executions, resulting in the following final string:

("requirements model" OR "requirements engineering" OR "requirements analysis" OR
"requirements reasoning" OR "goal model" OR "gore" OR "goal analysis" OR "goal reasoning")
AND ("adaptive system" OR "adaptive systems" OR "self-tuning" OR "runtime adaptation"
OR "self-adaptive" OR "self-adaptation" OR "self-optimization" OR "self-adaptivity" OR
"software adaptation" OR "self-configuration" OR "self-healing" OR "self-protection")

Running the above query, a total of 784 entries returned from the different
publication sources, resulting in 385 articles after duplicates (same paper return-
ing in different sources) were merged. We then excluded 161 entries considering
inclusion/exclusion criteria, applied in two phases (meta-data only and full ar-
ticle), finally resulting in 224 selected publications. Due to the large number of
selected publications, we proposed a new filter in order to select a smaller set of
requirements-based self-adaptation approaches, which would be studied as part
of ontology capture for RASO. Given that an ontology should provide a concep-
tualization that is shared by a certain community, we ranked the publications by
their popularity (citations), as follows: (1) extract the total number of citations
from Google Scholar; (2) divide it by the age in years, normalizing to citations
per year; (3) rank the publications. The top 10 papers were selected and used
not only for building RASO, but also for validating it (cf. Section 4).

Figure 3 shows the conceptual model of RASO, relating concepts of its
domain to the ones reused from the Software Engineering Ontology Network
(SEON, cf. Section 2). In what follows, we show how RASO provides a clear and
precise description of this domain.

Fig. 3. The Requirements for Adaptive Systems Ontology (RASO).

An Adaptive System is a special kind of Software System, constituted by one
or more Adaptive Controller Programs and base programs (often referred to in
the literature as target systems [31]), represented in RASO as Adaptable Target



RASO 7

Programs. For instance, the Meeting Scheduler system, a classic exemplar in the
Requirements Engineering community [22], is potentially a Target Program. Once
it is integrated into an Adaptive System (in other words, it is made adaptive using
any given approach for the development of adaptive systems), it becomes an
Adaptable Target Program. Considering the Zanshin approach [31] in particular,
this integration consists on implementing a callback API specified by Zanshin.

As Programs, both the Adaptable Target Program and the Adaptive Controller
Program intend to implement a Program Specification in order to satisfy Re-
quirement Artifacts. The former implements what we informally call the main
functions of the system, e.g., schedule meetings, whereas the latter implements
adaptation functions, i.e., monitor the main functions and adapt them if needed.
The Adaptive Controller Program does this by means of one or more Feedback
Loop Controls, i.e., Programs implementing monitoring–adaptation loops (e.g.,
the MAPE loop [20]) over the Adaptable Target Program [34]. For instance, if the
Self-Adaptive Meeting Scheduler (adaptive system composed of base program
and controller program) detects a low participation rate in meetings, it could
send e-mails to invited participants to properly collect their timetables.

Software Systems intend to implement a System Specification [10]. As such, an
Adaptive System intends to implement an Adaptive System Specification. In par-
ticular, besides specifying the main functions of the system, an Adaptive System
Specification specifies one or more Runtime Requirement Artifacts (RRAs) regard-
ing the system’s self-adaptation functions. This particular kind of specification is
created based on an Adaptive System Design Framework, which SPO [5] considers
a Procedure and, at the foundational level, is a type of Normative Description.
For instance, in [31], Souza presents an Adaptive System Specification for a Meet-
ing Scheduler Adaptive System, based on the Zanshin Adaptive System Design
Framework, containing Awareness Requirements (Monitoring RRAs) to monitor
some of the Meeting Scheduler’s functions (e.g., low participation in scheduled
meetings) and Evolution Requirements (Change RRAs) to adapt these functions
if necessary (e.g., start collecting timetables properly via e-mail).

Finally, the self-adaptation functions in the Adaptive System Specification
are implemented by the Adaptive System by means of its Adaptation Controller
Programs, which are constituted by two particular kinds of RRT (Requirements at
Runtime) Programs: Compliance Programs intend to satisfy the Monitoring RRAs
in the specification and Adaptation Programs intend to satisfy the Change RRAs
in the specification. Again, using Souza’s work as example [31], the Zanshin
approach provides an implementation of an Adaptive Controller Program based
on the Eclipse(.org) platform and constituted by OSGi(.org) bundles, among
which the Monitoring Bundle (Compliance Program) monitors the satisfaction
of Awareness Requirements (Monitoring RRAs) and reports to the Adaptation
Bundle, which analyze Evolution Requirements (Change RRAs) in order to adapt.

Among the concepts presented above, the main ones are the Adaptive System
Design Framework (which has the guidelines for the proposed system construction
model) and the Adaptive System composition as a junction of an Adaptable Target



8 C. Capucho Peçanha et al.

Program (target adaptation program) and the Adaptive Controller Program (which
will monitor and trigger adaptations when necessary).

Other examples of Adaptive System Design Frameworks were used to instan-
tiate RASO in the next section.

4 Evaluation

In order to evaluate the Requirements for Adaptive Systems Ontology (RASO),
we applied verification and validation techniques, as prescribed by SABiO. For
verification, SABiO suggests a table that shows the ontology elements that are
able to answer the competency questions (CQs) that were raised, thus demon-
strating that the ontology satisfies the requirements as they were documented.
For validation, the ontology should be instantiated using real-world entities,
demonstrating that it fulfills its intended purposes.

Table 1 illustrates the results of verification of RASO regarding the predefined
CQs, which can also be used as a traceability tool, supporting ontology change
management. The table shows that RASO answers all of its CQs appropriately.
Note also that all concepts of RASO are mentioned in Table 1, which shows they
are both necessary and sufficient to fulfill the ontology’s requirements.

Table 1. Verification of RASO’s Competency Questions.

CQ Concepts and Relations

CQ1
Adaptive System is a subtype of Software System that intends to implement Adaptive System

Specification.

CQ2
Adaptive System is constituted by Adaptable Target Program (a subtype of Target Program) and

Adaptive Controller Program (a subtype of Program).

CQ3
Adaptable Controller Program is constituted by Feedback Loop Control (a subtype of Program),

which controls Adaptable Target Program.

CQ4
Adaptive System Specification is a subtype of System Specification which, based on Adaptive System

Design Framework (a subtype of Procedure), specifies Runtime Requirement Artifact.

CQ5

Adaptive Controller Program is constituted by Compliance Program (a subtype of RRT Program),
which intends to satisfy Monitoring RRA (a subtype of Runtime Requirement Artifact), and

Adaptation Program (a subtype of RRT Program), which intends to satisfy Change RRA (a subtype
of Runtime Requirement Artifact).

For validation, we studied the 8 different approaches described by the top 10
papers with most citations per year from our systematic mapping of the litera-
ture on requirements-based approaches for the development of adaptive systems.
Publications about these approaches that were outside the top 10 citations per
year were also included in this study in order to provide an instantiation table
that is as representative and complete as possible. Then, we identified instances
of concepts from RASO (and a few key concepts of RRO as well) in each of the
approaches, producing the instantiation table shown in Table 2. Note that an
m-dash (—) in a cell does not mean that the concept is not present at all in the
respective approach, but instead that it is not explicitly named.

The successful instantiation of RASO with entities from these approaches
is an indication of the appropriateness of the proposed ontology as a reference



RASO 9

Table 2. Validation of RASO by instantiating its concepts according to popular ap-
proaches for the development of adaptive systems.

Concept Approach for the Development of Adaptive Systems

Adaptive System
Design Framework

Adaptive STS [8] FLAGS [2] LoREM [13]

Unnamed
approach
applied to
Necesity [4]

Adaptive System

Combination of
the Smart Home
example with the

adaptation
controller

Combination of
the Laundry

System example
with the

adaptation
controller

The GridStix
system

The Necesity
system and the

Context
Management
Middleware

Adaptive System
Specification

Plan specifications
for the Smart
Home example

Goal model
specification for

the Laundry
System example

Goal model
specification for

GridStix

Adaptive timers
algorithm

Adaptable Target
Program

Smart Home
example

implementation

Laundry System
example

implementation

GridStix’s
steady-state

system
implementation

The Necesity
system

implementation

Adaptive Controller
Program

Self-
Reconfiguration

component

FLAGS framework
implementation

Adaptation
infrastructure

Context
Management
Middleware

Feedback Loop
Control

Monitor-Diagnose-
Reconcile-

Compensate
(MDRC) cycle

Goal Reasoner — —

Compliance Program
Monitor

component
Process Reasoner

Monitoring
mechanism

Monitoring
software

Monitoring Runtime
Requirement Artifact

Fulfillment
conditions

Condition
Decision-making

mechanism
Set of decision

rules

Adaptation Program
Reconfiguration

component
Adaptator
Component

Adaptation
mechanism

Adapter
component

Change Runtime
Requirement Artifact

Activation rules Adaptive Goal Adaptive step

Parameters which
are set based on
the history of use

of the system

Concept Approach for the Development of Adaptive Systems
Adaptive System

Design Framework
QoS-aware

Middleware [25]
RELAX [35] Tropos4AS [24] Zanshin [33]

Adaptive System

Combination of a
video streaming
application with

the QoS
Middleware

—

Combination of
the iCleaner

example with the
Tropos4AS
Middleware

Combination of
the Meeting

Scheduler example
with the

Eclipse/OSGi-
based

implementation

Adaptive System
Specification

Qos Specification
Goal model for the
Ambient Assisted
Living example

Goal model for the
iCleaner example

Goal model for the
Meeting Scheduler

example

Adaptable Target
Program

A video streaming
application

—
iCleaner example
implementation

Meeting Scheduler
example

implementation

Adaptive Controller
Program

QoS Middleware —
Tropos4AS
Middleware

The
Eclipse/OSGi-

based
implementation

Feedback Loop
Control

QoS-aware
resource

management
—

Monitor-Analyze-
Plan-Execute
(MAPE) loop

Monitor-Analyze-
Plan-Execute
(MAPE) loop

Compliance Program
Observer

component
—

Monitoring BDI
agent

Monitoring OSGi
bundle

Monitoring Runtime
Requirement Artifact

—
Specification using

MON operator
Different goal

types
Awareness

Requirement

Adaptation Program
Component
configurator

—
Adaptation BDI

agent
Adaptation OSGi

bundle
Change Runtime

Requirement Artifact
Application

adaptation policies
Relaxed

requirements
Recovery activities

Evolution
Requirement



10 C. Capucho Peçanha et al.

model of this domain. Table 2 also shows that RASO, as a conceptual model,
does not present the problems discussed by Guizzardi [15]:

– Construct Overload : the concepts of RASO represent a single entity in the
approaches, i.e., they are not overloaded with meaning;

– Construct Excess: all concepts of RASO have instances in most of the ap-
proaches, i.e., there is no unnecessary concepts in the ontology with respect
to the domain;

– Construct Redundancy : no two concepts of RASO point to the same entity in
any of the approaches, i.e., the concepts of the ontology are not redundant;

– Incompleteness: the entities related to the domain of adaptive systems in
the different approaches were all mapped to a concept of RASO, i.e., the
ontology is complete with respect to its given scope.

As such, it can serve as conceptual basis to solve interoperability problems
between different approaches for the development of adaptive systems — Ta-
ble 2 even serves as starting point for mapping concepts among the 8 selected
approaches. RASO can also be used to develop or integrate existing software
tools in this domain, as done, e.g., in the domain of software measurement [12].

Another interesting use of the ontology is to perform ontological analysis of
the modeling languages used in these approaches, offering recommendations to
clarify their semantics and ensure expressiveness, as done, for instance, in the
domain of service-oriented enterprise architectures [26]. Table 2 even provides us
with hints regarding the 8 selected approaches, as they could also be evaluated
with respect to lucidity, soundness, laconicity and completeness [15], as we did
with RASO above. For instance, we were not able to instantiate any of the
Program concepts for the RELAX approach, as the papers define the specification
language but do not provide an implementation. As another example, the QoS-
aware Middleware approach does not make explicit their Monitoring Runtime
Requirement Artifact. Such feedback could help improve these approaches.

In general, the evaluation of RASO shows that it can act as a well-founded
vocabulary of the domain of requirements-based adaptive systems design, im-
proving communication, learning and problem-solving in this domain.

5 Related Work

Qureshi et al. [28] proposed a new version of the Core Ontology for Require-
ment Engineering (CORE) [17, 19], introducing two new concepts (context and
resource) and relations (relegation and influence) on top of CORE (an ontology
concerning Requirements Engineering in general) in order to properly represent
possible changes that might occur in requirements, at runtime. The authors claim
that combining the new elements with the ones that are originally used by the
goal modeling language Techne [18], they are able to support the definition of
the runtime requirements adaptation problem. In comparison with RASO, the
ontology of Qureshi et al. does not represent concepts that were found in the ap-
proaches selected in our systematic mapping of the literature, such as Monitoring



RASO 11

RRA and Change RRA, for example. Instead, it includes concepts and relations
that are not strongly related to this domain (i.e., were not commonly found in
the selected approaches, such as resource and relegation).

Soares et al. [32] propose a core ontology to assist requirements elicitation and
specification for adaptive systems, based on the ontology of Qureshi et al. [28]
— which they deemed incomplete —, completing it with concepts extracted
from the modeling dimensions for adaptive systems [1]. Besides inheriting the
aforementioned problems of [28], the ontology of Soares et al. is not properly
based on a foundational ontology, is presented only in its operational form (in
OWL) and includes concepts pertaining to the area of context-aware systems
(claiming they subsume adaptive systems, a claim which we find debatable). On
the other hand, RASO is a reference ontology, founded on UFO and focused
exclusively on the concepts of the adaptive systems domain.

Reinhartz-Berger et al. [29] propose a conceptual model of software behavior
based on the foundational ontology by Bunge [6], which can be used to model
the expected behavior of a system (its requirements) and alternative behaviors
that the running program can actually perform, thus supporting self-adaptation
decisions by comparing alternatives on: (1) how well they meet the requirements
and (2) the effort needed to switch behaviors. Their work uses an ontological
approach to model the system’s behavior in order to foster self-adaptation, i.e.,
it is a requirements-based approach for the development of adaptive systems. Our
work instead provides an ontology for the domain of requirements for adaptive-
systems, i.e., it describes concepts used by different approaches (including [29],
which could be instantiated like the works included in Table 2).

Finally, regarding the systematic mapping study we present in Section 3,
Yang et al. [36] performed a systematic literature review to investigate what mod-
eling methods, activities, quality attributes, application domains and research
topics have been studied in the area of requirements engineering for adaptive
systems and how well these studies have been conveyed. Our mapping, although
more superficial than a review, bears some similarities with their work, such as
the research method [21]. We did consider the possibility of using their study as
the knowledge base for building RASO instead of performing a new one. How-
ever, since this systematic mapping is already five years old, we decided that
a new study was needed in order to not neglect the recent advances that were
achieved in this research area. Moreover, updating their review would have taken
much more effort than producing a new mapping.

Our systematic mapping study showed that a almost a fifth of the requirements-
based approaches for the development of adaptive systems make use of ontologies
as part of their proposed methods. Among them, CORE [17, 19] is the most cited
work. However, as mentioned before, CORE represents the domain of Require-
ments Engineering in general, whereas RASO focuses on Requirements Engi-
neering for adaptive systems (based on RSRO [10] for the reasons discussed in
Section 2). This shows both a growing interest in the use of ontologies in this do-
main and a gap for ontologies that are specifically tailored for adaptive systems,
which RASO intends to fill.



12 C. Capucho Peçanha et al.

6 Conclusions

This paper presented RASO, the Requirements for Adaptive Systems Ontology,
a domain reference ontology about requirements-based development of adap-
tive systems. RASO was built using the SABiO ontology engineering method,
reusing concepts from existing ontologies on Software Engineering and built on
the foundational ontology UFO. Requirements elicitation and ontology capture
were based on selected publications from a systematic mapping of the litera-
ture regarding this domain. The ontology was evaluated by verifying that its
proposed conceptual model answers all its Competency Questions and by in-
stantiating real-world entities extracted from the most cited approaches from
the systematic mapping of the literature using the concepts defined by RASO.

Given how RASO was elicited and validated, we believe it successfully repre-
sents the state-of-the-art on requirements-based approaches for the development
of adaptive system, achieving its purposes of serving as a well-founded vocab-
ulary to improve understanding and knowledge sharing in this domain and as
conceptual basis to solve interoperability problems or for the creation or reengi-
neering of approaches for adaptive systems development.

As future work, we are considering: (a) studying the approaches returned
in our systematic mapping study that did not make the top 10 citations per
year cut, in order to validate RASO or complement its conceptual model; (b)
providing a more formal characterization of RASO; (c) integrating RASO in the
Software Engineering Ontology Network mentioned in Section 2; (d) building
an operational version of RASO in order to implement a prototype on interop-
erability among different requirements-based approaches for adaptive systems;
(e) combined with the Goal-Oriented Requirements Ontology (GORO) [27], per-
forming analysis and reengineering of the Zanshin approach, including its mod-
eling language and Adaptive Controller Program implementation; and (f) building
an method for evaluating adaptive systems, as well as creating metrics to quali-
tatively measure these systems.

Acknowledgment

NEMO(.inf.ufes.br) is currently supported by CNPq (process 407235/2017-5),
CAPES (process 23038.028816/2016-41), and FAPES (process 69382549/2015).
We would also like to thank Ricardo de Almeida Falbo for his contributions.

References

1. Andersson, J., de Lemos, R., Malek, S., Weyns, D.: Modeling Dimensions of Self-
Adaptive Software Systems. In: Software Engineering for Self-Adaptive Systems,
vol. 5525, pp. 27–47. Springer (2009)

2. Baresi, L., Pasquale, L., Spoletini, P.: Fuzzy Goals for Requirements-driven Adap-
tation. In: Proc. of the 18th IEEE International Requirements Engineering Con-
ference. pp. 125–134. IEEE (sep 2010)



RASO 13

3. Borst, W.N., Borst, W.: Construction of engineering ontologies for knowledge shar-
ing and reuse (1997)

4. Botia, J.A., Villa, A., Palma, J.: Ambient Assisted Living system for in-home
monitoring of healthy independent elders. Expert Systems with Applications 39(9),
8136–8148 (2012)

5. Bringuente, A.C.O., Falbo, R.A., Guizzardi, G.: Using a Foundational Ontology
for Reengineering a Software Process Ontology. Journal of Information and Data
Management 2(3), 511–526 (2011)

6. Bunge, M.: Treatise on basic philosophy, Vol. 3: Ontology I: The furniture of the
world (1977)

7. Cheng, B.H.C., et al.: Software Engineering for Self-Adaptive Systems: A Research
Roadmap. In: Software Engineering for Self-Adaptive Systems, vol. 5525, pp. 1–26.
Springer (2009)

8. Dalpiaz, F., Giorgini, P., Mylopoulos, J.: Adaptive socio-technical systems: a
requirements-based approach. Requirements Engineering 18(1), 1–24 (2012)

9. Dermeval, D., Vilela, J., Bittencourt, I.I., Castro, J., Isotani, S., Brito, P., Silva,
A.: Applications of ontologies in requirements engineering: a systematic review of
the literature. Requirements Engineering 21(4), 405–437 (2016)

10. Duarte, B.B., Leal, A.L.d.C., Falbo, R.d.A., Guizzardi, G., Guizzardi, R.S.S.,
Souza, V.E.S.: Ontological Foundations for Software Requirements with a Focus
on Requirements at Runtime. Applied Ontology preprint(preprint), 1–33 (2018).
https://doi.org/10.3233/AO-180197

11. Falbo, R.A.: SABiO: Systematic Approach for Building Ontologies. In: Proc. of
the Proceedings of the 1st Joint Workshop ONTO.COM / ODISE on Ontologies
in Conceptual Modeling and Information Systems Engineering. CEUR (2014)

12. Fonseca, V.S., Barcellos, M.P., de Almeida Falbo, R.: An ontology-based approach
for integrating tools supporting the software measurement process. Science of Com-
puter Programming 135, 20–44 (2017)

13. Goldsby, H.J., Sawyer, P., Bencomo, N., Cheng, B.H.C., Hughes, D.: Goal-Based
Modeling of Dynamically Adaptive System Requirements. In: Proc. of the 15th
Annual IEEE International Conference and Workshop on the Engineering of Com-
puter Based Systems. pp. 36–45. IEEE (mar 2008)

14. Grüninger, M., Fox, M.: Methodology for the Design and Evaluation of Ontologies.
In: IJCAI’95, Workshop on Basic Ontological Issues in Knowledge Sharing (1995)

15. Guizzardi, G.: Ontological foundations for structural conceptual model. Ph.D. the-
sis, University of Twente, The Netherlands (2005)

16. Guizzardi, G.: On ontology, ontologies, conceptualizations, modeling languages,
and (meta) models. Frontiers in artificial intelligence and applications 155, 18
(2007)

17. Jureta, I., Mylopoulos, J., Faulkner, S.: Revisiting the core ontology and problem
in requirements engineering. In: International Requirements Engineering, 2008.
RE’08. 16th IEEE. pp. 71–80. IEEE (2008)

18. Jureta, I.J., Borgida, A., Ernst, N.A., Mylopoulos, J.: Techne: Towards a new
generation of requirements modeling languages with goals, preferences, and incon-
sistency handling. In: Requirements Engineering Conference (RE), 2010 18th IEEE
International. pp. 115–124. IEEE (2010)

19. Jureta, I.J., Mylopoulos, J., Faulkner, S.: A core ontology for requirements. Applied
Ontology 4(3-4), 169–244 (2009)

20. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (jan 2003)



14 C. Capucho Peçanha et al.

21. Kitchenham, B.A., Charters, S.: Guidelines for performing Systematic Litera-
ture Reviews in Software Engineering. Tech. rep., Keele University, UK (2007),
https://www.cs.auckland.ac.nz/ mria007/Sulayman/Systematic reviews 5 8.pdf

22. van Lamsweerde, A., Darimont, R., Massonet, P.: Goal-Directed Elaboration of
Requirements for a Meeting Scheduler: Problems and Lessons Learnt. In: Proc. of
the 2nd IEEE International Symposium on Requirements Engineering. pp. 194–
203. IEEE (mar 1995)

23. de Lemos, R., et al.: Software Engineering for Self-Adaptive Systems: A Second
Research Roadmap. In: Software Engineering for Self-Adaptive Systems II, pp.
1–32. Springer (2013)

24. Morandini, M., Penserini, L., Perini, A., Marchetto, A.: Engineering requirements
for adaptive systems. Requirements Engineering 22(1), 77–103 (2017)

25. Nahrstedt, K., Xu, D., Wichadakul, D., Li, B.: QoS-Aware Middleware for Ubiqui-
tous and Heterogeneous Environments. IEEE Communications Magazine 39(11),
140–148 (2001)

26. Nardi, J.C., de Almeida Falbo, R., Almeida, J.P.A.: An Ontological Analysis of
Service Modeling at ArchiMate’s Business Layer. In: Proc. of the 18th International
IEEE Enterprise Distributed Object Computing Conference. pp. 92–100. IEEE
(2014)

27. Negri, P.P., Souza, V.E.S., Leal, A.L.d.C., Falbo, R.A., Guizzardi, G.: Towards an
Ontology of Goal-Oriented Requirements. In: Proc. of the 20th Ibero-American
Conference on Software Engineering, Requirements Engineering track (may 2017)

28. Qureshi, N.A., Jureta, I.J., Perini, A.: Requirements engineering for self-adaptive
systems: Core ontology and problem statement. In: International Conference on
Advanced Information Systems Engineering. pp. 33–47. Springer (2011)

29. Reinhartz-Berger, I., Sturm, A., Wand, Y.: Comparing functionality of software
systems: An ontological approach. Data & Knowledge Engineering 87, 320–338
(2013)

30. Ruy, F.B., Falbo, R.d.A., Barcellos, M.P., Costa, S.D., Guizzardi, G.: SEON:
A Software Engineering Ontology Network. In: Proc. of the 20th International
Conference on Knowledge Engineering and Knowledge Management. pp. 527–542.
Springer (2016)

31. Silva Souza, V.E.: Requirements-based Software System Adaptation. Ph.D. thesis,
University of Trento, Italy (2012)

32. Soares, M., Vilela, J., Guedes, G., Silva, C., Castro, J.: Core Ontology to Aid
the Goal Oriented Specification for Self-Adaptive Systems. In: New Advances in
Information Systems and Technologies, pp. 609–618. Springer (2016)

33. Souza, V.E.S., Lapouchnian, A., Robinson, W.N., Mylopoulos, J.: Awareness Re-
quirements for Adaptive Systems. In: Proc. of the 6th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems. pp. 60–69. ACM
(may 2011)

34. Souza, V.E.S., Mylopoulos, J.: From Awareness Requirements to Adaptive Sys-
tems: a Control-Theoretic Approach. In: Proc. of the 2nd International Workshop
on Requirements@Run.Time. pp. 9–15. IEEE (aug 2011)

35. Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.H.C., Bruel, J.M.: RELAX: a lan-
guage to address uncertainty in self-adaptive systems requirement. Requirements
Engineering 15(2), 177–196 (2010)

36. Yang, Z., Li, Z., Jin, Z., Chen, Y.: A systematic literature review of requirements
modeling and analysis for self-adaptive systems. In: International Working Con-
ference on Requirements Engineering: Foundation for Software Quality. pp. 55–71.
Springer (2014)


