
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/239851661

Proceedings of the Workshop on Models and Model-driven Methods for

Enterprise Computing (3M4EC 2008)

Article · January 2008

CITATIONS

0

READS

30

4 authors, including:

Some of the authors of this publication are also working on these related projects:

Essence View project

Interoperabilidade Semântica de Informações em Segurança Pública View project

João Paulo A. Almeida

Universidade Federal do Espírito Santo

148 PUBLICATIONS 1,549 CITATIONS

SEE PROFILE

Luis Ferreira Pires

University of Twente

239 PUBLICATIONS 1,905 CITATIONS

SEE PROFILE

Maarten Steen

BiZZdesign

69 PUBLICATIONS 1,408 CITATIONS

SEE PROFILE

All content following this page was uploaded by João Paulo A. Almeida on 09 April 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/239851661_Proceedings_of_the_Workshop_on_Models_and_Model-driven_Methods_for_Enterprise_Computing_3M4EC_2008?enrichId=rgreq-47e50295a3dbf6f8077fbd6ef08e430f-XXX&enrichSource=Y292ZXJQYWdlOzIzOTg1MTY2MTtBUzoxMDE5MTEwNjc4ODk2NjdAMTQwMTMwODkwMDMxNg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/239851661_Proceedings_of_the_Workshop_on_Models_and_Model-driven_Methods_for_Enterprise_Computing_3M4EC_2008?enrichId=rgreq-47e50295a3dbf6f8077fbd6ef08e430f-XXX&enrichSource=Y292ZXJQYWdlOzIzOTg1MTY2MTtBUzoxMDE5MTEwNjc4ODk2NjdAMTQwMTMwODkwMDMxNg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Essence?enrichId=rgreq-47e50295a3dbf6f8077fbd6ef08e430f-XXX&enrichSource=Y292ZXJQYWdlOzIzOTg1MTY2MTtBUzoxMDE5MTEwNjc4ODk2NjdAMTQwMTMwODkwMDMxNg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Interoperabilidade-Semantica-de-Informacoes-em-Seguranca-Publica?enrichId=rgreq-47e50295a3dbf6f8077fbd6ef08e430f-XXX&enrichSource=Y292ZXJQYWdlOzIzOTg1MTY2MTtBUzoxMDE5MTEwNjc4ODk2NjdAMTQwMTMwODkwMDMxNg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-47e50295a3dbf6f8077fbd6ef08e430f-XXX&enrichSource=Y292ZXJQYWdlOzIzOTg1MTY2MTtBUzoxMDE5MTEwNjc4ODk2NjdAMTQwMTMwODkwMDMxNg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joao_Almeida16?enrichId=rgreq-47e50295a3dbf6f8077fbd6ef08e430f-XXX&enrichSource=Y292ZXJQYWdlOzIzOTg1MTY2MTtBUzoxMDE5MTEwNjc4ODk2NjdAMTQwMTMwODkwMDMxNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joao_Almeida16?enrichId=rgreq-47e50295a3dbf6f8077fbd6ef08e430f-XXX&enrichSource=Y292ZXJQYWdlOzIzOTg1MTY2MTtBUzoxMDE5MTEwNjc4ODk2NjdAMTQwMTMwODkwMDMxNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidade_Federal_do_Espirito_Santo?enrichId=rgreq-47e50295a3dbf6f8077fbd6ef08e430f-XXX&enrichSource=Y292ZXJQYWdlOzIzOTg1MTY2MTtBUzoxMDE5MTEwNjc4ODk2NjdAMTQwMTMwODkwMDMxNg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joao_Almeida16?enrichId=rgreq-47e50295a3dbf6f8077fbd6ef08e430f-XXX&enrichSource=Y292ZXJQYWdlOzIzOTg1MTY2MTtBUzoxMDE5MTEwNjc4ODk2NjdAMTQwMTMwODkwMDMxNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luis_Ferreira_Pires?enrichId=rgreq-47e50295a3dbf6f8077fbd6ef08e430f-XXX&enrichSource=Y292ZXJQYWdlOzIzOTg1MTY2MTtBUzoxMDE5MTEwNjc4ODk2NjdAMTQwMTMwODkwMDMxNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luis_Ferreira_Pires?enrichId=rgreq-47e50295a3dbf6f8077fbd6ef08e430f-XXX&enrichSource=Y292ZXJQYWdlOzIzOTg1MTY2MTtBUzoxMDE5MTEwNjc4ODk2NjdAMTQwMTMwODkwMDMxNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Twente?enrichId=rgreq-47e50295a3dbf6f8077fbd6ef08e430f-XXX&enrichSource=Y292ZXJQYWdlOzIzOTg1MTY2MTtBUzoxMDE5MTEwNjc4ODk2NjdAMTQwMTMwODkwMDMxNg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luis_Ferreira_Pires?enrichId=rgreq-47e50295a3dbf6f8077fbd6ef08e430f-XXX&enrichSource=Y292ZXJQYWdlOzIzOTg1MTY2MTtBUzoxMDE5MTEwNjc4ODk2NjdAMTQwMTMwODkwMDMxNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maarten_Steen?enrichId=rgreq-47e50295a3dbf6f8077fbd6ef08e430f-XXX&enrichSource=Y292ZXJQYWdlOzIzOTg1MTY2MTtBUzoxMDE5MTEwNjc4ODk2NjdAMTQwMTMwODkwMDMxNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maarten_Steen?enrichId=rgreq-47e50295a3dbf6f8077fbd6ef08e430f-XXX&enrichSource=Y292ZXJQYWdlOzIzOTg1MTY2MTtBUzoxMDE5MTEwNjc4ODk2NjdAMTQwMTMwODkwMDMxNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maarten_Steen?enrichId=rgreq-47e50295a3dbf6f8077fbd6ef08e430f-XXX&enrichSource=Y292ZXJQYWdlOzIzOTg1MTY2MTtBUzoxMDE5MTEwNjc4ODk2NjdAMTQwMTMwODkwMDMxNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joao_Almeida16?enrichId=rgreq-47e50295a3dbf6f8077fbd6ef08e430f-XXX&enrichSource=Y292ZXJQYWdlOzIzOTg1MTY2MTtBUzoxMDE5MTEwNjc4ODk2NjdAMTQwMTMwODkwMDMxNg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

WWoorrkksshhoopp oonn MMooddeellss aanndd MMooddeell--ddrriivveenn MMeetthhooddss
ffoorr EEnntteerrpprriissee CCoommppuuttiinngg ((33MM44EECC 22000088))

 Marten van Sinderen, João Paulo Andrade Almeida,

Luís Ferreira Pires and Maarten Steen (Eds.)

Munich, Germany, September 16, 2008
http://www.inf.ufes.br/~jpalmeida/3m4ec2008

 Proceedings

 Sponsored by

 Supported by

In conjunction with:

The 12th IEEE International EDOC Conference
 The Enterprise Computing Conference (EDOC 2008)

15-19 September 2008, Munich, Germany
http://www.edocconference.org

Editors

Marten van Sinderen
Centre for Telematics and Information Technology
University of Twente
PO Box 217
7500 AE Enschede, the Netherlands
m.j.vansinderen@ewi.utwente.nl
http://wwwhome.ewi.utwente.nl/~sinderen/

João Paulo Andrade Almeida
Federal University of Espírito Santo
Av. Fernando Ferrari, s/n
Departamento de Informática – CT-VII
Vitória, ES, Brasil 29060-970
jpalmeida@ieee.org
http://www.inf.ufes.br/~jpalmeida

Luís Ferreira Pires
Centre for Telematics and Information Technology
University of Twente
PO Box 217
7500 AE Enschede, the Netherlands
l.ferreirapires@ewi.utwente.nl
http://wwwhome.ewi.utwente.nl/~pires/

Maarten Steen
Telematica Instituut
PO Box 589
7500 AN Enschede, the Netherlands
Maarten.Steen@telin.nl
http://www.telin.nl

Enschede, the Netherlands, September 2008
CTIT Workshop Proceedings Series WP08-04
ISSN 1574-0846

 iii

Table of Contents

Preface ... v

Maria-Eugenia Iacob, Maarten W. A. Steen, Lex Heerink.
Reusable Model Transformation Patterns... 1

Milan Milanović, Dragan Gašević, Gerd Wagner.
Combining Rules and Activities for Modeling Service-Based Business Processes..... 11

Iman Poernomo, Timur Umarov
Normative Ontologies for Data-Centric Business Process Management 23

Gerald Weber
Technology-Independent Modeling of Service Interaction ... 35

 iv

List of Authors

Gašević, Dragan 11
Heerink, Lex 1
Iacob, Maria-Eugenia 1
Milanović, Milan 11
Poernomo, Iman 23
Steen, Maarten 1
Umarov, Timur 23
Wagner, Gerd 11
Weber, Gerald 35

Program Committee

Colin Atkinson University of Mannheim, Germany
Mariano Belaunde France Telecom R&D, France
Remco Dijkman Eindhoven University, The Netherlands
Jeff Gray University of Alabama at Birmingham
Giancarlo Guizzardi Federal University of Espírito Santo, Brazil
 Laboratory for Applied Ontology, ISTC-CNR, Italy
Roy Grønmo SINTEF, Norway
Slimane Hammoudi ESEA, France
Patrick Hung University of Ontario Institute of Technology, Canada
Maria-Eugenia Iacob University of Twente, The Netherlands
Peter Linington University of Kent, UK
Oscar Pastor Universidad Politecnica de Valencia, Spain
Alfonso Pierantonio University of L’Aquila, Italy
Dick Quartel Telematica Instituut, The Netherlands
Richard Soley Object Management Group, USA
Antonio Vallecillo University of Málaga, Spain
Branimir Wetzstein University of Stuttgart, Germany

 v

Preface

Recent developments in metamodeling and model transformation techniques have led to
increasing adoption of model-driven engineering practices. The increase in interest and
significance of the model-driven approach has also accelerated its application in the
development of large (distributed) IT systems to support (collaborative) enterprises. Shifting
attention from source code to models enables enterprises to focus on their core concerns, such as
business processes, services and collaborations, without being forced to simultaneously consider
the underlying technologies. Different concerns are typically addressed by different models,
with transformations between the models and ultimately to the source code. Although the
model-driven approach offers theoretical benefits for the development, maintenance and
evolution of enterprise computing systems, a number of issues for the practical application of
the approach still exist. In order to solve these issues, further advances in models and model-
driven methods (design concepts, languages, metamodels, profiles and specification
frameworks) are necessary.

The International Workshop on Models and Model-driven Methods for Enterprise Computing
(3M4EC) aims at helping the convergence of research on model-driven development and
practical application of the model-driven approach in the area of enterprise computing. The
workshop addresses questions with respect to the requirements on, concepts for, properties of,
and experience with models and model-driven methods for enterprise computing in general and
in specific application domains. Special attention is given to the application of the model-driven
approach to enterprise service-oriented architecture computing.

This volume contains the proceedings of the first edition of the workshop, 3M4EC 2008, held
on September 16, 2008, in Munich, Germany, in conjunction with the 12th IEEE International
EDOC Conference – The Enterprise Computing Conference (EDOC 2008). Four papers were
selected for oral presentation and publication, based on a thorough review process, in which
each paper was reviewed by several experts in the field.

We would like to take this opportunity to express our gratitude to all people who contributed to
the 3M4EC 2008 workshop. We thank the authors for submitting content, which resulted in
valuable information exchange and will certainly lead to stimulating discussions during the
workshop, and we thank the reviewers for providing useful feedback to the submitted content,
which undoubtedly helped the authors to improve their work. Finally, we appreciated the
possibility to have 3M4EC being held in conjunction with the EDOC 2008 conference, and we
are grateful for the support we received from the EDOC 2008 organization.

Munich, Germany, September 2008

Marten van Sinderen, João Paulo Andrade Almeida, Luís Ferreira Pires, Maarten Steen
3M4EC Organizers

Reusable Model Transformation Patterns

Maria-Eugenia Iacob
University of Twente

m.e.iacob@utwente.nl

Maarten W. A. Steen
Telematica Instituut

maarten.steen@telin.nl

Lex Heerink
Telematica Instituut
lex.heerink@telin.nl

Abstract

This paper is a reflection of our experience with the
specification and subsequent execution of model
transformations in the QVT Core and Relations
languages. Since this technology for executing
transformations written in high-level, declarative
specification languages is of very recent date, we
observe that there is little knowledge available on how
to write such declarative model transformations.
Consequently, there is a need for a body of knowledge
on transformation engineering. With this paper we
intend to make an initial contribution to this emerging
discipline. Based on our experiences we propose a
number of useful design patterns for transformation
specification. In addition we provide a method for
specifying such transformation patterns in QVT, such
that others can add their own patterns to a catalogue
and the body of knowledge can grow as experience is
built up. Finally, we illustrate how these patterns can
be used in the specification of complex
transformations.

1. Introduction

OMG’s Model-Driven Architecture (MDA) ([9],
[6]) has emerged as a new approach for the design and
realisation of software and has eventually evolved in a
collection of standards that raise the level of
abstraction at which software solutions are specified.
The central idea is that computational independent
models (CIMs), platform independent models (PIMs)
and platform specific models (PSMs) – defined at
different levels of abstraction – are derived (semi-)
automatically from each other through model
transformations. Model transformations are thus a
crucial element in OMG’s vision on MDA.
Transformations relate the different abstractions used
in a model-driven development scenario. Model-to-
model (M2M) transformations relate CIMs to PIMs
and PIMs to PSMs, while Model-to-Text (M2T)

transformations relate the PSMs to code. OMG has
recently adopted standard languages for the
specification of model transformations, for which a
number of implementations are already available. The
availability of these transformation engines, in addition
to the existing metamodelling technology, brings us a
lot closer to the realization of the MDA vision.
Modelling engineers are now able to define their own
Domain-Specific Languages (DSLs) and
transformations between them and existing languages.

Since the technology for executing transformations
written in high-level declarative specification
languages (such as those included in the QVT
standard) is of very recent date, we observe that there
is very little knowledge available on how to write such
declarative model transformations. This led us to the
conclusion that there is a need for a body of
knowledge concerning the emerging discipline of
transformation engineering.

In this paper we aim to make an initial contribution
to this emerging discipline. Recently we have had the
opportunity to experiment with implementations of
both the QVT Core language (from Compuware) and
of the QVT Relations language (from IKV++). Based
on these experiences we propose a number of useful
problem-solution patterns, similar to the well-known
design patterns in software development. In addition
we provide a method for documenting and specifying
such reusable transformation patterns, such that others
can add their own patterns and the body of knowledge
can grow as experience is built up. For this purpose we
have recently started a Wiki catalogue [10] where
transformation patterns can be documented and
discussed.

The paper is organised as follows. In Section 2 and
Section 3 we discuss briefly the QVT model
transformation specification standard and a few
modelling languages we use in this paper. In Section 4
the issue of documenting transformation patterns is
addressed. Section 5 consists of a catalogue of model
transformation patterns we believe to be relevant in the
context of model-driven development. Each pattern is

1

described using a template that includes (for
illustration purposes) a pattern application example. In
Section 6 we demonstrate how the patterns can be used
combined by specifying a transformation for state chart
models. Finally, Section 7 summarises our conclusions
and gives some pointers to future work.

2. The QVT transformation languages

In order for design patterns to be understood and
useable by a wide audience, they should be expressed
in a well-known, preferably standardized language.
QVT (Query/View/Transformation) provides such
languages for M2M transformation specification. QVT
actually defines three different transformation
languages: Relations, Core and Operational Mappings.
Relations and Core are both declarative languages at
two different levels of abstraction, with a mapping
between them. We briefly present the Relation
language below that has been used for specification
purposes throughout this paper. For a complete
definition of these languages we refer the interested
reader to the standard specifications [8].

The QVT Operational language extends both
Relations and Core and provides a way of specifying
transformations imperatively. As we focus on
declarative transformation specification, we will not
discuss the Operational language further in this paper.
OMG has recently also approved the MOF Model-to-
Text standard for specifying transformations from
MOF models to text (i.e., code). However, M2T
transformations are of a completely different nature
and therefore also fall outside the scope of this paper.

In the QVT Relations language transformations are
specified by defining the relations that should hold
between source and target domains. Transformation
rules are described in terms of relations that define a
mapping between source and target elements and can
be constrained in the when and where clauses. Only
model elements that satisfy the constraints will be
related. Such constraints typically deal with the
properties of the model element, such as attributes and
associations to other elements. The when-clause
specifies a precondition. Only when all conditions in
this clause evaluate to true the relation between the
specified domains is established. The where-clause
specifies a postcondition. Once the relation is
established then the conditions specified here should
be enforced to hold. When a domain is marked as
enforced, the engine may create or update that domain
in order to establish the relation.

3. Modelling languages

Before addressing the main topic of this paper - the
transformation rule patterns - we briefly describe the
experimental setting in which our results have been
devised. The following modelling languages that have
served as source and target languages in our
transformation pattern specifications:

The shape language is a simple, purely syntactical
language that has been defined in order to illustrate the
model transformation patterns. It does not require any
prior knowledge and it basically has only two
concepts: simple shape and arrow. There are three
types of simple shapes: square, circle and triangle.
Furthermore, the Shape language contains a grouping
concept called Block used to express hierarchy. A
block may contain simple shapes and other blocks.
Each shape model should have a unique root element,
which is an instance of RootBlock, a specialization of
Block. To express relations between simple shapes and
blocks the Arrow concept is used. The Shape
metamodel is given in the Figure 1.

Figure 1. Shape language metamodel
In order to illustrate the transformation patterns

proposed in this paper we have used well known
diagramming notations, namely the UML class,
activity and statechart diagrams (for the complete
specifications see [7]). The used statechart metamodel
can be found in the Figure 2.

4. Transformation design patterns

Since the publication of “Design Patterns” by
Gamma et al. [4], patterns are well known in software
engineering. Patterns describe which problems
software engineers can encounter, the context in which
such problems may appear, and a general solution to
them. Analogously we propose to start a collection of
reusable design patterns for specifying model

2

transformation. A transformation design pattern, or
transformation pattern for short, is then a reusable
solution to a general model transformation problem.

Figure 2. Statechart diagram metamodel
The need for transformation patterns emerged

almost immediately after we first started writing model
transformations in QVT. Transformations are often
very similar. An existing transformation specification
is often a good starting point for a new one.
Unfortunately, the collection of existing and well-
documented transformations is still very small. We
also noticed that the same transformation can often be
specified in subtly different ways. On the surface it
seems to be just a matter of style, but such a different
‘style’ can have great consequences for performance,
applicability and reusability of the transformation.
Finally, our first solution to a particular transformation
problem often was not entirely correct and had to be
revised several times. A library of reusable
transformation patterns should enable engineers to get
it right more quickly.

4.1. Transformations, transformation rules and
rule patterns

Transformations, transformation rules, transformation
patterns, rule patterns are just a few concepts which are
used with different meanings and sometime
interchangeably in the literature. For example, in [5] a
definition is given for a transformation pattern which
corresponds to what we call a transformation
definition. Somewhat similar definitions to the ones we
propose are given by [3]. Another interesting view on
transformation patterns is that taken by the project
Modelware [1] that considers that a transformation
pattern (as general repeatable solution to a commonly-
occurring model transformation design problem) is not

a finished design that can be transformed directly into
a transformation specification. Although [1] proposes a
catalogue of transformation patterns, their approach is
different in two respects. Firstly, Modelware does not
rely on the QVT standard for the specification of
proposed patterns. Instead, the hybrid
imperative/declarative ATL language is used.
Secondly, the patterns included in [1] do not overlap
with those proposed in this paper.
Therefore, before discussing specific transformation
patterns as mentioned before, we feel compelled to
provide further clarifications concerning the semantics
we have attributed to these concepts and the relations
between them (as depicted in Figure 3). In the
remainder of this paper the following definitions will
be used.

Source
model

Source
metamodel

Target
metamodel

Target
modelTransformation

Transformation
definition

1
*

Rule definitionMapping Relation

1..* 0..* 0..* 1..*

1..* 0..* 0..* 1..*

Rule pattern

Figure 3. Model transformation concepts and
relations between them

A transformation definition is a formal specification
that consists of a set of rule definitions. A rule
definition is a formal specification in the form of a
mapping (in the sense of the QVT - Core language) or
of a relation (in the sense of the QVT - Relations
language). In its simplest form (and in line with the
MDA), a model transformation is the process of
converting a source model that conforms to a source
metamodel into a target model that conforms to a
target metamodel, using an existing transformation
definition between the two metamodels. When a
source model is transformed into the target model the
transformation definition prescribes the manner in
which the different rule definitions that are included in
the transformation definition are “executed”. In this
paper we argue that rule definitions can be created by
instantiating so called rule patterns. More specifically,
we regard a rule pattern as a generic (possibly
parameterized) formal specification that describes at a
higher level of abstraction a whole class of recurring
rule definitions.

3

4.2. Documenting transformation patterns

A design pattern names, abstracts, and identifies the
key aspects of a common design structure, such that it
can be reused and applied over and over again in
creating new designs. According to [1] and [4], a
pattern description should contain the following four
essential elements: the pattern name, a description of
the problem and the contexts in which it is applicable,
the solution to the problem, and the consequences of
using the pattern. In addition, pattern descriptions
should provide an example to clarify the provided
solution.
Likewise, we use a fixed template for documenting the
transformation patterns, consisting of the following
elements: the name of the pattern, the goal of the
pattern, motivation for the pattern, describing the class
of problems that the pattern solves, specification of
the solution using the QVT Relations language, an
example in which the pattern is applied and
considerations regarding the pattern’s applicability.

5. A catalogue of rule patterns

In this section, we document a number of
transformation patterns using the template described
above. These are: Mapping, Refinement, Abstraction,
Duality and Flattening.

5.1. The Mapping pattern

Goal: Establish one-to-one relations between elements
from the source model and elements from the target
model.
Motivation: Mapping is the most common and
straightforward transformation problem. It occurs
when source and target models use different languages
or syntax, but otherwise express more or less the same
semantics. This pattern is used to a greater or lesser
extent in virtually any transformation.
This is the most basic transformation pattern. Typical
examples of transformation rules that are based on this
pattern are 1-to-1 model transformation rules. It is in
general bidirectional (unless different concepts from
the left domain are mapped onto the same concept in
the right domain). All other transformation patterns
use/include this pattern.
Specification:

top relation XYMapping {
 inm: Str ng;

enforce domain left x: X {
 context = c1 : XContext {},
 name = nm };

enforce domain right y: Y {
 context = c2 : YContext {},
 name = nm };

when {
 ContextMapping(c1,c2);
 }
}

This rule specifies that some element x of type X is
related to some element y of type Y, whenever their
respective contexts are related by ContextMapping and
their names are equal. When the respective model
elements have more properties than a context and a
name, these should also be mapped. Consider for
example the case where the model elements to be
mapped represent associations or relationships
between other model elements, their sources and
targets. The pattern for this case is specified below:

top relation RelationshipMapping {
 inm: Str ng;

enforce domain left a: A {
 context = c1 : AContext {},
 name = nm,
 source = as : AS {},
 target = at : AT {}

};
enforce domain right b: B {

 context = c2 : BContext {},
 name = nm,
 source = bs : BS {},
 target = bt : BT {}
 };

when {
 ContextMapping(c1,c2);
 ElementMapping(as,bs);
 ElementMapping(at,bt);
 }
}

Example: For an example of mapping pattern instance
one may refer to the relation TransitionMapping in
Section 6. Besides, we have applied this pattern to
relate Circles to Squares in the Shape language. The
complete specification of this transformation can be
downloaded from our Wiki catalogue [10].
Applicability: The mapping pattern can be used to:

translate a model from one syntax into
another syntax, e.g. from ecore to XML, or
from UML to Java;
relate concepts one-to-one in source and
target model.

5.2. The Refinement pattern

The refinement pattern is the key design pattern in
stepwise refinement, which is a method to create lower
level (or: concrete) models from models from higher
level (or: abstract) models in a number of successive
refinement steps. Refinement is a key ingredient of
MDA, which advocates the realization of software

4

systems through systematic stepwise refinement from
models. Depending on the subject, different refinement
types can be distinguished, e.g., relation refinement
and node refinement.

Relation refinement pattern

Goal: To obtain a more detailed target model by
refining an edge to multiple, possibly interrelated,
edges.
Motivation: Relation refinement is typically used to
detail steps (which are often modelled as edges) into
sub steps. An example is e.g., by adding process steps
to an existing UML activity diagram.
Specification: In relation refinement an edge is refined
to (a set of) edges, possibly interleaved with nodes.
The corresponding pattern is characterized by a single
relation mapping on the left and multiple relation
and/or node mapping on the right. The pattern for
relation refinement is straightforward, and closely
resembles the Mapping Pattern. The specification
below demonstrates the mapping of an edge e1 to an
edge-node-edge pattern.

top relation RelationRefinementMapping {
n : String;
enforce domain left e1 : Edge {

 name = n,
 context = c1 : Context {},
 source = s_left : Node {},
 target = t_left : Node {}

};
enforce domain right im_node {

 context = c2 : Context {}
 -- an intermediate node
 };
-- potentially more nodes and edges

enforce domain right e2 : Edge {
 source = s_right : Node {},
 name = s_right.name + '_to_' +
im_node.name,
 context = c2,
 target = im_node

};
enforce domain right e3 : Edge {

 target = t_right : Node {},
 name = im_node.name + '_to_' +
t_right.name,
 block = c2,
 source = im_node
 };

when {
 ContextMapping(c1,c2);
 ElementMapping(s_left,s_right);
 ElementMapping(t_left,t_right);
 }
}
}

Example: An example of relation refinement in the
Shape language is the refinement of any Arrow into an
Arrow-Square-Arrow combination. The corresponding

specification in QVT Relations can be downloaded
from our Wiki catalogue [10].

Node refinement pattern

To obtain a more detailed target model by refining a
node to multiple, possibly interrelated, nodes a node
refinement pattern (similar to the relation pattern) has
been documented. However due to space limitations
has not been included in this paper, but can be found
on our Wiki catalogue [10]. Node refinement is used to
provide more detail to a node. For example, an UML
class diagram that leaves the methods and attributes
unspecified can be refined to class diagrams that do
specify methods and attributes. Another example is to
refine a super state in a hierarchical statechart to
several interrelated sub-states.

5.3. The Node Abstraction pattern

Goal: Abstracts from nodes in the source model while
keeping the incidence relations of these nodes.
Motivation: The node abstraction pattern removes
specific nodes from the source model to create a target
model whilst preserving the incidence relations. The
node abstraction pattern can be used to abstract from
specific information from models. The specification
below shows a simplified node abstraction pattern that
abstracts from a node X and produces an edge between
the incidences. It is assumed that source and target
have the same metamodel, that node X is a subtype of
the abstract type Node, that each node contains
references to its incidence edges, and that each edge
contains references to its source and target nodes. The
pattern below can only handle sequence of X of length
1, multiple in-sequence occurrences of X cannot be
handled.
Specification:

top relation Node_X_Abstraction {
enforce domain left s1 : X {

 inEdge = e_in : Edge {
 name = na_in : String;,
 source = ss1 : Node {}
 },
 outEdge = a_out : Edge {
 name = na_out,
 target = tt1 : Node{}
 }

};
enforce domain right a : Node {

 name = na_in + na_out,
 source = ss2 : Node {},
 target = tt2 : Node {}
 };

when {
 NodeMapping(ss1,ss2);
 NodeMapping(tt1,tt2);

5

 }
}

Example As node abstraction is quite intuitive we do
not provide a code fragment of node abstraction.
However, specification of example transformations can
be downloaded from our Wiki catalogue [10].
Applicability: Remove model elements from models,
for example, remove processes that conform to certain
criteria from a process diagram.

5.4. The Duality pattern

Goal: Given a model, to generate its semantic dual.
Motivation: Various modelling languages exist that
rely on the (acyclic) directed graph formalism to
represent dynamic behaviour (e.g., Petri nets, BPMN
and UML statechart diagrams, sequence diagrams,
collaborations diagrams and activity diagrams).
Nevertheless the semantics attributed to nodes and
arrows in these graph-like models differs. There are
roughly two main categories of such languages:

languages that focus on modelling the procedural
flow of activities that make up a larger activity,
namely a process - in this case vertices generally
represent (branching, assembling) activities, while
arrows depict causality relations between activities
(e.g., BPMN, UML activity diagrams);
languages that focus on modelling the flow of
control from state to state for a particular object
undergoing a process - in this case a vertex
generally represent one state of that object, while
an arrow depict the transition from one state to the
other (i.e., indicating that the object being in the
first state will enter the second state as a result of
reacting to discrete events; e.g., Petri nets, UML
statechart diagrams).

Defining transformations between modelling
languages that belong to these two different categories
requires the application of what we will refer to as
duality pattern (explained in more detail in the sequel).
This pattern is based on the dual character of these two
types of languages. More specifically, an activity (in
the sense of the first category of languages) can be
seen as the procedure that leads to a state change of the
object(s) undergoing a process, that is a transition in
the sense of the second type of languages, while a
causality relationship may be interpreted as the
moment when the object(s) have reached a certain state
as a result of an activity’s completion, which makes
possible the initiation of the subsequent one(s). In
other words, the duality rule pattern will map vertices
from the source model onto arrows in the target model
and arrows from the source model onto vertices in the

target model. However, it should be noted that the
mapping of branching/assembling nodes deserves
special consideration.
Specification: Our transformation strategy is as
follows: All Arrows on the left are related Nodes on
the right using the mapping rule pattern, as indicated
below:

top relation ArrowNodeMapping {
 nm: String;

enforce domain left a: Arrow {
 context = c1: AContext {},
 name=nm

};
enforce domain right v: Vertex {

 context = c2: VContext {},
 name=nm
 };

when {
 ContextMapping(c1, c2);
 }
}

Rules must be defined for relating a node on the left
with one or more arrows on the right for each of the
following cases:

a node on the left, having an incoming arrow e1
and an outgoing arrow e2, is related to an arrow a
on the right if e1 has been related to the source of
a and e2 to the target of a.

top relation NodeArrowMapping {
 inm: Str ng;

enforce domain left v:Vertex {
 context = c1: NContext{},
 incoming = e1: Arrow {},
 outgoing = e2: Arrow {},
 name = nm

};
enforce domain right a:Arrow {

 context = c2: AContext {},
 source = v1: Vertex {},
 target = v2: Vertex {},
 name = nm
 };

when {
 ContextMapping(c1, c2);

v.outgoing->size()=1;
 v.incoming->size()=1;

ArrowNodeMapping(e1, v1);
 ArrowNodeMapping(e2, v2);
 }
}

a node on the left that has an incoming arrow e1
and n (n>1) outgoing arrows (i.e., the node is a
“split node”) will be mapped on n arrows on the
right (one for each outgoing arrow on the left)
using the rule indicated below. As in the case of
the previous rule, the rule fires when contexts
have been related and the incoming arrow e1 has
been related to the source of the arrow a (on the
right) and an outgoing arrow e2 to the target of a.

6

top relation SplitArrowMapping {
: g; nm, nm2 Strin

enforce domain left e2:Arrow {
 source = v:SplitNode {
 context = c1: SContext
{},
 incoming = e1: Arrow
{},
 name = nm
 },
 name = nm2
 };

enforce domain right a: Arrow {
 context = c2: AContext {},
 source = v1: Vertex {},
 target = v2: Vertext {},
 name = nm.concat(nm2)
 };

when {
 ContextMapping(c1,c2);

v.outgoing->size()>1;
 v.incoming->size()=1;
 ArrowVertexMapping(e1, v1);
 ArrowVertexMapping(e2, v2);

}
}

a similar rules can be defined when the node on
the left is a “join node”;
rules must also be defined when the node on the
left is a start node/final node (no
incoming/outgoing arrows) or the node is
simultaneously join and split node (two or more
incoming arrows and two or more outgoing
arrows). Because of space limitations we do not
provide the specification of these rules, although
for a complete transformation these situations
must be equally considered.

Example: An example duality pattern application is
the generation of a statechart diagram from an activity
diagram. The corresponding QVT specification can be
downloaded from our Wiki catalogue [10].
Applicability: The duality pattern can be used to
related models expressed in languages between which
a duality relationship can be established (i.e.,
nodes/constructs from the source language can be
semantically related/mapped to arrows/relations in the
target language and, relations/arrows in the source
language can be related/mapped to nodes/constructs in
the target language). For example it can be used to
define transformations between UML activity
diagrams and UML statechart diagrams. It should be
noted, that situations may occur (depending on the
metamodels of the involved languages) when this type
of pattern is not bidirectional.

5.5. The Flattening pattern

Goal: Remove the hierarchy from the source model.
Motivation: Models are often hierarchically
structured. Consider for example package hierarchy in
UML, composite states in Statecharts or Hierarchical
PetriNets. Such hierarchical structuring usually is
intended to make the models easier to understand and
do not have inherent semantics. In order to realize such
hierarchical models in code or formally analyze them
using some tool, it may be necessary to first flatten the
model to a model without hierarchy.
Specification: We make the following assumptions:

Source and target models have the same
metamodel.
Source and target models both have a unique
RootElement, which are related by the
RootMapping relation, an instance of the mapping
pattern.
Model elements in the source model belong to
(have as their context) the RootElement or to a
Composite element, representing the hierarchy.

Our transformation strategy is as follows. All
Composites on the left are related to the RootElement
on the right. The CompositeContext here is either the
RootElement or another Composite. Thus the
CompositeContext c1 should be related to the
RootElement r via RootMapping or
CompositeFlattening itself.

top relation CompositeFlattening {
checkonly domain left c: Composite {

 context = c1 : CompositeContext {} };
enforce domain right r: RootElement{};

when {
 RootMapping(c1,r) or
CompositeFlattening(c1,r);
 }
}

All other elements will be simply copied using
instances of the mapping pattern above. In these rules
the ContextMapping should be replaced by the when
clause of the CompositeFlattening rule.

relation ElementMapping {
 i nm: Str ng;

enforce domain left x: Element {
 name = nm,
 context = c1 : Context {}
 };

enforce domain right y: Element {
 name = nm,
 context = c2 : Context {}
 };

when {
 RootMapping(c1,c2) or
CompositeFlattening(c1,c2);
 }
}

7

Examples: Below we have applied this pattern to
flatten the Block hierarchy from a Shapes model. The
additional condition
not(RootBlockMapping(b1,b2)) is required
to make sure that the Block b1 is not the RootBlock.

top relation BlockFlattening {
checkonly domain left b1: Block {

 block = c1 : Block {} };
enforce domain right b2: RootBlock {};
when {

not(RootBlockMapping(b1,b2));
RootBlockMapping(c1,b2) or

BlockFlattening(c1,b2);
 }
}

Applicability: The flattening pattern can be used to
remove hierarchical structure from a model.

6. Applying transformation patterns

Transformation specifications are made up of rule
definitions (see Section 4.1). Each rule tackles a small
part of the transformation problem. Transformation
patterns can help to identify solutions to these partial
transformation problems. In this section, we show how
a complete transformation definition can be
constructed and specified by combining rule
definitions, which in turn are obtained by applying the
rule patterns. The example illustrates how several
different rule patterns are combined to provide a
complete solution for a particular transformation
problem. To demonstrate the viability of the approach
the transformation is applied to statecharts, which is a
well-known and frequently used formalism of UML.
The problem statement is:
Given a hierarchical statechart, i.e., a statechart with
composite states, produce a flat statechart without any
hierarchy describing the same behaviour (Figure 4).

Figure 4. Statechart problem definition
We start the transformation specification with the
declaration of the source and target domains. The
source and target models are of the same type here,
i.e., a statechart (see Figure 2 for the statechart
metamodel).

Transformation
StatechartFlattening(left:StateChart,right:Sta
teChart) {}

Obviously, the problem statement is a Flattening
problem. Thus we first apply the Flattening pattern to
define a rule for flattening composite states. Here the
Composite is a CompositeState, the CompositeContext
is a Container (which is another CompositeState or the
StateMachine), and the RootElement is a
StateMachine.
top relation CompositeFlattening {
 enforce domain left cs: CompositeState
 }; {
 container = c1 : Container {}
 enforce domain right sm: StateMachine {};
 when {
 StateMachineMapping(c1,sm) or
 CompositeFlattening(c1,sm);}}

Composite
CompositeContext

RootElement

Flattening pattern

The above rule depends on a mapping between the root
elements, i.e., the encompassing state machines. This
relation is a simple instance of the Mapping pattern, in
which a state machine on the left is related to a state
machine on the right, such that their names are equal.
As StateMachine is the root hierarchical concept no
ContextMapping needs to be specified.

X

Y

Mapping pattern top relation StateMachineMapping {
 nm: String;
 enforce domain left sm1: StateMachine {
 name = nm};
 enforce domain right sm2: StateMachine {

name = nm};}

The remaining elements of the state machine are also
instances of the Mapping pattern. The rule for
transforming SimpleStates, for example, is obtained by
instantiating the Mapping pattern.
Also transitions between states from the source model
are simply mapped onto transitions in the target model
(as shown below), which is an instance of the
Relationship Mapping pattern.

top relation SimpleStateMapping {
 nm: String;

enforce domain left s1: SimpleState {
 container = c1 : Container {},
 name = nm};

enforce domain right s2: SimpleState {
 container = c2 : Container {},
 name = nm};

when {StateMachineMapping(c1,c2) or
CompositeFlattening(c1,c2);}}

X

Mapping pattern

ContextMapping

Y

transformation?

In the statechart metamodel, a Vertex is defined as a
generalization of a State that can be used to distinguish
between different types of states, e.g., Start State or
Final State. It has been introduced to cope with a
deficiency in the transformation execution engine to
handle enumerations.

8

top relation TransitionMapping {
 nm: String; g: String;
 enforce domain left t1: Transition {
 container = c1 : Container {},
 source = ss1 : Vertex {},
 target = ts1 : Vertex {},
 name = nm,
 guard = g};
 enforce domain right t2: Transition {
 container = c2 : Container {},
 source = ss2 : Vertex {},
 target = ts2 : Vertex {},
 name = nm,
 guard = g};
 when {
 StateMachineMapping(c1,c2) or
 CompositeFlattening(c1,c2);

A
AContext

AS

AT

BContext

B

BS
BT

In order to obtain a semantically correct model, we
additionally need to remove the initial and final states
of all composite states. Moreover, we need to make
sure that transitions that originally had a composite
state as their target are now redirected to the target of
the outgoing transition of the initial state of that
composite state. And, conversely, that transitions that
originally had a composite state as their source are now
moved to the source of incoming transitions of the
final state of that composite state. In principle we can
do this by applying the node abstraction pattern, which
takes a node and replaces it by a simpler structure. This
pattern can be applied twice, first to remove the
composite states and second to remove initial and final
states. The next figure depicts the abstraction of
pseudostates.

top relation InitialStateAbstraction {
 nm1, nm2: String;
 checkonly domain left ps: PseudoState {
 kind = PseudostateKind::pk_initial,
 container = c1 : CompositeState {
 incoming = inc : Transition {
 source = s1 : Vertex {},
 name = nm}},
 outgoing = out : Transition {
 target = t1 : Vertex {},
 name = nm2}};
 enforce domain right t: Transition {
 container = c2 : Container {},
 source = s2 : Vertex {},
 target = t2 : Vertex {},
 name = nm1 + nm2};
 when {CompositeFlattening(c1,c2);

VertexMapping(s1 s2);

X

Abstraction
pattern

The next figure depicts the abstraction of the
FinalState by instantiating the node abstraction pattern.

top relation FinalStateAbstraction {
 nm1, nm2: String;
 checkonly domain left fs: FinalState {
 container = c1 : CompositeState {
 outgoing = tr : Transition {
 target = t1 : Vertex {},
 name = nm1}},
 incoming = inc : Transition {
 source = s1 : Vertex {},
 name = nm2}};
 enforce domain right t: Transition {
 container = c2 : Container {},
 name = nm1 + nm2,
 source = s2 : Vertex {},
 target = t2 : Vertex {}};
 when {CompositeFlattening(c1,c2);

VertexMapping(s1 s2);

X

Abstraction
pattern

By combining all these transformation rules a
transformation specification is obtained that is able to
flatten the statechart.

7. Conclusions

Writing model-to-model transformations can be a
tedious undertaking. In most model transformations
there are certain underlying principles that can be used
to facilitate the production of model transformations.
This paper has identified basic transformation patterns
that frequently occur in model-to-model
transformations such as the mapping pattern, the
duality pattern, the refinement/abstraction pattern, the
flattening pattern. These patterns have been described
and specified in QVT Relations, resulting in a
catalogue of basic transformation patterns. A simple
Shape language has been introduced to illustrate most
of the patterns. The catalogue of transformation
patterns provided in this paper is a first attempt to
categorize transformation principles in QVT Relations.
This list is, however, not complete. A natural way to
enrich this collection of pattern, would be to try to join
our approach with similar initiatives in this area, such
that the Modelware project ([1]). It remains however to
investigate to what extent patterns proposed in [1] are
implementable using the declarative QVT languages.
Furthermore, we challenge the community to elaborate
on this kind of work and extend the list of patterns.
Composition of model-to-model transformation should
be guided, in our view, by the usability of the resulting
transformation. In this respect we believe that it is not
always meaningful to compose patterns. In practice,
some particular compositions of patterns will occur
more frequently than others. For example, the mapping
pattern is often composed with many other patterns,
but composition of node refinement with duality seems
to make less sense in practical situations.
Nevertheless, an analysis of pattern compositionality
and parameterization makes the object of future work.

9

Acknowledgments
The work presented in this paper is part of the
Freeband A-MUSE project (http://a-muse.freeband.nl),
which is sponsored by the Dutch government under
contract BSIK 03025.

References

[1] Allilaire, F., Bézivin, J., Olsen, G., Bailey, T., Bonet,
S., Mantell, K., Vogel, R.: “D1.6-3 Identification of
Transformation Patterns”, FP6-IP 511731
MODELWARE, 04/09/06, http://www.modelware-
ist.org/index.php?option=com_remository&Itemid=79&
func=fileinfo&id=132 (1-2-2008).

[2] Alexander, C., Ishikawa, S., Silverstein, M.: “A Pattern
Language: Towns, Buildings, Construction (Center for
Environmental Structure Series)”, Oxford University
Press, 1977.

[3]Brahe, S. and Bordbar, B.: “A Pattern-based Approach to
Business Process Modeling and Implementation in Web
Services”, In Workshop Proceedings of the 4th
International Conference on Service-Oriented
Computing ICSOC 2006, Chicago, IL, USA, December

4-7, 2006, Lecture Notes in Computer Science, Vol.
4652/2007, pp. 166-177, ISBN 978-3-540-75491-6.

[4]Gamma, E., Helm, R., Johnson, R., Vlissides, J.: “Design
Patterns: Element of Reusable Object-Oriented
Software”. Published by Addison-Wesley, 1995. ISBN
0201633612. 27th printing, November 2003.

[5]Judson, S.R., Carver, D.L., France, R.B.: “A Meta-
Modelling Approach to Model Transformation”. In:
OOPSLA’03, p. 326-327, October 26-30, 2003,
Anaheim, USA.

[6]Miller, J. and J. Mukerji (eds.): “MDA Guide Version
1.0.1”, Object Management Group, June 2003.

[7]Object Management Group: “OMG Unified Modeling
Language: Superstructure Version 2.1.1”, 2003,
http://www.omg.org/docs/formal/07-02-03.pdf (31-1-
2008).

[8]Object Management Group: “Meta Object Facility (MOF)
2.0 Query/View/Transformation Specification”, Final
Adopted Specification ptc/05-11-01, Nov. 2005,
http://www.omg.org/docs/ptc/05-11-01.pdf (1-2-2008).

[9]Soley, R. and the OMG Staff Strategy Group: “Model
Driven Architecture", Object Management Group White
Paper, Draft 3.2, Nov. 2000.

[10] Wiki patterns catalogue:
https://doc.telin.nl/dsweb/View/Wiki-90/HomePage.

10

Combining Rules and Activities for
Modeling Service-Based Business Processes

Milan Milanovi 1, Dragan Gaševi 2, Gerd Wagner3

1FON-School of Business Administration, University of Belgrade, Serbia
2Athabasca University, Canada

3Brandenburg University of Technology at Cottbus, Germany
milan@milanovic.org, dgasevic@acm.org, wagnerg@tu-cottbus.de

Abstract

It is widely acknowledged that business process
management would greatly benefit from integration
with business rule management. But there is still no
established solution to this integration problem, and
the leading business process modeling language,
BPMN, does not provide any explicit support for rules.
In this paper, we are going to investigate the extension
of BPMN by adding rules as a modeling concept in the
form of a new gateway type, using the principles of
Model-Driven Engineering. The integration will be
done on the level of the metamodels of the involved
languages, resulting in a new rule-based process mod-
eling language called rBPMN (Rule-based BPMN).

1. Introduction

Recent research [26] has identified a lack of explicit
formalism in the process modeling languages for cap-
turing business rules. In this paper, we follow the busi-
ness rules approach [5] by combining business process
models and business rules in a way that makes rules
first-class citizens in business process modeling. The
key idea is to extract some parts of a business logic
contained implicitly in business process models into
explicit definitions of business rules. To achieve this,
we propose adding a new gateway type, called rule
gateway, to the business process modeling language
BPMN. We also discuss how Web service composi-
tions can be extracted from such rule-based process
models and discuss a set of business process modeling
(workflow) patterns for modeling SOAs. By adding
rules to the BPMN we enable run-time updates of a
business logic, which with regular BPMN cannot be
done.

Our high-level modeling approach allows develop-
ers to focus on a problem domain rather than on an
implementation technology. Following the principles

of Model Driven Engineering (MDE), we integrate a
new rule gateway type into BPMN business process
models on the metamodel level, resulting in a language
called rBPMN (Rule-based BPMN), which facilitates
business process modeling by domain experts and al-
lows to transform such process models into different
SOA implementation platforms [7].

In order to make such abstract business process de-
finitions modeled by business expert’s executable, the
ability to integrate heterogeneous enterprise systems is
needed. Web Services (WS) technology provides this
ability by encapsulating enterprise systems functionali-
ty into services. Service composition languages, such
as the Business Process Execution Language (WS-
BPEL [11]) and service interaction protocol languages
such as the Web Services Choreography Description
Language (WS-CDL [12]), make it possible to com-
bine different services and to automate and standardize
the execution of cross-organizational business process
models [10]. Web services, service composition lan-
guages and service interaction protocol languages are
key technologies for enabling SOA. In our approach,
we propose obtaining service compositions from rule-
based business process models to make those process
models executable.

The rest of the paper is structured as follows. In the
next section, a motivating example is presented which
is used to explain different concepts used throughout
the paper. In Section 3, requirements for modeling
rule-enabled SOAs are given, together with proposed
methodology for developing rule enabled SOAs. Sec-
tion 4 introduces MDE, business rules and business
process languages. In Section 5, we present different
business process modeling patterns that our solution
needs to support and rBPMN language. Before con-
cluding the paper in Section 7, in Section 6, we sum-
marize the related work.

11

2. Motivating Example

In this section, we use a well-known example of a tra-
vel agency process to show basic concepts of the
rBPMN language for illustrating how BPMN models
are enriched by rules. For simplicity, in Figure 1, we
omit some of the model elements that would be needed
to model the complete functionality of the described
process (such as selecting Airline).

This scenario includes a Traveler role, which starts
the process by requesting a trip arrangement from the
TravelAgency. In Figure 1, the TravelAgency receives
a request from a Traveler and communicates with Air-
line companies and Hotels. When all of the necessary
information is collected, the TravelAgency returns the
requested information to the Traveler, which denotes if
the trip is planned or not. If yes, it provides the itine-
rary about the planned trip.

In this travel agency scenario, we added on a busi-
ness process diagram (BPMN) additional annotations
and rules, such as <<BpelProcess>> and <<WS>>
annotations to the pools, and reaction rules (RR)
represented with as diamond-based gateway called rule
gateway with the boldface R tag. Reaction rules are
also used to produce SOA artifacts in the Airline and
Hotel pools. These rules describe mappings to Web
service operations (see Section 4.3). By mapping these
rules to Web service operations, we can extract service
compositions (orchestrations and choreographies) from
rBPMN models. We also added an additional con-
straint on the rule gateway in a form of a conditional
expression on a construct Flight, which is equality of
its property price and wantedPrice property of the in-
coming request message. In the subsequent sections,
we describe how these additional concepts on the busi-
ness process diagram can improve business process
modeling and SOA generation.

3. Requirements

For integration of rules and processes in our case, we
first need to define basic concepts that such integration
should support for modeling SOAs. In order to model
SOA-based processes by using abstract business
process languages such as rBPMN in Figure 1, we
need to define requirements that such business process
models should have. We will define those require-
ments through a methodology for development of rule
enabled SOAs. In Figure 2, we show our proposal for
the methodology for developing rule-enabled SOAs.
Here, we briefly explain only first five stages, which
are the most relevant for our methodology:
1. Requirements specification. In this stage, a business

analyst collects information about the application
domain and business functions. The output of this
specification is the project requirements document.

2. Process design. In this stage, using information from
the requirements document from the previous re-
quirements phase, a process modeler defines an ab-
stract business process model (by BPMN). For this
phase, we need to extend basic BPMN concepts by
adding to them annotations for SOA-related con-
cepts (e.g., the <<WS>> annotation of the Airline
pool in Figure 1) in order to make them mappable to
service compositions.

3. Data design. This stage includes defining a domain
model (vocabulary) by using information collected
during stage 1. This stage may include some existing
vocabularies. For this phase, we need to extend
BPMN by connecting to it an underlying data layer
(i.e., some existing vocabulary language, such as
UML class models [23]).

4. Rule design. In this stage, business (reaction) rules
are added to the process. This activity includes rules
which are already defined or rules that can be direct-

Figure 1. Travel Agency Process (rBPMN)

12

ly defined in the process diagram and later refined in
a rule language. In this stage, we need to include
reaction rules that can be added into process models.
These rules must use data model from stage 2 of this
methodology, as whole process is annotated with da-
ta from this model. Another important point here is a
place where rules should be used. As rule gateway is
one of the rBPMN gateways, we propose that this
gateway should be commonly used in places where
some kind of condition is needed to be defined that
will fork the sequence flow in the process. Of
course, every rule gateway must be logically put into
rBPMN process as any other modeling element. In
combination with BPMN elements, rules can be used
for modeling Web Service in terms of Message Ex-
change Patterns (MEPs) [15]. This means that our
rules can define how services can be used and ser-
vice definitions, too [6].

5. Orchestration and choreography generation. In this
stage, generation of executable orchestrations (e.g.,
WS-BPEL [11]) or choreographies (e.g., WS-CDL
[12]) from the rule-based business processes model
could be done by using a model transformation ap-
proach [21]. This step can include some existing
choreographies and orchestrations. Choreographies
are activities of the same process orchestration, but
between activities of different process orchestrations
[7], while orchestrations are modeled activities, with
their relationships, that are performed within a single
organization [7].
In the Section 5, we will present more about main

stages of our methodology, namely, process design,

data design and rule design phases regarding the or-
chestration and choreography phase. From this moti-
vating example and requirements, we emphasize topics
of the benefits for rBPMN, to be discussed about in the
rest of the paper:

Precisely defined descriptions of services (by using
reaction rules), which can be defined and integrated
into business processes.
Definitions of rules along with Web services in
business process models allow for generation rules
that regulate how to use Web services.
Ability to integrate declarative business logic via the
use of rules into process-oriented models.
Ability to generate SOAs, including both service and
service composition definitions, where combination
of rule and processes can be translated to full service
definitions.

4. Background

In this section, we give a brief overview of the tech-
nologies and languages relevant to the problem under
study. This includes a short description of the MDE,
business process language – (BPMN) and rule lan-
guage (R2ML).

4.1. Model Driven Engineering

MDE is a new software engineering discipline in
which the process heavily relies on the use of models
[3], while OMG’s Model Driven Architecture (MDA)
[17] is considered as an implementation of MDE [4].
A model is defined as a set of statements about some

Figure 2. Methodology for developing rule enabled SOAs

13

system under study [17]. Models are usually specified
using modeling languages (e.g., UML), while model-
ing languages can be defined by metamodels. A meta-
model is a model of a modeling language. That is, a
metamodel makes statements about what can be ex-
pressed in the valid models of a certain modeling lan-
guage [28]. A typical meta-modeling framework
(MDA) has three layers, namely:

M1 layer or model layer where models are defined
by using modeling languages;
M2 layer or metamodel layer where models of
modeling languages (i.e. metamodels) are defined
(e.g., UML [23] or BPMN metamodel [19]) by us-
ing metamodeling languages such as MOF;
M3 layer or metametamodel layer where the only
metamodeling language is defined (i.e. MOF) by it-
self [20].
The relations between different meta-layers can be

considered instance-of or conformant-to, which means
that a model is an instance of a metamodel, and a me-
tamodel is an instance of a metametamodel.

4.2. Business Processes: BPMN

BPMN represents an OMG specification [1918] whose
intent in business process modeling is very similar to
the intent of the UML for object-oriented design. It
identifies the best practices of existing approaches and
combines them into a new, generally accepted business
process modeling language.

In BPMN, business process models are expressed in
business process diagrams. Each business process dia-
gram consists of a set of modeling elements. The nota-
tional elements in business process diagrams are con-
trol flows which are modeled using three different
kinds of flow objects. Flow objects are: Events that
occur at the start, during, or at the end of a process
(represented by circles in BPMN), activities that are
performed, and gateways for guiding, splitting and
merging control flow. BPMN activities are represented
by rectangles (with rounded corners) that can either
stand for atomic tasks or so-called sub processes. An
example of a BPMN activity is “Trip request” activity
in Figure 1. The diamond shaped gateways represent
decisions, merges, forks, and joins in the control flow.
A gateway can be thought of as a question that is asked
at a point in the process flow. The question has a de-
fined set of alternative answers, which are in effect
gates. The event-based XOR gateway represents a
branching point where the alternatives are based on an
event that occurs at that point in the process flow,
while the data-based XOR gateway is similar to event-
based with the difference that alternatives are based on
defined conditions. Other gateways with special deci-

sion logic exist too, such as inclusive, complex and
parallel gateways.

Connecting objects (i.e., different kinds of lines)
connect the flow objects to create a basic skeletal
structure of a business process. A Sequence Flow is
represented by a solid arrow and is used to show the
order that activities will be performed in the business
process. An example of a sequence flow is given in
Figure 1 between the task “Request price” and RR. A
Message Flow is represented by a dashed line with an
open arrowhead and is used to show the flow of mes-
sages between two separate business process partici-
pants. An example of message flow is shown in Figure
1 between the task “Receive price” and RR (rule gate-
way). Associations, represented as dotted lines, are
used to associate data objects, text, and other artifacts
with flow objects.

BPMN also has a concept called Pool, which
represents a participant in a business process (an ex-
ample of a Pool in Figure 1 is the “Traveler” Pool). A
participant can be a specific business entity (e.g., a
company) or can be a more general business role (e.g.,
buyer or seller). Graphically, a Pool is a container for
partitioning a process from other Pools.

For a more detailed description of BPMN refer to
[19]. By using MDE principles described in Section
4.1, our integration of business rules into BPMN is
done on the level of metamodels, and for this purpose
we use the BPMN metamodel proposal given in [19].

4.3. Business Rules: R2ML

A business rule is a statement that aims to influence or
guide behavior and information in an organization
[29]. There are different categories of business rules
such as [31] integrity, derivation, reaction, and produc-
tion. We decided to use REWERSE I1 Rule Markup
Language (R2ML), as it supports abovementioned
types of rules. The R2ML rule language is defined by a
metamodel, by using the MOF metamodeling language
[27] [31]. The R2ML attempts to address all the re-
quests defined by the W3C working group for the
standard rule interchange format [8]. As business
process models (BPMN) are represented by using me-
tamodeling principles, the R2ML choice is obvious.
Integrity rules in the R2ML, also known as (integrity)
constraints, consist of a constraint assertion, which is a
sentence in a logical language such as first-order pre-
dicate logic or OCL [22]. Derivation rules are used to
derive new knowledge (conclusion) if a condition
holds. Production rules produce actions if the condi-
tions hold, while post-conditions must also hold after
the execution of actions. A reaction rule (RR) is a
statement of programming logic [9] that specifies the

14

execution of one or more actions in the case of a trig-
gering event occurrence and if rule conditions are sa-
tisfied. Optionally, after the execution of the action(s),
post-conditions may be made true.

R2ML also allows one to define vocabularies by us-
ing the following constructs: basic content vocabulary,
functional content vocabulary, and relational content
vocabulary. Here, we give a short description of voca-
bulary constructs that we use in this paper. Vocabulary
is a concept (class) that can have one or more Vocabu-
laryEntry concepts. VocabularyEntry is an abstract
concept (class) that is used for representing other con-
cepts by its specialization. For example, one of Voca-
bularyEntry-s is an R2ML Class concept which
represents the class element similar to the notion of the
UML Class. An R2ML Class can have attributes (class
Attribute), reference properties (class ReferencePro-
perty) and operations (class Operation). Messages are
defined in R2ML as EventExpression-s, while those
EventExpression types are defined in the R2ML Voca-
bulary as event types.

Because of the space constraints, we describe here
only reaction rules used in our motivating example in
Figure 1, as our illustration of rBPMN. A more de-
tailed description of other types of rules supported in
R2ML can be found in [27]. Reaction rules (RR)
represent a flexible way for specifying control flows,
as well as for integrating events/actions from a real life
[9]. Reaction rules are represented in the R2ML meta-
model as shown in Figure 3: triggeringEventExpr is an
R2ML EventExpression; conditions are represented as
a collection of quantifier free logical formulas; trigge-
redEventExpr is an R2ML EventExpression and
represents a system state change; and (optional) post-
condition must hold when the system state changes.

The R2ML event metamodel defines basic concepts
that are needed for dynamic rule behavior. R2ML

EventExpression can be one of the following concepts
(classes): AtomicEventExpression, AndNotEventEx-
pression, SequenceEventExpression, ParralelEventEx-
pression, and ChoiceEventExpression. We use Atomi-
cEventExpression for modeling messages that are part
of the business process diagram underlying data layer.
This is because we are using R2ML elements (expres-
sions) to represent message definitions in rBPMN.
Each AtomicEventExpression has its own type –
EventType. EventType is defined as a subclass of Class
(in the R2ML Vocabulary). This means that each
EventType has their own attributes, associations, and
all other features of R2ML classes.

Along with its metamodel, R2ML has a graphical
concrete syntax called UML-Based Rule Modeling
Language (URML) [9] [15]. URML is developed as an
extension of the UML metamodel to be used for rule
modeling. In URML, modeling vocabularies is done
by using UML class models. Rules are defined on top
of such models, while URML models are stored in the
R2ML XML (concrete syntax) format [27].

In Figure 4, we show an example of the URML de-
finition of the reaction rule used Figure 1. This reac-
tion rule returns a message that say if certain flight
price is equal to wanted flight price. The URML class
that represents the input message (CheckPriceRequest
in Figure 4) of the reaction rule is AtomicEventExpres-
sion type instance, and it is represented with the
<<atomic event expression>> stereotype on UML
classes. The same stereotype is also the type of the
reaction rule output message (CheckPriceResposne).
The input message CheckPriceRequest is connected
with Class instance type called Airline, by using asso-
ciation. While condition is represented with a Flight
class that connects with RR and the condition expres-
sion defined on this connection (price = wantedPrice).

Figure 3. The definition of reaction rules and event expressions in the R2ML metamodel

15

In our previous work [15], we presented how reac-
tion rules can be translated into Web services, i.e.,
WSDL descriptions. We have done this in the follow-
ing way. A triggering event of a RR maps to the input
message of a Web service operation. The action of the
RR, which is triggered when a condition is true, maps
to the output message of the Web service operation. To
model condition constructs (e.g., price = wantedPrice)
we use OCL filters [22]. OCL filters are based on a
part of OCL that models logical expressions, which
can be later translated to R2ML logical formulas, as
parts of reaction rules. However, these OCL filters
cannot be later translated to Web service descriptions
(e.g., WSDL), as those languages cannot support such
constructs. But, we can translate our URML models
into rule-based languages (e.g., Jess or Drools). This
means that for each Web service, we can generate a
complementary rule, which fully regulates how its at-
tributed service is used.

5. Integration of Business Rules and
Processes: rBPMN

In this section, we describe the integration of the
BPMN and R2ML languages in order to create a new
rule-based process modeling language called rBPMN
by using the MDE approach. We will show evaluation
of this integration by using a set of different business
process modeling patterns, namely, control flow and
service interaction patterns.

5.1. Business Process Modeling Patterns

In order to show how rBPMN can be used to model
SOAs, i.e., orchestrations (basic control flow patterns)
and choreographies (service interaction patterns), we

give here business process patterns that describe our
approach in a rBPMN graphical concrete syntax.

5.1.1. Basic Control Flow Patterns. Control flow pat-
terns represent a set of 21 workflow patterns created to
show expressivity of workflow management systems
[32]. These patterns can be used in business process
modeling, and also to compare the expressiveness of
process languages. Basic control flow patterns include
sequence, and split, and join, as well as exclusive or
split and exclusive or join. Control flow patterns are
defined at the process model level. As some of these
patterns can be defined in BPMN without using rules,
by adding rules we enrich those diagrams in a way that
such business processes can be changed in a real-time
by changing only rules, and not by changing the whole
process. As BPMN [19] has a weak support for rule-
based gateways, where conditions are usually written
in a natural language [26], by adding formal rules, we
enable execution of such processes possible on some
execution platform, such as BPEL [11].

Here, we evaluate the support needed by the
rBPMN to represent these patterns, on an example of
three workflow patterns represented in the rBPMN
graphical concrete syntax due to lack of space, but we
should note that we supported all of the 21 basic pat-
terns shown in [32]. We should note that these patterns
apply to business models that are used to model
process orchestrations, because activities used in these
patterns are performed within a single organization
(i.e., BPMN Pool). Regarding mappings from rBPMN
to execution languages, such as BPEL, these business
models can be mapped into BPEL and WSDL con-
structs by using already defined mappings [19], where
rules are mapped by using standard BPEL constructs,
such as invoke, or by extending BPEL to support rules.

We should note that for control flow patterns the
focus is on control flow and
not on message exchange, so
we do not show messages in
control flow patterns figures in
Section 5.1.1.

5.1.1.1. Sequence. The pattern
“Sequence” is represented in
Figure 5. An activity of the
type activity2 is started after
the completion of an activity of
the type activity1. The rule
gateway symbol for the reac-
tion rule is usually omitted
from a graphical representation
of this pattern, but we show it
in order to present how reac-Figure 4. Reaction rule modeling

16

tion rule can be simply located in a sequence flow.
This rBPMN pattern can also be represented in BPMN,
as it is very simple.

Figure 5. The “Sequence” pattern

5.1.1.2. Parallel Split. The pattern “Parallel Split”
splits an activity into two or more activities which can
be performed in parallel, thus allowing activities to be
performed simultaneously or in any order. This pattern
is shown in Figure 6. After the end of an activity1,
activities of the types activity2 … activityn are started
to be performed in parallel. In this case, the triggere-
dEventExpr of the RR is a ParralelEventExpression
that contains two or more activities (i.e., activity2 ...
activityn) so that they can perform in parallel. This
rBPMN pattern can be represented in BPMN too, but
with using a reaction rule we have flexibility to use
event-based logic to choose its outgoing alternatives.

Figure 6. The “Parallel Split” pattern

5.1.1.3. Exclusive Choice. The pattern “Exclusive
Choice” chooses one of several activities to be per-
formed based on a control data. In an example of Fig-
ure 7, after the end of an activity1, if the condition spe-
cified by predicate and condition is true, an activity2 is
started. Otherwise, an activity3 is started (this choice is
denoted with a cross line on a line between R and ac-
tivity 3 in Figure 7). This pattern is also shown in Fig-
ure 1, in a place where reaction rule (RR) (after “Re-
ceive price” task) is used. This pattern can be
represented in BPMN, but without using reaction rule
when Entities’ predicate changes in run-time it is not
possible to affect a process.

Figure 7. The “Exclusive Choice” pattern

5.1.2. Basic Service Interaction Patterns. The
workflow patterns presented in Section 5.1.1 describe
control flow that is characteristic for process orchestra-
tions. However, there are several differences between
process orchestrations and process choreographies that
need specific consideration: choreographies are based
on message exchange, and potentially many partici-
pants interact in choreography, while orchestrations
are based on control flow between the activities of a
single process performed by a single organization.

Service interaction patterns aim at filling this gap
by proposing small granular types of interactions that
can be combined to choreographies [1]. As with
workflow patterns represented in Section 5.1.1, these
service interaction patterns can be modeled with
BPMN, but by modeling them with rBPMN, we show
how decision logic can be changed at run-time and
how these patterns are annotated for mapping them to
service compositions. Rules, activities and events are
combined on a level of concrete and abstract syntax
(see Section 5.2). In the following subsections, we give
an example of three service interaction patterns mod-
eled by means of the rBPMN language. We should
note that we supported all of the 13 service interaction
patterns [1]. These examples can be mapped to a
process choreography language, such as WS-CDL in
phase 5 of our methodology (Figure 2).

5.1.2.1. Send. The send pattern represents a one-way
interaction between two participants seen from the
perspective of the sender. There are different flavors of
this pattern, considering, for instance, the moment
when the sender selects the receiver: The receiver is
known either at design time of the choreography or
only during the execution of a conversation.

Figure 8. The “Send” pattern

Figure 8 illustrates an example where a one party
(represented with BPMN Pool) is sending a message to
another party. The sending of the message is realized
by a Send task, while the receiving is realized using
message event and reaction rule that receive message

17

and continues sequence flow in Pool 2. We should not
that we do not show message between the Send task
and reaction rule as it is not mandatory (we describe
message annotation in the next pattern – Section
5.1.2.2). In addition, this rBPMN pattern can be direct-
ly mapped into the Web Service In-Only message ex-
change pattern (MEP), as we have shown in [15]. The
In-Only MEP consists of exactly one input message:
service expects one message and it is not obliged to
send a response back.

5.1.2.2. Send/Receive. In the send/receive pattern, a
participant sends a request to another participant who
then returns a response message. Both messages be-
long to the same conversation. Since there could be
several send/receive interaction instances happening in
parallel, corresponding requests and responses need to
be correlated.

Figure 9. The “Send/Receive” pattern

If, for instance, one party (e.g., Pool 1 in Figure 9)
requests information from different parties (e.g., Pool 2
in Figure 9), the different request/response pairs be-
long to different conversations. In this situation, the
first party must be able to tell which quote belongs to
which request. Therefore, correlation information must
be placed inside the messages. For instance, the re-
quest could carry a request identifier which is then also
contained inside the response message.

We should note that message exchange between
tasks and rules is annotated with messages by using
symbols and for request and response messages,
respectively. These messages are defined as a part of
the R2ML Vocabulary and shown in Figure 9, and also
in Figure 1 between TravelAgency and Airline and
Hotel pools. A reaction rule defined in a process dia-
gram, such as in Figure 1 or Figure 9, can be imported
into a process diagram if it is already defined (by fol-
lowing the methodology steps of Figure 2).

In addition, this pattern can be directly mapped into
Web Service In-Out MEP [15]. The In-Out MEP con-
sists of exactly two messages: when a service receives

an input message, it has to reply with an output mes-
sage.

5.1.2.3. Racing Incoming Messages. Racing incoming
messages are common in business-to-business scena-
rios; this pattern is described as follows: a participant
is waiting for a message to arrive, but other partici-
pants have the chance to send a message. These mes-
sages by different participants “race” with each other.
Only the first message arriving will be processed. The
type of the message sent or the category the sending
participant belongs to can be used to determine how
the receiver processes the message. The remaining
messages may be discarded or kept for later consump-
tion. This aspect is not covered by the racing incoming
messages pattern.

Figure 10. The “Racing Incoming Messages”
pattern

Figure 10 shows a scenario where a Pool 2 has done
some tasks and now waits for Pool 1 message. If the
“Send 1.” task sends the message, the first RR in the
Pool 2 fire, but in the case that “Send 2” task sends the
message, the second RR in the Pool 2 fire and continue
sequence flow.

An example of such scenario is where a travel agent
(Pool 2) has reserved a flight for a customer (Pool 1),
and now waits for a confirmation or a notification that
the flight details are not acceptable. In the case of con-
firmation the payment is initiated, and in the case of
rejection a new flight reservation might be needed,
where customer can have more requests which can be
rejected or accepted by travel agent by using rules.

5.2. rBPMN Language

Business processes are represented by business process
models. In order to express process models, there
needs to be a notation in place that provides notational
elements for the conceptual elements of process meta-

18

models. The rBPMN process
notation is associated with the
rBPMN process metamodel
level and with the rBPMN
process model level (by using
MDE approach), while each
rBPMN process model is ex-
pressed in the rBPMN process
notation associated with the
rBPMN process metamodel
that describes the rBPMN
process model.

Here, we present the
rBPMN metamodel (i.e., ab-
stract syntax, and also note that
we omit some concepts be-
cause of the space limitation
and that work on rBPMN me-
tamodel is in progress). The

use of the MDE approach for defining abstract syntax
of the rBPMN language enables us to have first leve-
rage metamodels as means for checking validity of
concrete expressions of process models. We should
note that we are using here UML class diagrams nota-
tion for representing rBPMN metamodeling concepts.
The overall rBPMN organization is shown in Figure
11, where we can see that the rBPMN package in-
cludes elements from the BPMN and R2ML packages
(metamodels). The core package in the rBPMN meta-
model is shown in Figure 12. This package is not
changed from the BPMN metamodel proposal [19].
We have chosen this BPMN metamodel proposal be-
cause it comprises the whole BPMN language specifi-
cation and it is clearly mappable to BPEL. The rBPMN
core package consists from the following elements:

A Process (class) describes a sequence or flow of
activities in an enterprise with the objective of carry-
ing work. In BPMN, a Process is depicted as a graph
of FlowElements, which are a set of activities,
events, gateways and sequence flows that define fi-
nite execution semantics (see Figure 13).
Collaboration is used to describe interactions be-
tween two or more business entities or business
roles, which are represented as Participants within
Pools. Collaboration shows interactions, that is, the
Messages exchanged between Participants that take
part in the Collaboration. The Collaboration con-
tains two or more Pools, representing the Partici-
pants in the Collaboration. The interactions between
the Participants are shown by a MessageFlow that
connect two Pools.
MessageFlow connect either to the Pool boundary or
the Flow objects within the Pool boundary (they are
represented as dashed lines with arrow on one the

side and circle on the other side, for example, as be-
tween the “Request price” task and the RR in Figure
1). Every MessageFlow can have zero or one Mes-
sage attached (see Figure 14).
Pool represents a Participant in Collaboration. A
Participant can be a specific business entity, such as
TravelAgency, Traveler, Airline and Hotel in Figure
1. Every Participant has a roleRef attribute (of the
enumeration type Role) that we have added in me-
tamodel and that defines a business role that the Par-
ticipant plays in the Collaboration (such as << WS
>> and << BpelProcess >> for Pools in Figure 1).
This Role enables generation of service composi-
tions because with them we know which pool should
be Web service and which pool is main BPEL
process. A Pool acts as the container for a Process.

Figure 12. Core package in the rBPMN meta-
model

In the Figure 13, we show the Process package of
the rBPMN metamodel. The Process package contains
classes which are used for modeling the flow of activi-
ties, events, messages, and how they are sequenced
within a Process. This package consists from different
elements (classes) from the BPMN metamodel:

A SequenceFlow is used to model the transition of
control from one FlowElement (the source) to anoth-
er (the target). It determines the sequencing of Flo-
wElements within a Process flow. SequenceFlow is
represented with a solid line with black arrow be-
tween Tasks in Figure 1.
Activities represent points in a Process flow where
work is performed. They are the executable elements
of a BPMN Process. The Activity class is an abstract
element, the types of activities that are a part of a
Process are: Task, SubProcess, and CallActivity. In
Figure 13, we show only the Task element, as the
most important activity type. A Task is an atomic
Activity within a Process flow, which is used when
the work in the Process cannot be broken down to a
finer level of detail. Generally, an end-user and/or

Figure 11. rBPMN
metamodel

19

applications are used to perform the Task when it is
executed.
The Process package also includes Events and
Gateways. Gateways are used to control how Se-
quenceFlows interact as they converge and diverge
within a Process. If the flow does not need to be
controlled, then a Gateway is not needed. The term
“Gateway” implies that there is a gating mechanism
that either allows or disallows passage through the
Gateway. An Event is something that “happens” dur-
ing the course of a Process. These Events affect the
flow of the Process and usually have a cause or an
impact and in general require or allow for a reaction.
In BPMN, there are different types of start, interme-
diate, and end events [19].
R2MLRule is an element which we added in the
Process package of the BPMN metamodel which ac-
tually represents an R2ML Rule. In this way, we
enabled that an R2ML Rule (that is Reaction, Deri-
vation, Production and Integrity rule) can be placed
into a Process as a Gateway, but in the same time
not to break R2ML Rule semantics. In Figure 13, we
can see that R2MLRule as a Gateway can be con-
nected by using SequenceFlow with other FlowEle-
ments such as Tasks, Events, and Gateways. This
enables us to use rules in different places in rBPMN
process models, as shown in workflow and service
interaction patterns in Section 5.1.

Figure 13. Process package in rBPMN meta-
model

In the way presented in Figure 13, we can have a
rule as a valid element in a business process, but we
should also have a way to connect underlying data
model to the business rule. In rBPMN, we use R2ML
Vocabulary as an underlying data model (see Figure
14).

In the rBPMN metamodel, the StructureDefinition
element is used to specify a Message structure. The

Message is connected to the StructureDefinition
through the structure relation, i.e., a Message can have
exactly one StructureDefinition. We extended these
BPMN elements by subclassing StructureDefintion
with the R2MLMessageType that can have one R2ML
EventExpression, through the relation hasVocEntry. In
this way, rBPMN messages can be directly mapped to
the ReactionRule’s triggering event or triggered event
expression, and later into Web service WSDL descrip-
tions [15], as we have described in Section 4.3.

Figure 14. rBPMN data model

As described through Section 5.1, reaction rules can
be mapped into Web service descriptions (i.e., MEPs),
and we have defined that mapping [15]. The triggered
event or triggering event messages of reaction rules
defined in a rBPMN processes can be directly mapped
(and transformed) into XML Schema elements (i.e.,
complexTypes) as XML Schema is used as a vocabu-
lary in WSDL [15].

6. Related Work

Integration of rules and processes has been the subject
of early investigation in the research community.
While in [14], a merge of business processes and rules
to improve the capturing of temporal information for
information systems development was first introduced,
in [16], the authors extended that approach by propos-
ing a technique for associating reaction rules in a
process modeling languages, by using the ERL rule
modeling language. In that work, the authors presented
only use of reaction rules which are used to make pre-
cise statements about some activity. Actually, they
show how business processes can be translated into
reaction rules, while in our approach different types of
business rules can be modeled as a part of a business
process in a design time and later whole process can be
translated into some execution platform.

In [13], authors introduced a framework where
some basic process flow constructs (such as parallel
and sequence) could be represented by means of the

20

reaction rules (Event-Condition-Action–ECA format).
They also offer a methodology to stepwise refine these
ECA rules to support the transition from the semi-
formal process models to a formal workflow specifica-
tion. The main idea of that approach is that business
process can be decomposed into rules of the form
event-condition-action-event. Our approach instead of
decomposing rules into business rules makes business
processes more flexible.

In [24], the authors present an integrated approach
to service composition that covers the entire service
composition life-cycle. This composition life-cycle can
be divided into five broad composition phases that span
abstract service definition, scheduling, construction
and execution. The authors analyze the types of rules
required for each phase and demonstrate how the rules
can be used to drive the service composition process.
Using composition rules, the authors construct a con-
crete service composition specification from basic
composition elements. The authors try to make the
whole business process modeling lifecycle more flexi-
ble by starting with basic composition elements (such
as activities, condition, events) and using business
rules (such as structure, data, constraint resource and
exception rules) to assemble them into overall compo-
sition specification. As the result they get a dynamical-
ly-assembled Web Service composition. However,
such composition is still static at run-time. Our ap-
proach make business processes more flexible, because
in our approach changing rules in such process is able
to do at run-time.

The authors of [6] propose a hybrid approach to
Web service composition. They break down the com-
position logic into a core component, the process, and
several well-modularized business rules that exist and
evolve independently. They propose an aspect oriented
extensions for BPEL (named AO4BPEL) for integrat-
ing rules with processes. This approach enables the
mapping of business rules to aspects and weaving these
aspects into the BPEL code by using an aspect-aware
orchestration engine. This custom orchestration engine
allows dynamically activating or deactivating aspects
during process run-time and thus allows adapting the
composition. In our approach, we do not use any spe-
cial AOP technology for modeling or realization, but
our solution is executable by using BPEL (extended
with rule-based support [18]).

In [25], authors propose a new workflow manage-
ment system language called DECLARE. It uses con-
straint-based process modeling language for develop-
ing declarative models. DECLARE models are mapped
into a set of Linear Temporal Logic formulas (which
adds several symbols to classical logical operators:
always, eventually, until and next time). This language

can detect conflicting errors and changing process dur-
ing execution. DECLARE support only simple con-
straint specification and consider events regarding ex-
ecution of activities, while rBPMN by using R2ML
support more complex constraints. And also DEC-
LARE processes cannot be mapped into service com-
positions. It does not have deadlines, and support only
constraint templates with multiple parameters and only
two activities can be supported, while rBPMN as
BPMN can support more than two activities.

In [30], the author proposed a methodology for
Agent-Oriented Business modeling and investigated
the combination of reaction rules with activities and
shown which of workflow patterns are supported by
this combination. This methodology show only reac-
tion rules, while in our solution we support all four
types of rules and mappings to SOAs.

7. Conclusion

In this paper, we have proposed an approach to integra-
tion of business rules (R2ML) and business processes
(BPMN), by using the MDE principles. In this ap-
proach, we created a new rule-based process modeling
language called rBPMN by integration of metamodels
of two languages (i.e., BPMN and R2ML), which we
have defined by using metamodeling. By using
rBPMN, it is possible to have rules as first-class citi-
zens in a business process and to change these rules
while processes are in run-time. We have shown how
rules can be modeled directly as part of the business
process models by introducing new advanced rule-
based gateway called rule gateway. Besides this, we
also provided a better integration of the state structure
of a pool and of state conditions with the process defi-
nition, since the BPMN constructs for state structure
modeling and for relating state conditions to control
flow are rather weak. rBPMN has been proposed by
bearing in mind an idea to have support methodology
for developing rule-enabled SOAs, and a set of re-
quirements to realize steps in the proposed methodolo-
gy. We also presented a set of workflow and service
interaction modeling patterns that our methodology
supports, and how these patterns can be translated into
SOAs (i.e., orchestrations and choreographies).

Currently, we are working on defining some addi-
tional example scenarios with other rule types, such as
integrity and derivation rules. We also need to extend
our rBPMN metamodel to support state conditions,
action events, and rule post conditions. We are also
working on rBPMN semantics, and we are currently
considering the use of process algebra with support for
condition composition [2].

21

References
1. Barros, A., Dumas, M., Hofstede, T., A., "Service Inte-

raction Patterns: Towards a Reference Framework for
Service-based Business Process Interconnection”, Tech-
nical Report FIT-TR-2005-02, Faculty of Information
Technology, Queensland University of Technology,
Brisbane, Australia, March 2005.

2. Bergstra, A., J., Ponse, A., “Process algebra and condi-
tional composition”, Inf. Process. Lett. 80, 1 (Oct. 2001),
41-49.

3. Bézivin, J., “On the unification power of models”, Soft-
ware and System Modeling, vol. 4, no. 2, pp. 171–188,
2005.

4. Brahe, S., Osterbye, K., “Business Process Modeling:
Defining Domain Specific Modeling Languages by Use
of UML Profiles,” in ECMDA-FA 2006, lNCS 4066,
pp.241-255, 2006.

5. Business Rules Group. The business rules manifesto. The
principals of rules independence.
http://www.businessrulesgroup.org/brmanifesto.htm,
2003.

6. Charfi, A., Mezini, M., "Hybrid web service composi-
tion: business processes meet business rules", In Pro-
ceedings of the 2nd international conference on Service
oriented computing, New York, NY, USA, pp.30-38,
2004.

7. Erl, T., Service-Oriented Architecture: Concepts, Tech-
nology, and Design, Prentice Hall PTR, 2005.

8. Ginsberg, A., “RIF Use Cases and Requirements,” W3C
Working Draft, http://www.w3.org/TR/rif-ucr/, 2006.

9. Guirca, A., Lukichev, S., Wagner, G., “Modeling Web
Services with URML“, In Proceedings of Workshop Se-
mantics for Business Process Management, 2006.

10. Graml, T., Bracht, R., Spies, M., “Patterns of Business
Rules to Enable Agile Business Processes", In proceed-
ings of the 11th IEEE International Enterprise Distri-
buted Object Computing Conference (EDOC 2007), An-
napolis, USA, 2007, pp. 365-375.

11. IBM Developerworks, “Business process execution lan-
guage for web services, version 1.1.”, online:
http://www-
128.ibm.com/developerworks/library/specification/wsbp
el/, 2003.

12. Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T.,
Lafon, Y, “Web Services Choreography Description
Language Version 1.0”, W3C Candidate
Recommendation, November 2005.

13. Knolmayer, G., Endl, R., Pfahrer, M., “Modeling
processes and workflows by business rules”, In Business
Process Management, pp. 16–29, 2000.

14. Korgstie, J., McBrien, P., Owens, R., Selveit, H., A.,
“Information Systems Development using a Combination
of Process and Rule-based Approaches”, in Third Nordic
Conference of Advanced Information Systems Engineer-
ing: LNCS, Springer-Verlag, 1991.

15. Lukichev, S., Giurca, A., Wagner, G., Gaševic, D., Ribar-
ic, M., "Using UML-based Rules for Web Services Mod-
eling," In Proceedings of the 2nd Int’l Workshop on Ser-
vice Engineering at the 23rd Int’l Conference on Data
Engineering, pp. 290-298., 2007.

16. McBrien, P., Seltveit, H., A., "Coupling Process Models
and Business Rules", In Proceedings of the IFIP 8.1 WG
Conference, Chapman Hall, Pages 201-217, 1995.

17. Miller, J., Mukerji, J., (eds.) "MDA Guide Version
1.0.1", OMG, 2003.

18. Nagl, C., Rosenberg, F., & Dustdar, S. "VIDRE– A dis-
tributed service oriented business rule engine based on
RuleML", In Proc. of the 10th IEEE International Enter-
prise Distributed Object Computing Conference (pp. 35–
44), 2006.

19. Object Management Group, “Business Process Model
and Notation (BPMN) Specification 2.0”, initial submis-
sion, http://www.omg.org/cgi-bin/doc?bmi/08-02-06,
2008.

20. Object Management Group, Meta Object Facility (MOF)
Core, v2.0, OMG Document formal/06-01-01,
http://www.omg.org/cgi-bin/doc?formal/2006-01-01,
2005.

21. Object Management Group, MOF QVT Final Adopted
Specification, OMG document 05-11-01,
http://www.omg.org/docs/ptc/05-11-01.pdf, 2005.

22. Object Management Group, Object Constraint Language,
OMG Specification, Version 2.0, formal/06-05-01,
http://www.omg.org/docs/formal/06-05-01.pdf, 2006.

23. Object Management Group, Unified Modeling Language
2.0, Docs. formal/05-07-04 & formal/05-07-05, 2005.

24. Orriëns, B., Yang, J., "A Rule Driven Approach for De-
veloping Adaptive Service Oriented Business Collabora-
tion", In Proceedings of the IEEE International Confe-
rence on Services Computing, pp. 182 - 189, 2006.

25. Pesic, M., Schonenberg, H., van der Aalst, M. P., M.,
Wil, “DECLARE: Full Support for Loosely-Structured
Process”, In Proceedings of the 11th IEEE international
Enterprise Distributed Object Computing Conference
(October 15 - 19, 2007). EDOC. IEEE Computer Society,
Washington, DC, 287, 2007.

26. Recker, J., Indulska, M., Rosemann, M., Green, P., “How
Good is BPMN Really Insights from Theory and Prac-
tice”, in Proceedings 14th European Conference on In-
formation Systems”, Goeteborg, Sweden, 2006.

27. REWERSE I1 Rule Markup Language (R2ML).
http://oxygen.informatik.tu-cottbus.de/rewerse-
i1/?q=node/6, 2008.

28. Seidewitz, E., "What Models Mean", IEEE Software, pp.
26-32, 2003.

29. Steinke, G., Nikolette, C., “Business rules as the basis of
an organization’s information system”, Industrial man-
agement + Data Systems, vol. 103, p. 52, 2003.

30. Taveter, K. “A Multi-Perspective Methodology for
Agent-Oriented Business Modelling and Simulation”,
PhD Thesis, Tallinn University of Technology, 2004.

31. Wagner, G., Giurca, A., Lukichev, S., “A Usable Inter-
change Format for Rich Syntax Rules Integrating OCL,
RuleML and SWRL”, In Proceedings of WWW2006 con-
ference, Edinburgh, UK, 2006.

32. Wohed, P, van der Aalst, W., M., P., Dumas, M., ter
Hofstede, W., M., P., Russell, N., "Pattern-based Analy-
sis of BPMN", BPM Report BPM-06-17, BPMcenter.org,
2006.

22

Normative Ontologies for Data-Centric Business Process Management

Iman Poernomo
Department of Computer Science

King’s College London
Strand, London, UK, WC2R2LS

iman.poernomo@kcl.ac.uk

Timur Umarov
Department of Computer Science

King’s College London
Strand, London, UK, WC2R2LS

timur.umarov@kcl.ac.uk

Abstract

This paper addresses the problem of describing and an-
alyzing data manipulation within business process work-
flow specifications. We apply a model-driven approach. We
begin with business requirement specifications, consisting
of an ontology and an associated set of normative rules,
that define the ways in which business processes can inter-
act. We then transform this specification into a Petri Net
workflow model and, separately, an Event B specification.
The former models can be submitted to further behavioural
analysis to ensure, for instance, satisfaction of liveness and
safety properties. The latter specifications are important as
we can use theorem proving techniques to check and refine
data representation with respect to process evolution. An
important property of the transformation is semantic equiv-
alence between the Petri net model and Event-B model.

Keywords— Petri nets, MEASUR, Business Process Manage-
ment, Formal Specification, Semantic Augmentation

1. Introduction
Business process management (BPM) is an increasingly

challenging aspect of the enterprise. Middleware support

for BPM, as provided by, for example, Oracle, Biztalk and

the recent Windows Workflow Framework, has met some

challenges with respect to performance and maintenance of

workflow.

The central challenge to BPM is complexity: business

processes are becoming widely distributed, interoperating

across a range of inter- and intra-organizational vocabu-

laries and semantics. It is important that complex busi-

ness workflows are checked and analyzed for optimality and

trustworthiness prior to deployment. The problem becomes

worse when we consider the enterprise’s demand to regu-

larly adapt and change processes. For example, the growth

of a company, changes to the market, revaluation of tasks

to minimize cost. All these factors often require reengi-

neering or adaptation of business processes along with con-

tinuous improvement of individual activities for achieving

dramatic improvements of performance critical parameters

such as quality (of a product or service), cost, and speed

[16]. Reengineering of a complex workflow implementa-

tion is dangerous, due to existing dependencies between

tasks.

Formal methods can assist in meeting the challenge

of complexity, as their mathematical basis can assist in

analysing and refining a system specification. However,

complex systems often involve a number of different as-

pects that entail separate kinds of analysis and, conse-

quently, the use of a number of different formal methods.

Petri nets are a formal method that has successfully as-

sisted in workflow design and analysis. While Petri nets are

good for expressing the dynamics of a workflow, the repre-

sentation of data as tokens do not provide the full depth of

specification necessarily to by developers. Petri nets model

the possible flow of information in a business process, but

do not specify the nature of the information nor how in-

formation is to be manipulated during the business process.

Petri net lack modeling power and mechanisms for data ab-

straction and refinement [6].

In contrast, a business process implementation within a

BPM middleware requires detailed treatment of both infor-

mation flow and information content. The abstraction gap is

identified by Hepp and Roman in [9]: an abstract workflow

that ignores information content provides an abstract view

of business processes that does not fully define the key as-

pects necessary for BPM implementation.

We argue that this abstraction gap can be addressed by

developing semantically compatible PN models and data

models from an initial business process requirements speci-

fication. We employ a Model Driven Architecture approach.

The overall framework is depicted in Fig. 1. For our pur-

poses, we consider transformations between models of three

languages, a Computation-Independent Model (CIM) and

two Platform Independent Models (PIMs). The CIM is an

initial model of business requirements. It describes business

functionality without treating any architectural or computa-

tional aspects of the system implementation. The two PIMs

23

describe complementary aspects of the overall structure of

the system to be implemented: workflow descriptions from

PN models and data and data exchange mechanisms from

Event B specifications.

�
�������	
����
�����������
��
�	��	������	�
������
��

���	�
�����

��

�	�

�����
��	��
��

���	�
�����

��	��
��
������������
�

���������������	�� ���������������	���

������	�	�	��

Figure 1. The data-centric workflow framework.

The initial CIM might be written as models within a

number of requirements specification frameworks. We use

the ontologies and normative language of the MEASUR

method [12]. The method has a 20 year history and is

widely used within the organizational semiotics commu-

nity, but less well-known in Computer Science. Its roots

lie in the philosophical pragmatism of Pierce, the semiotics

of Saussure and Austin’s speech act theory. It is model-

based, with ontologies and normative constraints forming

the central deliverables of a requirements document. We

employ MEASUR notation because our starting point is in-

formation systems analysis, where MEASUR has found the

most application. We have also found its normative con-

straints lend themselves to transformation into our PIM lan-

guages. However, our approach should be readily adaptable

to a number of similar notations in use in the multi-agents

and normative specification research communities.

The Event B language is used in specifying, designing,

and implementing software systems. The language may be

used to develop software by a process of gradual refinement,

from an abstract, possibly nonexecutable system model, to

intermediate system models that contain more detail on how

to treat data and algorithms, to a final, optimised, executable

system. In this process,

• the first abstract model in this refinement chain should

be verified for consistency and

• each step in the refinement chain should be formally

checked for semantic preservation.

Consistency will then be preserved throughout the chain.

This means that the final executable refinement can be

trusted to implement the initial abstract specification. This

is the main reason why we are using Event-B method: once

we have an initial abstract model of the system we can refine

it to get more concrete and executable model. The efficiency

of using formal methods in software development is proven

by significantly low number of errors in a developed system

and high degree of reliability. Development-by-proving ap-

proach allows develop more efficient and less error-prone

software system.

Our approach defines a transformation MEASUR mod-

els to

• PN models, permitting the usual workflow analysis re-

sults

• Event B machines, permitting

– a full B-based formal semantics for vocabularies

and data manipulation that is carried out within

the modelled workflow, which can be validated

for consistency.

– an initial, abstract B model that can be further

refined using the B method to a final optimal ex-

ecutable system in an object-oriented workflow

middleware, such as Windows Workflow Foun-

dation.

A notion of semantic compatibility holds over the trans-

formed models, so that any property derived over the PN

view of the system will hold over potential processes that

arise from the Event B machine.

The paper proceeds as follows:

• In section 2, we sketch the nature of our CIM, the nor-

mative ontology language of MEASUR.

• Section 3 provides a brief introduction to Event B

specifications, focusing on the main points relevant to

our formal semantics and the notion of semantic con-

sistency between PNs and Event B specifications.

• Section 4 then outlines the transformation approach to

generating B specification and Petri nets from our on-

tologies. We discuss how the resulting specification

provides a formal semantics of our data-centric busi-

ness process, and how this enables consistency valida-

tion checks.

• Section 5 discusses related work and conclusions.

2. MEASUR models

The MEASUR can be used to analyse and specify an

organization’s business processes via three stages [12]:

1. Articulation of the problem, where a business require-

ments problem statement is developed in partnership

with the client.

2. Semantic Analysis, where the requirements problem

statement is encoded as an ontology, identifying the

main roles, relationships and actions.

24

3. Norm Analysis, where the dynamics of the statement

are identified as social norms, deontic statements of

rights, responsibilities and obligations.

Space does not permit us to detail the first stage. Its pro-

cesses are comparable to other well known approaches to

requirements specification. The last two stages require

some elaboration. For our purposes, they provide a Com-

putation Independent Model, consisting of an ontology and

collection of norms, that formally define the structure and

potential behaviour of an organization and its processes. We

hereafter refer to the combination of an MEASUR ontology

and associated norms as a normative ontology.

2.1. Ontologies

The ontologies of semantic analysis are similar to those

of, for example, OWL, decomposing a problem domain into

roles and relationships. As such, our ontologies enable us

to identify the kinds of data that are of importance to busi-

ness processes. A key difference with OWL is the ability

to directly represent agents and actions as entities within

an ontology. This is useful from the perspective of business

process analysis, as it enables us to identify tasks of a work-

flow and relate them to data and identify what agent within

the organization has responsibility for the task.

Semantic Analysis has its roots in semiotics, the philo-

sophical investigation of signs. MEASUR applies to infor-

mation system analysis a number of ideas and approaches

from philosophy of language, drawing on the pragmatism

of Pierce, semiotics of Saussure and the epistemology of

Wittgenstein and Austin. The method’s core assumption

is knowledge and information exists only in relation to a

knowing agent (a single human or a social organization).

There is no Platonic reality which defines Truth. Instead,

Truth is a derived concept that might be defined as agree-
ment between a group of agents. An agent is responsible
for its knowledge. When a group of agents agree on what

is true and what is false, they accept responsibility for that

judgement. Following Wittgenstein, MEASUR considers

an information system as a “language game”, a form of ac-

tivity involving a party of agents that generates meaning. In

an information-system-as-language-game, the meaning of

data derives from usage by agents, rather than from a uni-

versal semantics.

Semantic Analysis represents the information system as

language game in the form of an ontology diagram, identi-

fying agents, the kinds of actions agents can perform and the

relationships and forms of knowledge that can result from

actions.

These concepts are identified as types of affordance. An

affordance is a collection of patterns of behaviour that de-

fine an object or a potential action available to an agent.

Every concept in a MEASUR ontology is an affordance.

MEASUR subclasses the notion of affordance as fol-

lows. A business entity – such as a user account or a bank

loan – is an affordance in the sense that it is associated with

a set of permissible behaviours and possibilities of use. For

the purpose of business process analysis, business entities

are used to identify the main kinds of data that are of im-

portance in an organization’s processes. A relationship –

such as a contract – between business entities or agents is

an affordance in the sense that is is defined by the behaviour

it generates for the parties involved in the contract. Agents
are affordances in terms of the actions they can perform and

the things that may be done to them. Agents then occupy a

special status in that they take responsibility for their own

actions and the actions of others and can authorize patterns

of behaviour. The structure of a business entity, relationship

or agent is given via a list of associated properties, called

determiners. Determiners are properties and attributes of

affordances, such an address or telephone number associ-

ated with a user account. Units of measurement are typical

data types that type determiners and other values associated

with affordances. The latter two concepts are considered as

affordances as their values constrain the possible behaviour

of their owners.

In our treatment, affordances can be treated as types of

things within a business system, with an ontology defining

a type structure for the system. An actual executing system

consists of a collection of affordance instances possess the

structure prescribed by the ontology and obey any further

constraints imposed an associated set of norms.

�

�� �!�"#��
������$������

�
�$������
����%&	���
��
&�
'�
���$�����
����%&

��
��
&�
'�
���$�����

(���*���+&��������

�� �� �
������$������

�
�$������
����
��	���$������
,� ����%�$�����

������+�

(���*���+&,-�������

	"#
��� �
���
�$����	���
�

�
���$����	���
��

	����
�$�,���

(�,-,+,�.,���

(�����,/�&������

�������
� �� �

������$�0�
�
	�

1�

	�����2

1��
3
��

45

�������&�6�

��*���+��

Figure 2. Example normative ontology

Example 2.1 The ontology for a purchasing system is given
in Fig. 2. Agents are represented as ovals and business en-
tities as rectangles with curved edges. Communication acts
and relations as rectangles, with the former differentiated
by the use of an exclamation mark ! before the act’s name.

25

All affordances (including agents and business entities)
have a number of typed attributes, defining the kinds of
states it may be in. We permit navigation through an af-
fordance’s attributes and related affordances in the object-
oriented style of the OCL.

The system involves processes that cross the boundaries
of two subsystems: an order processing system, and a prod-
uct warehouse system. These two subsystems are repre-
sented as agents in the ontology, eOrder and ProductWare-

house, respectively. By default all agents contain start and
end attributes.

Orders are requests for products, both represented as en-
tities in the ontology with a requests relationship holding
between them (multiplicities could be associated with the
relationship to define the possibility of a number of prod-
ucts contained in an order). A customer can initialise the
order processing system with a given order, denoted by a
communication act !immortalize between the correspond-
ing customer and eOrder agents. An order is associated
with its customer, defined by the ordered by relationship
holding between the customer agent and order entity. An
order can stand in an ordered relationship with the eOrder

agent, after it has been successfully processed.
Another communication act, !receive order, corre-

sponds to the initial reception of data.

2.2. Norms

Norms are constraints and rules that determine how

agents interact and control affordances. They also control

the initialization and termination of particulars (affordance

instances).

We have adopted a typed language of deontic and norma-

tive logic to express logical constraints over business pro-

cesses, using ontologies as atomic classes, relations, objects

and actions for the logic. Our constraints take the form

A, B := R(ā) | ¬A | A ∨ B | A ∧ B | A → B |
∀ x : C.A(x) | ∃ x : C.B(x) | ObA | PA | NPA | ExA (1)

where C is an affordance (that acts as a type of a particular

instance); R(ā) is an affordance with one or two antecedents

Ā and ā is one or two particular instances of Ā; the mean-

ing of ObA is that A is obliged to happen; the meaning of

PA is that A is permitted to happen; the meaning of NPA is

that A is prohibited to happen; the meaning of ExA is that A
results from, and is the responsibility of, agent particular x;

the meaning of the other connectives follows standard first

order logic.

A behavioural norm is the general form for a constraint

over our ontologies, and has the following form (Liu, 2000):

Trigger → pre-condition →
EagentOb/P/NPpost-condition (2)

The informal meaning of the norm might be written:

if Trigger occurs and

the pre-condition is satisfied,

then agent performs an action so that

post-condition is

Obliged/Permitted/Prohibited from resulting

The idea of a behavioural norm is to associate knowledge

and information with agents, who produce and are respon-

sible for it. From a philosophical perspective, truth is then

defined as something that an agent brings about and is re-

sponsible for.

As shall be seen, from the perspective of determining

how to implement a normative ontology as a workflow-

based system, we view agents as corresponding to sub-

systems, business entities to specify data and behavioural

norms to expected dynamic interaction protocols between

subsystems.

Example 2.2 Consider the communication act
!receive order from our example, corresponding to
the initial reception of data by the order processing system.
The idea that this reception can only occur over orders
that are not yet processed is captured by the following
behavioural norm:

∀ oo : Order. ∀ e : eOrder.¬ordered(oo, e) →
Ee Ob receive order(oo, e) (3)

Both relationships and communication acts are represented
as logical relations in our language, but communication
acts are not used in pre-conditions, and may only be placed
after a Deontic operator.

Communication acts often define resulting changes of
state on related agents and entities. We define them as fur-
ther definitions of norms which contain expressions seman-
tically equivalent to the effects of communication acts. In
this case, the reception of an order entails a change of state
in the order (its status becomes set to “received”) and order
processing system (its processing attribute is set to true).
This norm definition is depicted below:

∀ oo : Order. ∀ e : eOrder.receive order(oo, e) →
ordered(oo)∧oo.status = received∧e.processing = true

(4)

When the eOrder system is processing an order, it will
request an increase in the stock from the warehouse. This is
prescribed by the following norm:

∀ oo : Order. ∀ e : eOrder.∀ p : ProductWarehouse.

¬e.processing = true → Ee Ob request increase(oo, p)

26

where the communication act entails a change of state in
the warehouse subsystem:

∀ oo : Order. ∀ e : eOrder. ∀ p : ProductWarehouse.

request increase(oo, e) →
p.stock increase request = true

A number of other norms are required to define the en-
tire business process. For example, after processing this
information the system sends response to the customer de-
pending on data provided. If the data are valid, then system
sends an appropriate availability request to the warehouse.
If the product is available, it is sent to the customer. If not
validated, the order is rejected. The structure of the norms

There have been a number of attempts to use semantic

analysis normative ontologies as the language for a business

process management engine. The most widely used is Liu’s

NORMBASE system [12]. In such systems, the ontology

serves as a type system for data, while norms define the

conditions under which tasks may be invoked to create and

manipulate data.

Our approach is different: we treat normative ontolo-

gies as a useful and semantically rich requirements analy-

sis document. However, we intend to implement these re-

quirements using a standard business process management

infrastructure. We believe that further refinement and analy-

sis a necessary step to this goal. In particular, it is important

to ensure that

• the possible communication act traces permitted by a

set of norms do not deadlock unexpectedly (in our ex-

ample, this might happen if the order processing sys-

tem waits indefinitely for a response from the ware-

house that stock is available);

• the ontology and its associated norms do not allow for

an inconsistent state of the system (in our example, this

happens if an action entails that an order is processed

and rejected at the same time).

The first kind of error can be removed by providing the nor-

mative ontology with a Petri Net representation and apply-

ing standard behavioural analysis techniques. The second

kind of error can be eliminated by checking and ensuring

that our generated invariants and guard conditions of the

machines are not overlapping.

3 Event B and Petri nets

This section provides an overview of the Event B nota-

tion. We define the notion of semantic consistency between

Petri Nets and Event B specifications.

3.1. Event B

Event B specifies a software system in terms of encap-

sulated modules, called machines, that consist of a muta-

ble state and a number of related operations, called events,

whose execution changes the values of the state. Each event

consists of a logical guard and an action. The guard is a

first order logical statement about the state of the machine

and defines the conditions under which an action may oc-

cur. The action defines the way the machine’s state may be

modified as a first-order logical statement relating the initial

values of the state prior to the action occurring and the final

values of state.

Machines therefore have a formal operational semantics,

that models system execution as a sequence of events. If an

event’s guard holds over the machine’s state, its action may

be executed. This will change machine’s state, which may

cause another event’s guard to hold, and an action to be ex-

ecuted. The sequence continues until the system has halted

(it is deadlocked). Note that execution is potentially nonde-

terministic: when a number of event guards are true, then

one of the corresponding event actions is chosen at random.

A common requirement over business process descrip-

tions is the preservation of certain properties throughout the

whole course of execution of events. These properties are

called invariants: they represent predicates built on the state

variables that must hold permanently. This is achieved by

proving that under this invariant and guards of events, the

invariant still holds after modifications made to the state

variables associated with event executions.

Fig. 3 demonstrates the structure of an Event-B model.

Every model written in Event-B is represented as a ma-

chine/context pair. The relationship between these two con-

structs is that the machine “sees” the context (read-only ac-

cess, with no modification possible). The context contains

the main sets, constants, axioms, and theorems. Carrier sets

and enumerated sets are declared in the Sets section. Since,

an enumerated set is a collection of elements, additionally,

its members are defined as constants in the Constants sec-

tion. An axioms section contains assignments of the names

of each enumerated set to its values and declaration of rules

according to which constants are defined as not being equal

to each other. There can also be one or several theorems

defined in the Context of a model definition.

A machine consists of state variables, invariants, and

events. State variables represent states which the machine

can be in. The Invariants box is comprised of the conditions

that should hold throughout the whole execution of the ma-

chine. The events box contains the initialisation construct

and all events of the machine. Each event contains one or

several guards and one or several actions.

Definition 3.1 (Consistent B Machine) An event B ma-

27

�

�

�

� � �

�

�

�

�

�

� �

�

�

�

� � � �

�

��������

���
	��	�

�����
�	��
��

�1�������1����
���1�'����	���

��
������	��
��

� �������
������ ���

����+�+���
���
��� �������+�

'����	�� ����
����� �

�

�

�

� � � �

�

�����7�

	��	��
�����1�
�+�+��1�
������+�

�

���	����	��
�
�
	�

1��
�
	��1�	���	�

1�
	�����2

1��
3
��

�

�7���	��
�+�+���8�0�
�
	�

1��
�
	��1�	���	�

1�45
�
�
	�

�9�
�
	���
�
�
	�

�9�	���	�

�
4�

�
���	��

�

�

�

�

�
�:�����������;��

������
�	�������
��

�$8 1�������$8 1�4�

��������<��=��
���� $��� �������>���

��
������?$���

�$8��

� �0��51�
�������@$�������!��"$8�
�
	�

�

�������	���

Figure 3. The structure of an abstract Event-B model.

chine is consistent if the following conditions hold:

• Invariant preservation : for any event, assuming the
invariant and guard are true, then the invariant and
action are consistent (do not result in a contradiction).

• Feasibility: given any event, if the guard holds, then it
is possible for the action to be performed.

It is possible to define an operational semantics for event

B machines, over which the runtime execution of the mod-

elled system can be understood. Essentially, this is done

by assuming the initialization constraints to hold over the

state of the machine (actual values assigned to its set of

variables), and then successively selecting events based on

guard checks over the variables. Each event selection will

result in the action condition changing the state of the sys-

tem. The resulting sequence of events is a trace of the ma-

chine. A machine will usually have a potentially infinite

number of traces, due to the nondeterminism of guard selec-

tion (and the nondeterminism within actual actions, which

space does not permit us to discuss here).

B machines do not lend themselves easily to simulation.

This is because guards and actions are first order logical for-

mulae and, consequently, the selection of a guard and the

determination of how an action affects state is not decidable

and requires human proof. Simulation of the possible or-

dering of tasks in a workflow are better handled via a Petri

Net specification.

3.2. Petri nets and semantic compatibility

Space does not permit a full overview of the Petri Net no-

tation. The reader is referred to, for example, [16] for an de-

tailed introduction. A Petri net specifies a business process

workflow in terms of places, representing a main business

activity, tokens, representing some data or document that

can be passed between activities, transitions, representing

permitted flow of data between activities. Directed arcs are

used to related transitions to places. An example Petri Net

is given in Fig. 4: places are denoted by circles and transi-

tions as rectangles. Petri nets permit the usual business pro-

cess workflow notions of joins and forks from transitions to

places, allowing us to represent parallel and synchronizing

processes and nondeterministic choice.

An Event-B machine is semantically compatible with a

PN if there is a bijection from transitions of the PN to events

of the Event-B machine such that all possible traces of the

machine’s events correspond to possible traces of transi-

tions in the PN, and vice versa. That is, a machine is com-

patible with a PN if the PN simulates every possible se-

quence of events of the machine, and vice versa.

4 Semantic Embedding of Normative On-
tologies in Event-B

This section describes in detail the actual mapping ap-

proach that was used to implement the transformation.

4.1 General Mapping Strategy

We now sketch our transformations from normative on-

tologies to PN and Event-B machines. The purpose of the

transformations is threefold: 1) it provides a formal seman-

tics for MEASUR’s normative ontologies that can be anal-

ysed for consistency and correctness using B-based tools,

2) it serves to produce the first B model in a chain of refine-

ments that leads to a final implementation and 3) Petri net

model obtained from normative ontologies can be further

formally analysed for liveness errors.

We have implemented our transformations using Ker-

meta metamodelling language.

The transformation from normative ontologies to Petri

nets focuses on identifying the traces of communication acts

that are possible from a collection of norms. The trans-

formation involves discarding information about changes

to states of entities and agents, and mapping communica-

tion acts to places. The transformation is interactive, not

automatic, requiring a domain expert to identify the type

of ordering expected to hold between communication acts.

This is then used to define the possible transitions between

places.

The domain expert need not be an expert in formal meth-

ods or workflow implementation – our transformation might

28

be incorporated at the requirements analysis stage immedi-

ately after the normative ontology has been developed. The

resulting Petri Nets can be seen as a further refinement of

the normative ontology requirements, further constraining

workflow enabled by the norms.
����������������

�������������

���� � � � � �����

�

�
�

�

�

�

�

�

�

�

� �

����%&	���
��
&�
'�
��� ����%&

��
��
&�
'�
���

����
��	��

	���	�
&��

��

	���
��
&����%�

��
��
&����%�

	�&����%�

����� �
�
	�
&
����

	�����2&��

��

�
3
��&��

��
�

Figure 4. Petri net model for eOrder

Example 4.1 A Petri net model obtained from our ex-
ample via the interactive transformation depicted in Fig.
4. The process eOrder is comprised of four main transi-

tions, receive data, invoice order, dispatch order, and re-
ject order, and four places, start, processing, in stock, and
end. The process begins with the place “start” by contain-
ing a token in it. This fires the transition “receive data”
after which the token transfers to the next place “process-
ing”. This place contains an implicit condition which se-
lects which transition to fire next. If the total price of
the purchase is lower than allowed credit limit then “in-
voice order” transition fires, otherwise the transition “re-
ject order” fires. If the ordered products are in stock the
token moves to the place “in stock”. The presence of the
token in the place “in stock” causes the transition “dis-
patch order” to fire. Otherwise, if the product is currently
not available in the stock then the token moves to the place
“stock increase request” after which the transition “in-
crease stock” fires which starts an appropriate subprocess
for increasing the stock and returns the token to the place
”in stock”. Successful execution of the transition “dis-
patch order” decreases the stock and ends the process.

Normative ontologies are mapped to a B machine in the

following way.

The mapping of affordances is straightforward. Actors

are mapped to machines. Business entities and relations are

mapped to Event-B sets and relations.

The transformation of normative constraints is more dif-

ficult. Conceptually, norms of the form (2) appear similar

in form to an machine event:

• A trigger and pre-condition correspond to a guard.

The former define the situation that must hold before

an agent can act. The latter defines the state that must

hold before a machine can perform an action.

• The responsibility modality Ea corresponds to the lo-

cation of the event within the machine corresponding

to agent a.

• The deontic modality Ob/Ppost − condition identifies

whether the action corresponding to post − condition
should be necessarily performed, or whether execu-

tion of another (skip action) is possible instead. The

NP deontic modality means the negation of the post-

condition holds.

Because the normative constraints are essentially abstract

business rules, while the conditions of the B machine define

further implementation-specific detail, the mapping will de-

pend on how we interpret relations and functions of the on-

tology. For this purpose our transformation must be based

on a given semantic mapping of individual relations and

functions to B relations and functions. We assume this is de-

fined by a domain expert with the purpose of wide reusabil-

ity for the ontology’s domain.

Fig. 5 shows an excerpt of the metamodel for norma-

tive ontology written in Kermeta (the source model). The

Figure 5. Metamodel for a normative ontology

main containing metaclass is OBRModel that is mainly de-

fined by affordances, which can effectively be an agent, a

relationship, an entity, a communication act, etc. Fig. 6 de-

picts an excerpt of the metamodel for an Event-B machine

written in Kermeta (the target model). The main containing

metaclass in this metamodel is EBModel which is defined

29

Figure 6. Metamodel for an Event-B machine

by machine, set of events and variables. Events are defined

by well-formed formulas for preconditions and blocks of

instructions for actions.

4.2 Mapping Rules

Mapping from normative ontologies to Event-B ma-

chines consists of several rules to be implemented in the

transformation ϕ. The following rules are used:

R : Entity × Agent �→ϕ R′
A′ , (5)

where R is from Entity × Agent superset and represents a

relationship type between Entity and Agent, R maps to R′,
which represents a set variable inside the machine A′;

For any variable a from the entity E

a : E �→ϕ a′ ∈ E′, (6)

a maps to a′ which is a variable from the generated set E′;
Predicate P of the form P(a, b) maps to a local variable

a from the set variable P:

P(a, b) �→ϕ a ∈ P, (7)

where b is used for identifying the machine, which contains

the set variable;

¬F �→ϕ ¬ϕ(F) (8)

According to the rule (5) any given relationship r holding

between a given entity e and a certain agent a maps to a set

variable r′ in the set e′ of the machine a′. For example, let

us consider the following expression of a norm:

¬ordered(oo : ORDER, e : EORDER)

This statement declares that a particular order oo has not

been ordered, or is not yet in the system (agent) EORDER.

We can transform this expression to several constructs and

expressions in Event-B. By applying rule (5) we first gener-

ate a set (state) variable ordered and machine EORDER (if

it is not already created).

The following Fig. 7 – 12 show the excerpts of algo-

rithms of transformation implementation. Fig. 7 depicts the

transformation algorithm for this mapping.

Figure 7. Algorithm for set variables

By applying rule (6) we generate a ”general” guard oo ∈
ORDER which declares local variable oo of type ORDER.

Applying rule (7) will associate local variable oo with the

set (state) variable ordered: oo ∈ ordered. Fig. 8 represents

Figure 8. Algorithm for set variables

the algorithm for this mapping rule. It considers both cases:

with and without negation. Since our example expression

contains “¬” sign, which means that the order oo has not

been ordered, then (applying rule (8)) the resultant expres-

sion will effectively take the form of oo /∈ ordered. This

guard will reside in the event which is generated from the

behavioural norm (3) following the responsibility modality.

The content of the event is generated from the behavioural

norm definition (4), which is semantically equivalent to the

meaning of the effect of the norm. The norm’s expression

e : EORDER is used only to identify the responsible agent

that maps to a corresponding machine where the event re-

sides. Hence, we are not applying the rules to this state-

ment. Fig. 9 shows how we assign names to the newly cre-

ated events from predicates’ type information. For example,

a predicate receive order is of type COMMUNICATION

30

Figure 9. Algorithm for norms’ effects

ACT RECEIVE ORDER, taken from normative ontology

(see Fig. 2), generates a new event with the same name,

given that the deontic modality is “Ob”. These newly cre-

ated events from normative ontologies are added to the ma-

Figure 10. Adding machines and events

chines as shown in Fig. 10. This part of the transformation

is responsible for creating new machines, adding new events

to these machines and assigning new contexts to these ma-

chines. The events are further elaborated by adding new

Figure 11. Adding parameters for events

parameters to them as shown depicted in Fig. 11. These

parameters are taken from norm definitions, which contain

necessary variables as input arguments.

One norm definition can contain several instructions to

execute. Fig. 12 demonstrates how parallel executions are

generated from such norms.

Figure 12. Handling parallel executions

Given a PN associated with a normative ontology, it is

possible to further extend our transformation so that the PN

and the Event B machine are semantically consistent.

It is possible for norms to specify invariant properties

over a system: these take the form of norms whose trig-

ger is always true: the invariant is then specified as a post-

condition in first-order logic whose Deontic modality is Ob.

These invariants are then mapped to invariants of the B ma-

chine associated with the responsible agent. Initial condi-

tions are handled in a similar fashion.

Example 4.2 The example order processing normative on-
tology can be transformed to an Event-B model, part of
which is shown in Fig. 13. Each normative act within the
ontology is mapped to Event-B events.

Fig. 14 shows the context for the model defined in Fig.
13.

Variable order (a subset of ORDER) is a set of order
data currently in the system. Variable product (a subset of
PRODUCT) is a set of products currently involved in the
ordering process. Variable status is a total function over
the variable order and represents the status of the order.
Variable quantity describes the quantity of ordered prod-
ucts within a given order and is a function over the product
variable.

One of the generated events which is shown in Fig. 13
is receive. This event creates a new instance of the or-
der and assigns the status of that order to received. The
receive event contains “any-where-then-end” substitution
construct. See the whole definition of “eOrder” and “Prod-
uct” and their operations in [15].

One of the requirements of technical specification devel-

opment is to prove that this specification does not violate

its initial requirements and is internally consistent, and that

eventually the final software system which is generated in

the course of successive refinement steps is indeed correct.

31

MACHINE EOS 0
SEES EOS C0
VARIABLES order status product quantity
INVARIANT

inv1: order ⊆ ORDER inv2: product ⊆ PRODUCT
inv3: status ∈ order → STATUS
inv4: quantity ∈ product → N1

EVENTS
Initialisation

begin
act1: order := ∅ act2: status := ∅

act3: product := ∅ act4: quantity := ∅

end
Event receive =̂

any oo
where

grd1: oo ∈ ORDER \ order
then

act1: order := order ∪ {oo}
act2: status(oo) := received

end
END

Figure 13. Machine for the model defined in Event-B

On the one hand, we are checking the correctness of the

generated model. Since, we are performing transformation

from normative ontologies to the Event-B model and the

Petri net model, it is of high importance to check whether

the both target models do not contain errors and are inter-

nally consistent. If this is the case, then we can state that

the generated Event-B model is compatible with the gen-

erated Petri net model and vice versa. On the other hand

by demonstrating the compatibility between two generated

models we can also assert that our transformation is indeed

correct. As [10] states, to be useful at all, an transformation

must have specific characteristics. The most important char-

acteristic is that a transformation should preserve meaning

between the source and the target model. In our case, it is

CONTEXT EOS C0
SETS

ORDER STATUS PRODUCT
CONSTANTS

received pending invoiced dispatched rejected
AXIOMS

axm1: STATUS = {received, pending, ...}
axm2: received �= pending
axm3: received �= invoiced ...
axm11: dispatched �= rejected

END

Figure 14. Context for the model defined in Event-B

Table 1. Proof obligations

Machine Proof Obligations Automatic Interactive

eOrder 22 22 0

Total 22 22 0

done by checking whether the target model functions in a

way, as it was “prescribed” by the source model.

We are particularly interested in checking whether events

and initialization preserve the guards and invariants of the

generated Event-B model. The Event-B language (simi-

larly to B-method) defines proof obligations for substitu-

tions (events and initializations). Discharging these proof

obligations presents a form of specification validation.

There are several theorem provers used for specification

validation. We used the Rodin platform, an Eclipse-based

IDE [1], to generate the proof obligations. As it was men-

tioned earlier, the proof obligations generated were only for

initializations and events, since only these elements of the

abstract machine modify state variables.

Example 4.3 Continuing our example, we can validate the
generated specification. Validation of the specification re-
quires that initialization T is guaranteed to establish the
invariant I. It is also necessary to prove that all events pre-
serve the invariant. In other words, if invariant I and pre-
condition P are both true when the event is executed, then
the event should be guaranteed to re-establish I: I ∧ P ⇒
[S]I.

Table 1 illustrates a summary of statistics for proof obli-
gations. According to these numbers all 22 generated proof
obligations for the Event-B model were proven automati-
cally.

5 Conclusion and Related Work

In this paper, we have shown how normative ontologies

can be used for generating data-aware and semantically-rich

business process models in the form of B specifications. We

have shown the results MDA transformation from norma-

tive ontologies to both Petri nets model and and Event-B

machines. Petri nets specify possible flow of the informa-

tion but do not specify the nature of the information. In

order to avoid this, we are generating additional Event-B

machines from normative ontologies to provide missing se-

mantics for the business processes.

There are a number of related approaches for enriching

workflow models [3, 4]. One of them is showing transfor-

mation from BPEL4WS to full OWL-S ontology to pro-

vide missing semantics in BPEL4WS. BPEL4WS does not

32

present meaning of a business process so that business pro-

cess can be automated in a computer understandable way

[2]. They are using an overlap which exists in the concep-

tual models of BPEL4WS and OWL-S and perform map-

ping from BPEL4WS to OWL-S to avoid this lack of se-

mantics.

Another work is using the example of BPEL processes

which should be converted to semantically enriched speci-

fications. All data (stored in process models) must be aug-

mented by references to ontologies [9]. They refer this aug-

mentation to as ontological lifting because input business

processes must be expressed using richer constructs pro-

vided by ontologies. However, from the perspective of web

services, systems support only part of the process space rep-

resentation which is reduced to the patterns of message ex-

change (choreography) and the control and data flow in the

combination of multiple Web services (orchestration) [8].

[4] advocates the idea of ensuring the correctness of

a workflow by making protocol specifications data-aware

through expressing actual data content rather than message

names. In other words, workflow validation cannot be com-

plete unless this abstraction is eliminated. They present

CTL-FO+ tool, an extension over Computation Tree Logic

that includes first-order quantification on state variables in

addition to temporal operators, and which is adequate for

expressing data-aware constraints.

There is also a variety of research directed towards se-

mantic enriching of Petri net business processes. The au-

thors were proposing to enrich the semantics of Petri nets by

combining it with OWL language. Representing Petri nets

in combination with OWL is a way to make data computer-

interpretable for flexibility, ease of integration and signif-

icant level of automation of loosely coupled business pro-

cesses [11]. In this work, authors are trying to define Petri

net models using OWL framework which entails horizontal

way of integration. In other words, they are defining seman-

tic metadata for business processes described by Petri nets.

[3] was proposing an approach for (semi-)automatic detec-

tion of synonyms and homonyms of the process element

names in order to support semantic process model intercon-

nectivity and interoperability with use of OWL.

There were also several results on integrating Petri nets

and Z [6, 7]. In [6] describes a thorough integration defini-

tion of Petri nets and Z which results in so called PZ nets for

specifying concurrent and distributed systems. In this work,

Petri nets are used to define the overall structure, control

flow and dynamic properties and Z is applied for specifying

tokens, labels and constraints of the system. This result is

based on the previous more preliminary work on integrat-

ing Petri nets and Z outlined in [5]. Another work in [17]

have used Z to specify certain aspects of restricted hierar-

chical coloured Petri nets. Namely, the authors have used Z

schemas to define the metamodel of a hierarchical coloured

Petri net and operation for specifying the transitions in a

specific coloured Petri net.

[13] describes the model-driven transformation between

the Semantic Web Rule Language with Web Ontology Lan-

guage (OWL/SWRL) and Object Constraint Language with

UML (UML/OCL). The implementation of the transforma-

tion is performed by using ATLAS Transformation Lan-

guage involving several MOF based metamodels, XML

schemas, and EBNF grammars. Whereas, [19] presents a

new interchange format for rules for integrating the Rule

Markup Language, the Semantic Web Rule Language and

the Object Constraint Language. Since these languages

are capable of providing a rich syntax for expressing rules,

it is possible to make conceptual distinctions of different

types of terms and different types of atoms. They also

adopt the Model-Driven Approach, particularly specifying

the computation-independent level as a domain containing

set of rules and business policies.

The advantage of our work over the before-mentioned

approaches is that we are incorporating norms into our

source models and for this purpose using the MEASUR

language to provide semantical information and additional

constraints to the business processes of the source model

(the CIM). Another advantage of our approach is that from

the CIM model we are generating two PIM models defined

in Petri nets and in Event-B. The Petri net model can be

checked for liveness errors. With respect to the Event-B

model we can use theorem proving techniques to check and

refine data representation to obtain an executable system.

In multiagent systems, there are several quite successful

works on developing and using norms in order to specify

the expected behaviour of agents in a certain organization.

For instance, one of the most interesting works in this area

is [21, 20] which describes the agent architecture SMART

which is based in an agent specification framework devel-

oped in the Z modeling language. Interesting aspect of this

work is that it provides an analysis of different kinds of

norms and agent societies based on these norms. Moreover,

they are modelling norms as objects rather than as static

constraints. As a result, these norms can have several states

which in its turn completes the Norm lifecycle.

[18] makes norms operational rather than purely declara-

tive by focusing on how norms should be operationally im-

plemented in MAS from an institutional perspective. [14]

view an electronic institution based on agents as dialog-

ical system where all the necessary interactions between

agents are made through dialogic activities (message ex-

changes). These interactions, also called illocutions, follow

a certain well-defined protocol and are structured through

agent group meetings, scenes. Such a division of all possi-

ble interactions among agents in scenes is in line with mod-

ular approach of systems design with the classical modu-

lar design principles and methodologies (e.g. Modular Pro-

33

gramming and Object-Oriented Programming) taken as a

foundation.

Future work will investigate how our B-based PIMs can

be further transformed into an actual platform specific so-

lution utilizing industrial BPM solutions. We hope that our

rich specifications involving data and operations will map

naturally onto the modular technologies employed in, for

example, Windows Workflow Foundation.

References

[1] J.-R. Abrial, M. Butler, S. Hallerstede, and L. Voisin. An

open extensible tool environment for event-b. Proceedings
of the Eighth International Conference on Formal Engineer-
ing Methods, ICFEM, pages 588–605, 2006.

[2] M. A. Aslam, S. Auer, and M. Böttcher. From bpel4ws pro-

cess model to full owl-s ontology. ESWC2006 Proceedings,
Lecture Notes in Computer Science, 2006.

[3] M. Ehrig, A. Koschmider, and A. Oberweis. Measuring sim-

ilarity between semantic business process models. Proceed-
ings of the fourth Asia-Pacific Conference on Conceptual
Modelling, Ballarat, Australia, 67:71–80, 2007.

[4] S. Hallé, R. Villermaire, O. Cherkaoui, and B. Ghandour.

Model-checking data-aware temporal workflow properties

with ctl-fo+. forthcoming, 2007.
[5] X. He. Pz nets - a formal method integrating petri nets with

z. Proceedings of the 7th International Conference of Soft-
ware Engineering and Knowledge Engineering SEKE’95,

pages 73–180, 1995.
[6] X. He. Pz nets - a formal method integrating petri nets with

z. Information and Software Technology, 43(1):1–18, 2001.
[7] X. He and C. Yang. Structured analysis using hierarchi-

cal predicate transition nets. Proceedings of the 16th Inter-
national Computer Software and Applications Conference,
Chicago, pages 212–217, 1992.

[8] M. Hepp, F. Leymann, J. Domingue, A. Wahler, and

D. Fensel. Semantic business process management: A vi-

sion towards using semantic web services for business pro-

cess management. Proceedings of the IEEE ICEBE, Beijing,
China, pages 535–540, October 2005.

[9] M. Hepp and D. Roman. An ontology framework for seman-

tic business process management. 8th international confer-
ence Wirtschaftsinformatik, Karlsruhe, 2007.

[10] A. Kleppe, J. Warmer, and W. Bast. MDA Explained. The
Model Driven Architecture: Practice and Promise. Pearson

Education, Boston, USA, 2003.
[11] A. Koschmider and A. Oberweis. Ontology based business

process description. Proceedings of the CAiSE-05 Work-
shops, Lecture Notes in Computer Science, Springer, Porto,
Portugal, (13):321–333, 2005.

[12] K. Liu. Semiotics in Information Systems Engineering.

Cambridge University Press, 2000.
[13] M. Milanović and et al. On interchanging between

owl/swrl and uml/ocl. Proceedings of 6th Workshop on
OCL for (Meta-)Models in Multiple Application Domains
(OCLApps) at the 9th ACM/IEEE International Confer-
ence on Model Driven Engineering Languages and Systems
(MoDELS), pages 81–95, 2006.

[14] P. Noriega. Agent-mediated auctions: The fishmarket

metaphor. Number 8 in IIIA Monograph Series, Institut
d’Investigació en Intelligència Artificial (IIIA), PhD Thesis,

1997.
[15] PALab. The predictable assemble laboratory.

http://palab.dcs.kcl.ac.uk/, November 2007.
[16] W. van der Aalst and K. van Hee. Workflow Management:

Models, Methods, and Systems. The MIT Press, Cambridge

(USA), London (England), 2002.
[17] K. van Hee, L. Somers, and M. Voorhoeve. Z and high-level

petri nets. Lecture Notes in Computer Science, 551:204–

219, 1991.
[18] J. Vázquez-Salceda, H. Aldewereld, and F. Dignum. Imple-

menting norms in multiagent systems. Multiagent System
Technologies: Second German Conference, MATES 2004,
Erfurt, Germany, pages 313–327, September 2004.

[19] G. Wagner, A. Giurca, and S. Lukichev. A usable inter-

change format for rich syntax rules integrating ocl, ruleml

and swrl. Proceedings of Reasoning on the Web, 2006.
[20] L. y López and M. Luck. Towards a model of the dynam-

ics of normative multiagent systems. Proceedings of the In-
ternational Workshop on Regulated Agent-based Social Sys-
tems: Theories and Applications (RASTA ’02), pages 175–

194, July 2002.
[21] L. y López, M. Luck, and d’Inverno. A framework for norm-

based interagent dependence. Proceedings of the Third Mex-
ican International Conference on Computer Science, pages

31–40, 2001.

34

Technology-Independent Modeling of Service Interaction

Gerald Weber
Department of Computer Science

The University of Auckland
38 Princes Street, Auckland 1020, New Zealand

Email: gerald@cs.auckland.ac.nz

Abstract

Systems based on a service-oriented architecture (SOA)
can be implemented with many different technologies, and
in particular, they can be implemented with a heteroge-
neous set of technologies. An enterprise service bus (ESB)
is a typical option for bridging the technology bound-
aries. It is desirable to have technology-independent mod-
els of the core services in the IT system. We present here
computation-independent models (CIMs) and platform-
independent models (PIMs) for service oriented architec-
tures. Our models have the following advantages: Some of
the CIMs are closely related to Petri net approaches; the
PIMs are expressed in the same formalism as the CIMs; a
canonical PIM is easily derived from a CIM; the semantics
of the PIMs matches the operation of a typical enterprise
service bus architecture. Finally, both CIM and PIM are
defined as core semantic data models and can therefore be
created with most semantic data modeling tools.

1 Introduction

In this paper we discuss technology-independent mod-

els for message-based communication of information sys-

tems. One key idea of a model-driven approach is to use

platform-independent models that can be translated into

several platform-dependent models, thus enabling reuse.

For service-oriented architectures, many frequently dis-

cussed languages are not platform-independent; BPEL, for

instance, is tailored towards web-services. In the same

vein, it is important to realize that a (mis-)understanding

of service-orientation as mere migration to web-services is

an implementation technology and not an architecture. To-

day’s enterprise computing projects are covering areas as

diverse as healthcare [7] and e-commerce [15]. In such

projects, a plethora of different message-based technolo-

gies is used; compare for example e-commerce with clas-

sical EDI [10] and AS2 [12], a novel e-commerce stan-

dard that is similar to web-services [4, 14]. In order to

understand such diverse systems is helpful to assume a

technology-independent viewpoint. The reference model

for ODP defines a viewpoint as “a form of abstraction

achieved using a selected set of architectural concepts and

structuring rules, in order to focus on particular concerns

within a system.” [1]. We will propose our own view-

points, which are mostly related to the enterprise view-

point of ODP; our viewpoints will then motivate the dif-

ferent technology-independent models that we introduce.

We introduce computation-independent model (CIMs) and

platform-independent models (PIMs). More important than

the individual labeling of these models as either CIMs or

PIMs is however that they are in a clear semantic relation-

ship to each other.

In Section 2 we discuss one of our key modeling prin-

ciples, namely the heavy use of immutable datatypes, and

derive CIMs that are not yet tied to a datamodel. In Sec-

tion 3 we introduce the key aspects of our definition of core

data models. In Section 4 we explain another key modeling

principle, namely the use of datamodels to represent busi-

ness integrity constraints that have a process-like character.

We introduce CIMs based on this approach. In Section 5

we introduce CIMs that express synchronization. In Sec-

tion 6 we reflect on the importance of message-based com-

munication for enterprise computing. The message-based

viewpoint presented in Section 7 captures the high-level ar-

chitecture of state-of-the-art systems, particularly enterprise

service bus architectures. Here we introduce our platform-

independent models. In Section 8 we revisit the advantages

of using core data models. In Section 9 we summarize our

findings.

2 The memo-based viewpoint

Our first viewpoint is the memo-based viewpoint. In

this system view, all IT-related business activities pro-

ceed by creating documents and locking them at a certain

time. After that they are immutable and remain in the sys-

1

35

Figure 1. Memos are kept in a repository.

tem state. We call these immutable, archived documents

memos. Hence the memo-based viewpoint models archiv-

ing on an analysis level as the repository of memos, as il-

lustrated in Figure 1. User-generated as well as relevant

system-generated memos should be kept. The first type

of computation-independent model are therefore data mod-

els that contain only memos, we call them memo models
(MMs).

The memo-based viewpoint is an enabling viewpoint for

later process-oriented and message-based models. Memos

are a precursor to messages, but in memos the aspect of

transporting information is not yet emphasized, while per-

sistence is emphasized more.

One remarkable semantic aspect is that the immutability

constraint for the memos is inseparably connected with a

timestamp concept. Every immutable object has a unique

timestamp where it becomes immutable. We want to call

this process locking in order to indicate that there could

possibly be a previous edit phase. The locking of an im-

mutable data object is an atomic event, and this means that

the immutability constraint asks naturally for a transactional

concept. This again gives rise to the importance of sub-

mit/response style systems.

The semantic essence of the memo model is the collec-

tion of memos, that allows only inserts of new memos, and

the association of a timestamp with each memo. The con-

cept of memo models is however not bound to a particu-

lar data model for the description of the individual memos.

Therefore we understand memo models as being compati-

ble with for example textual memos as well as with memos

that consist of structured data. The space of versions of

a wiki would constitute a memo model. The memo-based

viewpoint is significant because via the immutability con-

straint and the ensuing differentiation of distinct times-

tamped memos it structures the information space.

The way we introduced the concept of timestamps for

every memo is an example of the way we understand anal-

ysis in the software engineering process: analysis can add

rich attributes like timestamps even where they might not be

supported by every modeled system (i.e. the system might

keep no, or unreliable timestamps) in order to foster system

understanding.

The memo model allows strictly no change of the memo

content. Extensions of this concept that in turn allow

amendments of submitted data, akin to a concept of minor

edits, are thinkable but can often be naturally defined on top

of the memo model concept.

3 Core data models

The memo-based viewpoint does not require a certain

data model, however for the upcoming process-oriented

viewpoints we will use a relational model to describe the

interconnection of memos. Therefore we employ a data

model of the relational family. In our view this family es-

pecially includes conceptual models such as ER and some

parts of UML. We, however prefer a semantically more

minimalist approach and therefore only use core data mod-

els. A core data model for our purposes is a data model that

has entity types and binary relation types, and the relation

types have set-relational semantics. Generalization as a sep-

arate notion is not required. In form-oriented analysis [6]

we call our modeling language the parsimonious data mod-
eling language. Its models are called PD models for short,

they are core data models to begin with. The PD models

can be seen as simplifications of UML and ER models. A

PD model in our approach is described by a mathematical

object, its so-called model graph. Because we conceive PD

model graphs as mathematical objects, the visual represen-

tation is not prescribed. We prefer a visual notation which

is similar to graph notation. A PD model consists of entity
types, relation types, and roles. An entity type has entity

instances. A relation type is a predicate which says whether

a number of entity instances are thought of as being con-

nected. Each role role(a, t) is connected with one relation

type a and one entity type t. The model graph is defined

to be a tuple (E,P, R, e, p), where E is the set of entity

types, P is the set of relation types, and R is the set of roles.

e : R �→ E, p : R �→ P are the functions giving for each

role its entity type and its relation type. The static semantics
of a PD model are the set of all the possible states of this

model. An entity type represents the collection of all en-
tity instances. Entity instances are opaque identities. Each

entity type is assumed to be a repository, i.e., a countably

infinite set of entity instances. We call an entity instance

that has never been used before a fresh entity instance. In

PD models the primitive data types are just entity types, and

there is no difference between attributes of a type and rela-

tion types. In each state a relation type is represented by a

finite relation between the connected entity types.

The dynamic semantics of a PD model describe the pos-

sible updates on the state of the PD model. Updates are the

transition from one state to another. This definition gives

rise to a typed automaton model of the system. The sys-

tem changes its state through updates, while the PD model

remains the same. Here we distinguish two important no-

tions of updates: primitive updates and transactions. The

36

primitive updates are simply the insertion or the deletion of

a single link between two entity instances. The operation

insert of link l on relation type a, insert(a, l) means that a
becomes a ∪ {l}. The delete of link l on relation type a,
delete(a,l) means that a becomes a \ {l}. The insert oper-

ations can make use of a new() operator that delivers fresh

identifiers. The transactions are complex updates which are

still executed atomically. They will be clarified through an

automaton model later.

4 Using core data models for modeling busi-
ness logic

The key semantic approach in this paper is that we will

model process-like aspects of the business logic with core

data models. Memos in a business process are often based

on earlier memos. As an example let us consider two types

of memos in a banking application, a memo type represent-

ing the opening of a new account and a memo type rep-

resenting the granting of a personal loan. Both memos are

related to an important business process in a bank, the grant-

ing of personal loans. A business constraint is, for instance,

the constraint that a loan must only be granted after an ac-

count has been opened. This is a process-like constraint in

the business logic.

In order to model such process-like constraints we use

relation types with the following additional constraints. We

consider arrow heads as annotations on roles of relations.

The entity type at the annotated role is the target and the

other entity type is the source. A time arrow head is defined

on relation types between timestamped entity types. The

defining condition of a time arrow head is that the time-

stamp for each target instance t is not earlier than the time-

stamp of any source instance that is linked to t via the anno-

tated relation type. We call these source instances the pre-

decessors of t and t the successor of them. In other words,

time arrow heads always point in positive time direction.

A relation type with a time arrow head is a time relation
type. We will consider here only time relation types be-

tween memos. A set of time relation types has the property

that in every state the directed links of these relation types

form a directed acyclic graph. We call such constraint par-
tial oder constrains. Im UML, aggregations can be used

to some extent, but the time constraints are not implied by

aggregations.

In the rest of the paper we will model process aspects

with time relation types between memo types. The personal

loan example is modeled by a time relation types between

the two memo types so that the loan memo is the successor.

A 1..1 multiplicity on that time relation type at the role of

the account creation memo type makes sure that every loan

grant has to refer to one earlier account creation. This exam-

ple illustrates that we can model process aspects with time

action

memo2

memo1 1..1

1..1

memo3

memo4

Figure 2. A Memo Flow Model

relation types in core data models alone, without the need

for a separate process language. The time relation type and

the multiplicity alone ensures that the intended process must

be followed. If t1, t2, . . . , tn are the generation times of the

different memos in the process, then our approach enforces

t1 ≤ t2 ≤ . . . ≤ tn. The immutability of memos is applied

here as well.

This use of time relation types gives rise to a

computation-independent model for process-like aspects,

and we call this the memo order model (MOM). This model

only contains memos and time relation types between these

memos. In the following we will see that we can create

more specialised models for processes based on this. These

models will be specializations of MOMs. The previous def-

inition of the more general MMs is helpful, because there

are specialization of MMs other than MOMs. A strongly

typed reimagination of email for example would only sup-

port single precursor memos, either of the Re: style or of

the Fwd: style. Indeed the DTIMs introduced later, which

are platform-independent models, use such an approach.

Wikis on the other hand, where memos are page versions,

not pages, also support only one predecessor memo, with

the additional constraint that the predecessor relation estab-

lishes a total order. The concept of a changeable page is a

special case of a topic bundle [6], this is an identifier named

in a memo as a topic. For wikis we usually have the ad-

ditional constraint that each page version names only one

such identifier as topic and all page versions that name this

topic are part of a single total order of memos. In Figure 1

the right hand actor performs a wiki style edit. It has the

benefit that it looks like a change to the old page, hence ap-

pealing to intuition, but it is in fact the creation of a new

immutable page, without destruction of the old version.

5 The action viewpoint

An often discussed phenomenon is synchronization be-

tween subprocesses. Not every new memo must lead im-

mediately to a subsequent action. Assume, we need a quote

and an approval in order to confirm a travel booking. Only

if both messages have arrived, a confirmation can be cre-

37

x

Figure 3. Data model and example state of a
memo flow model.

ated. We therefore want to define a viewpoint that expresses

this abstraction, the action viewpoint. Actions that are per-

formed get their own identity, and they can result in several

memos being produced. An action type is an entity type and

it has relation types to all memos that are required and all

memos that are produced. The action viewpoint results in

a bipartite action model resembling a Petri net as shown in

Figure 2. The two partitions are actions and memos. The ac-

tions are depicted as square nodes, the memos are depicted

as round nodes. The actions themselves do not hold addi-

tional data, but they help in defining what we call a superpa-

rameter [6], that is a data type that acts as a parameter list.

This is in contrast to many languages where a parameter list

might be a type of the type system, but is not a first class cit-

izen data type. All the memos linked to an action are input

to that action. In this model, it is in general not necessary

that the action is performed immediately as soon as all nec-

essary predecessor memos are present. Such a constraint

would however be frequent for individual action types. The

action viewpoint gives rise to a computation-independent

model (CIM). We call a data model that shows memos and

actions a memo flow model (MFM). A memo flow model is

a directed bipartite graph; this is a well-formedness condi-

tion on memo-flow models.

Multiplicities that refer back from an action to predeces-

sor memos describe which predecessors must be there at

the start of the action. If for example the multiplicities are

all 1..1 multiplicities as in Figure 2, then they represent a

synchronization, and the action behaves similar to a syn-

chronization bar in a Petri net.

5.1 Semantics of memo flow models

In Figure 3 a memo flow model is shown on the left and

an example state over this model is shown, by indicating

with (here horizontal) swimlanes, to which type each entity

instance is belonging. This type of diagram was introduced

action2

memo

0..1 action1

0..1 action2

memo

0..1

0..1

xor

action1

Figure 4. Nondeterminism in a Memo Flow
Model

in form-oriented analysis to discuss semantic properties of

models (The diagram works best if the relation types are

unique between two entity types). A first semantic property

that we require from relation types in a MFM is that they are

time relation types. This means, that the state over the data

model is a directed acyclic graph. A memo flow model, as

a directed bipartite graph, has two types of edges: action-

memo edges and memo-action edges. The second semantic

property only affects the action-memo transitions; these are

the arrows going from actions to memos. The requirement

is that every memo is only created by one action. This is

equivalent to UML composition (in UML composition the

diamond would be on the opposite end of the relation type

from the arrowhead given in the MFM). This property is il-

lustrated in Figure 3. Note the edge that is crossed out. The

targeted memo is also produced via an edge from a different

action. One edge must be deleted. In contrast, one action

can be targeted by an arbitary number of memo-action tran-

sitions, if no other constraints prevent that.

5.2 Nondeterminism and the action view-
point

The action viewpoint is reminiscent of advanced Petri

nets since it is bipartite. In contrast to Petri nets however,

there is no implicit consumption of messages by their suc-

cessor messages. This becomes obvious if we consider non-

determinism as in the following examples. In the two small

MFMs in Figure 4, in the left picture each message is giv-

ing rise to either action1 or action2 but not both. In this

sense the message is consumed, but only because of the xor

constraint (note here that the xor constraint and the multi-

plicities are stated following the PD model convention, not

the UML convention). On the right-hand side, however, the

message may give rise to two actions because of the mul-

tiplicities. The reason we prefer MFMs over sophisticated

Petri net variants is the tight integration of MFMs with core

data models.

6 Importance of message interchange

Message-based data interchange is used in many ma-

ture technologies. EDI is an implementation technique for

38

state
transition
function

input

output

Figure 5. Unit systems are modeled as au-
tomata

business message interchange [8]. It allows communication

with high Quality of Service. The interchange is tradition-

ally on dedicated networks, called value-added networks.

The more recent technology of web services [2] is an im-

plementation technique for message communication. Web

services use XML as a semi-structured format [3] for mes-

sages. Notations for distributed systems based on Web ser-

vices include Web service orchestration languages, for ex-

ample BPEL. Web services use a type system given through

the XML Schema concept. Deployed Web services are de-

scribed by the Web Service Description Language WSDL.

This language can be used for the specification of config-

uration information, i.e., for the data transmission options

chosen. This approach is technology-dependent: BPEL pri-

marily describes Web service communications. A higher

degree of abstraction is needed for modeling at the design

or analysis stage.

7 The message-based system viewpoint

The message-based viewpoint allows us to capture the

architecture of state-of-the-art message-based systems. In

this viewpoint all memos are considered to be messages.

Each model in this viewpoint is called a data type inter-
change model (DTIM). DTIMs are high-level design mod-

els for message-based communication. They fit well for ex-

ample to enterprise service bus architectures [11], but also

to similar systems used in electronic data interchange [5].

The core architectural feature of such systems is that

the business logic is composed of components that are trig-

gered by messages. This common high-level design might

be implemented with various concrete component technolo-

gies, such as message-driven enterprise java beans (EJBs) or

XML style sheets.

7.1 Unit systems as automata

In form-oriented analysis, distributed systems are con-

ceived as a net of single systems, called unit systems. Such

a unit system is a computational automaton with a state as

illustrated in Figure 5. This automaton takes in messages

checkstatus x state
��state

x collectionOf(checkuse)
checkuse x state
��state

x collectionOf(invoice)
x collectionOf(control)

DTIM

checkstatus

checkuse

invoice

0...1 1...1

control

0...*

transactions:

Figure 6. DTIMs fit to the typed automaton
model.

and produces other messages. In an untyped view, such an

automaton is specified by a single state transition function:

stateTransitionFunction: message × state

→ state× collectionOf(message)

In the statically-typed view, each transaction has an

associated message type. The state transition function is

conditional and invokes for each message type a different

transaction, which is the state transition for this message

type. In Figure 6 on the left-hand side, two transactions for

the messages checkstatus and checkuse are shown.

We can therefore represent the transactions by their mes-

sage types. A single message type acts as the superpa-

rameter of the transaction. Each such transaction may rep-

resent one deployed transformation component from Fig-

ure 7, such as workerA or workerB. Message-based com-

ponents working on persistent message queues are an old

type of component, known from classical transaction mon-

itors. A recent name for a directly analogous technology of

message-based middleware today is enterprise service bus

(ESB). The automaton model fits very good to the general

ESB architecture; the transactions are equivalent to worker

threads in such a system as illustrated in Figure 7. They

are crucially important for a workable enterprise platform,

and it was a major drawback for recent object-oriented en-

terprise platforms that they did not have message-driven

components from the start; their later addition was eagerly

awaited by practitioners. Such message-based components

are an exact replica on the implementation level of our

platform-independent concept of transactions. Indeed such

message-based components follow the superparameter con-

cept, in that the message is their sole parameter and it is of

course a structured data object. As an additional side re-

mark one might add that these concepts bear a resemblance

to the coordination language Linda [9], but in practice the

central requirements for users are nonfunctional require-

ments, chiefly persistence of the messages. There is also

39

workerB

workerA

Figure 7. Transactions are analogous to com-
ponents in an ESB architecture.

a direct correspondence with active database technologies:

the transaction for message m is in principle a trigger on

insert on table m, and it follows the event-condition-action

pattern. The transactional execution style used here is called

detached in active database terminology.

7.2 Data type interchange models

The message-based viewpoint motivates the platform-

independent Data Type Interchange Models (DTIMs) that

we are going to introduce now. They are first of all a natural

translation of the above mathematical definition into a data

model. The DTIM in its elementary form contains as entity

types (depicted as nodes) just message types that represent

the transactions as explained before.

If the transaction for message type A may send messages

of type B, then the DTIM contains a time relation type from

A to B. The connection between the mathematical notation

for a single transaction and the node in the DTIM is shown

in Figure 6. Again, since the edges are just relation types,

DTIMs can immediately be annotated with constraints such

as multiplicities at the targets of relation types. A 1...1 mul-

tiplicity at B, for example, indicates that a message of type

A always causes a message of type B. These multiplicities

are written with three dots, since they have asynchronous

semantics as will be explained in Section 7.3.

A message type can have many ingoing edges as well,

coming from all those transactions that can produce such

a message. At the source of each edge, a composition di-

amond is implied by the above definition of transactions,

since every message was produced by exactly one transac-

tion. These diamonds are shown in Figure 8 to illustrate this

fact, but they will usually be omitted and assumed implicitly

in DTIMs.

check

order

payment

purchase

Figure 8. The transitions in DTIMs have im-
plicit composition diamonds at their source.

DTIM

message
cascades

state is
always a

forest:

Figure 9. The state of a DTIM is a forest.

This means that the object net over the DTIM is not only

cycle-free but in fact it is a forest, as shown in Figure 9,

where the DTIM is shown on the top and the state is again

shown with swimlanes. A message is processed in a trans-

action, then the transaction may trigger new messages, and

so a message cascade is started which is supposed to termi-

nate. A message cascade is always a tree.

7.3 Context of multiplicities

Constraints on DTIMs such as multiplicities can be tied

to different checkpoints. For multiplicities this is necessary

to accommodate the fact that not all the messages produced

during the operation of a system are processed at once but

in a consecutive way. To state this in intuitive terms: asyn-

chronous messages call for asynchronous multiplicities. We

can formalize this the following way.

A multiplicity tied to the transaction boundaries is valid

after each transaction. Such transactional multiplicities are

depicted with two dots between the upper and lower bounds.

But for the multiplicities given at the targets of DTIM-edges

we have the following situation. Mostly, no message at the

target of the edge is produced in the same transaction in

which the source was produced, therefore the transactional

lower multiplicity is zero. However, in DTIMs the process-

ing of messages in subsequent transactions is guaranteed,

40

MFM

DTIM

Figure 10. An MFM and a DTIM implementing
the former.

and in many cases we know that one subsequent message

must be produced later. Here we also want to use mul-

tiplicities – we call them DTIM multiplicities – to model

this knowledge. Since these multiplicities have a differ-

ent meaning, they are shown with three dots. This distinc-

tion is actually only necessary for the lower multiplicity.

In DTIMS, these multiplicities typically refer to the end of

message cascades. The lower DTIM multiplicities define

conditions that must hold before the cascade can terminate,

and the upper DTIM multiplicities define limits for the mes-

sage cascade, although they in general do not suffice to en-

sure finiteness of the cascade.

7.4 Memo flow and data type interchange

A memo flow model can be implemented by an isomor-

phic DTIM. An example is given in Figure 10. The DTIM

is obtained by removing the distinction between actions and

memos. The semantics of the DTIM that is implementing a

MFM are the following. If we consider one message type

in the DTIM that is implementing an action (in the example

there is a single action), then the transaction for this mes-

sage type has to have the following specification: Only if

several instances of this message type have been received,

one from each memo required for this action, then the last

of these instances sends out all the messages for that action.

If we consider the example, then we see that the memo flow

model abstracts from the mechanics of data interchange. In

the state of the memo flow, the two instances of the ac-

tion type have an isomorphic star of ingoing edges. In the

DTIM state, however, it is denoted that the messages have

been received each time in a different order. Therefore the

MFM offers a further abstraction that can be helpful but

hides the actual operational history, how the memo flow

was executed. This is why we call the MFM a computation-

independent model.

checkstatus

checkuse

invoice

0...1

0...*

resulting model

checkstatus

checkuse

invoice

0...1 1...1

control

0...*

submodel1

checkstatus

checkuse

1...1

control

0...*

submodel2

Figure 11. Model Decomposition

7.5 Model decomposition

For the technology-independent models presented here

we use the model composition mechanism from form-

oriented analysis. Models are conceived as a set of model

elements and composition is the set union of these sets. As

a consequence, we can compose models that contain partly

the same and partly different elements as shown in Fig-

ure 11.

In this way we can use one DTIM L to model a subsys-

tem in another DTIM R. We can form larger diagrams, by

modeling subsystems and connecting them with a diagram

on a higher level. A further discussion of this can be found

in [13].

8 Advantages of using core data models

The fact that our models are still core data models has

several advantages. This opens up the possibility to create

the presented models with many data modeling tools. Core

data models are naturally a minimal functionality supported

by a majority of modeling tools. Therefore, all these mod-

eling tools can be used to model this type of process model.

For example, many tools for UML class diagrams or for

ER diagrams can be used. Secondly, because our models

are core data models, we can use multiplicities to express

integrity constraints on process execution, as seen in our

examples. Thirdly the integration with other parts of the

data model is immediately possible as shown in Figure 12.

The type shipment is an entity from the datamodel. The

model expresses that for every shipment received by the or-

ganization running this system there has to be one or more

notification messages sent.

In general, a data modeling tool might not enforce the

semantic constraints of our models. For example, it might

not enforce the defining constraints on time relation types,

and specifically it might not enforce the immutability of

memos. In some cases it might even be necessary to rely

on standard role names in order to express the directions

of time relation types. Also, the well-formedness condition

on MFMs, namely that they must be bipartite, will often be

not automatically enforceable. Nevertheless, the semantics

41

notification

shipment

1..*

Figure 12. DTIMs can be combined with data
models

presented here ensure that such a tool use is more than the

trivial option of using a core data modeling tool to draw

arbitrary labeled graphs.

9 Conclusion

We need a platform-independent way to describe sys-

tems that must fulfil stringent requirements. There is no

single definition of the boundary between a computation-

independent model and a platform-independent model, de-

spite all strong opinions about these notions. This is ag-

gravated by the fact that what appears to one person as

a formal notation for a PIM may appear to someone else

as just another data format and hence a proprietary plat-

form. Therefore the main focus should be to ensure that

CIMs are on a higher abstraction level as PIMs, and PIMs

are not obviously tied to a particular technology. Message-

based architectures can be set up with a plethora of tech-

nologies. The high-level design of such systems is, how-

ever, often very similar. In this paper we have presented

computation-independent models and matching platform-

independent models that fit well to current state-of-the-art

architectures such as enterprise service bus technologies.

We have presented semantics for these models by defining

them as core data models. This gives us a parsimonious yet

powerful modeling approach for process-like business con-

straints that is easy to integrate with the information model

of typical enterprise applications.

References

[1] ITU-T Rec. X.902 — ISO/IEC 10746-2. Open dis-

tributed processing - reference model - part 2: Foun-

dations, 1996.

[2] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vi-

jay Machiraju. Web Services: Concepts, Architecture
and Applications. Springer Verlag, 2004.

[3] Peter Buneman. Semistructured data. In PODS
’97: Proceedings of the 16th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Sys-
tems, pages 117–121. ACM Press, 1997.

[4] Christoph Bussler, Dieter Fensel, and Alexander

Maedche. A conceptual architecture for semantic web

enabled web services. SIGMOD Rec., 31(4):24–29,

2002.

[5] Barry Dowdeswell and Christof Lutteroth. A mes-

sage exchange architecture for modern e-commerce.

In Dirk Draheim and Gerald Weber, editors, TEAA,

volume 3888 of Lecture Notes in Computer Science,

pages 56–70. Springer, 2005.

[6] Dirk Draheim and Gerald Weber. Form-Oriented
Analysis - A New Methodology to Model Form-Based
Applications. Springer, October 2004.

[7] Marco Eichelberg, Thomas Aden, and Jörg Riesmeier.

A survey and analysis of electronic healthcare record

standards. ACM Computing Surveys, 2005.

[8] Margaret A. Emmelhainz. EDI: Total Management
Guide. John Wiley & Sons, 1992.

[9] David Gelernter. Generative communication in linda.

ACM Trans. Program. Lang. Syst., 7(1):80–112, 1985.

[10] Paul Kimberley. Electronic Data Interchange. Mc-

Graw Hill, 1991.

[11] Min Luo, Benjamin Goldshlager, and Liang-Jie (LJ)

Zhang. Designing and implementing enterprise ser-

vice bus (esb) and soa solutions. In SCC ’05: Pro-
ceedings of the 2005 IEEE International Conference
on Services Computing, page .14, Washington, DC,

USA, 2005. IEEE Computer Society.

[12] D. Moberg and R. Drummond. MIME-Based Secure

Peer-to-Peer Business Data Interchange Using HTTP,

Applicability Statement 2 (AS2). RFC 4130 (Pro-

posed Standard), July 2005.

[13] Gerald Weber. A platform-independent approach for

auditing information systems. In HDKM ’08: Pro-
ceedings of the second Australasian workshop on
Health data and knowledge management, pages 65–

73, Darlinghurst, Australia, Australia, 2008. Aus-

tralian Computer Society, Inc.

[14] Sanjiva Weerawarana, Francisco Curbera, Frank Ley-

mann, Tony Storey, and Donald F. Ferguson. Web Ser-
vices Platform Architecture. Prentice Hall PTR, 2005.

[15] Han Zhang, Gerald Weber, William Zhu, and Clark

Thomborson. B2b e-commerce security modeling: A

case study. In Computational Intelligence and Secu-
rity, 2006 International Conference on, pages 1549–

1554, 2006.

42

View publication statsView publication stats

https://www.researchgate.net/publication/239851661

