
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/254859869

Proceedings of the International Workshop on Vocabularies, Ontologies and

Rules for The Enterprise (VORTE 2005)

Article · January 2005

CITATIONS

0

READS

58

2 authors, including:

Some of the authors of this publication are also working on these related projects:

Formalization of OntoUML View project

Ontological foundations of economics View project

Giancarlo Guizzardi

Universidade Federal do Espírito Santo

234 PUBLICATIONS 4,096 CITATIONS

SEE PROFILE

All content following this page was uploaded by Giancarlo Guizzardi on 19 August 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/254859869_Proceedings_of_the_International_Workshop_on_Vocabularies_Ontologies_and_Rules_for_The_Enterprise_VORTE_2005?enrichId=rgreq-aa9ebf14e2d1c9dbf3a057511fb1f7af-XXX&enrichSource=Y292ZXJQYWdlOzI1NDg1OTg2OTtBUzoxMzE4NTU4NjkyODg0NDhAMTQwODQ0ODI5ODAzOA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/254859869_Proceedings_of_the_International_Workshop_on_Vocabularies_Ontologies_and_Rules_for_The_Enterprise_VORTE_2005?enrichId=rgreq-aa9ebf14e2d1c9dbf3a057511fb1f7af-XXX&enrichSource=Y292ZXJQYWdlOzI1NDg1OTg2OTtBUzoxMzE4NTU4NjkyODg0NDhAMTQwODQ0ODI5ODAzOA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Formalization-of-OntoUML?enrichId=rgreq-aa9ebf14e2d1c9dbf3a057511fb1f7af-XXX&enrichSource=Y292ZXJQYWdlOzI1NDg1OTg2OTtBUzoxMzE4NTU4NjkyODg0NDhAMTQwODQ0ODI5ODAzOA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Ontological-foundations-of-economics?enrichId=rgreq-aa9ebf14e2d1c9dbf3a057511fb1f7af-XXX&enrichSource=Y292ZXJQYWdlOzI1NDg1OTg2OTtBUzoxMzE4NTU4NjkyODg0NDhAMTQwODQ0ODI5ODAzOA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-aa9ebf14e2d1c9dbf3a057511fb1f7af-XXX&enrichSource=Y292ZXJQYWdlOzI1NDg1OTg2OTtBUzoxMzE4NTU4NjkyODg0NDhAMTQwODQ0ODI5ODAzOA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giancarlo_Guizzardi2?enrichId=rgreq-aa9ebf14e2d1c9dbf3a057511fb1f7af-XXX&enrichSource=Y292ZXJQYWdlOzI1NDg1OTg2OTtBUzoxMzE4NTU4NjkyODg0NDhAMTQwODQ0ODI5ODAzOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giancarlo_Guizzardi2?enrichId=rgreq-aa9ebf14e2d1c9dbf3a057511fb1f7af-XXX&enrichSource=Y292ZXJQYWdlOzI1NDg1OTg2OTtBUzoxMzE4NTU4NjkyODg0NDhAMTQwODQ0ODI5ODAzOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidade_Federal_do_Espirito_Santo?enrichId=rgreq-aa9ebf14e2d1c9dbf3a057511fb1f7af-XXX&enrichSource=Y292ZXJQYWdlOzI1NDg1OTg2OTtBUzoxMzE4NTU4NjkyODg0NDhAMTQwODQ0ODI5ODAzOA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giancarlo_Guizzardi2?enrichId=rgreq-aa9ebf14e2d1c9dbf3a057511fb1f7af-XXX&enrichSource=Y292ZXJQYWdlOzI1NDg1OTg2OTtBUzoxMzE4NTU4NjkyODg0NDhAMTQwODQ0ODI5ODAzOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giancarlo_Guizzardi2?enrichId=rgreq-aa9ebf14e2d1c9dbf3a057511fb1f7af-XXX&enrichSource=Y292ZXJQYWdlOzI1NDg1OTg2OTtBUzoxMzE4NTU4NjkyODg0NDhAMTQwODQ0ODI5ODAzOA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

 I

Preface

These proceedings contain the accepted papers of the International Workshop on Vocabularies,
Ontologies and Rules for The Enterprise (VORTE), held in September 20th, 2005 in Enschede, The
Netherlands.

This workshop, organized in the context of the 9th IEEE Enterprise Distributed Object Computing
(EDOC) - The Enterprise Computing Conference, can be considered as a second edition of the MDSW
(Model-Driven Semantic Web) Workshop held at the EDOC 2004 in California, USA. However, besides
the specific topics of Model-Driven Architecture (MDA) and the Semantic Web, the objectives of VORTE
are: (i) to promote the discussion of the role of ontological research for enterprise engineering; (ii) bring
together researchers from areas such as philosophical ontology, business process modelling, information
modelling, software and domain engineering, and rule-based systems to support the interdisciplinary debate
that this topic requires.
 In accordance with the objectives of the workshop, we have assembled an international and highly
qualified program committee, but also one on which different communities important for this enterprise are
represented. As a result of the call for papers, this committee received 19 submissions from 16 countries
worldwide and after a rigorous refereeing process, 9 high quality papers have eventually been chosen for
presentation at the workshop and for appearing in these proceedings.

The material included in this volume reflects the nature of the forum that we want to promote with this
edition of VORTE. The proceedings are structured in three concern areas, which are discussed in the
sequel:

Part I (Foundational Ontologies): In the first part, we have three contributions that approach the
topic of Enterprise Engineering from a foundational Perspective, i.e., by employing and advancing the
theoretical work of areas such as Philosophy, Cognitive Sciences, Linguistics and Social Sciences. In the
first of these contributions, Hannes Michalek addresses the topic of conceptual analysis of causal relations
within the framework of the General Formal Ontology (GFO) developed by the OntoMed Research Group
at the University of Leipzig. Following this article, we have the contribution by Emanuele Bottazzi and
Roberta Ferrario discussing the foundations of an Ontology of Organizations. Bottazzi and Ferrario base
their analysis in another foundational ontology named DOLCE (Descriptive Ontology for Linguistic and
Cognitive Engineering) developed at the Laboratory for Applied Ontology (LOA) at the Institute for
Cognitive Science and Technology, Trento, Italy. Closing this part, we have the Context-Based Enterprise
Ontology proposed by Mauri Leppänen, aimed at promoting a common understanding of the nature,
purposes and meaning of enterprise related concepts.

Part II (Enterprise Modeling): In this second part of the proceedings we have four contributions. In
the first of these, Ricardo Falbo and Gleidson Bertollo present a formally defined Software Process
Ontology that can be used by Software Organizations for understanding, communicating and reasoning
about the Software Process Quality Domain. By showing how to interpret existing Software Process
Quality Standards in terms of the proposed ontology, the article also supports software organizations in
suitably employing these standards in their software process improvement efforts.

In the sequence, Slimane Hammoudi, Jérôme Janvier and Denivaldo Lopes present an approach
inspired in the Ontologies and Database Literature for explicitly differentiating between the concepts of
mapping and transformation in MDA. This approach can be used, for example, to derive mapping
specifications between (platform independent) enterprise models and (platform specific) implementation
models, which are independent of particular transformation definition metamodels (languages).

Still on this section, Kilian Kiko and Colin Atkinson elaborate on the need for integrating existing
enterprise information representation languages aimed for human usability (in particular, UML), with
those aimed at machine processability and automatic reasoning (most notably, the description logics based
ontology representation languages such as OWL). The authors discuss the strategies adopted by existing
proposals in the literature and present their own view on the subject.

In an article concluding this part of the proceedings, Tae-Young Kim, Cheol-Han Kim, Jeong-Soo Lee,
and Kwangsoo Kim describe an MDA-based Enterprise Architecture Framework that contributes to the
configuration of process-centric and loosely-coupled Virtual Enterprises. The proposed framework
harmonizes different existing approaches in the literature such as Enterprise Architecture (EA), framework-
based development, meta-modelling and MDA to underpin the representation of enterprise models from
different viewpoints, at different levels of granularity, generality and abstraction.

 II

Part III (Business Rules): Finally, in this third part, we have two articles that target the topic of
Business Rules. In the first of these articles, Rubby Casallas, Catalina Acero and Nicolás López discuss the
derivation of implementations from high level business rules through successive model transformations.
This work presents a modelling profile which defines a vocabulary to model the concepts needed to
integrate business activities and applications, and, specifically, to assist the transformation of business
process models to platform specific implementations. Concluding these proceedings, we have the
contribution of Stijn Godertier and Jan Vanthienen, which proposes a rule-based approach to represent the
semantics of data and control-flow perspectives in enterprise modeling. In particular, the authors show how
a business rule model can be used to define and constrain the data elements of a business vocabulary model
and the state transitions of a business process model. To this end, Goedertier and Vanthienen develop a
lightweight rule-based process ontology and a rule set ontology for rule-based business process modeling,
and demonstrate how a corpus of different kinds of Horn clauses can be generated from these models for
rule-based business process execution.

There are several people that deserve our appreciation and gratitude for helping in the realization of
this workshop. First, we would like to express our gratitude to both the program committee members and
the additional external referees for their timely expertise in reviewing the papers, and to the authors for
submitting their papers to VORTE. We would like to specially thank Colin Atkinson for accepting the
invitation to deliver the keynote talk at the workshop. Moreover, we thank Roberta Ferrario, Emanuele
Bottazzi and Claudio Masolo for their kind help in editing the proceedings. Finally, we are grateful to Elisa
Kendall (chair of the MDSW 2004), Marten van Sinderen (general chair of EDOC 2005) and Bryan Wood
(Workshop Chair of EDOC 2005) for their support in organizing this workshop as an EDOC Event.

September 1st, 2005

Giancarlo Guizzardi
University of Twente, The Netherlands and
Laboratory for Applied Ontology (LOA),
ISTC-CNR, Italy

Gerd Wagner
Institute of Informatics
Brandenburg University of
Technology at Cottbus, Germany

Program Committee

Aldo Gangemi ISTC-CNR (Italy)
Andre Valente Knowledge Systems Ventures (USA)
Andreas Opdahl University of Bergen (Norway)
Andrey Naumenko Triune Continuum Enterprise (Switzerland)
Brian Henderson Sellers University of Technology Sydney (Australia)
Chris Welty IBM Watson Research Center (USA)
Colin Atkinson University of Mannheim (Germany)
Elisa Kendall Sandpiper Software (USA)
Gerd Wagner Brandenburg University of Technology at Cottbus (Germany)
Giancarlo Guizzardi University of Twente (The Netherlands) & ISTC-CNR (Italy)
Joerg Evermann Victoria University Wellington (New Zealand)
Michael Rosemann Queensland University of Technology (Australia)
Michele Missikoff IASI-CNR (Italy)
Mustafa Jarrar Vrije Universiteit Brussel (Belgium)
Nicola Guarino ISTC-CNR (Italy)
Oscar Pastor Polytechnic University of Valencia (Spain)
Pericles Loucopoulos University of Manchester (UK)
Ricardo Falbo Federal University of Espirito Santo (Brazil)
Roel Wieringa University of Twente (The Netherlands)
Terry Halpin Northface University (USA)
Uwe Assmann TU Dresden (Germany)
Robert Colomb University of Queensland (Australia)
York Sure University of Karlsruhe (Germany)

 III

Table of Contents

Foundational Ontologies

A Causal Relation Based on Regularity and Manipulability…………………………...…1
Hannes Michalek

A Path to an Ontology of Organizations…………………...…………………………...…9
Emanuele Bottazzi and Roberta Ferrario

A Context-Based Enterprise Ontology…………………...…………………………...…17
Mauri Leppänen

Enterprise Modeling

Establishing a Common Vocabulary for Helping Software Organizations to Understand
Software Processes…………………………………………………………………….....25
Ricardo de Almeida Falbo and Gleidson Bertollo

Mapping Versus Transformation in MDA: Generating Transformation Definition from
Mapping Specification…………………...…………………………...………………….33
Slimane Hammoudi, Jérôme Janvier and Denivaldo Lopes

Integrating Enterprise Information Representation Languages …………………………41
Kilian Kiko and Colin Atkinson

Enterprise Architecture Framework based on MDA to Support Virtual Enterprise
Modeling…………………………………………………………………………………51
Tae-Young Kim, Cheol-Han Kim, Jeong-Soo Lee, and Kwangsoo Kim

Business Rules

From high level business rules to an implementation on an event-based platform to
integrate applications…………………………………………………………………….59
Rubby Casallas, Catalina Acero and Nicolás López

Rule-based business process modeling and execution…………………………………...67
Stijn Goedertier and Jan Vanthienen

Author Index……………………………………………………………………………75

A Causal Relation Based on Regularity and
Manipulability

Hannes Michalek
Institute for Informatics (IfI)

Institute for Medical Informatics, Statistics and Epidemiology (IMISE)
Research Group Onto-Med

University of Leipzig
michalek@informatik.uni-leipzig.de

Abstract— Modeling causality is a necessary precondition for
doing reasoning that entails prediction or planning, or helps
at giving causal explanations. Unfortunately, most approaches
in computer science (artificial intelligence) focus on the formal
part of the problem underestimating the conceptual analysis.
We meet this challenge within the framework of formal ontology
and present an analysis that yields a notion of causality based on
regularity and manipulation, and that is conceptually adequate
in the aforementioned areas of reasoning (prediction etc.) as well
as in the realm of scientific practice.

I. INTRODUCTION

CAUSAL knowledge, i.e. knowledge of causal relations,
is the key in a formal knowledge base, if a machine

(computer, software agent) shall be of any help at either
Prediction The mountaineer weighs 120kg includ-
ing his equipment. His screw-gate carabiner has a
breaking load of 16kN. Will it break if he falls down
3.5 meters?
Planning The mountaineer (120kg) will fall 5 me-
ters maximum (according to the route description).
What carabiner has to be chosen so that it will not
break in the case of an accident?
Causal Explanation The mountaineer died in a
climbing accident. What caused his death?

We see that the power of prediction1 is fundamental for
both planning and giving causal explanations. The interrelation
is as follows: Prediction means giving the outcome of some
initial situation or initial state of affairs. Planning consists of
looking for an initial state of affairs whose desired outcome
can be predicted (probably in several steps). Giving a causal
explanation is looking for an earlier initial state of affairs that
the actual outcome can be predicted of.

So if a machine (a knowledge base) is to be useful in
either prediction, planning or search for causal explanation, it
must inevitably contain some sort of representation of causal
relationships.

The strategies to tackle this representation problem in the
field of computer science (artificial intelligence) are numerous.

1We will use prediction (and planning) in the sense of ”predicting nature” or
”physical prediction”, as we are primarily concerned with physical causation.
Predicting the outcomes of an abstract algorithm (“terminates after twenty
iterations”) or the like is not covered here.

(cf. [1], [2] or [3]) Yet they share the following problem: They
usually take some notion of causality for granted (which is
rarely made explicit) and develop an – undoubtedly excellent
– formalism to describe it. However, in knowledge represen-
tation, a good (i.e. consistent and effective) formalism is only
one requirement. The other is conceptual adequacy: Does the
developed formalism model causality correctly?

This leads to conceptual analysis, which is the domain of
analytical philosophy, and you will find an impressive amount
of literature on causality in this area of research. Unfortunately,
there is no consensus on causality which we could simply
adopt. Still, you can find three major branches called regularity
analysis, counterfactual analysis and manipulation analysis.
(cf. [4]) Each of these theories focusses on a single feature of
the causal relation, whereas we believe that all of them must
be included in an adequate concept of causality:

Regularity is the most obvious characteristic of causality
and widely used in science: Doing experiments means gener-
ating certain initial conditions and checking for a certain result
afterwards. If some research group finds they have generated
the very same conditions as their “rivals” but did not detect
the same result, the theory at stake is regarded as falsified.

Counterfactual dependency has historically been under-
stood as a variation of regularity2 and is commonly expressed
by “Had [cause] c not occurred, [effect] e would not have
occurred either.” [6] Today, following David Lewis [7], this
theory is commonly seen as an independent approach based
on possible world semantics.

The condition that the alleged effect should not take place
without the alleged cause is useful to rule out certain kinds
of accidental regularity, e.g. the relation between an arbitrary
“cause” and an “effect” that simply always takes place, thus
trivially fulfilling the regularity condition. It is also part of our
everyday usage of causal expressions: “If I had not eaten this
fish, I would not suffer from tummy-ache now.”

We affirm this intuition but argue that it is already covered
by regularity analysis (cf. section II-C).

Manipulability covers the intuition that the effect might be
changed by manipulating the cause. This condition allows to
filter out some other erroneous “causalities”, as e.g. succeeding

2cf. Hume’s famous “Or in other words” [5] connecting his definitions of
regularity and counterfactual dependency.

2 A Causal Relation Based on Regularity and Manipulability

effects of a common cause that would be regarded as a cause-
effect pair by simple regularity analysis.

Secondly, it fulfills the pragmatic requirement of e.g.
engineering: Causal knowledge that fulfills the manipulation
condition enables us to make things happen the way we
want them to, which might be the very reason why mankind
engaged in scientific activities in the first place.

In contrast to the philosophical debate, we are not so much
focussed on ontological simplicity but rather take Ockham’s
razor to be an advice to accept a broader base (i.e. regularity
and manipulability) in order to yield a theory that has all
the benefits of the ones above without suffering from their
problems.3 However, we had to realize that these theories
have serious gaps that rendered our initial aim to provide a
definition impossible (cf. II-D). Eventually, we had to restrict
ourselves to collecting the necessary features of a causal
relation.

Here’s a summary of our approach and its results:

• We argue that it is presentials (which are not extended in
time, as opposed to processes/events) that are the primary
causal relata. (cf. section II-A)

• We formally describe the necessary conditions of an
adaequate causal relation which capture regularity, coun-
terfactual dependency and manipulation. (cf. sections II-C
and II-D)

• This basic causal relation between presentials is extended
– to allow for processes as causal relata (II-E), or
– to avoid “anti-transitivity” (III-A).

• Examining the necessary conditions, we show that our
notion of causality fulfills the aim of being a basis for
understanding prediction and, hence, planning and causal
explanation. The latter being understood in either the
traditional Hempel/Oppenheim way or in the way of
Woodward/Hitchcock’s theory of explanatory generaliza-
tion. (cf. section III-B)

• Finally (III-D), we show that our concept of causality
matches the epistemic characteristics of modern science
(i.e. how to find causal connections), with the design of
clinical trials as an example.

II. THE DETAILS

A. Presentials as Relata

The repertory of causal relata in the discussion of causality
is overwhelming, but if their ontological nature is not the focus
of discussion, it is usually assumed that it is events that are
causally connected (cf. [9]), the reason being that “[. . .] events
have a strong causal flavor, due to their tight relationship with
the notions of change and time, and this makes them intuitively
appealing causal relata.”, as Lehmann et al. put it (cf. [10]),
and we agree with these authors that everyday language prefers
processes/events as causal relata.

3Marilyn McCord Adams puts the Anti-Razor this way: “[. . .] where fewer
entities do not suffice, posit more!” [8]

Yet we think that serious problems arise if we don’t take
this everyday usage as a merely pragmatically justified abbre-
viation but as following a full-fledged ontological picture, our
starting point being the problem of causal relevance:

Think of the simple situation where one billiard ball moves
in the direction of another ball which rests on the cloth. The
two balls touch, and the second ball’s movement begins (while
the first ball changes speed and/or angle). In terms of events,
this situation would be analyzed as two processes meeting at
the time of contact. A problem arises if you ask which part
of the first process is causally relevant to the second one - the
first half or the second?4

Think of the first half alone. There is no collision, thus,
nothing causes the second ball’s movement. But if we take
the second half alone (or combined with a different first
half), the result would be just the same as in the unmodified
situation. The second half seems to bear all the causal power.
Disregarding the first half of the first process, we can pose
the same question for the second half alone: Which quarter of
the first process is causally relevant, the third or the fourth?
Again, we find that only the fourth would lead to the same
movement of the second ball. Moving on, we must say that it
is the last eighth that bears all the causal relevance, the last
sixteenth, and so on.

This leads us to the assumption that it is the situation or
state of affairs at the very end of process one that is causally
relevant to the second process.

A possible objection to this argument is: Splitting up causal
relevance is not allowed; it is always the whole process that
causes an effect. But think of scientists making experiments to
check the predictions of a theory. They will do so by creating
the initial conditions the theory is about. Notice that they do
not have to create these conditions in a defined way. If a certain
low temperature is needed, they are free in choosing the means
of cooling. It seems sensible to regard the way of cooling as
irrelevant to the effect.

The same holds for the billiard balls: It is of no relevance to
the second ball’s movement how the first one got his velocity
or angle. It could have been struck by the queue, hit by another
ball, thrown by somebody or moved to its place by a complex
apparatus. In all of these cases, the second ball would behave
in exactly the same manner as long as the situation at the
moment of touching is the same.

An analogous thought experiment can be applied to the
second process. It can turn out in very different ways: The
second ball could run down the table and eventually come to
a hold due to friction. It could also be stopped seconds by
a obstacle or even accelerated if the table is not level, etc.
This again leads us to the assumption that it is not the whole
process that is caused but just the state of affairs at its first
time-boundary.

According to the formal ontology of GFO5, presentials are
the kind of entity that exist wholly at time-boundaries (which

4This argument is based on an idea taken from Michael Jubien [11].
5General Formal Ontology, being a part of the ontological research of Onto-

Med at the University of Leipzig. This paper is a contribution to the work
done there, as e.g. presented in [12].

Hannes Michalek 3

is GFO’s term for time points or time slices), so we take
presentials as being the primary causal relata.6

The formal account is given at the end of section II-B.

B. Temporal Structure

Referring back to the billiard balls, we plead for a very
special temporal relation between the causal relata which is
neither simple succession nor simple synchronicity, but – as
we will argue in the following – gives a good answer to the
question of temporal and causal connection:

Taking the process-view again: How should the two pro-
cesses be connected? If time is modeled as intervals of real
numbers, there is a well-known problem. There are four
possibilities which do not suffice:

• The first interval is closed on the right, the second one
on the left. Where the two intervals either overlap, which
is not the kind of “immediate succession”, we wanted to
model. Or where they do not overlap, which implies a
gap between cause and effect.

• The first interval is closed on the right, the second one
open on the left. This is mathematically sound, but what
should a process with an open boundary mean? Contrary
to the movement of the second ball, this process would
have no defined beginning.

• The first interval is open on the right, the second one
closed on the left. Again, the model differs to the real
movement of the ball with respect to the defined end of
the process.

• The first intervall is open on the right, the second one
open on the left. This time, neither would the first
process have a definite end nor the second one a defined
beginning.

Fortunately, there are other approaches to time and GFO
provides means to tackle this problem by modeling time not
by intervals of real numbers but by chronoids with time-
boundaries that can coincide, which means that they are “in
the same place” while still being distinct. So we have a true
“end point” of the first process: time-boundary tc, and a true
“starting point” of the second process: time-boundary te, with
tc and te coinciding, therefore without a gap. (cf. [12])

This matches our idea that it is the relation between
presentials that process causality is based upon. Processes
are causally connected, if the presentials that exist at the
coinciding time-boundaries tc and te are causally related.
(More on process causality in II-E.)

Our discussion of the nature of the relata and the temporal
structure can now be summarized as follows:

eq.time(x, y) =df ∃p1, p2, t1, t2
(Proc(p1) ∧ Proc(p2) ∧ rtb(t1, p1) ∧ ltb(t2, p2)
∧Pres(x) ∧ Pres(y) ∧ at(t1, x) ∧ at(t2, y)
∧coinc(t1, t2))

cause(x, y) → eq.time(x, y)

6Another line of argument (which shall not be carried out at full length
here) is, that is it objects, and not processes that have masses or speed etc.
which seems to be necessary, to play the role of “puller and shover and twister
and bender”. (Expression taken from [13])

with rtb(t1, p1) expressing that t1 is the right time-boundary
of the chronoid which is framing process p1 and ltb(t2, p2)
expressing that t2 is the left time-boundary of the chronoid
which is framing process p2.

C. Regularity

In order to speak of regularity at all, we first need a
collection of similar incidents. Our idea is to capture this
similarity by means of universals. So regularity’s rough motto
“similar scene followed by similar scene” is modeled by
instances of universals.

Secondly, we need some rule on these instances. And as
we want to cover chances as well as 100% regularity, we take
statistical dependency to connect the existence of the instances.

Reg(x, y) =df ∃U1, U2

(Univ(U1) ∧ Univ(U2), x :: U1, y :: U2

∧L(U1, U2))

cause(x, y) → Reg(x, y)

with L(U1, U2) expressing the statistical dependency
between the instances of U1 and U2: If we take all pairs
(right time-boundary, left time-boundary) of – as eq.time()
requests – coinciding time-boundaries and the presentials
existing at these boundaries, the probability of finding an
instance of U2 at the left time-boundary in such a pair is
lower than the probability of finding an instance of U2 at a
left time-boundary in a pair where there is an instance of U1

at the coinciding right time-boundary.

We believe that this also captures the counterfactual intu-
ition: If L is a 100% dependency, the effect does not happen
without the cause, and if L expresses that the probability of
the effect is higher with the cause happening, this implies that
it is lower without. In other words: The effect would not have
happened or would have been less likely to happen, which
is how we introduced the the counterfactual intuition in the
introduction.

More precisely: Nothing like the actual effect would have
happened. This is an important difference to modern Lewis
style counterfactual analyses as presented e.g. by John Collins
[6]. Those theories treat the intuition of “the effect would not
have happened” as being about another possible world where
the very same effect – the one that did happen in the actual
world – does not happen.

D. Manipulation

At this point, there is one last requirement left: The ma-
nipulation condition. The effect must be manipulable by the
cause. Let us come back to the billiard balls example: In what
way is the second ball’s movement manipulable by the first
ball’s movement?

Firstly, note that the kind of difference in cause as well as
effect must fulfil certain conditions to be reasonable. As James
Woodward puts it: “. . . we have no coherent idea of what it
is to change a raven into a lizard or kitten”. [14] So we lack
any causal intuition about a situation where the first ball is

4 A Causal Relation Based on Regularity and Manipulability

changed, say, into a copper wire. And the same holds true for
a “change”7 from mass to color. We believe that it is changes
in quality values8 that manipulation is about. The second ball’s
velocity or angle of movement can be changed by changing the
first ball’s movement. This means that the causality relation’s
necessary conditions must include qualities and quality values
of the relata:

p.has.v(x, Qx, vx) =df ∃q(Qual(q) ∧ q :: Qx ∧ has quality(x, q)
∧has value(q, vx)

Man(x, Qx, y, Qy) =df ∃x′, y′

((comp(x, x′) ∧ comp(y, y′)
∧p.has.v(x, Qx, vx) ∧ p.has.v(x′, Qx, v′

x)
∧p.has.v(y, Qy , vy) ∧ p.has.v(y′, Qy , v′

y)
∧(vx 6= v′

x)) → (vy 6= v′

y))

cause(x, y) → ∃Qx, Qy(Man(x, Qx, y, Qy))

A few words on the definitions: p.has.v(x,Qx, vx) connects
the quality value vx to the presential x, with vx belonging to a
certain quality universal Qx. Man(x,Qx, y,Qy) demands for
at least one pair of non-equal values (of the same universal)
on the side of the cause which are reflected in a pair of
non-equal values on the side of the effect.

The crucial relation, however, is comparability comp(x, y),
whose intension is easy to understand: Not every pair of
presentials on the side of the cause that differ in a quality value
qualifies to take place in the manipulation condition. Take the
movement of the first ball. We have already seen that exchang-
ing the presential at the last time-boundary of that process by
something that is not a ball at all does intuitively not count
as a relevant manipulation. Furthermore, the replacement by
a presential that is not “coherently” connected to the process
of the ball’s movement seem to be problematic, too.

Unfortunately, this problem is not addressed in causal
literature on manipulability. Its origin can be found in the
history of the manipulation condition. Early theories used to
refer to “changes due to human interaction”, which would have
been a rather strong constraint to the allowed manipulation,
but this apparently failed in causal situations where human
powers were too limited to have any influence as in the
relation between moon and tide or between earthquakes and
plate tectonics. So newer theories try to avoid this problem
by defining the allowed manipulations without reference to
human interaction, which now seems to be too thin a concept
to discriminate between relevant manipulations and irrelevant
ones. (cf. [14] for history of the manipulation theory.)

Woodward/Hitchcock present a notion of manipulability
that introduces an exogeneous “intervention” that changes
the cause without influencing the effect directly (i.e. via a

7Note that “change” is not understood as a difference in the very same
presential but as a difference between “comparable” presentials. This has
two consequences: First, the question of “comparability” is raised, which we
shall discuss in the following. Secondly, our approach also handles “static
causation”, which is problematic for approaches that are based on changes
(e.g. cf. [10]).

8Quality values in GFO are, in short, the values of a property’s instances:
Weight is the property, this volleyball’s weight is the particular quality of the
particular volleyball and 260g is this quality’s value.

route that excludes the cause).9(cf. [15]) This implies that the
presential at the end of the first process is always bound to a
process, but the problem is just transferred to the question of
“What processes are allowed?”, which in turn should exclude
the exchange of single presentials that render the process
“unnatural”, “strange” or “incoherent”, as it could be referred
to.

Again, we stress that the notion of an allowed manipulation
is by intuition sufficiently clear to be used here. Going back to
the billiard balls, a reasonable manipulation could be slowing
the first ball down by hand. This manipulation would set the
value of the first ball’s velocity “in the right way”, in terms
of Woodward/Hitchcock’s approach: without influencing the
second ball via a route that excludes the first ball.

Slowing down the first ball by a big fan that creates
strong wind on the billiard table would surely not fulfill the
manipulation condition as it directly influences the second ball
as well.

Summarizing, we understand the basic causal relation to
have the following three necessary features:10

cause(x, y) → eq.time(x, y)
∧Reg(x, y)
∧∃Qx, Qy(Man(x, Qx, y, Qy))

E. Processes as Relata

We started our analysis by showing that it is reasonable to
take presentials as primary causal relata, yet we agree that
it is quite common (and useful!) to attribute causal relations
to processes. We will now show, how our presential based
causality relation can easily be extended to cover processes as
causal relata as well.

All that is required is the aforementioned relationship be-
tween presentials and processes: Processes have boundaries,
and presentials are the kind of entity that exists wholly at
such a single time-boundary. Following our analysis of the
billiard balls example in II-A, we introduce process-process
causality by means of the presentials existing at the processes’
boundaries:

at.end(x, y) =df Pres(x) ∧ Proc(y)
∧∃t(rtb(t, y) ∧ at(t, x))

at.beginning(x, y) =df Pres(x) ∧ Proc(y)
∧∃t(ltb(t, y) ∧ at(t, x))

p.cause(x, y) → ∃u, v
(Proc(x) ∧ Proc(y)
∧Pres(u) ∧ Pres(v)
∧at.end(u, x) ∧ at.beginning(v, y)
∧cause(u, v))

9This intervention condition on the manipulation solves a problem which
Lehmann et al. merely “defined away”: There are qualities like shape and what
they call “location”, that always change together (“structural constraints”, cf.
[10]. With the intervention condition at hand, we see that, in this case, there is
no manipulation that changes shape without directly influencing the location.
Thus, there is no causal relation. The connection might probably be analyzed
as “conceptual overlapping”.

10If it were not for the problems with the manipulation condition (cf. II-D),
you could read =df instead of → here.

Hannes Michalek 5

Causality between processes is, thus, defined by causality
between the presentials at the “meeting point” and can be
used to express immediate cause. For expressions that include
chains of causally connected processes we will need a further
modification of p.cause(x, y), cf. III-A.

Analogously, we can define the rather technical rela-
tions p1.cause(x, y) between a process and a presential and
p2.cause(x, y) between a presential and a process, which are
useful for expressing that a process causes a certain state or
that a certain state of affairs caused a process:

p1.cause(x, y) =df Proc(x) ∧ Pres(y)
∧∃u(Pres(u) ∧ at.end(u, x)
∧cause(u, y))

p2.cause(x, y) =df Pres(x) ∧ Proc(y)
∧∃v(Pres(v) ∧ at.beginning(v, y)
∧cause(x, v))

Referring to these relations as “technical” does not mean
that they have no ontologically sound interpretation. They are
just not that common in ordinary language and must not be
confused with expressions that merely state the situation at the
end or at the beginning of a process (“Running the whole way
made her be at the office at 10:00pm.”) without this end or
beginning being causally connected to another presential.

III. CONSEQUENCES AND DISCUSSION

The last section illustrated how we understand our theory to
fulfil the regularity, counterfactual and manipulation condition.
We will now discuss various consequences of our approach.

A. Reflexivity, Symmetry, Transitivity

Where does cause(x, y) stand in terms of reflexivity,
symmetry and transitivity? We will give some remarks here,
with transitivity bearing special importance.

Reflexivity: As eq.time(x, y) is defined by two presentials
existing at distinct time-boundaries, cause(x, y) is irreflexive,
but note that the technical term “reflexivity” refers directly to
the presentials at stake.

If you take the GFO-route to the problem of identity
through time, there are special universals (“persistants”) whose
instances are those presentials that we refer to as “being the
same thing/object/person through time”. Identity through time
is provided by the universal, whereas the concrete presentials
are not identical. (cf. [12])

Thus, what cause(x, y) allows for is that x and y of
cause(x, y) are instances of such a persistant. If that is the
case, an object can have a causal connection to “itself”,
meaning that one instance of this object’s persistant is causally
related to another instance of the same persistant. This means
that we can have reflexivity on the level of objects without
having reflexivity on the level of presentials.

The following example may illustrate that the notion of an
object being causally related to itself is useful: Consider an
object moving in vacuum without being influenced by any

kind of force. Our approach allows for cutting the movement
into two parts, calling the first the cause of the second one,
which seems to be a reasonable answer to the question of what
caused the second part of the movement.

In terms of physics, the reason for the object’s constant
movement is captured by the preservation of impulse (together
with preservation of energy). This law of physics fulfills our
conditions of regularity and manipulability.

Symmetry: Once more, eq.time(x, y) needs exactly one left
and one right time-boundary, so cause(x, y) is asymmetric,
which is desirable to prevent the effect causing the cause,
as this would ruin the notions of cause and effect entirely.
Secondly, symmetry would have included so-called “backward
causation”, which is commonly taken to be counterintuitive,
at least in the case of causal loops (or time-travel).11

Transitivity: Again, it is the time-boundaries which now
lead to what could be called “anti-transitivity”: cause(x, y)∧
cause(y, z) → ¬cause(x, z). Still, we acknowledge that
causal transitivity is commonly assumed in everyday life,
so rather than ruling it out we want to make explicit what
conditions must be fulfilled for a transitive usage of causal-
ity. Introducing a new relation t.cause(x, y) analogous to
cause(x, y) based on temporal succession (x <t y) instead
of coincidence and allowing for left time-boundaries as well
as right time-boundaries should provide a good start:

succ.time(x, y) =df ∃p1, p2, t1, t2
(Proc(p1) ∧ Proc(p2)
∧((rtb(t1, p1) ∧ ltb(t2, p2))

∨(rtb(t1, p1) ∧ (rtb(t2, p2)))
∨(ltb(t1, p1) ∧ (rtb(t2, p2)))
∨(ltb(t1, p2) ∧ (ltb(t2, p2))))

∧Pres(x)Pres(y) ∧ at(t1, x) ∧ at(t2, y)
∧(t1 <t t2))

t.cause(x, y) → succ.time(x, y)
∧Reg(x, y)
∧∃Qx, Qy(Man(x, Qx, y, Qy))

Again, we could extend this relation to allow for processes
as relata, the new relations looking like their counterparts from
II-E with “cause()” being replaced by “t.cause()”.

Note that t.cause(x, y) still fulfills the regularity and ma-
nipulation condition.12 With t.cause(x, y) in the background,
cause(x, y) can be seen as the most immediate kind of a
t.cause(x, y) connection, but we hesitate to take it as the more
basic one as it allows for (big) temporal differences between
cause and effect.

Let us come back to the question of transitivity: We
introduced t.cause(x, y) to get rid of the “anti-transitivity”
of cause(x, y). We succeeded in that, but it is important to
see that we still have no transitivity, which is due to the
manipulation condition. Regularity is transitive, but “having a
manipulation for” t.cause(a, b) as well as t.cause(b, c) does
not entail having a manipulation for t.cause(a, c).

11According to J. Faye, backward causation should not be confused with
causal loops; none of them entails the other. (cf. [16])

12With the regularity – still expressing statistical dependency – slightly
adjusted in order to not depend on coinciding time-boundaries any more.

6 A Causal Relation Based on Regularity and Manipulability

Yet, in certain everyday situations, a manipulation
“spanning” over a and c could be obvious: “My kicking the
ball caused the window to shatter.” is a reasonable sentence,
which presupposes transitivity as there are more that two
processes involved. Let us assume there are three of them:
the kicking (k), the movement (m) of the ball, and the
shattering (s) of the window. Between both pairs holds the
process-causality relation: p.cause(k,m), p.cause(m, s).
And we can easily think of a manipulation of k that yields a
different s without influencing the effect directly. We could
e.g. change the speed or the direction of the kicking. This
manipulation fulfills the conditions for the transitive version
of process-causality t.p.cause(k, s), which would justify the
everyday inference.

It might well be, that certain relations between the manipu-
lations can provide transitivity, e.g. when manipulation m1 on
a p.cause() yields an effect that is itself a manipulation m2 to
another p.cause()13, which is to be elaborated in the future.

B. Prediction, Planning, Causal Explanation

How is (causal) prediction to be understood in out frame-
work? As introduced at the beginning of this paper, it is about
telling a future state (F) on the basis of an earlier one (E). It is
easy to see that our causal relation allows for doing that: If the
knowledge base includes e.g. t.cause(E,F) and E, regularity
allows for inferring F ’s existence while manipulability allows
for inferring some of its quality values.

Planning (i.e. the question of what to do in order to yield
a certain result) is based on prediction, and our notion of
causality actually gives two interrelations: First, as given in
the introduction, if we have a range of initial sequences from
which we can predict their outcomes, we can choose the one
with the outcome we like best. This is a consequence of
regularity. But secondly, causal knowledge contains knowledge
about manipulation, which also helps achieving the desired
result.

Giving a causal explanation again uses the connection
between earlier causes and later effects, but this time, the effect
has already taken place and we look for an earlier situation that
is of a kind which results in the effect as it actually happened.
In our terms, you search for earlier processes/presentials that
have a causal connection to the actual effect.

Concerning explanation, there is another interesting conse-
quence of our approach:

C. Explanatory Power

The classical theory of explanatory power of generalizations
is given by Hempel/Oppenheim and their deductive nomologic
approach that – in short – connects the explanatory power of
generalizations to their expressing a law. (cf. [17]) If one takes
this theory of explanation for granted, our regularity require-
ment already accounts for “telling the cause” being useful as
an explanation. However, there is discussion about the deduc-
tive nomologic approach and recently, Woodward/Hitchcock

13cf. the Woodward/Hitchcock “intervention” in II-D that allows for the
manipulation being causally related to the first relatum.

[18] presented another theory on the explanatory power of
generalizations.

The problem is that there are generalizations that fulfill a
notion of lawfulness, like “All people in this room have black
hair”. But with regard to the question “Why does this person
have black hair?”, the answer “Because he/she is in this room”
is not very convincing.

Woodward/Hitchcock’s theory proposes the following: A
generalization has explanatory power if it provides answers to
a range of “what-if-things-had-been-different questions”. [18]

With regularity and especially manipulation at the core of
causality, we see that our notion of causality is well-suited to
answer these questions.

D. Scientific Research Practice

Natural science is the human enterprise to find causal rela-
tions. An adequate theory of causality should match scientific
research practice, which obviously is successful in discovering
causal connections.

We have already seen the connection between falsification
and the regularity requirement of our causation approach (cf.
section I). While physics, as an example, makes frequent use of
strict falsification, there are other branches of science that (due
to the complexity of the field) work in a different way. For
instance, testing hypotheses on the effects of drugs requires
another kind of experiment using test and control groups. This
roughly means that there are two groups of patients that share
a disease, only one of them being treated with a certain drug.

How can this procedure be explained by our theory of
causality?

• Firstly, there is simple testing for regularity: Is recovery
statistically dependent on giving the drug?

• Secondly, if there is statistical dependency, the design
of the study has to make sure what made the difference
between the two groups. Then the manipulation condition
is at stake: What accounts for making the differences in
the cause must not be connected to the effect (except
by the route via the cause). The best example for not
fulfilling this condition is the placebo effect that connects
recovery directly to treatment without the drug being
involved.
Medical research has developed a vast variety of pro-
cedures (blinded, double blinded etc.) to avoid such
side-effects of the treatment, which fit our manipulation
condition perfectly.

E. Open Questions, Further Development

We believe that there are several fields in which our ap-
proach should be examined in more detail and we will collect
those loose ends here:

• First of all, there are the different extensions of the
causal relation that were introduced in this paper. We
think that their characteristics should be investigated
more thoroughly in order to give simple and systematic
instructions to the knowledge engineer on when to use
which.

Hannes Michalek 7

• A finer analysis of the manipulation condition is badly
needed. This would contribute to the philosophical dis-
cussion as well.

• We believe our approach to cover physical causation, but
we are quite positive that the main ideas – regularity and
manipulation – are common to causation between other
entities as well (negative causation, which we did not
mention here, put aside), be it even in the disputed field
of psycho-physical causation. Obviously, the necessary
conditions would have to be adjusted to the kind of entity
that plays the role of presentials in the mental stratum,
but regularity and manipulability seem to be of crucial
importance to call something a cause at all.

• Our approach aims at describing the features the relation
between cause and effect has to fulfil in order to justly be
called a “causal relation”. We did not address the problem
of which of the possibly numerous causes may be called
the cause and we tend to think that this is a psychological
question rather than an ontological one.

• What we did not address, either, is the question of how
multiple causal relations to the same (effect-)presential
will turn out. We think they might be “summed up” like
forces in physics with the result following the strongest
cause, being a mixture of several effects, or not being
visible at all, in case the causes neutralize each other’s
effects.

ACKNOWLEDGEMENTS

Thanks for substantial help and stimulating discussion go
to the Onto-Med research group at the University of Leipzig,
especially to Heinrich Herre, Frank Loebe and Patryk Burek.

REFERENCES

[1] N. McCain and H. Turner, “Causal theories of action and change,”
in Proceedings of the Fourteenth National Conference on Artificial
Intelligence (AAAI-97), 1997.

[2] A. Bochman, “A logic for causal reasoning,” in Proceedings of the
Eighteenth International Joint Conference on Artificial Intelligence
(IJCAI’03), G. Gottlob and T. Walsh, Eds., 2003, pp. 141–146.

[3] J. Pearl, Causation. New York: Cambridge University Press, 2000.
[4] J. Kim, “Causation,” in The Cambridge Dictionary of Philosophy,

5th ed., R. Audi, Ed. Cambridge, United Kingdom: Cambridge
University Press, 1998, pp. 110–112.

[5] D. Hume, An Enquiry concerning Human Understanding., 1748.
[6] J. Collins, E. Hall, and L. Paul, Causation and Counterfactuals. Cam-

bridge, Mass: MIT Press, 2004.
[7] D. Lewis, “Causation,” Journal of Philosophy, vol. 70, pp. 556–67, 1973.
[8] M. McCord Adams, “Occham’s razor,” in The Cambridge Dictionary of

Philosophy, R. Audi, Ed. Cambridge University Press, 1995.
[9] J. Schaffer, “The metaphysics of causation,” in The Stanford

Encyclopedia of Philosophy, E. N. Zalta, Ed., Spring 2003.
[Online]. Available: http://plato.stanford.edu/archives/spr2003/entries/
causation-metaphysic%s/

[10] J. Lehmann, S. Borgo, A. Gangemi, and C. Masolo, “Causality and
causation in dolce,” in Formal Ontology in Information Systems, Pro-
ceedings of the International Conference FOIS 2004, 2004.

[11] M. Jubien, Contemporary Metaphysics. Oxford, Malden (Mass.):
Blackwell Publishers, 1997.

[12] B. Heller and H. Herre, “General ontological language (GOL) – A
formal framework for building and representing ontologies. Version 1.0,”
Onto-Med Report (University of Leipzig), no. 7, 2004.

[13] J. Bennett, Events and their Names. Indianapolis: Hackett Publishers,
1988.

[14] J. Woodward, “Causation and manipulability,” in The Stanford Ency-
clopedia of Philosophy (Fall 2001 Edition), E. N. Zalta, Ed., 2001,
http://plato.stanford.edu/archives/fall2001/entries/causation-mani/.

[15] J. Woodward and C. Hitchcock, “Explanatory generalizations, part I: A
counterfactual account,” Nous, vol. 37, no. 1, 2003.

[16] J. Faye, “Backward causation,” in The Stanford Encyclopedia of
Philosophy, E. N. Zalta, Ed., Winter 2001. [Online]. Available:
http://plato.stanford.edu/archives/win2001/entries/causation-backwards/

[17] C. G. Hempel, Aspects of Scientific Explanation and Other Essays in
the Philosophy of Science. New York: Free Press, 1965.

[18] C. Hitchcock and J. Woodward, “Explanatory generalizations, part II:
Plumbing explanatory depth,” Nous, vol. 37, no. 2, 2003.

A Path to an Ontology of Organizations
Emanuele Bottazzi? Roberta Ferrario?

Abstract—This paper presents a preliminary proposal of an ontology
of organizations based onDOLCE (Descriptive Ontology for Linguistic and
Cognitive Engineering). An ontological analysis of organizations is the
first, fundamental and ineliminable pillar on which to build a precise and
rigourous enterprise modelling. An ontological analysis makes explicit the
social structure that underlies every organizational settings. In particular,
the paper tries to explain what are organizations, roles and norms, how
they are interrelated, what it means for a norm to be valid in an organiza-
tion and what it means for an agent to be affiliated to an organization.

I. I NTRODUCTION

THE aim of this paper is to lay down the bases for an onto-
logical analysis of organizations.

Obviously, there are many possible ontologies of organiza-
tions, based on different theories of organizations; therefore, our
analysis is biased in two senses: it is influenced by the philo-
sophical assumptions we take (relying on the literature and on
our personal intuitions) and by the formal framework we used,
which is itself based on other more general assumptions. Nev-
ertheless, this should not be regarded as a drawback of the pro-
posal, but rather as an ineliminable feature of all proposals of
this kind.

Many kinds of analysis can be and have been conducted on
organizations, so it is important to understand what an ontolog-
ical analysis is and how it can be distinguished from other kinds
of analysis.

A first distinction that can be traced is relative to the focus of
the analysis that can be either on dynamic or on static aspects
of organizations. Among analyses of the dynamics of organi-
zations we can further distinguish what can be called “genetic
analyses” from “analyses of the actions”.

Generally speaking, genetic analyses have the purpose of an-
swering to questions like: How are organizations born? What
happens when an organization is born? What is necessary in or-
der for an organization to be born? What kind of relation does
it entartain with its founders? These questions, although very
important, are not adressed by the ontological analysis we want
to pursue in the paper.

On the other hand, important questions for an analysis of ac-
tions are: How are collective actions performed? Which rela-
tions do they entertain with actions of the individuals who par-
ticipate to the collective one? Can organizations be considered
agents of some kind? and, if this is the case, How can they
act in the world? Are they responsible for their actions? What
can or cannot they do? All these questions are in a way pe-
ripheral to the ontological analysis, but some of the answers can
be indirectly inferred by the answers to the central ontological
questions.

? Laboratory for Applied Ontology
Institute for Cognitive Sciences and Technologies
National Research Council
via Solteri 38
I-38100 Trento
Phone: +39 0461 436639, e-mail:{bottazzi,ferrario}@loa-cnr.it

These central questions mainly concern the so called static
aspects of organizations. Such questions are: Which kind of
relation does it hold between an organization and its members?
What is necessary for a certain agent in order for him/her to
be a member of an organization? Which is the relation holding
between the roles in an organization and its normative layer? In
other words, what is important for this analysis is to isolate the
fundamental entities of the social/organizational domain and to
characterize the relations holding among them, taking them – in
some sense – for given, thus without considering their origin.1

Along these lines, in this paper we will especially underline the
importance of norms in determining the nature of social entities
and relations in the internal dimension (among members inside
the organization and between organizations and their members)
rather than in the external one (among different organizations).

An ontological analysis of organizations is the first, funda-
mental and ineliminable pillar on which to build a precise and
rigourous enterprise modelling. An ontological analysis makes
explicit the social structure that underlies every organizational
settings.

The study carried out in this paper will rely onDOLCE (De-
scriptive Ontology for Linguistic and Cognitive Engineering)
[1], an already existing foundational ontology that has been de-
veloped at the Laboratory for Applied Ontology (LOA) of the
Institute for Cognitive Sciences and Technology of the Italian
Research National Council.

DOLCE has proven very useful in adressing various problems
and the paper is part of a collection of works aimed at extending
DOLCE as to make it suitable for many distinct specific domains.

II. BACKGROUND CONCEPTS

As already mentioned in the introduction, this work is part
of a larger project aimed at extending theDOLCE ontology as
to comprise also the social dimension. This effort has already
been started with the papers [2] and [3] and we will try to reuse
and integrate them in the present paper.

The notions ofDOLCE we will use in the paper are those of
endurant, perdurant, time location, agentive social object and
non agentive social object. Endurants and perdurants are two of
the most basic categories ofDOLCE; endurantsare entities that
are in time, like me, my cat, an umbrella, a flower (so, roughly
speaking, they correspond to the commonsensical notion of ob-
ject), whileperdurantshappen in time (they can be assimilated
to the commonsensical events) and examples of them are con-
ferences, tennis matches, my sister’s wedding etc.

With respect tosocial objects(both agentiveandnon agen-
tive), we can intuitively say that they are objects (endurants)
produced by communities, in the sense that they depend, for

1 A further possible kind of analysis is the teleological one, namely the study
of the relations that organizations have with their goals; this aspect is certainly
relevant from an ontological standpoint, but it will not be adressed in the present
work, due to the fact that it deserves a long and detailed inquiry, not possible in
the limited lenght of a paper.

10 A Path to an Ontology of Organizations

their existence, on intentional agents that conventionally create
them and accept them. They can be divided in agentive or non
agentive on the basis of their possession of intentionality. Ex-
amples of agentive social objects are legal person and customer,
while examples of non agentive social objects are a law or a
currency.

Starting from the notion of non agentive social object, [2] has
given the definition of some more specific notions, like that of
social concept, of description2 and of social role.

Social conceptanddescriptionare two disjoint subcategories
of the category “non agentive social object” and they are con-
nected by adefinition relation. This should give the intuition
that social concepts are contextual in nature and descriptions
are the context in which they are defined. In addition to what
already stated about non agentive social objects, we can say that
descriptions are always encoded in at least one physical support;
they begin to exist when they are firstly encoded and continue to
exist until the last physical support in which they are encoded
is destroyed and, finally, one and the same description can be
expressed in many different ways and languages without losing
its identity (provided its semantic content doesn’t change).

Another relevant feature characterizing social concepts is the
relation (called in [2]classification) that these entertain with
categories of the so called “ground ontology”, namely cate-
gories that are taken to be not contextual (in other words, not
social). As an example, take the concept “crown of the king of
Spain”; in this very moment there’s probably a piece of precious
metal that is classified by this concept, but this relation is given
by the fact that there’s a description (the one of the kingdom of
Spain) defining the concept of “crown of the king of Spain”. We
can notice that this concept doesn’t necessarily classify always
the same object, in fact probably 200 years ago another piece of
metal, possibly made up of a different precious metal, was clas-
sified by the very same concept. Moreover, it is possible that in
a certain moment a concept ceases to classify at all, for exam-
ple if Spain becomes a Republic, or like at the present moment
the “crown of the (actual) king of Italy”, which doesn’t classify
anything.

In some sense, apparently the objects of the ground ontology
– that we pretend to be acontextual – and the social objects –
whose contextual nature is explicitly taken into consideration –
belong to two different and heterogeneous domains but, in line
with [2], both for technical reasons3 and for pragmatic reasons4,
we put ground objects, social individuals and social concepts as
well at the same ontological level. So, intuitively, we can say
that social concepts are like properties, and thus treated as first
class citizens in our ontological framework.

Social rolesare instead a subclass of social concepts, with
two additional features, that in [2] have been calledanti-rigidity
andfoundation. Anti-rigidity expresses the fact that roles have
dynamic properties and it establishes that “for any time an entity
is classified under it [a concept], there exists a time at which
the entity is present butnot classified under the concept” [2].

2 A detailed axiomatization of descriptions is given in [4] and [5].
3 Once we give a formal account, this allows us to express both social con-

cepts and ground objects in first order language (see [2]).
4 People often put both these classes of objects in the same domain of dis-

course when engaged in a conversation.

Foundation, on the other hand, is the property that shows the
relational nature of roles; in fact, it states that “A conceptx
is founded if its definition involves (at least) another concept
y (definitional dependence) such that for each entity classified
by x, there is an entity classified byy which is external to it
(generic existential dependence on external properties)” [2].

Other two notions we want to use as backbones for our pro-
posal have been presented in [3], where a very rich axiomatiza-
tion that we will not present here is given; these are the notions
of collectives and collections.

Very generally, we can say thatcollectivesare collections of
intentional agents.Collections, on their turn, are social objects
that generically depend on their members (in the sense that they
depend on all of them, but not specifically on anyone of them),
but depend specifically on the roles played by their members
(or, better, on the concepts that classify their members). This
means that they also indirectly depend on descriptions.

In [3] many different kinds of collectives have been charac-
terized, based on degrees of agreement, devisal, transparency,
control and structure, but for the present purposes we can con-
sider an undifferentiated notion of collective, which is exem-
plified equally well by a group of people running all together
toward a shelter during a sudden tempest, by a group of fans
performing the “ola” at the stadium, and by the employees of
an enterprise.

All these notions are embedded in rich axiomatizations and
presented in detail in [1], [2] and [3] and for them we refer to
those papers. In the current analysis we are just interested in
using them as bases upon which to build a preliminary founda-
tional analysis of the main entities and relations of an ontology
of organizations.

III. O UR BUILDING BLOCKS

So far we have presented those notions that have already been
dealt with in papers written by people of our laboratory (LOA).
In the following we’ll try to single out which are the main en-
tities of an ontology of organizations, which are the connec-
tions between these entities and the others previously presented,
which are the peculiar properties they acquire for the fact of be-
ing embedded in an organizational setting and the relations they
entertain with each other.

The entities that populate the organizational settings are: or-
ganizations themselves, the agents who are member of the or-
ganization and who can act in it and sometimes for it, the roles
that these agents play, other “organizational concepts”, namely
concepts that are expressly created for being used inside the or-
ganizational setting and, finally, norms and descriptions; they
can define and constitute organizations themselves, they can de-
fine the concepts used inside organizations and can regulate the
behavior of agents and organizations.

For what concerns agents, a couple of works ([6] and [3])
have been dedicated to the analysis of their features based on
their mental attitudes, plans and goals, but these are just prelim-
inary inquiries and they can be ignored for the sake of simplicity
in this work, since at this stage we are only interested in the ca-
pability they have of acting on behalf of organizations, in virtue
of some roles they play inside those organizations.

Emanuele Bottazzi and Roberta Ferrario 11

Something that is for sure of extreme interest for an ontolog-
ical account of organizations is a study of the notion of collec-
tive intentionality and collective attitude in general: are these
the product or the sum of the individual attitudes of the agents
composing the collective, or are these some kind of primitive
notions, that are not directly a consequence of these individual
attitudes?

A last thing that is important to notice and that holds for all
these categories is that organizations, social roles and concepts
and norms are all social objects and, hence, non physical enti-
ties. There have been many debates around the physical char-
acter of social objects and the literature presents a lot of con-
troversial issues (see [7], [8] and [9]), but a couple of examples
can illustrate why we decided to take the non physical stance.

First of all, if a person is judged guilty of a serious crime,
(s)he can be arrested and imprisoned; conversely, it is not pos-
sible to put to jail a company, like FIAT. For roles the language
is less clear, in the sense that at a first glance it seems possi-
ble to arrest the President of FIAT, but in this case the police is
not really arresting the President, rather the person that in that
specific moment is playing the role of President.

Maybe a more evident example is that of hitting: while it is
possible to hit a person, a building or a book, it sounds rather
odd to say that I’ve taken a stick and I have furiously hit an
organization, a role, a concept or a rule.

.1 Organizations

Organizations are obviously the main subject of our analysis.
At least if we use the term with its classical meaning, they are
complex social entities that are created and sustained by human
agents5. A bit more specifically, an organization is a complex
entity linked to a group of people that are thus able to consti-
tute and regulate complex activities that otherwise could not be
accomplished by non coordinated individuals.

With respect to the ontological nature of organizations, we
can say that the literature has developed mainly around three
fundamental questions:
• Are organizations social groups or different kinds of enti-

ties?
• Are organizations agents? If this is the case, which kind of

agents are they?
• Do they keep their identity through time and changes?

How?
With respect to the first question, in general in literature or-

ganizations are considered as distinct from social groups, based
on the fact that normally social groups are thought of as sets of
people connected by some kind of tie and conscious of this tie.
On the other hand, at least intuitively, the word “organization”
recalls some organized structures where knowledge is heteroge-
neously distributed, so that some members can be unaware of
the tie that links them to people they can even ignore the exis-
tence of [10].

As for the second question, this constitutes the main subject
of the literature on organizations in legal and moral philosophy,
where it raises fundamental issues as personhood and responsi-
bility of organizations. There’s a fairly wide agreement on the

5 Nowadays many researches in the Artificial Intelligence domain are focused
on the creation of “artificial agents’ societies”.

fact that organizations have a personality and identity of their
own and thus they are agentive entities ([11], [12]), but they
act in a very peculiar way, namely through the actions of some
agents who, in virtue of the roles they play, are delegated to act
on their behalf6. Not only this: their actions (the actions these
agents perform on their behalf) are of a particular form, that
we can call “institutional”. The President doesn’t hit a piece of
wood with a stick on behalf of the organization he’s president of
(unless this is a symbolic gesture with some further meaning),
but he can very easily sign a contract on behalf of it. In other
terms, every act which is indirectly performed by an organiza-
tion must be institutional.

The third question has instead been answered by claiming
a sort of “immortality” of organizations with respect to their
members, in the sense that they preserve their identities through
the turnover of people occupying roles ([8], [13]) and positions
in it and they can even survive to the elimination of some of
their constituent roles.

Our hypothesis is that organizations are social individuals;
differently from social concepts and roles, they don’t classify
particulars (like agents or physical objects). They are agents, so
they can create new norms, can play roles and can act by means
of some member agents who play particular roles inside it.

Differently said, using [3]’s terminology, they depute their
actions to some roles, which in turn classify individual agents,
who are the ones that ultimately act.

.2 Roles and Concepts

Social roles and social concepts have already been described
and analyzed at length in [3] and especially in [2], but here
we’ll mainly concentrate on those roles that classify intentional
agents and social concepts that classify non agentive physical
objects (like inanimate things).

Starting from roles, we can sum up their main features in the
following way. First of all, a role can be played by different
entities, at different times or even simultaneously; conversely,
the same entity can play different roles, even simultaneously, so
there’s no necessary relation between a role and its player(s), so
an entity can change role and also play the same role more than
once. Roles are intrinsically relational, in the sense that, at a
definitional level, they depend on the definition of other roles;
a definition of a role cannot be given “in isolation” (let’s think
about the roles employer/employee, buyer/seller. . .). Finally,
they are linked to some specific kinds of entities that provide
explicit definitions for them; in the case of organizations, we
can think about these entities as norms and descriptions.

Roles are also attached to an unusual notion of agentivity:
they cannot act themselves, but they classify entities (like inten-
tional agents) who can act7.

In [2] some relations between roles are also analyzed. For
instance, a role can specialize another role, as in the case of

6 We refer to the section on Agentive Figures of [3] for a deeper explanation
of the relations ofdeputingandacting for holding between organizations and
roles and organizations and agents playing those roles respectively.

7 Sometimes it is common to say that someone acted in a certain way because
(s)he was acting as the President of a certain organization. A possible way
to deal with such kinds of expressions is to introduce a new kind of entity in
the ontology that we could callqua-entity. Some discussions on this issue are
presented in [2] and, more extensively, in [14].

12 A Path to an Ontology of Organizations

“Italian Prime Minister”, which is a specialization of the role
“Prime Minister”: some agent is Prime Minister because in par-
ticular (s)he is Italian Prime Minister. More interesting for our
purposes is the relation that has been calledrequirement: it can
be required that an agent, in order to assume a role, must have
previously assumed another role. Again with Italian Prime Min-
ister: in order to play the role of Italian Prime Minister, an agent
needs to have previously played (and in this case (s)he must also
still play) the role of Italian citizen.

This relation is very interesting because often in organiza-
tions there is a precise hierarchy of roles and there is a kind of
“forced path” to follow in order to reach a certain position and
play a determinate role.

Finally, the importance of the notion of social role or, more
generally, of social concept in organizations is not only relevant
for the case of agents, but also for non agentive objects. As a
matter of fact, organizations have the capability of ascribing a
certainstatusto certain objects: for instance, a piece of paper
can acquire the status of bill or receipt because there’s an organi-
zation whose members, if some norms are respected, recognize
it as such.

Here we come to the third important building block for an
ontology of organizations: descriptions and norms.

.3 Descriptions and Norms

In our account, all norms are descriptions. So, in a sense,
they constitute the context inside of which both organizations
and their members are defined.

This is in our opinion a very important part of the ontology
of organizations that has not yet been addressed satisfactorily.
So, we start here an informal analysis with the aim of giving a
conceptual clarification of the issue as a starting point for a later
formal analysis.

Following the literature (taking inspiration mainly from [15],
[16] and [17]), we have singled out three different kinds of
norms; the distinction is based on the different functions they
have.

1. Constitutive Norms: they have a defining function: they
create new concepts, roles, social individuals; they can also
establish which are the requirements that an entity should
meet in order to be classified under a certain role or con-
cept.

2. Deontic Norms: they regulate the behavior of social enti-
ties: what they are allowed to do (directly or indirectly),
what they are obliged to do etc. They create constraints
on these behaviors inside organizations. In particular, they
regulate the behavior that agents must observe when they
play determinate roles. There are also deontic aspects con-
nected with non agentive social concepts: for instance, the
possession of a certain object that has acquired a social sta-
tus can testify the fact that the owner of that object has the
permission or the prohibition to do something (think about
legal documents).

3. Technical Norms: they describe the correct procedure to
do something [18]. Their social status comes from the fact
that they are also created and accepted by communities of
agents and, similarly as deontic norms, they also have the
purpose of constraining the behavior of certain members of

the organization, but they are distinguished by the fact that
they are not “assertory” (you must do this and that), but are
like suggestions. They are often used in organizations and
they are very useful8.

IV. BASIC RELATIONS

After having presented the building blocks of our framework,
we start analyzing the relations that bind together these blocks.
In this section we consider two basic relations for organizations,
the validity relation and the representation relation. Before pro-
viding some intuitions about them, we must say that both re-
lations need to be specifically considered in the institutional
framework we are working on, and not in a wider sense. There-
fore, the validity relation has to be seen as an institutional re-
lation that holds between norms and organizations and not as a
logical notion. The same is true for the representation relation,
a relation holding among agents, that has nothing to do with
the notion of representation dealt with in philosophy of mind.
Another remark is important: as we shall see, the validity re-
lation and the representation relation are respectively linked to
the commitment and the delegation relations. In a sense, we can
say that these latter notions are “more fundamental” than the
former. They are not specific relations concerning only organi-
zational settings, but rather very basic relations that characterize
the whole social environment and are not limited to institutional
aspects; surely they deserve a deeper and separate analysis.

A. Validity

What does it mean for a norm to be valid? There are well
known problems related to the notion of validity in the literature
of the modern theory of law, and many different answers have
been given to them at least by [19], [20] and [18]. We do not
enter in these details here, following our goal to give a general
framework for organizations, but some intuitions on this basic
notions are needed.

As we stated before, a (complex) description defines an orga-
nization. In this description there is all that is required to spec-
ify what the organization is, from its general purposes (making
money or the revolution, for instance) to its concepts and roles
(president, CEO, comrade etc.), and to the deontic and technical
norms that the players of some role defined in it must follow.

We believe that this is not enough. We need something more
than an abstract specification of what this social object (organi-
zation) is: we need another relation between the description and
the organization. We will call this validity relation. We believe
that this notion of validity is linked with the dimension of so-
cial commitment, i.e. it is something that turns the description
into a prescription for agents. When we consider the descrip-
tion that defines the concepttriangle, we are in no way “legally
forced” by this description, and in the same way a theory that
simply defines an organization has no legal power for the agents
related to it. Therefore, a description is valid when a particular

8 A last distinction that could be made about norms is based on their origin.
Either norms are institutionally created by an authority and thus explicitly en-
coded on some physical support, or they can emerge from social practices. In
this latter case they can be respected and still remain implicit, or they can later
evolve in institutional, when their usefulness is recognized and someone in the
organization decides to encode them.

Emanuele Bottazzi and Roberta Ferrario 13

social event occurs. This social event (take for instance a poll,
some official publication, a promise and so on) creates a social
commitment among the agents related to the organization. This
relation is exactly what makes the difference between simple
descriptions and (systems of) norms: norms are those descrip-
tions that are valid within and for an organization.

With this relation of validity we can define also the relations
of institutionalization and affiliation. Intuitively, “being institu-
tionalized”, for a role or, more generally, for a concept means
to be embedded in the structure of the organization. Like the
validity relation for norms, it is used to give a “legal status”
to concepts and roles that are used and structured in the orga-
nization. On the other hand, the relation of affiliation indicates
the conditions under which agents are member of organizations.
For instance, an individual that plays the role of researcher is af-
filiated to a University and his/her role is institutionalized in the
University.

B. Representation

Another important relation that we take into account is the
representation relation. This relation holds between agents. As
we stated before, this relation is linked to the delegation relation.
In Castelfranchi’s view [21]:

[..] in delegation an agent A needs or likes an ac-
tion of another agent B and includes it in its own plan.
In other words, A is trying to achieve some of its goals
through B’s behaviours or actions; thus A has the goal
that B performs a given action/behaviour.

This important relation holds in many different social contexts
and, among these, also in the institutional one, but it is not spe-
cific of it. The relation that characterizes the institutional and
organizational contexts and is peculiar of them is the relation of
representation.

In our remarks on the nature of organizations we pointed out
their immateriality and their agentivity as fundamental proper-
ties, but then a problem arises: how can a non physical object
act? Partially following [22] and [11] we suppose that there is
one (or some) relevant agent(s) of the organization (for exam-
ple the founder) that gives the authority to one (or some) other
agent(s) to act on behalf of the organization. In this way any ac-
tion that has an ‘institutional meaning’ and is performed by the
“delegate” agent could be seen as performed by the organiza-
tion itself. Therefore, in our view, the relevant agent(s) (i.e. the
founder of the organization) must have established in the nor-
mative system of the organization this capability of the agents
of acting on behalf of it.

This could be done, in our framework, by means of the rep-
resentation relation. Generally speaking, the representation re-
lation is a delegation relation that holds between agents that are
classified by two roles: therepresentativeand therepresented
role. Differently from the delegation relation, if the representa-
tion relation holds, the delegant cannot perform him/herself the
action that (s)he wants or needs the delegate to do. The case of
organizations is clearly one of these. Organizations, as imma-
terial entities, cannot act without a physical agent who acts for
them.

Therefore, any organization has at least a representative role
and a represented role defined in its normative system. The rep-

resented role must classify the organization itself and the rep-
resentative role must classify at least another role defined by
the normative system of the organization, for example the role
“President”. The representative role must, for the aforemen-
tioned reasons, classify a role, like “President”, that, in turn,
classifies only agentive physical objects. These can be seen as
necessary conditions in order for the rappresentation relation to
hold.

V. FORMAL CHARACTERIZATION

In this section we will provide a first draft of a formal char-
acterization in first order logic of the main notions and relations
presented in the paper. In order to do that, we need to infor-
mally introduce some predicates ofDOLCE and to use some of
the axioms and formulas previously presented in [2]9.

The predicates ofDOLCE we will refer to are:
• ED(x) standing for “x is an endurant”, i.e., an entity

that iswholly present at any time it is present, e.g., a car,
Berlusconi, K2, a law, some gold. . . ;

• PD(x) standing for “x is a perdurant”, i.e., an entity that is
only partially present, in the sense that some of its temporal
parts may be not present, e.g., reaching the summit of K2,
a conference, eating, being open. . . ;

• SOB(x) standing for “x is a social object”, i.e., an en-
durant that: (i) is not directly located in space and, in
general, has no direct spatial qualities;(ii) depends on a
community of intentional agents, e.g., a law, an economic
system. . . ;

• ASO(x) standing for “x is an agentive social object”, i.e.,
a social object that has, in some sense, intentionality, e.g.,
the Italian Republic. . . ;

• NASO(x) standing for “x is a non-agentive social ob-
ject”, i.e., a social object that has no intentionality, e.g.,
a currency. . . ;

• TL(x) standing for “x is a temporal location”, i.e., a tem-
poral interval or instant;

• PC(x,y, t) standing for “the endurantx participates in the
perduranty at timet”, i.e., a person who participates in a
discussion.

The next step is that of taking the notions of concept (CN)
and description (DS) together with some of the relations hold-
ing among them from [2].

First we introduce restrictions on arguments for concepts and
descriptions:

(KA1) DS(x)→NASO(x)
(KA2) CN(x)→NASO(x)
(KA3) DS(x)→¬CN(x)

Then, we reuse some of the main axioms, modified as for
including in the formalization the notion of social individual
(SI) that in [2] was only informally introduced:

(A1) SI(x)→ASO(x)

A social individual is an agentive social object; examples of
social individuals are the MILAN football club and the Italian

9 From a notational standpoint, axioms, definitions and theorems imported
from [2] can be distinguished from the ones that are originally introduced in the
paper by the fact that they are preceded by aK letter.

14 A Path to an Ontology of Organizations

Presidency.

(KA4) US(x,y)→ (CN(x)∧DS(y))

This axiom is an argument restriction on theUS relation,
which can range only over concepts and descriptions. The intu-
itive meaning of the axiom is that a concept is used in a descrip-
tion. We want to apply this axiom also to social individuals,
thus we modify it in this way:

(A2) US(x,y)→ ((CN(x)∨SI(x))∧DS(y))

So, theUS relation holds also between social individuals and
descriptions.

(KA5) DF(x,y)→ US(x,y)

This states that the definition (DF) relation is a specialization
of the use (US) relation and that concepts and social individuals
are defined by descriptions.

(KA6) CN(x)→∃y(DF(x,y))

This axiom states that every concepts must be defined by at
least a description. Even in this case, we want to apply the
axiom also to social individuals:

(A3) (CN(x)∨SI(x))→∃y(DF(x,y))

(KT1) DF(x,y)→ (CN(x)∧DS(y))

Thus, the theorem above is no more valid and the theorem
below follows from (A2) and (KA5):

(T1) DF(x,y)→ ((CN(x)∨SI(x))∧DS(y))

Finally, in the following we will use the notion of classifica-
tion (CF), that we will also import.

(KA11) CF(x,y, t)→ (ED(x)∧CN(y)∧TL(t))

Now, some new notions are introduced. First of all, for the
sake of simplicity, we introduce the predicate Agent (AG), that
is the union of the categories ofAPO andASO:

(A4) AG(x)→ (APO(x)∨ASO(x))

We introduce the notion of social event (SEV), which is a
particular kind of perdurant:

(A5) SEV (x)→ PD(x)

A further characterization of social event is the following:

(A6) SEV (x) → ∃y, z(AG(y) ∧ SOB(z) ∧ PC(y, x, t) ∧
PC(z,x, t))

(A6) tries to capture the intuition that a social event is an
event in which participate both (at least) an agent and a social
object. For instance, a social event, like a poll, involves agents
and social objects like parties and ballots. We have decided to
use a single variable for time for simplicity, thus assuming that
agents and social objects participate both for the whole duration
of the event10.

10 We are aware of the fact that this is not obvious, but it shouldn’t be too
difficult to distinguish the time of participation of the agent and the time of par-
ticipation of the social object and to characterize the relations holding between
these two time periods.

(A7) VAL(x, y) → SI(y) ∧ DF(y, x) ∧ ∃z(SEV (z) ∧
PC(x,z, t)∧PC(y,z, t))

Here we introduce a new primitive, validity (VAL) and (A7)
explains that, in order for a description to be valid for a social
individual, a necessary condition is the occurrence of a social
event in which both the social individual and the description
participate11.

(D1) INST(x,y) , CN(x)∧∃z(VAL(z,y)∧US(x,z))

(D1) defines the relation, called institutionalization (INST),
between a concept and a social individual when such a concept
is used by a description that is valid for the social individual.

(A8) RL(x)→ CN(x)

In [2] a precise definition of roles (RL) is given, to which we
refer. Here it is sufficient to point that roles are concepts.

(D2) AFF(x, y, t) , AG(x) ∧ ∃z(RL(z) ∧ CF(x, z, t) ∧
INST(z,y))

(D2) defines the relation, called affiliation (AFF), between an
agent and a social individual in a certain time interval. An agent
is affiliated to a social individual iff (s)he plays a role that is
institutionalized for the social individual.

(A9) ORG(x)→∃yAFF(y,x,t)

With this machinery we can say that a necessary condition for
a social individual to be an organization (ORG) is the existence
of at least one agent who is affiliated to it.

From (A9), (D1) and (A7), it follows:

(A10) ORG(x)→ SI(x)

all organizations are social individuals.
This is only a preliminary characterization, in order to have a

formal definition of organizations as described above, we need
to characterize the representation (REP) relation just described.
Thanks to theREP relation, (A10) and (A9) could be replaced
by the following definition:

ORG(x) , ∃y,z(AFF(y,x, t)∧REP(z,x))

In order to illustrate our main entities and relations, let us
consider an example (illustrated in figure 1) in the context of
our formal framework. The individual Carlo Azeglio Ciampi is
classified by the role President of Italy. This role and the orga-
nization Italian State are defined by the Italian Constitution, that
is a description. Moreover, the role President of Italy is institu-
tionalized by the Italian state and, because of this, Ciampi (as
individual) is affiliated to the Italian State. Finally, the Italian
Constitution itself is valid for the Italian State.

In figure 1, as in [2], the following conventions are assumed:

• universals (predicates) are represented in italics, with first
capital letter;

• individuals (instances) are represented in type with small
letters;

11 The intuition underlying this definition of validity is that during a social
event, a link is established between an institution and the description and norms
that define it, thus all these elements must participate to the social event.

Emanuele Bottazzi and Roberta Ferrario 15

APO RL DS ORG

ciampi

i−of

OO�
�
�

CFt //____

AFF

>>B
D

F
H

J L
P

S W [_ c g k
n

r t
v

x
z

|
president

i−of

OO�
�
�

DF //____

INST

<<G
J

N
Q U X \ _ b f i m p

t
w

it.const.

i−of

OO�
�
�

V AL

55V Z _ d h
it.state

i−of

OO�
�
�

DFoo_ _ _ _

Fig. 1. Main relations and entities illustrated by the Ciampi example.

• relations between individuals are represented by dashed la-
beled arrows:
a R //___ b stands for:R(a,b);

• the “instance-of” relation between a particular and a uni-
versal is labelled byi− of .

VI. RELATED WORKS

As far as we know, there are not so many works on the ontol-
ogy of organizations. Those available can be divided according
to the different perspective they take.

Most of the philosophical studies on organizations concen-
trate on ethical issues, like moral personhood and responsibility
([23]) and very few of them have a formal flavor. An important
exception is the account given by Raimo Tuomela. His analysis
of organizations in [17] is part of a wider project about insti-
tutional reality, strongly based on the analysis of the notion of
collective intentionality, joint actions and social practices.

The notion of normative system is also analyzed but, differ-
ently from our paper, this is done by looking at the dynam-
ics, trying to understand – for instance – which actions are the
agents in the organization allowed or not allowed to do.

On the other hand, in computer science some works on the
ontology of organizations can be found, like [24], [25], [26],
[27], [28], even though most of them are really works of enter-
prise modeling. If we consider enterprises as a special kind of
organizations, these works can be seen as more specifically ori-
ented than ours, which is instead more “top-level”. As a conse-
quence of this specificity, they mainly focus on workflow, activ-
ities, time-constrained processes and all those elements relative
to the dynamics of organizations, thus resulting in ontologies of
action.

Another relevant difference of all these approaches with re-
spect to ours is that their scope is much wider, in the sense
that they try to be global in considering not only structural
aspects, but also teleological aspects, interaction patterns, and
many more primitive entities. On the other hand, even if most
of them represent in their frameworks some of the relations that
we have concentrated on in the paper (like institutionalization,
affiliation etc.), they treat them as “black boxes”, while we try
to “look inside the boxes”. In our opinion this is something that
has to be done in order to better understand what these basic
relations are and to be able to build upon them.

Probably the main reason of these differences is to be im-
puted to the fact that often these works move from the needs

that emerge in applications and try to give a theory that deals
satisfactorily with these problems, while we try to reach first a
“clean” theoretical account and then we try to apply it to con-
crete scenarios.

VII. F UTURE WORK

This paper is meant to be a prosecution of some previous
works on the social dimension of the ontologyDOLCE and is
mainly an attempt to present the basic entities and relations of
the domain of organizations, which is included in the social
realm. As a further step, we want to improve this preliminary
work in four directions, starting from the two just sketched re-
lations.

1. As a first move, we’ll try to clearly link the notion of rap-
resentation with the notion ofqua-individual. As shown in
[14], if a classification relation holds between a role and
an endurant, a third entity “arises”: a qua-individual. As
an example, take the situation in which Ciampi, an agen-
tive physical object, is the President of the Italian Repub-
lic, i.e. is classified by this role. For the whole time
span in which this relation holds an entity, a qua-individual
(namely, Ciampiqua-President-of-Italy), exists. In [14]
we hold that qua-individuals actually participate in events.
Following the example, the Italian constitution – i.e. the
normative system of the Italian State – states that “the pres-
ident may dissolve one or both chambers after having con-
sulted their speakers”. Therefore, when Ciampi dissolves
the chambersqua-President-of-Italy, it is natural to hold
that it is the qua-individual Ciampiqua-President-of-Italy
who performs the action. But the qua-individual performs
the action also as a rapresentative of the Italian State, so
there is a sense in which it is the Italian State that dissolves
the chambers. If so, how many individuals participate in
this action? Who is, ultimately, the agent which performs
the action? Which are the relations between these entities?
Representation and qua-individuals seem to be somehow
linked, so we have to inquire the nature of this link.

2. A second possible improvement is to link the affiliation
with the representation relation. In order to understand this
complex link, we need to make a comparison between the
acting for relation (between agents and organizations) and
themembershiprelation (between agents and collections)
developed in [3] with our affiliation and representation re-
lations. Moreover, we need to investigate if the elements
we have considered in the paper are enough in order to de-

16 A Path to an Ontology of Organizations

fine this relation.
3. Thirdly, organizations are composed by human agents, but

also by pluralities of non agentive entities. So, as men-
tioned in section II, the notions of collection and collective
are central.
In [3] collections are considered to be social objects that
(generically) depend on their members; consider, for in-
stance, a collection of books in a library, suppose the col-
lection of books of the Library of Congress, which remains
the same entity even if some books are lost and others ac-
quired over time. If we consider the Library of Congress
as an organization, we could call the collection of its books
as one of its “resources” (aside with others, like its furni-
ture, buildings and so on). We could also say that for a
collection, in order to be a resource for an organization, it
must have at least one role defined in the normative system
of the organization itself. Let’s then recall the main differ-
ence between collections and collectives: members of the
latter are agents. So, similarly, we could consider the staff
of the Library of Congress as a collection where the roles
that characterize it are defined in the normative system of
the Library.
The idea is that we can consider the notions of resources
and staff of an organization as a specialization of the no-
tions of collection and collective and thus try to reuse some
of the analyses already done for these two latter notions.

4. Finally, in this paper we have tried to investigate some
features of organizations by considering them in isolation.
This was done just for simplicity reasons and we are well
aware of the fact that a complete account would require
an analysis of multiple organizations interacting in a wider
environment. A special case would be that of organizations
that are embedded in other, bigger, organizations. As an
example, consider the relation between a University, sup-
pose the University of Trento and one of its Departments,
for instance the Philosophy Department. We could say that
the latter is “contained” in the former, but what does it
mean? What is required for this relation to hold? What
happens to the normative systems of both these social in-
dividuals? Must there be some special roles defined into
their normative systems?

These are some of the questions that are left unanswered in
this paper, but that can help to enhance the understanding of
what is the ontological nature of organizations.

ACKNOWLEDGMENTS

We would like to thank Claudio Masolo and Robert Trypuz
for the fruitful feedbacks and discussions. We are also indebted
to Giancarlo Guizzardi for some improvements in the camera-
ready version.

REFERENCES

[1] Claudio Masolo, Stefano Borgo, Aldo Gangemi, Nicola Guarino, and
Alessandro Oltramari, “Wonderweb deliverable d18,” Tech. Rep., 2003.

[2] Claudio Masolo, Laure Vieu, Emanuele Bottazzi, Carola Catenacci,
Roberta Ferrario, Aldo Gangemi, and Nicola Guarino, “Social roles and
their descriptions,” inNinth International Conference on the Principles of
Knowledge Representation and Reasoning, Whistler Canada, 2004, Ac-
cepted.

[3] Emanuele Bottazzi, Carola Catenacci, Aldo Gangemi, and Jos Lehmann,
“From collective intentionality to intentional collectives: An ontological
perspective,”Cognitive Systems Research (submitted), 2006.

[4] Aldo Gangemi and Peter Mika, “Understanding the semantic web through
descriptions and situations,” inInternational Conference on Ontologies,
Databases and Applications of Semantics (ODBASE 2003), Robert et al.
Meersman, Ed. 2003, Springer Verlag.

[5] A. Gangemi, Carola Catenacci, J. Lehmann, and S. Borgo, “Task tax-
onomies for knowledge content,” Tech. Rep., EU 6FP METOKIS Project
D07, http://metokis.salzburgresearch.at, 2004.

[6] Roberta Ferrario and Alessandro Oltramari, “Towards a computational
ontology of mind,” inFormal Ontology in Information Systems, Proceed-
igs of the Intl. Conf. FOIS 2004, Achille C. Varzi and Laure Vieu, Eds.
2004, pp. 287–297, IOS Press.

[7] Adolf Reinach, “The apriori foundations of civil law,”Aletheia, vol. III,
pp. 1–142, 1988.

[8] Barry Smith, “Social objects,” http://ontology.buffalo.edu/socobj.htm,
2002.

[9] Giuseppe Lorini, Dimensioni giuridiche dell’istituzionale, Cedam,
Padova, 2000.

[10] Margaret Gilbert, Social Facts, Princeton University Press, Princeton,
New Jersey, 1992.

[11] Jean-Jacques Rousseau,The Social Contract, Oxford University Press,
Oxford, UK, 1997/1762.

[12] Maurice Hauriou, Teoria dell’istituzione e della fondazione, Giuffrè,
Milano, 1967.

[13] John Ladd, “Morality and the ideal of rationality in formal organizations,”
The Monist, vol. 54, no. 4, pp. 488–516, 1970.

[14] Emanuele Bottazzi, Roberta Ferrario, Giancarlo Guizzardi, Claudio Ma-
solo, and Laure Vieu, “Relational roles and qua-individuals,”paper ac-
cepted for the AAAI Fall Symposium on Roles, an interdisciplinary per-
spective, November 3-6, 2005, Hyatt Crystal City, Arlington, Virginia,
2005.

[15] John R. Searle,The Construction of Social Reality, The Free Press, New
York, 1995.

[16] Raimo Tuomela and Maj Bonnevier-Tuomela, “Norms ad agreement,”
European Journal of Law, Philosophy and Computer Science, vol. 5, pp.
41–46, 1995.

[17] Raimo Tuomela,The Philosophy of Social Practices, Cambridge Univer-
sity Press, Cambridge, UK, 2002.

[18] G. H. von Wright, Norm and action : a logical enquiry, International
library of philosophy and scientific method. Routledge and Kegan Paul,
London, 1963.

[19] H. L. A. Hart, The concept of law, Clarendon law series. Clarendon Press,
Oxford, 1961, by H.L.A. Hart. 23 cm.

[20] Hans Kelsen,Pure theory of law, California library reprint series. Univer-
sity of California Press, Berkeley, california library reprint series edition
edition, 1967, by Hans Kelsen ; translation from the second (revised and
enlarged) German edition by Max Knight. 24 cm.

[21] Cristiano Castelfranchi, “Grounding we-intention in individual social at-
titudes: On social commitment again,” inRealism in Action - Essays in
the Philosophy of Social Sciences, M. Sintonen and Kaarlo Miller, Eds.
Kluwer, Dordrecht, 2003.

[22] Thomas Hobbes,Leviathan, OUP, Oxford, 1996.
[23] Peter A. French, Collective and Corporate Responsibility, Columbia

University Press, 1984.
[24] Mark S. Fox, Mihai Barbuceanu, Michael Gruninger, and Jinxin Lin, “An

organisation ontology for enterprise modelling,” inSimulating Organiza-
tions: Computational Models of Institutions and Groups, K. Carley and
L. Gasser, Eds., pp. 131–152. AAAI/MIT Press, Menlo Park, CA, 1997.

[25] Michael Gruninger and Mark S. Fox, “The logic of enterprise modelling,”
in Modelling and Methodologies for Enterprise Integration, Bernus P. and
Nemes L., Eds. Chapman and Hall, 1996.

[26] Virginia Dignum, A Model for Organizational Interaction: based on
Agents, founded in Logic, Ph.D. thesis, Universiteit Utrecht, 2004.

[27] Jan Dietz, “The atoms, molecules and fibers of organizations,”Data and
Knowledge Engineering, vol. 47, pp. 301–325, 2003.

[28] Mike Uschold, Martin King, Stuart Moralee, and Yannis Zorgios, “The
enterprise ontology,”The Knowledge Engineering Review, vol. 13, no. 1,
pp. 31–89, 1998.

A Context-Based Enterprise Ontology

Mauri Leppänen
Department of Computer Science and Information Systems

P.O. Box 35 (Agora), FI-40014 University of Jyväskylä, Finland
mauri@cs.jyu.fi

Abstract

The main purpose of an enterprise ontology is to
promote the common understanding between people
across different enterprises. It serves also as a
communication medium between people and
applications, and between different applications. This
paper outlines a top-level ontology, called the context-
based enterprise ontology, which aims to promote the
understanding of the nature, purposes and meanings of
things in enterprises with providing basic concepts for
conceiving, structuring and representing things within
contexts and/or as contexts. The ontology is based on
the contextual approach according to which a context
involves seven domains: purpose, actor, action, object,
facility, location, and time. The concepts in the
ontology are defined in English and presented in meta
models in a UML-based ontology engineering
language.

1. Introduction

Numerous applications are run in enterprises to
provide information for, and to enable communication
between, various stakeholders, inside and outside the
organization. Currently, an increasingly large portion
of enterprise knowledge is hold, processed and
distributed by applications. Enterprise knowledge is
“local knowledge” by its nature, in that its meaning and
representation is agreed in relatively small, local
contexts. A prerequisite for the successful use of
applications is, however, that the common
understanding about that knowledge is reached and
maintained across the enterprise(s). Especially in
modern inter- and intra-organizational applications the
need to support the understanding of shared knowledge
is crucial [2]. This implies that besides technical
interoperability, the enterprises are facing with the
challenge of achieving semantic and pragmatic
interoperability among the applications.

For human beings to understand what individual
things in reality mean they need to know what purposes
the things are intended for, by whom, when, and where,
how they are related to other things and environment,
how they have been emerged, created, and/or evolved,
when and where, etc. Shortly, they need to know about
contexts where the things appear, have appeared,
and/or are to be appeared, and also about the things
related to them in those contexts. Considering this, it is
understandable that context plays an important role in
many disciplines, such as in formal logic, knowledge
representation and reasoning, machine learning,
pragmatics, computational linguistics, sociolinguistics,
organizational theory, sociology, and cognitive
psychology. In most of these fields, the notion is used,
in particular, to specify, interpret, and infer meanings
of things through the knowledge about the contexts
they appear.

In the recent years a number of enterprise and
business ontologies and frameworks (e.g. [8], [38],
[25], [9]) have been proposed. Some of them are
generic, whereas the others are aimed at specific
business fields (e.g. UNSPC, NAICS, and OntoWeb for
e-commerce). In addition, there are several enterprise
modeling languages (e.g. IEM, EEML,
GRAI/Actigrams). The main purpose of an enterprise
ontology is to promote the common understanding
between people across different enterprises. It serves
also as a communication medium between people and
applications, and between different applications.
Taking into account the significance that the sharing of
meanings has in communication within enterprises as
well as experiences got from the use of context in
capturing meanings in other disciplines, it is surprising
how ignored a contextual view is in current enterprise
ontologies. We propose that the semantic and
pragmatic interoperability of applications in enterprises
should be advanced by the more explicit use of context
and other contextual concepts in enterprise ontologies.

Our aim in this study is to present a context-based
enterprise ontology. It is a top-level ontology [11],
which provides a unified view of the enterprise as an

A Context-Based Enterprise Ontology 18

aggregate of contexts. This ontology can be specialized
into task ontologies or domain ontologies to meet
special needs of the enterprise, but still maintaining
connections of the specialized things to their contexts.
The concepts in the context-based enterprise ontology
are defined in English and presented in meta models in
a UML-based ontology representation language. The
UML language has been adopted as the basis because it
has a very large and rapidly expanding user
community, it is supported by widely adopted
engineering tools, and there are positive experiences
from the use of UML in presenting ontologies (e.g. [5],
[39]). We apply a subset of the concepts of the class
diagram.

The article is structured as follows. In Section 2 we
will define the notion of context and the contextual
approach, and describe the overall structure of the
context-based enterprise ontology. In Section 3 we will
define the contextual concepts of the ontology and
present them in meta models. We will end with the
summary and conclusions.

2. Context and Contextual Approach

Based on a large literature review about the notion
of context in several disciplines, we conclude that a
context is a whole, composed of things connected to
one another with contextual relationships. A thing gets
its meaning through the relationships it has with the
other things in that context.

To define a proper set of contextual concepts we
draw upon relevant theories about meanings. Based on
three topmost layers in the semiotic ladder [36], we
identify semantics (e.g. case grammar [7]), pragmatics
[22], and the activity theory [6], respectively, to be
such theories. In semantics, context appears as a
sentence context, in pragmatics as a conversation
context, and in the activity theory as an action context.

Anchored on this groundwork and some
“contextual” approaches (e.g. [35], [31], [27]), we
define seven domains, which serve concepts for
specifying and interpreting contextual phenomena.
These contextual domains are: purpose, actor, action,
object, facility, location, and time (Figure 1).
Structuring the concepts within and between these
domains is guided by the following scheme, called the
seven S’s scheme: For Some purpose, Somebody does
Something for Someone, with Some means, Sometimes
and Somewhere.

We define the contextual approach to be the
approach according to which individual things are seen
to play certain contextual roles in a context and/or to be
contexts themselves. Following this approach, we
define an enterprise to be an aggregate of contexts that
are composed of people, information and technologies,

Context

Purpose

Facility

Actor

Action

Object

Location

Time

Enterprise

Inter-context
relationship

Figure 1. An overall structure of the context-
based enterprise ontology

performing functions in a defined organizational
structure, for agreed purposes, and responding to
events, both internal and external, and needs of
stakeholders. The contexts can be decomposed into
more elementary contexts, and they are related to one
another with inter-context relationships.

An ontology is an explicit specification of a
conceptualization of some part of reality that is of
interest [10]. The context-based enterprise ontology is
an ontology which aims to promote the understanding
of the nature, purposes, and meanings of the things in
the enterprise with providing concepts and constructs
for conceiving, structuring, and representing things
within contexts, and/or as contexts. The ontology is
intended to assist the acquisition, representation, and
manipulation of enterprise knowledge via the provision
of a consistent core of basic concepts and constructs.

In the next section we will first define the contextual
domains and the most essential concepts within them.
Due to the limitation of space, the location and time
domains are excluded. In addition, we will shortly
present relationships between the domains.

3. Contextual Domains

3.1 Purpose Domain

The purpose domain embraces all those concepts
and constructs that refer to goals, motives, or intentions
of someone or something (Figure 2). The concepts are
also used to express reasons for which something exists
or is done, made, used, etc. We use purpose as the
general term in this domain.

Mauri Leppänen

19

A goal (of e.g. an actor or action) means a desired
state of affairs ([25], [19]). It can also be related to an
object, a facility, a location or a time (system), meaning
the purpose, which they are aimed at. A reason is a
basis or cause for some action, fact, event etc. [40]. It
can be a requirement, a problem, a strength/weakness,
or an opportunity/a threat. Between a goal and a reason
there is the dueTo relationship, meaning that a reason
gives an explanation, a justification or a basis for
setting a goal.

We can specialize the goals based on their lifespan.
Strategic goals are kinds of missions, answering
questions such as “What is the direction of an
enterprise in the future”. Their spans are generally 5 –
10 years. Tactic goals show how to attain strategic
goals. Operative goals are generally determined as
concrete requirements that are to be fulfilled by a
specified point of time. The goals can also be
categorized based on whether it is possible to define
clear-cut criteria for the assessment of the fulfillment of
goals. Hard goals have pre-specified criteria, and soft
goals have not [23].

Purpose

Requirement

Strategic

Tactic

OperationalSoft

Hard

ReasonGoal

Functional

Problem

Strength/Weakness

Opportunity/Threath

Non-functional

Structured

Unstructured

*

*

dueTo

influence

refinement

*

*

*

*

Semi-structured

*

influence

*

*
refinement

*

*

causalTo
*

Figure 2. Purpose domain

Requirements mean something that are necessary
and needed. They are statements about the future [28].
Actually, the goals and the requirements are two sides
of a coin: some of the stated requirements can be
accepted to be goals to which actors want to commit. A
functional requirement can be achieved by performing
a sequence of operations [20]. A non-functional
requirement is defined in terms of constraints, to
qualify the functional requirement related to it.

Instead of directly referring to a desirable state, a
purpose can also be expressed through an indirect
reference to problems that should be solved. A problem
is the distance or a mismatch between the prevailing
state and the state reflected by the goal [15]. To reach
the goal, the distance should be eliminated or at least
reduced. Associating the problems to the goals

expresses reasons, or rationale, for decisions or actions
towards the goals [30]. The problems are commonly
divided into structured, semi-structured and
unstructured problems [33]. Structured problems are
those that are routine, and can be solved using standard
solution techniques. Semi-structured and unstructured
problems do not usually fit a standard mold, and are
generally solved by examining different scenarios, and
asking “what if” type questions.

Other expressions for the reasons, of not so concrete
kind, are strengths, weaknesses, opportunities and
threats related to something for which goals are set (cf.
SWOT-analysis, e.g. [16]). Strength means something
in which one is good, something that is regarded as an
advantage and thus increasing the possibilities to gain
something better. Weakness means something in which
one is poor, something that could or should be
improved or avoided. Opportunity is a situation or
condition favorable for attainment of a goal [40].
Threat is a situation or condition that is a risk for
attainment of a goal.

A general goal is refined into more concrete ones.
The refinement relationship between the goals
establishes goal hierarchies, in which a goal can be
reached when the goals below it (so-called sub-goals)
in the hierarchy are fulfilled (cf. [18]). The influence
relationship indicates that the achievement of a goal
has some influence, positive or negative, on the
achievement of another goal (cf. [25], [18]).

As the goals and the requirements are two sides of a
coin, the relationships between the requirements are
similar to those between the goals. Consequently, a
requirement can influence on another requirement, and
a requirement can be a refinement of another
requirement. The relationships between the problems
manifest causality. The causalTo relationship between
two problems means that the appearance of one
problem is at least a partial reason for the occurrence of
the other problem.

3.2 Actor Domain

The actor domain consists of all those concepts and
constructs that refer to human and active parts in a
context (Figure 3). Actors perform, own, communicate,
borrow, send, receive etc. objects in the contexts. They
are responsible for and/or responsive to triggering and
causing changes in the states of objects in the same
context, or in other contexts. We consider it important,
from the philosophical viewpoint, to distinguish human
actors from non-human actors, which are here regarded
as tools (see Section 3.5).

An actor is a human actor or an administrative actor.
A human actor is an individual person or a group of
persons. A person is a human being, characterized by

A Context-Based Enterprise Ontology 20

Actor

Organizational roleGroupPerson

Organization

Organization unitPositionHuman actor

1..*

1..*

1..*

1

1..*

1

1..*

*

memberOf

* subordinate

1

supervisor

supervision
*

*

occupiedBy

1..* 1..*
plays

Figure 3. Actor domain

his/her desires, intentions, social relationships, and
behavior patterns conditioned by his/her culture (cf.
[3], [29]). A person may be a member of none or
several groups. An administrative actor is a position or
a set of positions. A position is a post of employment
occupied by zero or many human actors. For each
position, specific qualifications in terms of skills,
demands on education and experience, etc. are
specified.

An organizational role, shortly a role, is a collection
of responsibilities, stipulated in an operational or
structural manner. In the former case, a role is
composed of tasks that a human actor occupying the
position with that role has to perform. In the latter case,
a role is charged with responsibilities for some objects.
A role can be played by many persons, through or
without the position(s) they hold.

The supervision relationship involves two positions
in which one is a supervisor to another that is called a
subordinate. A supervisor position has responsibility
and authority to make decisions upon the positions
subordinate to it, and those occupying the subordinate
positions have responsibility for reporting on one’s
work and results to those occupying the supervisor
position.

An organization is an administrative arrangement or
structure established for some purposes, manifesting
the division of labor into actions and the coordination
of actions to accomplish the work. It can be permanent
and formal, established with immutable regulations,
procedures and rules. Or it may be temporally set up,
like a project organization, for specific and often short-
range purposes. An organizational unit is composed of
positions with the established supervision relationships.
An organization consists of organizational units.

3.3 Action Domain

The action domain comprises all those concepts and
constructs that refer to deeds or events in a context
(Figure 4). We use action as the generic concept to
refer to things belonging to the action domain. Actions

can be autonomous or cooperative. They can mean
highly abstract work like studies in mathematics, or at
the other extreme, physical execution of a step-by-step
procedure with detailed routines.

There are a large number of action structures, which
an action is a part of. We distinguish between the
decomposition structure, the control structure, the
temporal structure and the management – execution
(Mgmt-Exec) structure.

In the decomposition structure, actions are divided
into sub-actions, these further into sub-sub-actions, etc.
Sub-actions may be functions, activities, tasks,
operations, etc. Decomposition aims at reaching the
level of elementary actions, where it is not possible or
necessary to further decompose. The control structure
indicates the way in which the actions are logically
related to each other and the order in which they are to
be executed. The control structures are: sequence,
selection, and iteration. The sequence relationship
between two actions act1 and act2 means that after
selecting the action act1 the action act2 is next to be
selected. The selection relationship means that after
selecting the action act1 there is a set of alternative
actions act2,.., actn from which one action (or a certain
number of actions) is to be selected. The iteration
relationship means that after selecting the action act1
the same action is selected once more. The selection is
repeated until the stated conditions become true. The
temporal structure is like the control structure but with
temporal conditions and events.

ActionMgmt-Exec str

EventCondition

Control str

Action structure

Rule

1..* 1..*

*

governs

*

*

raisedBy

Temporal strDecomposition str

Overlapping strDisjoint strParallel strIteration strSelection strSequence str

Management

Controlling

Directing

Staffing

Organizing

Planning

Execution

1..*

1..*
*

*

* *
*

* *
**

Process
1..*

1

instanceOf

Work procedure
1..*

*

1..*

Figure 4. Action domain

The temporal structures are specified using temporal
constructs, such as during, starts, finishes, before,
overlaps, meets, and equal. Constructs are used to
specify relationships between starting and/or ending
events, or between durations of actions. With these

Mauri Leppänen

21

constructs, overlapping, parallel, disjoint (non-parallel)
and overlapping executions of actions can be
distinguished. Two actions are said to be overlapping if
the durations of their executions overlap. The actions
are (strictly) parallel if the durations are equal or the
duration of one action is included in the duration of the
other action. Two actions are said to be disjoint if their
durations do not overlap.

The management – execution structure is composed
of one or more management actions and those
execution actions that implement prescriptions
provided by the management actions (e.g. [26], [41],
[14]). Management actions mean the planning,
organizing, staffing, directing and controlling of
execution actions, in order to ensure the achievement of
goals and constraints (cf. [4], [34], [37]). The purpose
of execution actions is to implement the prescriptions
with the given resources.

The action structures are orthogonal to one another.
This makes it easy to specialize the defined structures,
and extend them with new ones, e.g. with the
dichotomy of material and social actions (cf. speech
acts [32]). The action structures are enforced by rules.
A rule is a principle or regulation governing a conduct,
action, procedure, arrangement, etc [40]. It is composed
of four parts [12], event, condition, thenAction, and
elseAction, structured in the ECAA structure. An event
is an instantaneous happening in the context, with no
duration. A condition is a prerequisite for triggering an
action. A thenAction is an action that is done when the
event occurs and if the condition is true. An elseAction
is an action that is done when the event occurs but the
condition is not true. An aggregate of related rules
constitutes a work procedure (cf. [14]), which
prescribes how the course of action should proceed.
Depending on the knowledge of, and a variety of,
actions, work procedures may be defined at different
levels of detail [13]. An instance of an action is a
process.

3.4 Object Domain

The object domain contains all those concepts and
constructs that refer to something, which an action is
directed to (Figure 5). It can be a message, a decision,
an argumentation, a list of problems, a program code, a
workstation, etc. In general, an object can be a
conception in a human mind, data represented in some
carrier, or physical material (cf. the semiotic realms).
We use object as the generic term to signify any
concept in the object domain.

Based on the nature of the objects we can
distinguish between material objects and informational
objects. Material objects do not carry or present any
information, whereas informational objects do. For us,

Object

Plan

PrescriptionDescription

Linguistic

Informational objectMaterial object

CommandRulePredictionAssertion

*

versionOf

0..1

*

copyOf
*supports

*

*

0..1

*

0..1

Formal

Semi-formal

Informal

predAbstract

Conceptual

*

1..*

signifies

UoD construct

1..*

1..*

Figure 5. Object domain

objects of special interest are in the form of data or
information. We call them linguistic objects and
conceptual objects, respectively. Linguistic objects can
be formal, semi-formal or informal.

Informational objects can be classified based on the
intentions by which they are provided and used (e.g.
[36], [32], [21]). Informational objects can be
descriptive or prescriptive. A descriptive object, called
a description, is a representation of information about a
slice of reality. An informational object can be
descriptive in various ways. An assertion is a
description, which asserts that a certain state has
existed or exists, or a certain event has occurred or
occurs. A prediction is a description of a future
possible world with the assertion that the course of
events in the actual world will eventually lead to this
state (cf. [21]). A prescriptive object, called a
prescription, is a representation of the established
practice or an authoritative regulation for action. It is
information that says what must or ought to be done. A
prescription with at least two parts ((E or C) and A) of
the ECAA structure is called a rule. A prescription with
neither an event part nor a condition part is called a
command. A plan is a description about what is
intended. It can also be regarded as a kind of
prediction, which is augmented with intentions of
action. It is assumed that the future possible world
described in the plan would not normally come out,
except for the intended actions (cf. [21]).

An object is often produced gradually through
several iterations. The versionOf relationship holds
between two objects obj1 and obj2, if properties of, and
experience from, the object obj1 have influenced the
creation of another object obj2 intended for the same
purposes (cf. [17]). We may also have several copies
from an object. The copyOf relationship holds between
two objects, the original object and a copy object,

A Context-Based Enterprise Ontology 22

which are exactly, or to an acceptable extent, similar.
The supports relationship involves two informational
objects, obj1 and obj2, such that the information
“carried” by the object obj1 is needed to produce the
object obj2. The predAbstract relationship between two
informational objects means that one object is more
abstract that the other object in terms of predicate
abstraction and both of the objects signify the same
thing(s) in reality. The signifies relationship defines the
conceptual meaning of a linguistic object in terms of
UoD constructs, which the object signifies. The UoD
construct means any conceptual construct. The partOf
relationship means that an object is composed of two
or more other objects.

3.5 Facility Domain

The facility domain contains all those concepts and
constructs that refer to the means by which something
can be accomplished, i.e. something, which makes an
action possible, more efficient or effective (Figure 6).
We distinguish between two kinds of facilities, tools
and resources.

Configuration

Manpower

Computerized

Facility

Resource

Component

Tool

Manual

Computer aided

Money

Energy

1..*

*

versionOf

1
configured

*

1..**

*

**

compatibility

*

*

compatability

1

Figure 6. Facility domain

A tool is a thing that is designed, built, installed, etc.
to serve in a specific action affording a convenience,
efficiency or effectiveness. A tool may be a simple and
concrete instrument held in hand and used for cutting
or hitting. Or, it may be a highly complicated computer
system supporting an engineer in his/her controlling a
nuclear power station. Tools can be manual, computer
aided, or computerized. A resource is a kind of source
of supply, support, or aid. It can be money, energy,
capital, goods, manpower, etc. [1]. The resources are
not interesting in terms of pieces, but rather in terms of
amount. When a resource is used, it is consumed, and
when consuming, the amount of the resource

diminishes. Thus, a resource is a thing, about which the
main concern is how much it is available (cf. [24].

There are a great number of relationships between
the concepts within the facility domain, representing
e.g. functional and structural connections. We consider
only some of them. For being operative and useful,
tools should be compatible. Two tools are compatible if
their interfaces are structurally and functionally
interoperable. Tools are composed of one or more
components that develop through consecutive versions.
Only some versions of a component are compatible
with certain versions of the other components. A
configuration is a whole that is composed of the
components of compatible versions.

3.6. Inter-Domain Relationships

Until now we have defined only those contextual
relationships which associate concepts within the same
contextual domain. There is, however, a large set of
contextual relationships that relate concepts in different
domains. For example, an actor carries out an action,
an object is an input to an action, and a facility is
situated in a location. We call these inter-domain
relationships. Figure 7 presents an overview of inter-
domain relationships. The space is divided into seven
sub-areas corresponding to the seven contextual
domains. In each of the sub-areas we present the
concerned generic concepts to be related with the inter-
domain relationships. It goes beyond the space
available to define the relationships here.

Action

Time

Actor

Org.Role

Object

Tool

Location
Human
actor

Facility

Purpose

Position

Resource

strivesFor motivatedBy

carryOut

occursAt

input
existsAt

intendedFor

performsuses

situatedIn

situatedIn

usedToMake

existsAt

situatedIn

ownedBy
viewedBy

useAbility

intendedFor

existsAt

intendedFor

existsAt

output

responsibleFor

expressedBy

UoD
construct

signifies
involvedBy

existsAt

Figure 7. Overview of inter-domain relation-
ships

In addition to the binary inter-domain relationships,
there are multiple n-ary relationships. With these,
together with composing binary inter-domain
relationships, it is possible to specify things in the

Mauri Leppänen

23

enterprise in a way that reveals their contextual
meanings. An example of this kind of specification is:
the customer c places the order o for the product p at
time t, based on the offer o from the enterprise e,
owned by the partners {p1,…pn}, to be delivered by a
truck tr to the address a by the date d. It depends on the
situation at hand which contextual domains and
concepts are seen to be relevant to be included in the
specification.

4. Summary and Conclusions

In this article we have presented the context-based
enterprise ontology to promote the understanding of the
nature, purposes, and meanings of things about which
information is stored and processed in, and transmitted
between, various applications in enterprises. This
ontology, grounded upon theories, such as case
grammar, pragmatics and activity theory, guides a
conceptualization of the structure and behavior of the
enterprise through considering things as contexts,
and/or as parts thereof.

Although our ontology, as having been derived from
relevant theories, inherently embodies essential
contextual concepts, it is just a top ontology. At this
stage, it can be deployed as a frame to analyze and
compare other enterprise ontologies in terms of their
contextuality. Later, our ontology should be specialized
into a task ontology, or a domain ontology, for the
needs of a specific business task or field. Experiments
made on such kinds of specializations and comparisons
of their outcomes with current enterprise ontologies
indicate that existing enterprise ontologies lack many
essential contextual concepts and constructs and some
of the conceptual constructs in them should be
reengineered, in order to enable the recognition,
representation and derivation of meanings in enterprise
knowledge. Unfortunately, it goes beyond the space
available to consider this further here. Continuing our
top down approach to ontology engineering, we will
next focus on a more systematic derivation of
specialized concepts and constructs, and use them in
empirical studies on semantic and pragmatic
interoperability of enterprise applications. In this phase,
we aim also to validate our ontology.

References:

[1] O. Barros, “Modeling and evaluation of alternatives in
information systems”, Information Systems, Vol. 16, No. 5,
1991, pp. 537-558.

[2] D. Bianchini, V. De Antonellis and M. Melchiori,
“Ontology-based semantic infrastructure for service
interoperability for interorganizational applications”, In M.
Missikoff (Ed.) Proc. of the Open InterOp Workshop on

Enterprise Modelling and Ontologies for Interoperability , 7-8
June 2004, Riga, Latvia, 2004.

[3] Bratman M., Intentions, plans, and practical reason,
Harward University Press, Cambridge, 1987.

[4] Cleland D. and W. King, Management: a systems
approach, McGraw-Hill, New York, 1972.

[5] S. Cranefield and M. Purvis, “UML as an ontology
modeling language”, In Proc. of the Workshop on Intelligent
Information Integration, held in conjunction with the 16th Int.
Joint Conf. on Artificial Intelligence (IJCAI-99), 1999.

[6] Engeström Y., Learning by expanding: an activity
theoretical approach to developmental research, Orienta-
Konsultit, Helsinki, 1987.

[7] C. Fillmore, “The case for case”, In E. Bach and R. T.
Harms (Eds.) Universals in Linguistic Theory, Holt, Rinehart
and Winston, New York, 1968, pp.1-88.

[8] M. Fox, “The TOVE Project: A common-sense model of
the enterprise”, In F. Belli and F. Radermacher (Eds.)
Industrial and Engineering Applications of Artificial
Intelligence and Expert Systems, LNAI 604, Springer-Verlag,
Berlin 1992, pp. 25-34.

[9] G. Geert and W. McCarthy, “The ontological foundations
of REA enterprise information systems”, 2000, online:
htt://www.msu.edu/user/mccarh4/rea-ontology/

[10] T. Gruber, “A translation approach to portable ontology
specification”, Knowledge Acquisition, Vol. 5, No. 2, 1993,
pp. 119-220.

[11] N. Guarino, “Formal ontology and information systems”,
In N. Guarino (Ed.) Proc. of Conf. on Formal Ontology in
Information Systems (FOIS'98), IOS Press, Amsterdam,
1998, pp. 3-15.

[12] H. Herbst, “A meta-model for business rules in systems
analysis”, In J. Iivari, K. Lyytinen & M. Rossi (Eds.)
Advanced Information Systems Engineering, LNCS 932,
Springer, Berlin, 1995, pp. 186-199.

[13] Hoc J.-M., Cognitive psychology of planning, Academic
Press, London, 1988.

[14] J. Iivari, “Levels of abstraction as a conceptual
framework for an information system”, In E. Falkenberg and
P. Lindgren (Eds.) Information System Concepts: An In-
Depth Analysis, North–Holland, Amsterdam, 1989, pp. 323-
352.

[15] Jayaratna N., Understanding and evaluating
methodologies: NIMSAD – a systemic framework, McGraw-
Hill, London, 1994.

A Context-Based Enterprise Ontology 24

[216] Johnson G., K. Scholes and R.W. Sexty, Exploring
strategic management, Prentice-Hall, Englewood Cliffs,
1989.

[17] R. Katz, “Toward a unified framework for version
modeling in engineering databases”, ACM Surveys, Vol. 22,
No. 4, 1990, pp. 375-408.

[18] V. Kavakli and P. Loucopoulos, “Goal-driven business
process analysis application in electricity deregulation”,
Information Systems, Vol. 24, No. 3, 1999, pp. 187-207.

[19] M. Koubarakis and D. Plexousakis, “A formal model for
business process modeling and design”, In B. Wangler and L.
Bergman (Eds.) Proc. of 12th Int. Conf. on Advanced
Information Systems Engineering (CAiSE 2000), Springer-
Verlag, Berlin, 2000, pp. 142-156.

[20] J. Lee, N.-L. Xue and J.-Y. Kuo, “Structuring
requirement specifications with goals”, Information and
Software Technology, Vol. 43, No. 2, 2001, pp. 121-135.

[21] R. Lee, “Epistemological aspects of knowledge-based
decision support systems”, In H. Sol (Ed.) Proc. of Int. Conf.
on Processes and Tools for Decision Support Systems, North-
Holland, Amsterdam, 1983, pp. 25-36.

[22] Levinson S., Pragmatics, Cambridge University Press,
London,1983.

[23] C.-Y. Lin, C.-Y. and C.-S. Ho, “Generating domain-
specific methodical knowledge for requirements analysis
based on methodology ontology”, Information Sciences, Vol.
14, No. 1-4, 1999, pp. 127-164.

[24] L. Liu and E. Yu, “Designing web-based systems in
social context: a goal and scenario based approach”, In A.
Banks Pidduck, J. Mylopoulos, C. Woo and M. Tamer Ozsu
(Eds.) Proc. of 14th Int. Conf. on Advanced Information
Systems Engineering (CAiSE’2002), LNCS 2348, Springer-
Verlag, Berlin, 2002, pp. 37-51.

[25] P. Loucopoulos, V. Kavakli, N. Prekas, C. Rolland, G.
Grosz and S. Nurcan,. Using the EKD approach: the
modelling component. ELEKTRA – Project No. 22927,
ESPRIT Programme 7.1, 1998.

[26] Mesarovic M., D. Macko, and Y. Takahara, Theory of
hierarchical, multilevel, systems, Academic Press, New York,
1970.

[27] H. Myrhaug, “Towards life-long and personal context
spaces”, In Proc. of Workshop on User Modelling for
Context-Aware Applications, 2001.

[28] NATURE Team, “Defining visions in context: models,
processes and tools for requirements engineering”,
Information Systems, Vol. 21, No. 6, 1996, pp. 515-547.

[29] L. Padgham and G. Taylor, “A system for modeling
agents having emotion and personality”, In L. Cavedon, A.

Rao & W. Wobcke (Eds.) Intelligent Agent Systems, LNAI
1209, Springer-Verlag, Berlin, 1997, pp. 59-71.

[30] R. Ramesh and A. Whinston, “Claims, arguments, and
decisions: formalism for representation, gaming, and
coordination”, Information Systems Research, Vol. 5, No. 3,
1994, pp. 294-325.

[31] C. Rolland, C. Souveyet and M. Moreno, “An approach
for defining ways-of-working”, Information Systems, Vol. 20,
No. 4, 1995, pp. 337-359.

[32] Searle J. and D. Vanderveken, Foundations of
illocutionary logic, Cambridge University Press, New York,
1985.

[33] Simon H., The new science of management decisions,
Harper & Row, New York, 1960.

[34] Sisk H., Management and organization, South Western
Pub. Co., International Business and Management Series,
Cincinnati, 1973.

[35] J. Sowa and J. Zachman, “Extending and formalizing the
framework for information system architecture”, IBM
Systems Journal, Vol. 31, No. 3, 1992, pp. 590-616.

[36] R. Stamper, “Information science for systems analysis”,
In E. Mumford and H. Sackman (Eds.) Human Choice and
Computers, North-Holland, Amsterdam, 1975, pp. 107-120.

[37] R. Thayer, “Software engineering project management –
a top-down view”, In R. Thayer (Ed.) Tutorial: Software
Engineering Project Management, IEEE Computer Society
Press, 1987, pp. 15-56.

[38] M. Uschold, M. King, S. Moralee and Y. Zorgios, “The
Enterprise Ontology”, The Knowledge Engineer Review, Vol.
13, No. 1, 1998, pp. 31-89.

[39] X. Wang and C. Chan, “Ontology modeling using
UML”, In Y. Wang, S. Patel and R. Johnston (Eds.) Proc. of
the 7th Int. Conf. on Object-Oriented Information Systems
(OOIS’2001), Springer-Verlag, Berlin, 2001, pp. 59-70.

[40] Webster, Webster’s Encyclopedic Unabridged
Dictionary of the English Language, Gramercy Books, New
York, 1989.

[41] Weick K.E., Sensemaking in organizations, Sage
Publications, California, 1995.

Establishing a Common Vocabulary for Helping Software Organizations to
Understand Software Processes

Ricardo de Almeida Falbo, Gleidson Bertollo
Computer Science Department, Federal University of Espírito Santo, Vitória – ES, Brazil

falbo@inf.ufes.br, gleidsonbertollo@yahoo.com.br

Abstract

Nowadays, several process quality models and

standards, such as ISO/IEC 12207 and CMMI, are
used to guide software organizations in their software
process improvement efforts. But unfortunately, the
vocabulary used by those models and by software
organizations is diverse. This leads to
misunderstanding and problems related to the jointly
use of different process quality models. In this paper,
we present a software process ontology, which aims to
establish a common vocabulary to software
organizations talk about software processes. A
mapping between the concepts presented in the
ontology and the concepts of some of these standards
is also done in order to help software organizations to
use those standards in their software process
improvement efforts.

1. Introduction

Developing quality software is a challenge to
software organizations. Since the quality of a software
product depends heavily on the quality of the software
process used to develop it, software organizations are
more and more investing in improving their software
processes. In this context, several process quality
standards, methodologies, and maturity models, such as
ISO/IEC 12207 [1], ISO/IEC 15504 [2], RUP [3] and
CMMI [4], are used to guide software organizations
efforts towards quality software processes.

But unfortunately, the vocabulary used by those
models and by software organizations is diverse. This
leads to misunderstanding and problems related to the
jointly use of different standards. To deal with these
problems, we developed a software process ontology
that is presented in this paper. This ontology aims to

establish a common vocabulary to software
organizations talk about software processes, and was
developed as an extension of the software process
ontology presented in [5]. It can be used as an
interlingua to map concepts from different models and
standards, helping software organizations to use them
jointly. To show how this can be done, an initial
mapping between the software process ontology and
the concepts used in ISO/IEC 12207, ISO/IEC 15504,
CMMI and RUP is also presented.

This paper is organized as follows: Section 2
discusses briefly software processes and ontologies.
Section 3 presents the software process ontology
developed. Section 4 presents a mapping between the
ontology and the concepts of some process quality
standards. Section 5 discusses related works, and,
finally, in section 6, we report our conclusions.

2. Software Process and Ontologies

According to Fuggetta [6], a software process can
be defined as a coherent set of policies, organizational
structures, technologies, procedures, and artifacts that
are needed to conceive, develop, deploy, and maintain
a software product. A process should be defined
considering: the activities to be accomplished, the
required resources, the input and output artifacts, the
adopted procedures (methods, techniques, templates
and so on) and the life cycle model to be used.

To be effective and to lead to good quality
products, a software process should be adequate to the
application domain and to the specific project itself.
Thus, processes should be defined considering several
features, such as the type of software being developed,
the paradigm adopted, the application domain, team
features, and so on.

But, although different projects require processes
with specific features, it is possible to establish a set of

Establishing a Common Vocabulary for Helping
Software Organizations to Understand Software Processes

26

software process assets that should be present in all
project processes. This set of process assets is called an
organization’s standard software process. Thus, an
organizational standard process encompasses the
essential process assets (activities, artifacts, resources,
procedures) that should be incorporated to all software
processes of the organization. Ideally, this process
should be defined considering international standards,
such as CMMI and ISO/IEC 12207.

This approach can be extended to deal with several
levels of standard processes. That is, the organizational
standard software process can be specialized to
consider some class of software type (such as
information system), paradigms (for example, object-
oriented paradigm) or specific application domains,
giving rise to standard specialized processes.

During process specialization, process assets can be
added or modified, according to the context of the
specialization (software type, paradigm or application
domain). Process specialization can be done
recursively. For example, the organizational standard
process can be specialized to derive a standard process
for object-oriented development, which, in turn, can be
specialized for developing object-oriented web
applications.

The project’s defined software process is developed
by tailoring the organization’s standard software
process or one of its specialized standard processes to
fit the specific characteristics of the project. During
process tailoring, particularities of the project and team
features, among others, should be considered. At this
moment, the life cycle model to be followed should be
defined, and new activities, as well as consumed and
produced artifacts, required resources and procedures,
can be added to the project’s process.

Successful organizations continuously improve
their processes, and systematic process improvement is
more effective and efficient if it is done guided by
process quality models and standards. The purpose of
most standards is to help software organizations
achieve excellence by following the processes and
activities adopted by the most successful organizations.
But it is not easy to select suitable standards. There are
many choices, with a large overlap between them.
Several times, it is worthwhile for a software
organization to use or implement more than one
standard at the same time. In this situation, it is better
to implement them simultaneously. Such an approach
enables process engineers to capitalize on the
commonalties between the standards and use the
strengths of one standard to offset the weaknesses in
the other [7]. But in this case, vocabulary problems
arose. Let’s take a look at some of these standards.

ISO/IEC 12207 [1] provides a comprehensive set of
life cycle processes, activities and tasks for software.
Its Process Reference Model provides definitions of
processes described in terms of process purpose and
outcomes, together with an architecture describing
relationships between the processes. It sets out the
activities and tasks required to implement the high
level life cycle processes to achieve desirable
capability for acquirers, suppliers, developers,
maintainers and operators of systems containing
software. Three life cycle process categories are
considered: Organizational, Primary and Supporting.
The process model does not represent a particular
process implementation approach nor does it prescribe
a life cycle model, methodology or technique. Instead
the reference model is intended to be tailored by an
organization based on its business needs and
application domain.

CMMI [4] [7] is structured in terms of process areas
(PAs), which consist of related practices that
collectively satisfy a set of goals. A generic goal
describes the institutionalization required to achieve a
capability (continuous representation) or maturity
(staged representation) level. Each generic goal is
associated with a set of generic practices that describes
activities required for institutionalizing processes in a
particular PA. Each PA still contains specific goals and
specific practices, which describe activities important
to achieve the specific goals.

The Rational Unified Process (RUP) [3] is
represented using four primary modeling elements:
workers, activities, artifacts and workflows. A worker
is a role an individual or a group of individuals plays in
a project. An activity of a specific worker is a unit of
work that an individual in that role may be asked to
perform. Activities produce artifacts and can be broken
into steps. An artifact is a piece of information that is
produced, modified, or used by a process, and can be
composed of other artifacts. Artifacts are used as input
by workers to perform an activity and are the result or
output of such activities. Finally, a workflow is a
sequence of activities that produces a result of
observable value. These four primary elements
represent the backbone of the RUP static structure. But
other elements are added to make the process easier to
understand and use. These additional elements are:
guidelines – rules, techniques, recommendations, or
heuristics that describes how to perform an activity or a
step; templates – “models” of artifacts, such as a
template for the project plan; tool mentors – special
guidelines showing how to perform an activity or a step
using a specific software tool; and concepts that are

Ricardo de Almeida Falbo and Gleidson Bertollo

27

introduced in separate sections of the process, usually
attached to a core workflow.

In ISO/IEC 15504 [2], process is defined as a set of
interrelated or interacting activities which transforms
inputs into outputs. Analogous to CMMI and ISO/IEC
12207, standard processes are defined as the set of
definitions of the basic processes that guide all
processes in an organization. These process definitions
cover the fundamental process elements (and their
relationships to each other) that must be incorporated
into the defined processes that are implemented in
projects across the organization. A tailored process is a
defined process developed by tailoring a standard
process definition. A work product is an artifact
associated with the execution of the process.

There are a large number of process standards, each
one using a slightly different terminology, sometimes
with different meaning for the same term, as we can see
analyzing the terms and definitions of the four
standards previously presented. Thus, we need to
establish a common understanding of what is a
software process, and which are its main assets. To
achieve it, we advocate the use of ontologies.

An ontology is a representation vocabulary, often
specialized to some domain or subject matter. More
precisely, it is not the vocabulary as such that qualifies
as an ontology, but the conceptualizations that the
terms in the vocabulary are intended to capture.
Ontologies are quintessentially content theories,
because their main contribution is to identify specific
classes of objects and relations that exist in some
domain [8]. Ontologies are used to describe ontological
commitments for a set of agents (humans and software
applications), that is, agreements to use a shared
vocabulary in a coherent manner, so that they can
communicate about a domain of discourse.

An ontology, as an engineering artifact, is
constituted by a vocabulary used to describe a certain
reality, plus a set of explicit assumptions (formal
axioms) regarding the intended meaning of the
vocabulary words. This set of assumptions has usually
the form of a first-order logical theory, where
vocabulary words appear as unary or binary predicate
names, respectively called concepts and relations [9].

As any software engineering artifact, ontologies
must be developed following software engineering
practices. To build the software process ontology, we
used SABiO (Systematic Approach for Building
Ontologies) that encompasses the following activities
[5, 10]: purpose identification and requirement
specification, ontology capture, ontology formalization,
integration of existing ontologies, ontology evaluation,
and documentation.

In the requirement specification phase, SABiO uses
competency questions to establish the competence of
the ontology. During ontology capture, a graphical
language for expressing ontologies is used to facilitate
the communication between ontology engineers and
experts. In its current version, SABiO proposes the use
of an UML profile for ontologies [11]. This UML
profile uses some UML’s model elements playing the
same role of the elements of LINGO, the original
language proposed [10]. I.e., these UML’s model
elements are applied using the same semantics imposed
by the corresponding elements in LINGO, for which
there were some axioms defined. For instance, the
axioms (AE1) to (AE4) in Figure 1 are imposed by the
whole-part relation, and are assumed to be incorporated
to the ontology whenever the aggregation notation of
UML is used. Figure 1 shows a summary of the UML
profile for expressing ontologies and some of the
axioms imposed for the corresponding notation. When
any of these notations are used, the corresponding
axioms (said epistemological axioms) are supposed to
be incorporated, and then they do not need to be
written down.

Relation1

property

<<Relation>>

SubTypeConcept1
<<Concept>>

Concept1

property

<<Concept>>

PartOfConcept2
<<Concept>>

Concept3
<<Concept>>

Concept4
<<Concept>>

Concept2
<<Concept>>0..*1..*

+role1

0..*

+role2

1..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*
Relation2

<<Relation>>

0..*

0..*

0..*

0..*

Relation3
<<Relation>>

{XOR}

Figure 1. UML’s Profile and its Axioms.

A graphical model, even associated to

epistemological axioms, is useful, but it is not enough
to completely capture an ontology. Other axioms,
called ontological axioms [10], should be provided in
order to fix the semantics of the terms, and to establish
domain constraints. For formalizing those axioms,
SABiO suggests the use of first order logics.

Axioms:
Whole-part:
(AE1) ∀x ¬partOf(x,x)
(AE2) ∀x,y partOf(y,x) ↔ wholeOf(x,y)
(AE3) ∀x,y partOf(y,x) → ¬ partOf(x,y)
(AE4) ∀x,y,z partOf(z,y) ∧ partOf(y,x) → partOf(z,x)
Sub-type-of:
(AE5) (∀x,y,z) (subTypeOf(x,y)∧subTypeOf(y,z)→
 subTypeOf(x,z))
(AE6) (∀x,y) (subTypeOf(x,y)→superTypeOf(y,x))
Or-exclusive (XOR):
(AE7) (∀a∈C2) ((∃b) (b∈C3)∧R2(a,b))→
¬((∃c∈C4)∧R3(a,c)))
(AE8) (∀a∈C2)((∃c) (c∈C4)∧R3(a,c)) →
¬((∃b∈C3)∧R2(a,b)))

Establishing a Common Vocabulary for Helping
Software Organizations to Understand Software Processes

28

Finally, for ontology evaluation, SABiO suggests
checking the ontology against its competency
questions, and to verify some quality criteria, as those
proposed by Gruber [12].

3. A Software Process Ontology

Analyzing the elements involved in software processes,
we can notice that it is a complex domain for building
an ontology. As a basic premise, it is essential to follow
an approach focusing on minimum ontological
commitment. Based on that approach, the ontology
should describe only general aspects, valid for any
process, with only their essential assets. Including
many details in an ontology can make it too specific
and thus less reusable.

However, even considering the minimum
ontological commitment criterion, this domain is still
extremely complex. Therefore, it was necessary to
apply a decomposition mechanism allowing building
the ontology in parts. The adopted strategy was to
define sub-domains of the software process domain,
and build sub-ontologies for each sub-domain. Once
defined the basic ontologies, these were used in an
integrated way to establish a more complete
conceptualization about software processes.

Figure 2 shows the software process ontology and
its three sub-ontologies: activity ontology, resource
ontology and procedure ontology.

Software Process
Ontology

Activity
Ontology

Procedure
Ontology

Resource
Ontology

Figure 2. Software Process Ontology and its
sub-ontologies.

The software process ontology was originally
published in [5]. However, the software process area
evolved in the last years, and we needed to evolve this
ontology, capturing and defining new concepts,
relations and constraints. The ontologies for software
activities, procedures and resources were not modified,
but only the software process ontology has changed.
Thus in this paper we only present the reviewed
software process ontology.

Some of the competency questions considered in
this new version of the software process ontology
includes:

CQ1. How can a process be decomposed?
CQ2. Which are the assets that compose a software

process?
CQ3. Which are the inputs and outputs of a process?
CQ4. How can a process be classified?
CQ5. Which is the abstraction level of a process?
CQ6. How can a process be tailored?
CQ7. How do processes interact?
CQ8. How are the activities of a project’s software

process organized?
To treat these competency questions, some aspects

should be taken into account:
• Process Decomposition and Interaction (CQ1

and CQ7);
• Process Definition (CQ2 and CQ3);
• Process Type and Abstraction Level (CQ4 to

CQ6);
• Project Process Life Cycle Model (CQ8).
Following, each one of the aspects listed above are

discussed and the corresponding models and axioms
presented.

3.1. Process Decomposition

A process is defined to establish a systematic
approach for developing software, and it can be
decomposed into activities or other processes, called
sub-processes. For example, according to ISO 12207,
the software process can be decomposed into processes
for acquisition, supply, development, operation and
maintenance, among others. The development process
can be further decomposed into other sub-processes,
such as requirements engineering process, and so on.
The requirements engineering process, in turn, can be
decomposed into activities such as requirement
elicitation, analysis and negotiation, modeling,
documentation, evaluation, and management. Activities
can also be decomposed into sub-activities, as shown in
Figure 3.

Activity
(from Activi ty Ontology)

<<Concept>>

0..*

0..*

+superActivity

0..*

+subActivity

0..*

{XOR}

Software Process
<<Concept>>

0..*

0..*

+superProcess0..*

+subProcess

0..*

1..* 0..*1..* 0..*

0..*0..*

interaction

0..*0..*

Figure 3. Process decomposition and
interaction.

Ricardo de Almeida Falbo and Gleidson Bertollo

29

A super-process is the one that is composed by
other processes. It cannot be executed directly through
activities, as shown by the constraint {XOR} in the
model. A sub-process is a software process that
composes a larger process, its super-process.

Only to illustrate the epistemological axioms
instantiation, the constraint {XOR} in the model of
Figure 3 imposes the following axioms, derived from
axioms (AE7) and (AE8) in Figure 1.

(∀ p1) ((∃ p2) subProcess(p2,p1)) → ((¬∃ a) partOf

(a, p1))
(∀ p1) ((∃ a) partOf (a, p1)) → ((¬∃ p2)

subProcess(p2,p1)

Finally, a software process can interact with other

processes. This interaction can be in several ways,
among them: a process can precede the execution of
other, two processes can be executed in parallel, or a
process can be executed in a specific moment during
the execution of another process.

3.2. Process Definition

As discussed above, a process is composed by sub-
processes or activities. During process definition,
several other process assets should be defined. For
each activity of the software process, we should define
its sub-activities, pre-activities, input and output
artifacts, required resources (humans, software and
hardware) and the procedures (methods, techniques
etc) to be followed when performing the activity.
Figure 4 presents the process assets involved in
software process definition.

The major part of this model corresponds to the
activity ontology presented in [5]. Since in this paper
we are focusing only on the evolution of the software
process ontology, we will discuss only those aspects
related to this review.

Software Process
<<Concept>>

0..*0..* 0..*+subProcess 0..*

Artifact
(from Activi ty Ontology)

<<Concept>>Resource
(from Resource Ontology)

<<Concept>>

Activity
(from Acti vi ty Ontology)

<<Concept>>

0..*

0..*

+preActivity
0..*

+posActivity

0..*

0..*
0..*

0..*

+subActivity

0..*

1..* 0..*1..* 0..*

0..*

0..*

+input

0..*

1..*

0..*

+output 1..*

0..*

0..*

0..*

0..*

0..*

Procedure
(from Procedure Ontology)

<<Concept>>

0..*

1..*

0..*

1..*

 adoption
{XOR}

0..*

Figure 4. Process definition.

An activity is a transformational action that can
produce artifacts. To be performed, an activity requires
resources, adopts procedures and consumes artifacts. In
a similar way, we can say that a software process has
inputs and outputs. Its inputs and outputs are directly
related to its activities’ inputs and outputs. That is, if an
activity a1, part of a software process p, requires as
input an artifact s, and there isn’t another activity a2,
part of the same process p, that produces this artifact,
then s is said an input of p.

∀ (p, a1, s) partOf (a1, p) ∧ input(s, a1) ∧

((¬∃ a2) partOf(a2, p) ∧ output (s, a2)) → input (s, p)

Concerning outputs, we can say that the outputs of a

process correspond to the outputs of their activities.

∀ (p, a1,s) partOf (a1,p) ∧ output (s,a1) → output(s,p)

In an analogous manner, a super-process has its
inputs and outputs defined through the inputs and
outputs of its sub-process, as described by the
following axioms:

∀ (p1,p2,s) subProcess (p2,p1) ∧ output (s, p2) ∧

((¬∃ p3) subProcess (p3, p1) ∧ input(s, p3)) → input
(s, p1)

∀ (p1,p2,s) (subProcess(p2,p1) ∧ output(s, p2) →
output (s, p1)

3.3. Process Type and Abstraction Level

As shown in Figure 5, processes can be classified in
process categories. For example, if an organization
follows the ISO/IEC 12207 classification, the
categories could be primary processes, supporting
processes, and organization processes. Furthermore,
processes are in different levels of abstraction. A
standard process refers to a generic process
institutionalized in an organization, establishing basic
requirements for processes to be performed in that
organization. A project process refers to the process
defined for a specific project, considering the
particularities of that project.

Software processes (standard or project processes)
can be defined tailoring a standard process. When a
standard process is tailoring another standard process,
the tailored process is called a specialized process, and
every process assets defined in the standard process
become part of the specialized process. But new assets
can also be included, to deal with features of a specific
software type, paradigm or application domain.

Establishing a Common Vocabulary for Helping
Software Organizations to Understand Software Processes

30

Project
<<Concept>>

Project Process
<<Concept>>

0..*

1

0..*

1
implementation

Standard Process
<<Concept>>

Organization
<<Concept>>

1

0..*

1

0..*
establishment

Paradigm
<<Concept>>

Software Type
<<Concept>>

Application Domain
<<Concept>>Process Category

<<Concept>>

Software Process
<<Concept>>

0..1

0..*

0..1

0..*tailoring

0..*0..* 0..*0..*

conformity

0..*

0..*

0..*

0..*
0..*0..* 0..*0..*

0..*

0..*

0..*

0..*

0..*
0..*0..*

0..*

interaction

Figure 5. Process Types and Abstraction
Levels.

When a project process is defined by tailoring a
standard process, it is composed by all the standard
process assets, and new assets can be included
considering the project characteristics, such as
complexity, size, and team experience, among others.

It is worthwhile to point that the interaction
between processes must occur at the same level of
abstraction. I.e. a standard process can interact only
with other standard process and a project process can
interact only with other project process.

∀(p1,p2) (interaction (p1,p2) →

(standardProcess (p1) ∧ standardProcess (p2)) ∨
(projectProcess (p1) ∧ projectProcess (p2))

3.4. Project Process Life Cycle Model

The project process definition starts with the choice
of a life cycle model to be used as reference. A life
cycle model structures the project activities in phases
(or macro-activities), establishing an approach for
organizing those macro-activities. Looking for the main
life cycle models described in the literature, we can
notice that macro-activities are grouped in
arrangements that follow two basic strategies: sequence
and iteration. In sequential arrangements, the phases
are just accomplished once, returning to the previous
phase only for correcting possible problems detected.
In iterative arrangements, a set of phases is
accomplished several times, according to some
established criterion.

The waterfall life cycle model (or linear sequential
model) [13], for instance, can be described as a single
sequential arrangement of all phases. The spiral model

[13] can be described also by only one arrangement,
but in this case it is an iterative arrangement. Other life
cycle models, like the recursive / parallel model [13] or
the incremental model, can be described as several
arrangements of activities, some of them sequential,
some iterative. Thus, all life cycle models can be
mapped as hybrid (sequential and iterative)
arrangement of macro-activities. This way, a life cycle
model defines a set of macro-activities (or phases) that
a development process should present and the order of
execution in the form of arrangements, as shown in
figure 6.

Software Process
<<Concept>>

Project Process
<<Concept>>

Life Cycle Model
<<Concept>>0..* 10..* 1

reference

Activity
(from Activity Ontology)

<<Concept>>1..*
0..*

1..*
0..*

Arrangement

type
order

<<Concept>>

1

1..*

1

1..*

0..*
1..*

0..*
1..*

Figure 6. Project Process and Life Cycle
Models.

Since the starting point for defining project
processes is the life cycle model adopted, the initial
project process’ structure must correspond to the set of
macro-activities that compose the life cycle model.
That is, if a project process p adopts as a reference the
life cycle model m, then each activity a that is part of
an arrangement c of the life cycle model m must also be
part of p.

∀(p, m, c, a, n) (reference (p,m) ∧ partOf (c,m) ∧

partOf (a, c)) → partOf (a, p))

4. Mapping Standards to the Ontology

Once defined the software process ontology, it is
worthwhile to map the structure of the standards into
the concepts of the ontology. It is worthwhile to point
that some standards, such as ISO 9001:2000 and
CMMI, are not software specific. But our mapping is
focusing only on software organizations and, thus, we
looked for those standards using only this perspective.

Table 1 shows a preliminary mapping between the
vocabulary used by ISO/IEC 12207, ISO 9001:2000
and ISO/IEC 15504 and the concepts of the ontology
presented in this paper.

Ricardo de Almeida Falbo and Gleidson Bertollo

31

Table 1. ISO x Software Process Ontology

ISO Software Process Ontology
Process Software Process
Standard Process Standard Process
Tailored Process Project Process
Work Product Artifact
Activity / Task Activity
Process Category Process Category
Process Software Process
Life Cycle Model Life Cycle Model

Table 2 shows a preliminary mapping between the

vocabulary used by CMMI and the concepts of the
ontology presented in this paper.

Table 2. CMMI x Software Process Ontology

CMMI Software Process Ontology
Process Software Process
Standard Process Standard Process
Defined Process (or
Project’s Defined
Process)

Project Process

Work Product Artifact
Practice Activity
Process Area Software Process
Project Project
Life Cycle Model Life Cycle Model

Finally, Table 3 shows a preliminary mapping
between the vocabulary used by RUP and the concepts
of the software process ontology.

Table 3. RUP x Software Process Ontology

RUP Software Process Ontology
Process / Workflow Software Process
Process Framework Standard Process
Worker Human Resource
Artifact Artifact
Activity / Step Activity
Guideline / Tool
Mentor / Template

Procedure

5. Related Work

There are several works exploring the mapping
between standards. Mustafelija and Stromberg [7], for
example, maps ISO 9001:2000 sections to CMMI and
vice versa. These mappings, however, are based on the
content of the standards, and not on their structures. In
fact, there are very few works dealing with the problem
of establishing a common understanding about software
processes. The most important of them is the OMG’s

Software Process Engineering Metamodel (SPEM)
[14], which is used to describe a concrete software
development process or a family of related software
development processes.

Like our ontological approach, SPEM intends to
define the minimal set of process modeling elements
necessary to describe any software development
process, without adding specific models or constraints
for any specific area.

At the core of SPEM is the idea that a software
development process is a collaboration between
abstract active entities called process roles that perform
operations called activities on concrete, tangible
entities called work products.

SPEM follows an object-oriented approach for
modeling a family of related software processes, and its
specification is structured as a UML profile, and
provides a complete MOF-based metamodel.

In our point of view, the main problem of SPEM is
exactly this approach. Several non intuitive concepts
are used to define concepts related to software process.
Abstract concepts, such as Model Element, Package,
Work Definition and Process Performer, are not
intuitive for process engineers. In fact, they are used
only because an object-oriented approach, focused on
inheritance, is applied. If we look for the concrete
classes in SPEM, we can find a great correspondence
with our ontology, as we can notice in Table 4. This
table shows the mapping of some concepts of SPEM
into concepts of the Software Process Ontology.

Table 4. SPEM x Software Process Ontology

SPEM Software Process Ontology
Process Role Human Resource / Team
Work Product Artifact
Activity / Step Activity
Guidance Procedure
Categorizes
Dependency

Process Category

Process Software Process
Life Cycle Life Cycle Model

It is worthwhile to point that, although we use an
UML profile as a modeling language for expressing
ontologies, we do not follow an approach like SPEM.
In our case, we defined an UML profile using
stereotypes to capture our meta-ontology, which
includes concepts such as Concept, Relation, Property
and so on [11]. We are not using UML’s meta-model
as basis for defining our software process ontology, as
SPEM does.

Establishing a Common Vocabulary for Helping
Software Organizations to Understand Software Processes

32

6. Conclusions and Future Work

Nowadays, software process improvement is being
considered essential to software organizations survive
in a competitive market. But systematic process
improvement is achieved only if it is done guided by
process quality models and standards. Several times, it
is important to use more than one standard, so that the
strengths of one standard can be used to offset the
weaknesses in the other, and vice versa. But in this
case, we face problems related to the vocabularies used
by the different standards. Generally, each standard
uses its own terminology, adopting different terms to
designate the same meaning. To overcome this
problem, we need to establish a common
conceptualization about software processes, and thus
ontologies can be useful. Thus, in this paper, we
presented an ontology of software process that defines
the main concepts, relations, properties and constraints
involved in this complex domain. Also, a preliminary
mapping between the concepts in the ontology and the
concepts used by some of the most important standards
was done. We hope that this mapping can be used by
software organizations to better understand the
commonalties and differences between the various
standards.

As future work, we are planning to do a more
complete mapping between these standards, using our
ontology as an interlingua. A mapping considering the
contents of those standards is also useful.

Finally, we are working on a process infrastructure
for ODE [15], a Process-Centered Software
Engineering Environment that is developed based on
our ontology and that can be configurable for using the
most adequate vocabulary, given by the choice of a
standard that a software organization commits to. ODE
is developed following a systematic approach for
deriving object models from ontologies, and the
ontology presented in this paper is used to derive the
core classes of process control in ODE, supporting tool
integration and interoperability in it.

7. Acknowledgments

This work was accomplished with the support of
CNPq, an entity of the Brazilian Government reverted
to scientific and technological development.

8. References

[1] ISO/IEC 12207:1995, Amd 1:2002, Amd 2:2004,

Information Technology - Software life cycle processes.

[2] ISO/IEC 15504:2003, Information Technology – Process
Assessment.

[3] P. Kruchten, The Rational Unified Process: An
Introduction, Addison Wesley, 1998.

[4] M.B. Chrissis, M. Konrad, S. Shrum, CMMI: Guidelines
for Process Integration and Product Improvement,
Addison Wesley, 2003.

[5] Falbo, R.A., Menezes, C.S., Rocha, A.R.R. A Systematic
Approach for Building Ontologies. Proceedings of the 6th
Ibero-American Conference on Artificial Intelligence,
Lisbon, Portugal, Lecture Notes in Computer Science,
vol. 1484, 1998.

[6] A. Fuggetta, “Software Process: A Roadmap”, In
Proceedings of The Future of Software Engineering
(ICSE’2000). Limerick, Ireland, 2000, 25-34.

[7] B. Mutafelija, H. Stromberg, Systematic Process
Improvement Using ISO 9001:2000 and CMMI, Artech
House, 2003.

[8] Chandrasekaran, B., Josephson, J.R., Benjamins, V.R.
What Are Ontologies, and Why Do We Need Them?
IEEE Intelligent Systems, January/February 1999.

[9] Guarino, N. Formal Ontology and Information Systems.
In: Formal Ontologies in Information Systems, N.
Guarino (Ed.), IOS Press, 1998.

[10] Falbo, R. A. Experiences in Using a Method for
Building Domain Ontologies. In: Proc. of the 16th
International Conference on Software Engineering and
Knowledge Engineering, International Workshop on
Ontology In Action. Banff, Canada, 2004.

[11] Mian, P.G., Falbo, R.A. Supporting Ontology
Development with ODEd, Journal of the Brazilian
Computer Science, vol. 9, no. 2, November 2003, 57-76.

[12] Gruber, T. Towards principles for the design of
ontologies used for knowledge sharing, International
Journal of Human-Computer Studies, 43(5/6), 1995.

[13] R.S. Pressman, Software Engineering: A Practitioner's
Approach, 6th Edition, McGraw Hill, 2004.

[14] OMG, Software Process Engineering Metamodel
Specification, Version 1.1, January 2005.

[15] R.A. Falbo, F. B. Ruy, R. Dal Moro. Using Ontologies
to Add Semantics to a Software Engineering
Environment. In: Proc. of the 17th International
Conference on Software Engineering and Knowledge
Engineering. Taipei, China, 2005.

Mapping Versus Transformation in MDA:
Generating Transformation Definition from Mapping Specification

Slimane Hammoudi, Jérôme Janvier, Denivaldo Lopes
ESEO, Ecole Supérieure d’Electronique de l’Ouest

4, Rue Merlet de la Boulaye - BP 926, 49009 ANGERS cedex 01
{shammoudi, janvieje, dlopes}@eseo.fr

Abstract

This paper aims firstly to clarify between the two
concepts of mapping and transformation in Model
Driven Architecture (MDA) where a real lack of
consensus exists on their definitions. For this
clarification, we have been inspired from the two fields
of databases and ontologies where the two concepts
have been studied for a long time. Secondly, this paper
aims to propose a new approach and architecture for
the process of transformation in MDA, in which the
transformation definition is generated automatically
from a mapping specification. Thus, in our approach
the transformation process of a Platform Independent
Model (PIM) into a Platform Specific Model (PSM)
can be structured in two stages: mapping specification
and transformation definition. From a conceptual
point of view, the explicit distinction between mapping
specification and transformation definition remains in
agreement with the MDA philosophy, i.e. the
separation of concerns. Moreover, a mapping
specification could be associated with different
transformation definitions, where each transformation
definition is based on a giving transformation
definition metamodel (language).

1 Introduction

The main motivation behind Model Driven
Architecture (MDA) [1] is to transfer the focus of work
from programming to modeling by treating models as
the primary artifacts of development. MDA has a
potential to increase development productivity and
quality by describing important aspects of a solution
with more human-friendly abstractions and by
generating common application fragments with
templates. The most important aspect of the MDA
approach is the explicit identification of Platform
Independent Models (PIMs) and the flexibility to

implement them on different platforms via Platform
Specific Models (PSMs). A platform can be any
technology that supports the execution of these models,
either directly or after translation to code. For this
vision to become reality, software development tools
need to automate the many tasks of model construction
and transformation. Thus, since the emergence of
MDA, numerous techniques have been proposed for
transforming models at different levels of abstractions.
However, most of these works state in an obvious
manner the lack of consensus on the definition of the
two main concepts of mapping and transformation
involved into the whole process of transformation in
MDA. In this paper, we present in the first part a
clarification of the concepts of mapping and
transformation in the context of MDA, inspiring by two
main fields: Database systems and Ontologies, where
these two concepts have been studied for long time.
Thanks to this clarification, we propose in a second
part a new architecture of a transformation system
based on the four levels metamodeling architecture of
MDA. In this new architecture, mapping and
transformation are explicitly distinguished and together
involved in the whole process of transformation in
MDA. Mappings are considered as first class entities
defined by a model, which conforms to a metamodel of
mapping. Transformation definition (transformation
model) is generated automatically from a mapping
model in our approach and is executed by a
transformation engine, which takes a source model and
produces a target model. A transformation definition is
based on a transformation metamodel, which is an
abstract definition of a transformation language such as
ATL [8] used in our different experiments.

This paper is structured as follows: section 2
introduces the MDA approach and presents the most
common scenario of transformation in MDA, which is
compatible with MOF/QVT RFP [2]. Section 3 shows
the lack of consensus around the concepts of mapping
and transformation. Section 4 clarify the two concepts
inspired from database and ontology’s fields and
introduce our approach and architecture for the whole

Mapping Versus Transformation in MDA:
Generating Transformation Definition from Mapping Specification

34

process of transformation in MDA. Finally, section 5
concludes our work and presents some final remarks.

2 MDA: Overview and Transformation
process

At the beginning of this century, software
engineering needs to handle software systems that
become larger and more complex than before. The
object-oriented and component technology seem
insufficient to provide satisfactory solutions to support
the development and maintenance of these systems. To
adapt to this new context, software engineering has
applied an old paradigm, i.e. models, but with a new
approach, i.e. Model Driven Architecture.

2.1 Model Driven Architecture (MDA)

MDA is a particular variant of a new global trend
called Model Driven Engineering (MDE). MDA is
based on an architecture with four meta-layers [3]:
metametamodel, metamodel, model and information
(i.e. an implementation of its model).

Figure 1a presents the basic metamodeling

architecture of MDA with the relationships between
different levels of models. In this approach, everything
is a model or a model element. In level M0, a real
system is representedBy a model in level M1, and a
model in level M1 conformsTo a metamodel in level
M2. We will discuss these two very important
relationships of MDA later.

Figure 1a. Architecture with four Meta-layers

Figure 1b. MDA: Primary Idea

In level M3, a metametamodel is a well-formed

specification for creating metamodels such as the Meta
Object Facility (MOF), a standard from OMG. In level
M2, a metamodel is a well-formed specification for
creating models. In level M1, a model is a well-formed
specification for creating software artifacts. In level M0,
an operational example of a model is the final
representation of a software system. According to this
architecture, we can state the existence of few
metametamodels such as MOF [3] and Ecore [4], several
metamodels such as UML, UEML [5] and EDOC [6],
more models describing real life applications such as a
travel agency, and finally infinite information such as the
implementation of this travel agency model using Java or
C#. This organization is well known in programming
languages where a self-representation of EBNF notation
could be obtained easily in some lines. This notation
allows defining infinity of well-formed grammars. A
given grammar, e.g. the grammar of the C language,
allows defining the infinity of syntactically correct C
program. Several different executions could be realized
from a C program. We would like to point out here a

very important remark concerning the two relationships
“representedBy” and “conformsTo”. It is very important
to distinguish these new relationships from the old
relations of “instanceOf” and “inheritsFrom” of object
technology. As stated in [7], currently, there is an over-
usage of these old relationships in Model Driven
Engineering. Used in different contexts, with different
meanings, this may cause additional confusion for
example by stating that a model is an instanceOf a
metamodel. It is very important to make a careful
distinction between concepts behind the old principle of
object technology “Everything is an object” and the
concepts of the new principle of model driven
engineering “Everything is a model”.

Figure 1.b illustrates the primary idea around the
development of software systems using MDA. The
development is based on the separation of concerns
(e.g. business and technical concerns), which are
afterwards transformed between them. So, business
concerns are represented using Platform-Independent
Model (PIM), and technical concerns are represented
using Platform-Specific Model (PSM). According to

self described

representedBy representedBy

conformsTo conformsTo

conformsTo conformsTo conformsTo

M2

M1

M0

MOF MMM

Java MM UML MM CWM MM

An other UML
model m2

A particular
use of m1

An other particular
use of m1

M3

A UML
model m1

PSM (1)
Relational-DB

PSM (2)
EDOC-CCA

PSM (3)
Web Service

System Code
ORACLE/SQL

System Code
CORBA/CCM

System Code
J2EE/JWSDP

PIM

Slimane Hammoudi, Jérôme Janvier, Denivaldo Lopes

35

figure 1.b, PIM (e.g. a UML business model) is
transformed into PSM (e.g. based on Web Services),
which could be refined in other PSMs (e.g. based on
Java and JWSDP), until exported as code, config files,
and so on. Analyzing each type of model, we can
deduce that a PIM and PSM have a different life cycle.
PIM is more stable over time while PSM is subject to
frequent modification. So, this approach preserves a
business’s logic (i.e. PIM) against the changes or
evolution of technologies (i.e. PSM).

2.2 Model Transformation in MDA

It is well recognized today that model
transformation is one of the most important operation
in MDA [8]. The following definition of model
transformation largely shared in the community is
provided in [9]: “A Transformation is the automatic
generation of a target model from a source model,
according to a transformation definition.

"A transformation definition is a set of
transformation rules that together describe how a
model in the source language can be transformed into
a model in the target language. A transformation rule
is a description of how one or more constructs in the
source language can be transformed into one or more
constructs in the target language”.

The working group on model transformation of
the Dagstuhl seminar [10] suggests that this should be
generalized, in that a model transformation should also
be possible with multiple source models and/or
multiple target models. In our discussions here we are
concerned by transformations that takes a platform-
independent model and transforms it in a platform-
specific model.

Figure 2. Model Transformation in MDA: from
PIMs to PSMs

In the context of the basic four levels metamodeling
architecture of MDA, various scenarios of model-to-
model transformation have been identified [11].

Figure 2 presents the most common scenario of these
transformations, which is compatible with MOF/QVT
RFP [2].

Each element presented in Figure 2 plays an
important role in MDA. In our approach, MOF is the
well-established metametamodel used to create
metamodels. The PIM reflects the functionalities, the
structure and the behavior of a system. The PSM is
more implementation-oriented and corresponds to a
first binding phase of a given PIM to a given execution
platform. The PSM is not the final implementation, but
has enough information to generate interface files,
programming language code, interface definition
language, configuration files and other details of
implementation. Mapping from PIM to PSM
determines the equivalent elements between two
metamodels. Two or more elements of different
metamodels are equivalent if they are compatible and
they cannot contradict each other. A transformation
engine that executes transformation rules realizes
model transformation. Transformation rules specify
how to generate a target model (i.e. PSM) from a
source model (i.e. PIM). To transform a given model
into another model, the transformation rules map the
source into the target metamodel. The transformation
engine takes the source model, executes the
transformation rules, and gives the target model as
output. Using a unique formalism (MOF) to express all
metamodels is very important because this allows the
expression of all sorts of relationship between models
based on separate metamodels. Transformations are
one important example of such a relationship, but there
are also others [7] like model weaving, model merging,
model difference, model metrication (establishing
measures on models), metamodel alignment, etc. Thus,
given ma(s)/Ma and mb(s)/Mb, where ma is a model of a
system s created using the metamodel Ma, and mb is a
model of the same system s created using the
metamodel Mb, then a transformation can be defined as
ma(s)/Ma

→ mb(s)/Mb. When Ma and Mb are based on
the same metametamodel (e.g. MOF), the
transformation may be expressed in a transformation
language such as ATL [8].

There are a number of general challenges in the
definition of a language for model transformation [12].
Some of these challenges are: it must be expressive and
provide complete automation, be unambiguous, and
Turing complete for it to be generally applicable. The
current standardization effort by OMG [2] and many
industrial and academic efforts in this area will allow
advancement on these challenges.

conformsTo

from t
exec

conformsTo conformsTo

conformsTo

conformsTo

MOF

Transformation Language

Transformation
rule

Source
metamodel

Target
metamodel

target source Transfo.
Engine

Source
model

Target
model

Mapping Versus Transformation in MDA:
Generating Transformation Definition from Mapping Specification

36

3 Mapping Versus Transformation: A
lack of consensus

As noticed in the previous page, the figure 2
illustrates the most common scenario for model-to-
model transformation in MDA. According to this figure
we would like to point out two main remarks. The first
remark concerns the “Transformation rules”
component, which merge together techniques of
mappings and transformations without explicit
distinction between them. That is to say, the
specification of correspondences between elements of
two metamodels and the transformation between them
are grouped in the same component at the same level.
We argue here that an explicit distinction between
techniques of mapping and transformation could be
very helpful in the whole MDA process of
transformation and we will comment more on this issue
afterward.

The second remark is related to the first one and

concerns the lack of consensus on terminology around
MDA concepts. Actually, nowadays, MDA suffers
from a lack of agreement on terminology, especially
concerning the concepts of mapping and
transformation. In several works, the concepts of
mapping and transformation are not so clear, since
these terms can refer to many different concepts.
Moreover, as noticed before they are usually defined
without explicit distinction between them.

The table 1 discussed in [13], illustrates in an

obvious manner that the terminology related to these
concepts is really immature.

In this table we have on the left part several recent
publications concerning transformation process in
MDA and on the top part five different concepts linked
to the «Pattern of Transformation» that have been
identified. These concepts are between
“Transformation instance” which is a process that takes
a source model to produce a target model, and a
“Transformation Metamodel”, which is an abstract
formalism for transformation, that allows the
generation of transformation definition, which is
actually a “Transformation Program”.

According to our vision, the concepts of mapping
and transformation should be explicitly distinguished,
and together could be involved in the same process that
we denominate transformation process. In fact, in the
transformation process, the mapping specification
precedes the transformation definition. A mapping
specification is a definition (the most declarative as
possible) of the correspondences between metamodels
(i.e. a metamodel for building a PIM and another for
building a PSM). Transformation definition contains a
description to transform a model into another using a
concrete transformation language such as ATL. Hence,
in our approach the transformation process of a PIM
into a PSM can be structured in two stages: mapping
specification and transformation definition.

This explicit distinction between mappings and
transformations is emphasized in the two following
main fields: Databases and Ontologies. In the context
of databases, mapping and transformation have been
studied for a long time in the domain of database
design. In a recent project on model management
leaded by Phil Bernstein [14], they define mapping
between database schemas as follow:

Transfo.
Instance

Transfo.
Function

Transfo.
Model

Transfo.
Program

Transfo.
Metamodel

MDA Guide - OMG [20] Transfo Mapping

Instance

Mapping

Model

MDA Distilled [21] Mapping Mapping

rule

Mapping
function

____ ____

MDA Explained [9] Transfo.

Mapping

Mapping/Transfo.

rule

Transfo.
definition

____ ____

QVT - DSTC [22] “Tracking” Transfo. rule Transfo. ____ Transfo.

Model

Caplat & al. [23] ___ Mapping Model of

Mapping

Judson & al. [24] Transfo. Transformation
Constraint

Transfo.

Pattern

Model

Transformation

Table 1: Equivalencies between terms according to the Transformation Pattern

Slimane Hammoudi, Jérôme Janvier, Denivaldo Lopes

37

"We defines a mapping to be a set of mapping
elements, each of witch indicates that certain elements
of schema S1 are mapped to certain elements in S2.
Furthermore, each mapping element can have a
mapping expression which specifies how the S1 and S2

elements are related".

In [15], they have studied mapping adaptation
under evolving schemas in dynamic environments like
the Web. In this work mapping is defined as follow:

"A mapping specifies how data instances of one

schema correspond to data instances of another.
Mappings are often specified in a declarative, data-
independent way (for example, as queries or view
definitions). However, they necessarily depend on
schemas they relate."

Finally, the distinction between mapping and

transformation is more stated in Ontologies field. In the
OntoMerge Project [16] at the university of Yale, they
claim the importance to distinguish between Ontology
translation and ontology mapping [17]:

“It's important to distinguish ontology translation

from ontology mapping, which is the process of finding
correspondence (mappings) between the concepts of
two ontologies. If two concepts correspond, they mean

the same thing, or closely related things. The mappings
should be expressed by some mapping rules, which
explain how those concepts correspond. Obviously,
ontology translation needs to know the mappings of two
ontologies first, then it can use the mapping rules.".

4 From Mapping to Transformation in
MDA

Figure 3 illustrate a simple example involving the
concepts of mapping and transformation according to
our point of view. In this example a fragment of UML
metamodel is mapped into a fragment of relational
database metamodel. The mapping part is defined here
using a graphical formalism that we have introduced
[18] to specify mappings between elements of two
metamodels, which are MOF compliant. This graphical
formalism is very useful to specify mappings in a
declarative manner and at a high level of abstraction.
However, it is clear that this formalism is not sufficient
to express complex mappings. Thus, a textual language
must sometimes be used to complete it. OCL (Object
Constraint Language) have been used in several
experimentations of our approach [19].

Figure 3. Transformation Process: from mapping to Transformation

Mapping Versus Transformation in MDA:
Generating Transformation Definition from Mapping Specification

38

All the components linked to the concepts of

mapping and transformation, and their relationships, are
presented in figure 4 [19] based on the four levels MDA
Metamodeling Architecture, which extends figure 2
according to our approach.

This mapping part, which groups a set of

correspondences between elements of two metamodels,
is represented in our approach as a mapping
model(Mapping M). This model must conform to a
mapping metamodel (Mapping MM). In [19], a
complete description of this metamodel is presented.

In the transformation part, a transformation
definition is generated automatically from the mapping
model. This transformation definition is expressed in a
transformation language based on MDA standards
(OCL, MOF). This transformation definition represents
a transformation model (Transformation M), which
conforms to a transformation metamodel
(Transformation MM). This metamodel is a general
formalism for model transformation in MDA.
Currently, OMG is finalizing a standard for model
transformation called QVT (Query / View /
Transformation) [2].

Figure 4. Mapping and Transformation in MDA

In this figure, a mapping model conforms to its

metamodel, and it relates two metamodels (Source
MM and Target MM). A transformation model
conforms to its transformation metamodel, and it is
generated from a mapping model. A transformation
engine takes a source model as input, and it executes
the transformation program to transform this source
model into the target model.

5 Discussion and conclusion

In this paper, we have discussed the MDA
approach providing a description of a transformation
process, distinguishing explicitly the mapping and
transformation parts. Mapping should be considered as
first class entity represented by a model, which
conforms to a metamodel. On the one hand, mapping
part focuses on identifying elements of two given
metamodels that correspond to each other. On the
other hand, transformation is generated automatically
as a program, which permits to translate a source model

Slimane Hammoudi, Jérôme Janvier, Denivaldo Lopes

39

into a target model. Mappings should be as declarative
as possible, while transformations are detailed
programs often involving imperative and declarative
constructs. From a conceptual point of view, this
explicit distinction between mapping specification and
transformation definition remains in agreement with
the MDA philosophy, i.e. the separation of concerns.
Thus, a mapping model may be considered as a PIM
that will be transformed into a PSM, the transformation
model.

6 References

[1] OMG: Model Driven Architecture (MDA)-
document number ormsc/2001-07-01. (2001).

[2] OMG: Request for Proposal: MOF 2.0
Query/Views/Transformations RFP. (2002).

[3] OMG: Meta Object Facility (MOF)
Specification. (2002) Version 1.4.

[4] Eclipse Tools Project: Eclipse Modeling
Framework (EMF) version 2.0. (2004)

[5] UEML.org: Unified Enterprise Modeling
Language (UEML) (2003) Available at
http://www.ueml.org.

[6] OMG: UML Profile for Enterprise Distributed
Object Computing Specification. (2002)

[7] Bézivin, J. On the Unification Power of Models.
Software and System Modeling (SoSym)
4(2):171--188. 2005

[8] Bézivin, J., Dupé, G., Jouault, F., Pitette, G.,
Rougui, J.E.: First Experiments with the ATL
Model Transformation Language: Transforming
XSLT into XQuery. 2nd OOPSLA Workshop on
Generative Techniques in the context of Model
Driven Architecture (2003)

[9] Kleppe, A.,Warmer, J., Bast,W.: MDA
Explained: The Model Driven Architecture:
Practice and Promise. 1st edn. Addison-Wesley
(2003);

[10] Bézivin J, Heckel R, Language Engineering for
Model-driven Software Development. Dagstuhl
Seminar April 2004

[11] I Kurtev, K.Van den Berg. A synthesis based
approach to Transformation in an MDA
Software Development Process. CTIT Technical
Report TR-CTIT-03-27, University of Twente
June 2003.

[12] Sendall S, Kozaczynski W: Model
Transformation – the Heart and Soul of Model
Driven Software Development. IEEE Software,
Special Issue on Model Driven Software
Development, pp42 (Sept /Oct 2003).

[13] Hammoudi S, Lopes D. From Mapping
Specification to Model Transformation in MDA:
Conceptualization and Prototyping. First
International Workshop, MDEIS’2005.

[14] Bernstein, P.A.: Applying Model Management to
Classical Meta Data Problems. Proceedings of
the Conference on Innovative Data Systems
Research (CIDR 2003) (2003)

[15] Velegrakis Y, Miller R.J, Popa L, Mapping
Adaptation under Evolving Schemas. In
International Conference of Very Large
Databases (VLDB), pp. 584-595, Sep. 2003.

[16] ONTOMERGE Project. http://cs-
www.cs.yale.edu/homes/dvm/daml/ontology-
translation.html

[17] Dou D, McDermott D, and Peishen Qi 2003
Ontology Translation on the Semantic Web. In
Proc. Int'l Conf. on Ontologies, Databases and
Applications of Semantics (ODBASE2003).
LNCS 2888.

[18] Bézivin, J., Hammoudi, S., Lopes, D., Jouault,
F.: Applying MDA Approach for Web Service
Platform. 8th IEEE International Enterprise
Distributed Object Computing Conference
(EDOC 2004) (2004) 58–70.

[19] Lopes D., « Étude et applications de l’approche
MDA pour des plates-formes de Services Web »,
Thèse de doctorat, Université de Nantes, UFR
Sciences et Techniques, juillet 2005.

[20] OMG, « MDA Guide Version 1.0.1 »,
OMG/2003-06-01, June 2003.

[21] S. J. Mellor, K. Scott, A. Uhl, and D. Weise.
MDA Distilled: Principles of Model-Driven
Architecture. Addison-Wesley, 1st edition,
March 2004.

[22] DSTC, IBM, and CBOP. MOF Query / Views /
Transformations Second Revised Submission,
January 2004. ad/2004-01-06.

[23] G. Caplat and J. L. Sourrouille. Model Mapping
in MDA. Workshop in Software Model
Engineering (WISME2002), 2002.

[24] S.R.Judson, R.B.France, D.L.Carver.
“Specifying Model Transformation at the
Metamodel Level”, WISME 2003.

Integrating Enterprise Information Representation Languages

Kilian Kiko
University of Mannheim

A 5, 6, B242
D-68161 Mannheim
0049 621 181 3912

Kilian.Kiko@gmx.net

Colin Atkinson
University of Mannheim

A 5, 6, B242
D-68161 Mannheim
0049 621 181 3911

atkinson@informatik.uni-mannheim.de

Abstract

As the importance of enterprise computing systems
continues to grow so does the need for sound but flexible
representations of the information they manipulate. This
has created a growing interest in information
representation languages that are not only easy for domain
and business experts to use but are also amenable to
computer manipulation. Since traditional information
representation languages have tended to focus either on
human usability (e.g. UML) or machine processability (e.g.
OWL) there is currently no language intended for human
use that cleanly satisfies both requirements. In this paper
we discuss the different schools of thought on how to solve
this problem, and analyze the various concrete proposals
that have been put forward. We then present our own views
on how best to meet this challenge.

1. Introduction

Enterprise computing, in which large numbers of
computing devices cooperate to achieve some common
goal or deliver common services, is contingent on those
devices having access to the same representation and
understanding of “enterprise information”. Enterprise
information is any information or “knowledge” that
components of an enterprise need to be aware of to be able
to contribute constructively to the execution of the system,
such as enterprise-spanning concepts, rules and policies.

At the realization level within a running enterprise system,
XML has emerged as the standard format for representing
enterprise information. Since it defines a universal concrete
syntax, XML allows the individual components of an
enterprise to exchange and process information in a
standard way. However, XML only supports the syntactic
representation of information. To attain agreement at the
conceptual level the developers of components must agree
on the meaning of a set of domain types via a common
document type definition (DTD) or XML schema or must
use a higher-level “knowledge representation language”

such as RDF, RDFS, DAML or OWL to formally and
explicitly define information semantics. Using these
languages (which were originally defined to support the
semantic web) enterprise information experts can design so
called "ontologies" that represent the necessary domain
knowledge explicitly. Unfortunately, however, these are
also represented using an XML-based concrete syntax.

Although XML is an excellent medium for machines to
share “knowledge” it is a very human unfriendly
representation format. Even specialized IT personnel find it
tedious and difficult to write XML, let alone normal users
who are the source of most enterprise information. This
makes it almost essential that the XML representation of
information used within a running enterprise system be
generated automatically from higher-level “human
friendly” representations. These “high level”
representations need to be as accessible as possible to the
generators and owners of enterprise information but at the
same time transformable into XML with minimal
intervention by IT personnel since this is a significant
source of errors. In other words, high-level Information
Representation Languages (IRLs) are required which (a)
are as friendly as possible to domain/business experts to
allow them to capture their knowledge and (b) have as
precise a meaning as possible to enable them to serve as the
source of automated transformations.

One of the most widely-accepted and popular Information
Representation Languages (IRL) is the UML [3]. Since it
was developed for ease of use rather than semantic
precision UML is more expressive than semantic web
languages such as OWL but generates models which
usually have more ambiguous semantics. In contrast,
Ontology Representation Languages (ORL) based on
Description Logic, such as OWL DL [1], have the great
strength that they capture information in a way that is
semantically precise and computational. Until relatively
recently, therefore, there was no significant overlap in the
range of applications for which the UML and ORLs were
both suited, and it was easy to recommend which
technology to use in which situation. UML was clearly the

Integrating Enterprise Information Representation Languages42

best choice for software engineering oriented analysis and
design where expressive power is more important than
semantic precision, whereas description logic based ORLs
such as OWL DL and DAML were clearly the best choice
for semantically precise and computational knowledge
representation.

This clear separation of concerns was significantly blurred,
however, with the addition of the Object Constraint
Language [6] to the UML suite of standards. OCL was
defined with the specific goal of enabling the meaning of
UML models to be more precisely specified. As a
consequence it is a significant open question as to how the
combination of the UML and OCL compares to knowledge
representation languages such as OWL with regard to
expressiveness, semantic precision and computability.
Broadly speaking three distinct groups or schools of
thought can be identified on this issue.

The first perceives UML1 as a self-contained IRL equally
as capable of representing ontologies as DL-based semantic
web languages such as OWL. Proponents of this approach
such as Cranefield et al. [7] and Flakovych et al. [9] hold
that it makes no difference whether an ontology is modeled
in OWL or in UML. UML modelers are thus instantly
promoted to the status of “ontology developers”.

The second group grants only lightweight ontology
definition capabilities to the UML and holds that an
extension to the language is required to allow it to support
advanced OWL-like capabilities. Members of this group
such as Baclawski [4] believe there is value in using the
UML and UML tools for ontology engineering but only as
a convenient “front end” for “proper” ontologies in DL
based languages such as OWL. This is primarily driven by
the lack of a graphical front-end for the semantic web
languages. The basic philosophy of this group, therefore, is
to introduce ontology representation concepts into the
UML that are not inherently supported by UML diagrams.
The result is a mixed language that uses UML syntax and a
set of stereotyped UML constructs to emulate advanced
OWL features.

The third group goes even further by introducing a new
metamodel into the MDA family of modeling languages -
the so called Ontology Definition Metamodel. The
approach denies any knowledge representation capabilities
to the UML and holds that UML syntax can only be used to
represent ontologies via a new modeling language.
Members of this group are not interested in using the UML
per se for ontology definition but only in “borrowing” some
of its user-oriented graphical syntax comparable to the
second group. The metamodel is either a close copy or a
direct representation of OWL's abstract syntax in the form
of a MOF-based metamodel.

1 In the remainder of this paper, the term UML will be used to refer to the

combination of UML and OCL, unless stated explicitly to the contrary.

Our goal in the remainder of this paper is to explore these
three schools of thought in more detail and to highlight the
fundamental differences between them. Where they exist
we also discuss the various unification proposals that have
been put forward. In the conclusion we then state our
position on the issue and present our suggestions for how
the UML and ORL technology spaces can best be unified.

2. UML as an Ontology Representation
Language

A number of researchers representing the first school of
thought have recognized the potential of the UML for
ontology modeling. Cranefield and Purvis [7], for example,
investigated to what extent a subset of the UML (consisting
of class diagrams and object diagrams) combined with the
OCL could be used as an ontology representation language.
They discovered that UML/OCL can be used for several
reasoning tasks, but also came to the conclusion that the
OCL is in general too expressive and needs to be restricted
to a set of standard OCL constraints that are amenable to
automated reasoning.

Cranefield and Purvis also came to the conclusion that a
combination of UML class and object models and OCL are
more expressive than description logics [7]. To be
equivalent to OWL, the UML and OCL combination needs
to be restricted to an adequate set of language constructs.
They also claimed that it is powerful enough to be used as
an ORL plus logic/rule language combination such as the
enhanced semantic web languages like DAML-L or
RuleML on top of OWL. Cranefield also developed a
"UML Data Binding" tool for Java [8] to generate Java
classes and RDF schemata from a class diagram encoded in
XMI format. An interesting aspect of Cranefield's approach
is that the UML is used directly and not as a mere visual
syntax for another knowledge representation language [10].
He sees the UML/OCL combination as a heavyweight
knowledge representation language that is as expressive as
or even more expressive than description logic based
knowledge representation formalisms.

Another related research initiative examined UML
reasoning possibilities by providing a mapping between
UML and ontology representation languages. Although this
implies that the UML still needs a formal DL-based
language foundation to support inference, it also holds that
the UML has a mapping to these languages and can
therefore be formally defined as equivalent to them. Cali et
al. [11] investigated the expressiveness of the class diagram
subset of UML in comparison with a description logic.
They show that it is possible to apply several description
logic inference techniques on standard UML class
diagrams. This was achieved by presenting a new
formalization of UML class diagrams in terms of the DLR
description logic, thereby establishing that UML class
diagram semantics can be formally specified. This was

Kilian Kiko and Colin Atkinson 43

done by mapping the UML class diagram constructs onto
the DLR constructs. The DLR is a very expressive
Description Logic that is capable of handling n-ary
relations (roles), relation intersection and negation
(disjointness). The authors focused on the formalization of
the class diagram concepts and did not consider OCL
constructs. They demonstrated that class diagrams can be
given a formal semantics based on description logics. It can
therefore be argued that even class diagrams alone are a (at
least lightweight) knowledge representation technique
which shares many common constructs with description
logics.

Other work has focused on a transformation of UML class
diagrams into existing semantic web languages like OIL or
DAML+OIL [9] to use their inference capabilities and tools
for reasoning on UML modeled ontologies. The problem
with this approach is that these existing languages are not
absolutely equivalent to the UML and the mapping
therefore needs to compensate for the differences.
Falkovych for example defines a foundational ontology to
represent the different mereological types of UML
association relationships so that they can be supported in
DAML+OIL [9]. A similar approach was taken by
Feldering et al. who captured UML aggregation semantics
in a general ontology for OIL [9]. On the other hand UML
class diagrams do not feature a lot of special OWL axioms
(like logical association characteristics, sufficient
conditions, etc.) that these approaches cannot represent. In
this work the Object Constraint Language was not
considered for knowledge representation.

3. UML as a Modeling Syntax for Ontology
Representation Languages

The second school of thought focuses on trying to
overcome the so called "modeling bottleneck" [9] caused
by the lack of professional ontology builders and
sophisticated modeling tools for semantic web languages.
These approaches see the UML as a modeling syntax for an
ontology representation language and do not regard it as
possessing any higher knowledge representation and
reasoning capabilities. They therefore argue that it needs to
be adapted or at least extended to be used for ontology
engineering.

The basic idea is to map ontologies represented in this
adapted UML into a "real" ontology representation
language with a sound description logic foundation. In
contrast to the transformation-based approaches in the last
subsection which view the UML as a knowledge
representation language that only lacks reasoning support
and therefore try to map the UML to a formal ontology
representation language, this school of thought does not
regard the UML as having useful knowledge representation
capabilities and see it as a mere concrete syntax for the real
knowledge representation and reasoning languages.

Kenneth Baclawski et al. [4] support this approach by
defining a UML profile to visualize DAML. In this
approach UML stereotypes are mapped to DAML
elements.

Baclawski et al. propose an extension to the UML
metamodel to handle the identified incompatibilities while
remaining backward-compatible with existing UML
models. The concept of class is perceived as equal in both
domains. The foundational concepts in the semantic web
languages (Literal, Resource and Thing) are assumed as not
existing in the UML and therefore incompatible. This view
is untenable, however, since the UML [3] explicitly defines
a set of primitive datatypes (String, Integer, Boolean,
UnlimitedNatural) and explicitly defines the universal class
Object in the MOF [23] and implicitly in the UML
specification [3]. The class Object is also well established
in implementation models as it is supported by several
object-oriented programming languages (e.g. Java, Eiffel).
It is therefore a generalization of “everything”. In contrast
to “Thing” there is an explicit equivalent to “Nothing” in
the OCL namely OclVoid. Baclawski et al. [4] further state
that the UML supports non-binary relations that must be
reified to be adaptable in DAML (or OWL). If interpreted
as the principle that an n-ary relation is reified into a class
of objects representing the relation, this argument is correct
but it is a general problem of DAML (resp. OWL) and not
of the UML. Every time one wants to define an n-ary
relation in OWL it has to be "reified" in this manner by
creating individuals that represent actual relations and a
class that represents the relation on the type level with n
binary properties. For different patterns based on this
approach consider [24].

The authors state that multiplicity constraints on UML
associations affect class memberships [4]. This is in general
true as the UML is usually (but not necessarily) interpreted
on the basis of the closed-world assumption (CWA). On the
other hand it is not clear why open-world assertional
knowledge should not be (indirectly) affected by
cardinality constraints. They further claim that UML
associations have no first class status since their definitions
depend on association ends. This assertion is wrong as
UML associations are top-level modeling elements that are
in the same namespace as classes (i.e., the model or
package namespace) and have no obligatory association
end type definitions [3]. Baclawski et al. unfortunately
confuse first-class status with global scope that is implied
by the open-world assumption in OWL. The authors
propose to add a new type of model element to the UML
metamodel for representing (first-class) properties. These
properties are interpreted as the aggregation of association
ends from different (and semantically equivalent)
associations. The authors unfortunately overlook the UML
association redefinition and specialization capabilities that
are used to define semantically equal (aggregations of)
associations.

Integrating Enterprise Information Representation Languages44

Another added metamodel element is Restriction. This is a
classifier whose instances are the objects that satisfy a
condition on a property associated with the restriction. The
Restriction construct is equivalent to usual UML
association (end) definitions and specializations and
additional OCL statements. A new special construct that is
incompatible with the standard UML is therefore
unnecessary. The other mentioned incompatibilities
regarding cardinality constraints, association taxonomies
and namespaces are dubious since they are already
challenged and refuted by the authors themselves (see [4]).
Baclawski et al. fail to explain how synonyms, sole
existential quantifications, the distinction between
necessary and sufficient conditions as well as primitive and
defined concept descriptions, and the closed-world
assumption are handled by their approach. The proposal
introduces a set of stereotypes for associations (e.g.
TransitiveProperty) and dependencies (e.g. inverseOf,
e q u i v a l e n t T o , sameClassAs, samePropertyAs,
subPropertyOf) that except for object equivalence can all
be represented either directly by a UML construct (e.g.
association specialization, bidirectional association) or by
an OCL constraint. The approach by Baclawski et al. does
not use all UML diagram features and it entirely neglects
UML's Object Constraint Language.

The introduced metamodel classes and stereotypes are
directly related to DAML constructs, which are largely
unknown outside the Semantic Web and DAML
communities. The approach can therefore be interpreted as
a UML-based graphical syntax for DAML. The authors
have developed a UML profile on the basis of the extended
metamodel that has already been used in the UML Based
Ontology Tool-set (UBOT) project, which is a set of
ontology engineering and natural language processing-
based text annotation tools [10], and the DAML-UML
Enhanced Tool (DUET), which is developed by the
Components for Ontology Driven Information Push
(CODIP) project and based on Rational Rose add-ins [10].
The benefit (for the DAML community) of this approach is
that it enables the use of UML tools like Rational Rose for
DAML ontology definition.

3.1 The Ontology Definition Metamodel Approach

The third school of thought holds that the goals of UML
and OWL are fundamentally incompatible from one
another and can not as a matter of principle be unified. This
is depicted in Figure 1 which shows that there is only a
relatively small overlap between the feature sets of UML
and OWL [12]. This school first argued for a new modeling
language to be added to the OMG's metamodel suite which
compensates for the handicaps of the UML and provides
users with OWL-like ontology representation features
within the context of the MOF/MDA infrastructure. The
term Ontology Definition Metamodel (ODM) has been
coined as a name for the abstract syntax of this language.

The focus of the ODM Request for Proposals (RFP) was
for a language that allows platform-independent modeling
of ontologies. In most of submissions, the proposed ODM
is based on a direct mapping of the OWL abstract syntax
which makes it more of a platform model. However, as
explained in [15], [16], [17], [19] it is the most
comprehensive ORL of the Semantic Web .

In its most recent documentation the ODM task force has
changed direction however [25]. The group still does not
recognize the UML as an ontology definition language but
now argues for a family of independent metamodels that
represent specific knowledge representation languages in
contrast to a single platform-independent metamodel.

Below we introduce two alternative ways of fulfilling the
original requirements of the Ontology Definition
Metamodel RFP [12] and evaluate their strengths and
weaknesses. Original submissions such as IBM's ODM
proposal [13] or Gentleware's proposal [14] are either
similar to the first proposal (in Section 3.2) or discussed
extensively by the University of Karlsruhe's proposal and
described along with that proposal in Section 3.3. We are
not interested in repeating already available analysis on the
first ODM submissions that has been done in the ODM
workgroup and in commentaries (e.g. [17]). Therefore we
will focus on responses to these submissions and the latest
submission of the workgroup. This current ODM proposal
is presented in Section 3.4.

Figure 1 Semantic Overlap between the Modeling
and Ontology Representation Languages

3.2 University of Belgrade's Proposal

A team at the University of Belgrade presented a proposal
for the ODM and the Ontology UML Profile (OUP) [15],
[16]. This proposal is not an official ODM submission but
it exemplifies the direction of the first set of proposals (e.g.
[13], [19]). In their proposal, the description logic variant
of OWL (OWL-DL) is used as the basis for the ODM. The
authors highlight the benefits of a MOF-based version of
OWL's abstract syntax for the semantic web community
[16], and the role of the OUP as a means to utilize the
visual modeling capabilities of the UML [15]. The ODM is
placed in the second layer of the OMG's four-layer
metamodeling hierarchy [16]. Instances of this metamodel

Kilian Kiko and Colin Atkinson 45

are models in the M1 layer. These ODM models are OWL
ontologies which is somewhat contradictory to the ODM's
platform-independent role in the ODM RFP [12]. The
problem with this approach is that the ODM has no
concrete syntax other than the XMI representation of its
models. Therefore, the approach makes use of another
MOF-based modeling language namely the UML.

To use the UML concrete syntax in an adapted form for the
ODM, the ODM RFP suggests the workaround of a UML
profile. This profile uses the stereotype mechanism to
introduce ODM constructs into the UML metamodel so that
M1 models of this profile can instantiate these constructs.
The OUP models can then be transformed via XSLT into
ODM XMI or even OWL XML representations. By using
the profile mechanism, the authors avoid the consequences
of a real extension of the UML metamodel which would
require the new constructs to be direct subclasses of the
UML metaclasses [15]. The stereotype annotations to the
model can be applied in a much more arbitrary and ad hoc
style. The models created with the profile do not need to be
consistent UML models. In fact the OUP models are
effectively OWL ontologies in a UML like syntax, which is
exactly what the authors intended.

The problem with this approach is that it seems to be only
loosely based on the UML. The only resemblance it bears
to the UML is that OUP model elements that are interpreted
as sets of individuals or of tuples of individuals are
depicted as classes. However, while associations and
attributes in a UML model are interpreted as associations in
the semantic domain, OUP associations and attributes are
interpreted as meta-attributes. The single OUP constructs
have no interpretation in the semantic domain; they are
only dummy metamodel elements that allow certain OWL
expressions to be expressed in a UML diagram. This is the
reason why the authors allude to the OUP as not being a
stand-alone ontology language [15]. Otherwise, one would
wonder why two metamodels are needed for the same
purpose. However, since OUP elements such as
restrictions, allDifferent and the anonymous class
descriptions of the ODM have no UML compatible class
interpretation in the semantic domain, the OUP cannot be
understood as a language but only as a vocabulary of
annotations of rectangles and lines using the UML profile
mechanism. Nevertheless, basing a new language's concrete
syntax on another language's syntax by adapting this
language's abstract syntax is awkward. The plan is to
provide an interim solution until a separate syntax for the
ODM is defined so that only transformations from the
ODM to the OWL are needed. To what extent the new
syntax differs from the UML syntax is an open issue.

3.3 University of Karlsruhe's Proposal

Like the proposal described in the last subsection this
proposal also proposes an ODM for OWL DL [17]. The

difference between this and the other proposals is that the
authors explicitly try to achieve an intuitive notation for
both communities [17]. This means that the result is not
intended to just be a new modeling syntax for OWL but
also a chance for UML users to easily model OWL
ontologies. The proposal therefore stands in contrast to
most of the other ODM proposals. The authors view the
IBM proposal [13] as being extremely counterintuitive as it
models OWL properties as UML classes and OWL class
constructors as UML associations [17]. Gentleware's
proposal [14] is also criticized as being a cumbersome RDF
serialization of the OWL. This proposal also uses UML
classes to depict OWL properties and comments to specify
specific class constructors. Sandpiper's [20] and the
DSTC's [18] approaches are criticized for providing no
visual syntax or metamodel. The merged proposal [19] is
criticized for having too wide a scope which leads to
complex mappings and bad readability and usability [17].
The authors therefore argue that a metamodel for every KR
paradigm and language should be developed. This is in fact
the role of platform specific metamodels. However, this is
not the role of the ODM, which is explicitly designated to
be platform independent. Their proposal is not really an
ODM proposal therefore but a proposal for a platform
specific model of OWL DL.

Like every other proposal in the context of the ODM RFP
this proposal ignores the OCL and only tries to map OWL
DL constructs to existing or customized UML
diagrammatic constructs. They therefore explicitly
introduce equivalentProperty and equivalentClass
associations into their ODM metamodel [17]. The omission
of OCL constraints leads to the requirement for graphical
representations for all metamodel constructs. These are
defined in the author's UML-profile for ontologies. New
constructs are needed for anonymous class descriptions in
the context of logical and property restriction class
constructors. Class equivalence is depicted by a
bidirectional generalization arrow [17]. OWL object
properties are represented as UML n-ary associations (i.e.,
the diamond notation); while datatype properties are
depicted as UML attributes [17]. This ignores UML's
ability to redefine associations as explained in [3]. It is also
problematic because property restrictions are erroneously
depicted as domain and range values for the property,
which is not intended by OWL. UML attributes cannot be
specialized and have no classifier interpretation in the
UML. It is therefore difficult to model datatype properties
only in this way. Their enumerated datatype construct [17]
is completely redundant as the UML features exactly this
concept as well (cf. [3]). This proposal uses the UML
instance specification construct to depict individuals. In
contrast to IBM's proposal, which suggests using a class
Thing for individuals, they argue that this would blur the
difference between object and model level in the UML. The
actual problem is not a universal concept Thing, but the
distinction between Thing being the logical classifier of all

Integrating Enterprise Information Representation Languages46

individuals and Object or InstanceSpecification being their
linguistic classifier. A two dimensional infrastructure [5]
explicitly requires a universal concept Thing as is further
explained in [21].

3.4 The ODM Task Force's Family of Metamodels
Proposal

The ODM workgroup recently changed their initial
approach of a single language- and formalism-independent
ontology metamodel with an associated hub-and-spoke
architecture, where the ODM would be the central
metamodel into which every ontology in any language
would be translated (and vice versa). The new ODM is a
collection of language-specific metamodels for several
existing knowledge representation languages. Currently
supported are the Simple Common Logic [27], Topic Maps
[26], RDFS, OWL Full and Entity Relationship modeling.
An ontology in one of these languages can be transformed
into an ODM model and thus available within the MDA
infrastructure without loss of information. This was not
possible with the original approach of a single general
ODM metamodel. A set of mappings between the
metamodels is defined to support interoperability. To
reduce the number of transformation mappings OWL Full
has been selected as a central hub metamodel. The
mappings should support the use of legacy models as a
starting point for ontology development and they should
enable users to choose from the range of different
languages based on the required degree of expressivity and
change as needed [25]. A third major component of the
new ODM proposal is the collection of UML profiles for
the different knowledge representation metamodels
(currently RDFS, OWL and Topic Maps). These profiles
should provide a bridge between the UML and knowledge
representation communities [25], or more precisely
between UML tools and the KR communities. Models and
ontologies are bridged by the appropriate bidirectional
mapping between OWL Full and UML. The profiles
therefore serve as a means to utilize UML modeling tools
for visual ontology development. The UML profile for
OWL suffers from the same problems as identified in [17]
as it is based on the IBM proposal [13]. Finally, in order to
respect the OMG four-layer metamodel hierarchy, a
foundational ontology has been added for RDFS and OWL
that encompasses the OWL/RDFS elements that belong to
the model level (i.e. owl:Thing, owl:Nothing, rdf:nil, and
the XML Schema datatypes) as an M1 model library. The
new ODM approach is a mixture of the old hub-and-spoke
architecture, which is now based on OWL Full (as depicted
in Figure 2), and the second school of thought (Section 0)
that used the UML as a mere modeling syntax.

Figure 2 Structure of the ODM from [25], Figure 1,
Section 9, page 74

The new ODM proposal is based on the premise that the
UML is not a practical language for representing
ontologies. This premise is justified by a comparison
between the UML and the OWL Full languages [25], [2]
which is claimed to identify the incompatibilities between
the two languages. However, it rather reveals a tremendous
overlap between the two languages. Only a few concepts
needed for ontology representation are not available in the
UML class diagram metamodel. Moreover, the authors
unfortunately omit the OCL from the comparison and thus
do not consider the possibility that the OCL might feature
the missing OWL constructs. In fact, the authors state that
the OCL is a predicate definition language that is more
expressive than OWL Full [25]. The analysis in [25]
identified the following potential shortcomings of the
UML: support for synonyms, extension equivalence
specification, sufficient conditions, complex class
constructors, the logical characteristics of associations,
existential quantification and value restriction, global
properties, autonomous individuals, class-specific
cardinality constraints, the universal concept Thing and the
OWL Full feature of classes as instances. However, most of
these potential shortcomings have been disproved in [21],
which we will briefly summarize here. The universal
concept is part of the OCL and implicitly also of the UML.
It is no problem to assume its existence or make it
explicitly available. Value restriction is implicitly applied
to every association as the UML follows the CWA. UML
associations are as global as global properties in the OWL.
An absolute global (or universal) scope, however, has to be
explicitly specified. Local restrictions are made by
association redefinitions or specializations which includes
class-specific cardinality constraints. The intended meaning
of "global" in the comparison [25], however, is that
properties in OWL can apply to every class and have
universal scope. This is related to the open-world

Kilian Kiko and Colin Atkinson 47

assumption and can be resembled by defining every
association in the context of the universal class. In the
UML, under certain assumptions all individuals (objects)
are autonomous, otherwise multiple and dynamic
classification would not be feasible. It is even possible for
an object to be only an instance of the universal concept.
All subclasses are by default defined to form a non-
covering partitioning of the universal class. Sufficient
conditions, complex class constructors, extension
equivalence, logical characteristics of associations and
existential quantification restrictions are all realizable with
the OCL. Some of them are even realizable with UML
diagram elements using anonymous classes and
generalization-set constraints. The definition of metaclasses
as in OWL Full is done using the UML stereotype
mechanism. Nevertheless, a more appropriate solution for
both languages would be a two dimensional modeling
infrastructure as explained in [5], [21]. The only real
missing feature identified by the analysis are synonyms that
relate to the unique name assumption in the UML which is
omitted in the OWL. However, the authors rather state that
the UML places no constraints on names at the M0 level
[25]. This is correct but it has no influence on the fact that
the representation of M0 level elements in UML object
models (M1) underlies the unique name assumption. On the
other hand, UML datatype enumerations are spuriously
equated with OWL object enumerations [25] and the
consequences of closed-world semantics in the extensional
knowledge are disregarded.

4 Summary of the Approaches

In addition to the three widely recognized approaches
described above, three further options can be selected. One
is to use an existing IRL. Another is to develop a new IRL
that provides the required characteristics. And a third way
is to adapt an existing IRL to the requirements. The first
option can be discarded as no IRL fulfills the needs. The
second option has been effectively disapproved by the
ODM task force. The OMG ODM RFP and the first
submissions believed in the creation of a new metamodel
for ontology definition. That metamodel should encompass
all relevant IRLs. However, the recent proposals show that
a new metamodel was neither feasible due to insufficient
commonalities nor wanted as existing IRL could also
perform the job. The presented approaches differ in the
selected IRL and the taken action to meet the needed
requirements. The major candidates for an IRL are the
UML and OWL. The UML posses the needed user-friendly
interface, a wide tool support and a large educated work
force. However, it lacks a formal semantics. OWL on the
other hand possesses a model theoretic semantics and with
the DL sublanguage a deducible set of constructs. On the
other hand lacks OWL a user-friendly interface, broad tool
support and experienced users.

The first approach points out that the UML can be mapped
to a formal ORL, which implies that a formal semantics can
be applied to the UML. However, the approach to date
lacks a complete definition of the UML/OCL semantics and
is unclear on how the UML could be OWL compatible, i.e.
define OWL compliant ontologies. The second approach
suffers from being somewhat isolated because of a single
ORL approach without a metamodel and MDA-based
transformation support, and inadequate usability due to a
direct representation of the ORL's abstract syntax in a UML
profile.

In the approaches that base the ODM completely on OWL,
the ODM is a platform-specific metamodel for OWL
ontology definition. The advantage of this approach is that
MDA tools can be used for model management and
transformation of an ODM model into a model of another
MOF-based language, according to a transformation
definition. Moreover, like all MOF-based languages the
ODM supports an XMI serialization that allows tool
interoperability. The UML profiles enable the use of
existing UML tools, which right away become ontology
modeling tools. These benefits are balanced by the
problems that the direct mapping of OWL constructs into a
modeling language brings. Several OWL constructs like
restrictions cannot be well represented visually. Their
graphical presentation is very awkward and results in
complex and clumsy models. This results in reduced
usefulness and productivity. The use of OWL terminology
leads to a lot of synonyms and homonyms for UML
constructs that cause confusion. A business engineer who is
not familiar with the Web Ontology Language is not likely
to be familiar with the UML profile for OWL. An
experienced ontology engineer on the other hand would
have to handle the specialties and pitfalls of the UML.
Although we identified several issues where the University
of Karlsruhe's proposal (Section 3.3) does not use original
UML constructs (especially the complete OCL), we believe
this is the best attempt so far (of the ODM proposals) to
match UML constructs with OWL constructs and thus to
increase the usefulness of such models. A critical issue is
the difference between the UML closed-world assumption
and OWL's open-world assumption. An ODM-based
approach that only uses the UML concrete syntax only has
to frame rules for its correct open-world semantics usage,
although this might be a problem for experienced UML
users. However, a profile based approach is technically
bound to the UML semantics. Only the current ODM
submission partly addresses this issue by adding a
foundational ontology.

The current ODM approach facilitates interoperability
among IRLs. It allows UML models to be translated into an
OWL Full model and afterwards into any other ORL
ontology. However, the UML to OWL mapping guaranties
only lightweight ontology modeling support for the UML,
otherwise the UML would have been used as the ODM in

Integrating Enterprise Information Representation Languages48

the first place. The special role of the OWL metamodel in
the ODM reinforces the gap between the two technology
spaces and compounds the confusion within the MDA
framework as it tries to establish another general purpose
modeling language in the MDA architecture. This
reinforces the message that there is a fundamental
difference between system, knowledge and data
representation.

Neglecting the OCL forces the representation of all OWL
DL constructs as graphical constructs. The problem of this
approach lies in the characteristics of graphical
representation languages. As was already realized in the
OO-modeling community it is not possible or favorable to
represent every logical construct in a graphical modeling
language. The important disadvantage of a visual language
is that some logical statements, which could be easily and
concisely defined in textual languages, get very complex
and cumbersome in a visual language. The
usability/complexity trade-off which makes visual
languages easy to comprehend in general but clumsy for
representing complex expressions led the OO-modeling
community to develop the OCL as an equal companion of
the UML. Unfortunately, only one approach to ontology
representation using the UML has so far taken the OCL
into consideration.

A few of the different characteristics of the presented
approaches are depicted in Table 1. The initial requirement
was a user-friendly language that can be easily translated
into ORLs. Both characteristics can be read off the table.
The second is clear for a language that is already an ORL.
How the UML can be translated into OWL and other ORLs
is not completely explained. Usability, on the other hand, is
composed of several sub-properties (homogeneity of
language environment, instant access, deflection from
familiar standards, efficiency of modeling, etc.).

5 Conclusion

In this paper we have characterized the space of possible
strategies for integrating ontology representation and
modeling technologies. We have identified the three major
schools of thought on how this should be achieved, and
have analyzed all the existing proposals to a reasonable
level of detail.

This investigation has revealed that contrary to popular
belief UML/OCL is a potential candidate for use as a
higher-level information representation language for
enterprise information. In fact UML/OCL is as good as an
ORL for supporting the semantically precise representation
of information provided that the appropriate frame

Table 1 Comparison of the presented approaches with their characteristics

The approaches and
their characteristics and

feature fulfillment

Po
si

tio
n

of
 a

pp
ro

ac
h

in
pa

pe
r

(s
ec

tio
n

re
fe

re
nc

e)

U
sa

bi
lit

y

Su
pp

or
te

d
IR

L
s

an
d

in
te

ro
pe

ra
bi

lit
y

U
se

 o
f

U
M

L
-t

oo
l a

nd
la

ng
ua

ge
 in

fr
as

tr
uc

tu
re

U
til

iz
at

io
n

of
 M

O
F

an
d

M
D

A
 in

fr
as

tr
uc

tu
re

E
as

ily
 tr

an
sl

at
ab

le
 in

to
(S

em
an

tic
 W

eb
)

O
R

L
s

In
st

an
t a

cc
es

s
fo

r
bu

si
ne

ss
an

d
ap

pl
ic

at
io

n
de

ve
lo

pe
rs

In
st

an
t a

cc
es

s
fo

r
on

to
lo

gy
en

gi
ne

er
s

L
ar

ge
 e

xp
er

ie
nc

ed
w

or
kf

or
ce

A
cc

es
s

to
 O

E
-t

ec
hn

ol
og

y
fo

r
m

od
el

in
g

co
m

m
un

ity

A
cc

es
s

to
 M

D
A

-t
ec

hn
ol

og
y

fo
r

on
to

lo
gy

 e
ng

in
ee

ri
ng

co
m

m
un

ity

UML+OCL as ORL 2 + - + + o + - + + o

UML-profile as
modeling syntax 3 - - + - + - o - - -

Old
ODM

4.1 - o + + + - + - - o

UML +
OWL-
Mix

4.2 o o + + + o o o o +

MOF-based
abstract

syntax and
UML-based

concrete
syntax

New
ODM

4.3 o + + + + - o o + +

Legend:

+ fully achieved, - not achieved, o partly achieved

Kilian Kiko and Colin Atkinson 49

conditions are defined using OCL constraints. Therefore,
given the very high number of educated UML designers
who already use it for requirements engineering and
business process design, as well as the ease of use and
broad tool support for the language it makes sense to use
the UML as the basis for the standard information
representation language.

While the ODM claims that the UML is only needed for the
support of legacy information [25], we believe that the
UML as a platform-independent metamodel should have
the primary role in ontology modeling. The different ODM
metamodels serve as platform-specific metamodels, and
mappings between the UML and these metamodels act as
MDA-compliant transformation rules. The UML profiles
will not be the primary ontology development syntax for
the end user but an intermediate format for specialized
MDA engineers. The user can still choose between
different expressivity and computability trade-offs, but will
only need to model once in the UML.

A fair compromise would be the parallel existence of both
approaches. This would afford the same bidirectional
mappings to and from the UML as they are currently
available for OWL Full. The user could then choose which
language – the UML or the UML profile for OWL – that he
or she prefers for platform-independent ontology modeling.

The problem with the UML/OCL framework at the moment
is that it is too powerful (i.e. too expressive) rather than too
weak for the purpose of creating semantically precise and
computational representations of enterprise information.
What is needed, therefore, is a way of tailoring the frame
assumptions that bound the semantics of UML models so
that, where needed, they can be restricted to the semantics
of Description Logics which have desirable computational
properties. However, this does not imply the need for
disjoint sets of features or complex mappings between
visual but semantically vacuous pictures of enterprise
information and concrete but user inaccessible
representations. On the contrary, it implies the need for a
single unified core set of modeling features supported by
tailorable frame assumptions [22].

Thus, to conclude, we firmly believe that the approach
advocated by the first school of thought is the correct one
in the long run, that the current ODM proposal is an
important part of the final solution, and that the other
approaches, while representing helpful bridging
technologies, should not form the basis for a future unified
enterprise information representation language.

References

[1] Michael K. Smith, Chris Welty, and Deborah L.
McGuinness, Editors, "OWL Web Ontology Language
Guide", W3C Recommendation, 10 February 2004,
http://www.w3.org/TR/2004/REC-owl-guide-20040210/, [30

Mai 2005]. Latest version available at
http://www.w3.org/TR/owl-guide/.

[2] Lewis Hart, Patrick Emery, Bob Comb, Kerry Raymond,
Sarah Taraporewalla, Dan Chang, Yiming Ye, Elisa Kendall,
Mark Dutra, "OWL Full and UML 2.0 Compared", OMG
TFC Report, 2004.

[3] Object Management Group, "UML 2.0 Superstructure
Revised Final Adopted Specification", OMG Specification,
October 2004.

[4] Kenneth Baclawski, Mieczyslaw M. Kokar, Paul A. Kogut,
Lewis Hart, Jeffrey E. Smith, Jerzy Letkowski, and Pat
Emery, "Extending the Unified Modeling Language for
ontology development", Software and System Modeling, vol.
1 , pages 142-156, 2002.

[5] Colin Atkinson and Thomas Kühne, "Model-Driven
Development: A Metamodeling Foundation", IEEE Software,
vol. 20, pages 36-41, 2003.

[6] Warmer, J., Kleppe, A., "The Object Constraint Language,
Second Edition. Getting your Model ready for MDA",
Addison Wesley, 2003.

[7] Stephen Cranefield and Martin Purvis, "UML as an Ontology
Modelling Language", in Proceedings of the IJCAI-99
Workshop on Intelligent Information Integration, held on
July 31, 1999 in conjunction with the Sixteenth International
Joint Conference on Artificial Intelligence City Conference
Center, Stockholm, Sweden, 1999.

[8] Stephen Cranefield, "UML and the Semantic Web", in
Proceedings of SWWS'01, The first Semantic Web Working
Symposium, Stanford University, California, USA, pages
113-130, 2001.

[9] Kateryna Falkovych, Marta Sabou, and Heiner
Stuckenschmidt, "UML for the Semantic Web:
Transformation-Based Approaches", in Omelayenko, B. and
Klein, M. eds. Knowledge Transformation for the Semantic
Web, Frontiers in Artificial Intelligence and Applications,
vol. 95, IOS Press, pages 92-106, 2003.

[10] Paul Kogut, Stephen Cranefield, Lewis Hart, Mark Dutra,
Kenneth Baclawski and Jerry Smith, "UML for Ontology
Development". Knowledge Engineering Journal, vol. 17,
issue 1, pages 61-64, March 2002.

[11] Andrea Cali, Diego Calvanese, Giuseppe De Giacomo and
Maurizio Lenzerini, "A Formal Framework for Reasoning on
UML Class Diagrams", Lecture Notes in Computer Science,
vol. 2366, pages 503-512, 2002.

[12] Object Management Group, "Ontology Definition
Metamodel Request for Proposal", OMG RFP, 2003.

[13] IBM, "Ontology Definition Metamodel (ODM) Proposal".
August, 2003.

[14] Gentleware, "Ontology Definition Meta-Model". August,
2003.

[15] Dragan Djuric, "MDA-based Ontology Infrastructure".
Comput. Sci. Inf. Syst., vol. 1, 2004

[16] Dragan Djuric, Dragan Gasevic, and Vladan Devedzic,
"Ontology Modeling and MDA." Journal of Object
Technology, vol. 4, no. 1, pages 109-128, 2005.

Integrating Enterprise Information Representation Languages50

[17] Brockmans, S., Volz, R., Eberhart, A., and Löffler, P. (2004),
"Visual Modeling of OWL DL Ontologies Using UML", in
International Semantic Web Conference, pages 198-213,
2004.

[18] DSTC, "Ontology Definition MetaModel Initial
Submission". August 2003.

[19] Lewis Hart, Patrick Emery, Bob Comb, Kerry Raymond,
Dan Chang, Yiming Ye, Elisa Kendall, Mark Dutra, "Usage
Scenarios and Goals For Ontology Definition Metamodel",
URL: http://www.omg.org/docs/ontology/04-01-01.pdf.
January 2004.

[20] Sandpiper Software Inc. and Stanford University Knowledge
Systems Laboratory, "UML for Knowledge Representation.
A Layered, Component-Based Approach to Ontology
Development", URL: http://www.omg.org/docs/ad/03-08-
06.pdf. March 2003.

[21] Kilian Kiko, "Towards a Unified Knowledge Representation
Framework," Master Thesis, 2005.

[22] Colin Atkinson, "Unifying MDA and Knowledge
Representation Technologies", The Model-Driven Semantic
Web Workshop (MDSW 2004), September, Monterey CA
2004.

[23] Object Management Group, "Meta Object Facility 2.0 Core
Specification", OMG Specification, October 2003.

[24] Natasha Noy, Alan Rector, "Defining N-ary Relations on the
Semantic Web: Use With Individuals", W3C Working Draft,
21 July 2004, http://www.w3.org/TR/swbp-n-aryRelations/
[20 August 2005].

[25] Object Management Group, DSTC, IBM, Sandpiper
Software Inc., "Ontology Definition Metamodel Second
Revised Submission", May 2005.

[26] ISO/IEC 13250-2, "Topic Maps – Data Model". Latest
version is available at
http://www.isotopicmaps.org/sam/sam-model/.

[27] ISO/IEC WD 24707 Information technology, "Common
Logic (Common Logic) – A Framework for a Family of
Logic-Based Languages", 2005-03-11. Latest version is
available at http://cl.tamu.edu/

Enterprise Architecture Framework based on MDA to Support Virtual
Enterprise Modeling

1Tae-Young Kim, 2Cheol-Han Kim, 3Jeong-Soo Lee, and 4Kwangsoo Kim
1,3,4Dept. of Industrial and Management Engineering,

Pohang University of Science and Technology, Republic of Korea
2Division of Information Communications and Internet Engineering,

Daejeon University, Republic of Korea
{1west, 3jsrhyme, 4kskim}@postech.ac.kr, 2chkim@dju.ac.kr

Abstract

Unfortunately, there is no previous approach to
fully support the designing and the managing of
Virtual Enterprise (VE) in an elegant manner, because
of the diversity and turbulency of the business
environments. This observation has motivated this
research to develop an integrated systematic
framework by harmonizing several approaches such as
Enterprise Architecture (EA), framework-based
development, Model Driven Architecture (MDA), and
meta-modeling approach, etc.

Accordingly, the issue of this research is to suggest
an enterprise architecture framework based on MDA
to contribute to the configuration of the VE. As the
MDA approach is similar to the business formation of
the VE: business scenario design, business process
design for business logic, and functional design for
execution, this framework can be used for business
managers or business domain experts to build the
collaborative VE models quickly and effectively with
insights.

1. Introduction

Today, enterprises are facing a rapidly changing
business environment and can no longer make
predictable long term provisions, because of the
turbulent market conditions, regulations of the working
conditions, fast technological mutation, and so on. And
the business competition is no longer enterprise to
enterprise, but value chain to value chain such as
design chain, supply chain, and customer chain. This
requires not only intra-integration of an enterprise but

also inter-integration among business partners to make
seamless business processes. This also makes
enterprises focus only their core capabilities on their
value chain, while they collaborate with other
enterprises that have other complementary capabilities.
As each enterprise operates as a node in the network
that is composed of suppliers, customers, engineers,
and other specialized service providers, the process-
centric loosely-coupled integration focusing on the
optimization of the value chain is emerging as a result
[1].

Therefore, new enterprise models which support
process-centric loosely-coupled integration are needed.
These models can be derived from the latest
approaches such as Enterprise Architecture (EA),
framework-based development, Model Driven
Architecture (MDA), and meta-modeling approaches.
Using these approaches, the value chain can be
combined dynamically and optionally through “plug &
play” way on the business environment. Moreover, if
the buzz information technology, namely Service
Oriented Architecture (SOA), is grafted together, the
complex and dynamic business process of the Virtual
Enterprise (VE) can be considered as a set of service
components in order to support the collaborative
business processes.

There have been, however, some critical problems
in the realization of the VE so far. Firstly, the real
business processes of the VE are very context-
dependent and complex. So, it is not suitable to apply
the traditional business process methodology.
Secondly, the VE has multiple stakeholders who are
interested in different aspects of the enterprise models.
But there is no comprehensive modeling approach to
support diverse modeling component required by the
stakeholders. Thirdly, the business processes of VE are

Enterprise Architecture Framework based on MDA
to Support Virtual Enterprise Modeling

52

very distributed and heterogeneous across the value
chain. However, there is a lack of standard definitions
and effective mechanisms which guarantee the
interoperability of the enterprise models.

Unfortunately, so far there is no approach that fully
solves these important problems in the realization of
the VE. This research suggests a new systematic
approach harmonizing above mentioned approaches. It
is a coherent enterprise modeling framework that
underpins the representation of enterprise models from
different viewpoints, at different levels of granularity,
generality and abstraction. This framework provides
insights, enables communication among stakeholders
and guides complicated change processes. This
framework is expected to significantly contribute to the
configuration of the VE.

The rest of this paper is organized as follows:
Section 2 describes previous works related to the VE
configuration framework. Section 3 explains the
suggested VE configuration framework in detail.
Finally, section 4 provides conclusions and future
works.

2. Related Works

Although there are a lot of interests in enterprise
engineering for designing the enterprise models, there
is no well-established common methodology to
completely support the agility and the interoperability
of the VE models. This research considers that the
following relevant approaches can play important roles
in developing a systematic framework for designing
the agile and interoperable enterprise models.

2.1. Business Process-centric Architecture

According to Smith and Fingar, the business

process management will be the heart of the future
business systems and will support the dynamic
integration and collaboration of all participants in the
value chain [2]. In the context of this research, the VE
is more focusing on what can be done to achieve the
common goals. And the VE should be more loosely-
coupled the value chains based on the collaborative
business processes between business partners. The
collaborative business process is defined as a set of
linked activities that are distributed at business partners
of the VE [3]. These business processes should be
managed and controlled autonomously in a distributed
environment, because each business partners can be in
different places and different time zones. Accordingly,
the foundation of the VE is the process-centric
enterprise integration approach that is supported by the
distributed business process management.

2.2. Enterprise Architecture (EA)

The term “Enterprise Architecture” refers to a

comprehensive description of all of the key elements
and their relationships that make up an organization
[4]. The EA identifies the essential processes
performed by the VE, shows how the VE performs
these processes, and also includes methodologies for
the configuration of the VE [5]. These features enable
business managers to understand how their enterprise
models are doing and to make decisions about changes
that lead to appropriate modification in response to
business environments.

The earliest systematic framework that we know as
the enterprise architecture framework is Zachman
framework [6]. The key idea of Zachman framework is
that an overall architecture is made up of a number of
other architectural components that are focusing on
different, specific areas of concern [7]. Several U.S.
federal departments have developed their own EA
based on Zachman framework: Federal Enterprise
Architecture Framework (FEAF), Department of
Defense Enterprise Architecture Framework (DoDAF)
and so on [8][9]. The most extensive efforts up-to-date
in the development of reference architecture for a
single enterprise have been undertaken by Generalised
Enterprise Reference Architecture and Methodology
(GERAM) [10]. GERAM includes the harmonization
with software engineering, system engineering,
developments of frameworks, and the researches on
PERA, CIMOSA, GRAI-GIM, etc. which are reference
architectures to organize all enterprise integration
knowledge and serve as a guide in enterprise
integration programs.

2.3. Framework-based Development

The framework-based development is usually said

to be 2nd generation business process methodology
[11]. Important efforts are dedicated to exploiting best
practices and design patterns of the business processes,
the business components, and the architectural
frameworks for the reusable sets of coherent design
and implementation.

Supply Chain Council (SCC) established Supply
Chain Operations Reference Model (SCOR) for the
supply chain management domain [12]. In the domain
of tele-communication, Next Generation Operations
Systems and Software (NGOSS) was proposed by
TeleManagement Forum (TMF) [13][14]. And the
Instrumentation, Systems, and Automation Society
(ISA) has tried to standardize the manufacturing
processes in Manufacturing Execution System (MES)
domain [15].

Tae-Young Kim, Cheol-Han Kim, Jeong-Soo Lee and Kwangsoo Kim

53

As many quality properties such as maintainability,
portability, efficiency, reusability, etc., rely on the
framework-based development way, this is essential to
design the agile and interoperable enterprise models
and its loosely-coupled integration. Consequently, the
framework-based development allows improving and
accelerating the development of the VE models.

2.4. Model Driven Architecture (MDA)

As the technology platforms of the enterprise

systems continue changing quickly and the demands of
integrating existing heterogeneous legacy systems
continue growing increasingly, new modeling
paradigm, namely MDA, has created a buzz of interest
by promising to increase the productivity, the
flexibility, and the portability of the enterprise models.

The MDA, which is an initiative by the OMG, has a
strong correlation to the concepts of the SOA in a more
abstract level. As the MDA makes a distinction
between Platform Independent Model (PIM) and
Platform Specific Model (PSM), it provides an open,
technology-neutral approach to the challenge of
business and technology change [16].

The concepts of the MDA can be used in designing
the VE models because the VE formation is established
through “business scenario design”, “business process
design”, and “business function design” after finding
business opportunity [17]. The MDA can be used by
VE brokers who want to design VE models quickly
and effectively with insights.

2.5. Meta-modeling Approach

As “meta-model” means the rendering of a language

definition, the meta-modeling approach is becoming a
standard way of defining and managing the meta-
models for representing the enterprise models.
Therefore the meta-modeling approach can be used for
enabling the designed models and the defined meta-
models to have the interoperability with each other.

Recently, it has been demonstrated that the meta-
modeling can define concrete syntax and abstract
syntax, as well as semantics [18][19][20]. OMG has
suggested UML profiles in the form of the extended
UML meta-model to make good use on particular
domains. And it has been discussed how a UML
profile can be defined for a specific domain that
requires a specialization of the general UML meta-
model in order to enable the UML to more precisely
describe the domain [20]. The MDA defines the 4-
layer architecture for structuring this meta-modeling.

These up-to-date approaches have their own
advantages, but they are dealt in separate domains and
developed independently to address their own
purposes. There is not a common framework that can
integrate these approaches in order to configure the
agile and interoperable VE. This observation has
motivated this research to develop the enterprise
architecture framework based on MDA to support
enterprise modeling by integrating together the
advantages of all the discussed approaches.

3. Enterprise Architecture Framework
based on MDA

In order to configure the VE, the proposed overall

framework is illustrated in figure 1. The left-side of
figure 1 shows the process of the enterprise
configuration. It contains 4 phases focusing on details
of the enterprise configuration. The right-side of figure
1 briefly shows the facilities to support each phase.

Each designing system such as EA Designer, Meta-
model Designer, CIM/PIM Modeler and PSM Mapper
is associated with each relevant reference repository,
local instance repository, and ontology repository. To
increase portability, efficiency, agility and
interoperability of the models, each system reuses the
best practices stored in each reference repository under
the concept of the framework-based development. To
support the communication and the comprehension for
retrieval and use, each system is also connected with
ontology repository.

Figure 1. Overall framework

The following sections from 3.1 to 3.4 explain each

phase of the framework in detail.

Enterprise Architecture Framework based on MDA
to Support Virtual Enterprise Modeling

54

3.1. EA Design Phase

First of all, the business partners of the VE establish

a standardized collaborative model through the EA
which defines all the elements and the perspectives of
the enterprise models and explains how they work
together as a whole. It is important that the formal EA
specification should ideally capture all the aspects that
are unique to the enterprise system, and also help in
reasoning various architecture decisions.

The procedure to establish the EA is described as

following:

� Determine the organizational structure of the VE:
The organizational structure of the VE means the
business partners which take part into the business
processes of the VE.

� Assign the roles of each business partners: The
roles should be assigned to the selected major
business partners

� Decompose Views and Perspectives: Because the
business components and the business processes, in
a broad sense, can be understood from a number of
different views at different abstract levels, the
process of decomposing and separating concerns of
various participants should be performed.

� Establish the EA: Through the above process of
decomposing concerns of various participants, the
EA can be built which supports the different views
and the different abstract levels. According to the
framework-based development, a new EA can be
created rapidly and efficiently with reusing the best
practices of the existing EAs.

� Fulfill the EA: Once we have established the EA,
we begin to collect reference models that fulfill the
EA, such as business process models, information
models, resource models, etc., from the suitable
reference repositories.

The meta-model of the EA in this research is

constructed as figure 2. Basically, the EA has several
perspective layers and some views. In this research,
there are two assumptions: One is that each perspective
of the EA refers to the models of the MDA such as
Computation Independent Model (CIM), PIM, and
PSM [21]. The other is that each view of the EA
corresponds to one modeling domain in order to
support the different stakeholders such as business
process manager, information system manager,
organization manager, etc. who have different concerns
and methodologies.

A pair of one perspective and one view produces an
EA cell. And each EA cell provides a container for the

cell content list, the modeling language, and some
enterprise models and enterprise reference models.

Figure 2. Meta-model of EA

While the business process is not originally the

central part of Zachman framework, the design of the
EA is based on the business process-centric
architecture in this research.

Consequently, we divide the column (views) of the

EA into 5 modeling domains in this research.
� Process Domain: Focusing on the business

processes of the VE
� Application Domain: Focusing on the business

applications which support the business processes
� Information Domain: Focusing on the business

information or system information which supports
the business processes and applications respectively

� Organization Domain: Focusing on the participants
who are responsible for the support and execution
of the business processes

� Technology Domain: Focusing on the technology
environment and infrastructures which support the
business applications

Meanwhile, the rows of the EA are made of the

different perspectives. The perspectives are the
contextual layer, the conceptual layer, the logical layer
and the physical layer in this research.
� Contextual Layer: Defining the goal, purpose and

visions of the VE, which are restricting the business
boundary. Regarded as CIM in the MDA

� Conceptual Layer: Defining the models of value
chains of the VE in business terms, which are
including its business processes, business partners,
etc. Regarded as CIM in the MDA

� Logical Layer: Defining the models of the business
processes and the business components in more
rigorous terms than the conceptual Layer. Regarded
as PIM in the MDA

Tae-Young Kim, Cheol-Han Kim, Jeong-Soo Lee and Kwangsoo Kim

55

� Physical Layer: Defining the deployed models
related with specific technology platforms.
Regarded as PSM in the MDA

Figure 3 illustrates EA Designer for the EA design

phase. A designed EA example is displayed in the
main screen of EA Designer and each EA cell provides
room for the contents list, the meta-model, the
enterprise models, and the enterprise reference models.

Figure 3. EA Designer

3.2. Meta-model Design Phase

In this phase, modeling languages are developed to

describe the enterprise models which are comprised in
each cell of the EA.

Of course, some generic purpose modeling
languages such as UML or IDEF can be used.
However, when we are going to make it easier for a
domain expert to solve problems using models, it is
very important that the modeling language can clearly
represent the problem domain [22]. In order to achieve
more effective and correct modeling capability, this
research tries to bring in the idea of Domain Specific
Methodology (DSM), and also tries to design the
specialized modeling languages for each business
domain.

Standing on the basis of the meta-modeling
approach, the specialized modeling languages can be
designed as the meta-models. To support it, this
research provides a combined architecture of the
MDA’s 4-layer meta-modeling architecture and the
EA, as shown in figure 4.

Figure 4. Combined architecture of MDA and EA

As mentioned above, the contextual layer and the

conceptual layers of the EA correspond to CIM of the
MDA, and the logical and the physical layers
correspond to PIM and PSM of the MDA, respectively.
On the basis of this, CIM, PIM and PSM at M1(model)
layer of the MDA are built in our EA, as illustrated in
figure 4. Above M1(model) layer, there is M2(meta-
model) layer where the modeling languages, i.e. the
meta-models, are defined to describe each model.
Above M2(meta-model) layer, there is M3(meta-meta-
model) layer which is the top layer of the 4-layer meta-
modeling architecture of the MDA.

Because the UML extension mechanism of UML
profile appears to be very useful to define a suite of the
modeling languages, our meta-models are developed in
the form of UML profiles, which is MOF-compliant, at
M2(meta-model) layer.

The internal architecture of UML profiles is given
by figure 5. A language definition comprises an
abstract syntax, semantics, and any number of concrete
syntaxes [20]. The abstract syntax is a model of the
valid expressions of the language, which is abstracted
away from any particular concrete rendition of those
expressions. There may be several concrete syntaxes
for one abstract syntax. Semantics concerns the
definition of what it means.

Figure 5. Modeling language

Enterprise Architecture Framework based on MDA
to Support Virtual Enterprise Modeling

56

Figure 6 illustrates Meta-model Designer for the
meta-model design phase and a designed meta-model
example.

Figure 6. Meta-model Designer

As shown above, the phase of designing the meta-

models makes progress on the EA. The designed
elements of the meta-model such as abstract syntax,
concrete syntax, and semantics are packed in the EA.

3.3. CIM/PIM Modeling Phase

The modeling process for the VE proceeds on each

perspective of the EA. This process is based on top-
down modeling paradigm in which more concrete
models are created from abstract models. First of all,
business list, business purpose, vision, and business
boundaries are described at the contextual layer. The
value chains of the VE are modeled as CIM at the
conceptual layer. Then, the detailed business
components and the detailed business processes
composing CIM are modeled as PIM at the logical
layer.

As the VE is considered as a set of value chains
which is made up of the collaborative business
processes, it is natural that the enterprise models can be
modeled with the process-centric approach. A
generalized and process-centric representation for
business partners was presented and implemented in
our previous research [17]. As our CIM/PIM modeling
phase is based on the modeling philosophy of the
previous research, CIM and PIM for the enterprise
models are regarded as the business scenarios and the
collaborative business processes, respectively, as
illustrated in figure 7.

Figure 7. Modeling CIM and PIM

In the CIM modeling, we select some functional

areas and organizations of each business partner using
the function-organization matrix that describes the
process stream and the organization stream of the
collaborative enterprise. With respect to the process
stream, units of enterprise activities need to be
logically and temporarily ordered to realize the
products of an acceptable quality at the right place and
time. For the organization stream, organization, human
and technical resources are systematically and
repetitively assigned for the enterprise activities. The
business scenarios are modeled through the meta-
models for CIM.

In the PIM modeling, we perform the top-down
analysis to reveal primarily the business processes and
other business components according to the business
scenario. The revealed business processes, other
business components, and their relationships are
systematically modeled through the meta-models for
PIM.

Figure 8. CIM Modeler and PIM Modeler

Tae-Young Kim, Cheol-Han Kim, Jeong-Soo Lee and Kwangsoo Kim

57

Figure 8 shows CIM/PIM Modelers for the
CIM/PIM modeling phase and designed CIM and PIM
examples. The phase of modeling CIM and PIM also
makes progress on the EA. The designed enterprise
models such as CIM and PIM are packed in the EA.

3.4. Deployment Phase

The designed enterprise models of the VE are

deployed into PSM for actual execution so as to be
suitable for specific technology platform.

In this paper, web service is considered as the best
solution for PSM. Web service is a form of the SOA
which is intended to enable developers to create
service components that can be assembled and
deployed in a distributed environment. Therefore, web
service can be an ideal candidate for integrating
enterprise application and setting up open and loosely-
coupled information platform for the VE.

There are a set of key technologies and standards
for web service such as Business Process Execution
Language for Web Services (BPEL4WS) and Web
Service Description Language (WSDL). They can be
used for describing the web service models
implementing the business processes of the VE.

In this paper, it is assumed that the deployment
phase can make progress through the meta-model
mapping between the meta-model of PIM and the
meta-models of BPEL4WS and WSDL for
transforming PIM to PSM, as shown in figure 9.

Figure 9. Model transformation

in deployment phase

In other words, the meta-models of BPEL4WS and

WSDL are developed as UML profiles and they are

mapped into or from the meta-model for PIM. This
meta-model mapping between meta-models at
M2(meta-model) layer enable to transform PIM into
PSM based on web service at M1(model) layer. The
transformed PSM is expected to be possibly executed
on some web servers such as Axis, WebSphere, or
WebLogic.

4. Conclusions

The VE based on the process-centric loosely-

coupled integration has become a key factor to survive
under the competitive business environment. This
research is originally motivated by the need for a
systematic framework to contribute to configuration of
the VE.

The proposed framework, named Enterprise
Architecture Framework based on MDA, harmonizes
several previous approaches which are dealt in
different way on diverse domains and are developed
independently to address its own purpose. Therefore,
this framework can not only take individual advantages
of each approach, but also produce integrated synergy
effects.

This framework can be used for business managers
or business domain experts to design the VE models in
an elegant manner. This framework supports the
configuration of the VE through the 4 modeling phases
as follows: 1) EA design phase, 2) Meta-model design
phase, 3) CIM/PIM modeling phase, and 4)
Deployment phase through web service.

Although the framework is outlined in this research,
rigorous further research for enriching this framework
is currently underway as yet. The researches on the
issue of the implementing systems are also undergoing
and it is expected to get some more results soon. And a
model transformation mechanism based on ontology in
the deployment phase is being developed currently.

Acknowledgement

This work is partially supported by grant No. R01-

2003-000-10171-0 and No. R05-2003-000-10080-0
from the Basic Research Program of the Korea Science
& Engineering Foundation.

References

[1] CSC, “The Emergence of Business Process Management
version 1.0”, A Report by CSC’s Research Services, 2002
[2] H. Smith and P. Fingar, Business Process Management:
The Third Wave, Meghan-Kiffer Press, 2003
[3] H. Gou, B. Huang, W. Liu and X. Li, “A Framework for
Virtual Enterprise Operation Management”, Computers in
Industry, 2003, 50, 333-352.

Enterprise Architecture Framework based on MDA
to Support Virtual Enterprise Modeling

58

[4] P. Harmon, “Developing an Enterprise Architecture”,
Business Process Trends: Whitepaper, 2003.
[5] W. Barnett, M. J. Presley and D. Liles, “An Architecture
for the Virtual Enterprise”, IEEE International Conference
on Systems, Man, and Cybernetics, 1994, San Antonio.
[6] J. A. Zachman, “A Framework for information systems
architecture”, IBM Systems Journal, 1987, 26(3).
[7] P. Harmon, “Enterprise Architectures”, Business Process
Trends: Newsletter, 2004, 2(1).
[8] CIO Council, “A Practical Guide to Federal Enterprise
Architecture version 1.0”, 2001, http://www.cio.gov
[9] DoDAF Working Group, “DoD Architecture Framework
version 1.0 - Volume I: Definition and Guidelines”, 2003
[10] IFIP-IFAC Task Force, “GERAM: Generalised
Enterprise Reference Architecture and Methodology version
1.6.3”, 1999, http://www.cit.gu.edu.au/~bernus/taskforce
/geram/versions/geram1-6-3/GERAMv1.6.3.pdf
[11] P. Harmon, “Second Generation Business Process
Methodologies”, Business Process Trends: Newsletter, 2003,
1(5).
[12] Supply Chain Council, “Supply Chain Operations
Reference Model – SCOR version 6.0”, Supply Chain
Council, Inc., 2003
[13] TeleManagement Forum, “Enhanced Telecom
Operations Map (eTOM): The Business Process Framework
version 3.0”, GB921, 2002
[14] TeleManagement Forum, “System Integration Map
version 2.0”, GB914, 2002

[15] The Instrumentation, Systems, and Automation Society,
“Enterprise-Control System Integration - Part 3: Models of
Manufacturing Operations Management”, ISA Draft
95.00.03, 2004
[16] J. Miller and J. Mukerji, “MDA Guide version 1.0.1”,
2003, http://www.omg.org/docs/omg/03-06-01.pdf
[17] C.-H. Kim, Y.-J. Son, T.-Y. Kim, K. Kim and K. Baik,
“A Modeling Approach for Designing a Value Chain of
Virtual Enterprise”, International Journal of Advanced
Manufacturing Technology, Accepted and To be pressed in
2005 (Online Published: http://dx.doi.org/10.1007/s00170-
004-2445-4).
[18] Object Management Group, “UML 2.0 Infrastructure
Specification: Final Adopted Specification”, 2003,
http://www.omg.org/docs/ptc/03-09-15.pdf
[19] Object Management Group, “UML 2.0 Superstructure
Specification: Final Adopted Specification”, 2003,
http://www.omg.org/docs/ptc/03-08-02.pdf
[20] Object Management Group, “UML Profile for
Enterprise Collaboration Architecture Specification version
1.0”, 2004, http://www.omg.org/docs/formal/04-02-05.pdf
[21] D. S. Frankel et al, “The Zachman Framework and the
OMG’s Model Driven Architecture”, Business Process
Trends: Whitepaper, 2003
[22] MetaCase, “Domain-Specific Modelling”, Application
Development Advisor, 2005, http://www.appdevadvisor.
co.uk/express/vendor/domain.html

From high level business rules to an implementation
on an event-based platform to integrate applications

Rubby Casallas, Catalina Acero, Nicolás López

{rcasalla, cata-ace, ni-lopez}@uniandes.edu.co

University of Los Andes, Colombia

Abstract—In this paper, we show how to build an implementation from a
high level description of business rules through successive model transfor-
mations. The implementation of business rules can involve the integration
of several heterogeneous applications. The key element of our proposal is
the definition of a profile (EAI-Rules profile) whose objective is to define
a vocabulary to model the concepts needed to integrate business activities
and applications. The profile is used to annotate the models and, due to its
well-defined semantics, we can assist transformations thatlead towards a
platform specific model that is ready to be executed. The specific platform
is an event-based platform called Eleggua.

Index Terms — Business Rules, EAI, MDA, Model Transfor-
mation.

I NTRODUCTION

The accelerated pace at which Internet centered technologies
have developed and the growing complexity of the nature of
business have strengthened the need for organizations to clearly
define business rules. These business rules should be transver-
sal to the different processes in order to handle organizational
knowledge in an integrated and coherent way. This need for in-
tegration at a process level directly influences the business ap-
plication level that gives support to a process. Nowadays, busi-
ness processes include the interaction of various applications,
this situation raises the need to achieve an integration that has
as objectives enabling fluid processes throughout the organiza-
tion and providing a complete vision of each process.

The definition of business rules associated to the integration
of business applications is a complex task. Some of the
challenges are: (1) to achieve a shared knowledge of business
domain concepts common to various applications; (2) to clearly
identify the exchange of information between applications;
taking into consideration that each application handles different
data formats; (3) to precisely define the behavior and restric-
tions imposed by each rule; and (4) to validate the rules with
the users who know the process in a language that is easily
understandable for them.
The OMG has defined the UML profile for EAI [16] in order to
give solutions to the challenges and to the needs generated to
solve problems related to the integration of applications.The
objective of the profile is “to define and publish a metadata in-
terchange standard for information about accessing application
interfaces” [16]. Its purpose is easing the tasks involved in the
integration of applications.
The profile aims to define semantics, responsibilities, and
restrictions of the elements that can make part of an integration
infrastructure. Nevertheless, it still has several issuesthat make
it hard to use on integration projects. The profile has a vague
definition of some of its elements, their restrictions, lifecycles,
and use. This makes its understanding and application a diffi-

cult task. In the end, what usually happens is that each project
develops an implementation of an integration infrastructure that
is not compliant with any standard.
We have defined a new profile, calledEAI-Rulesprofile, with
the purpose of filling some of the gaps and issues detected in
the EAI profile. The main objective of the profile is to define
a vocabulary (i.e. ontology) to model the concepts needed to
integrate business activities and applications. Using theEAI-
Rules profile, we have defined the following approach that aims
to give some answers to the challenges presented above. (1)
Our profile introduces a vocabulary that enables the definition
of integration business rules at a high level of abstraction(i.e.,
to the Computation Independent Model [11]) (2) We assist the
transformation of the model into a PIM (Platform Independent
Model) that has as metamodel the EAI-Rules profile. (3) We
propose a transformation scheme to build an implementationof
the PIM by merging it with a PSM (Platform Specific Model),
which in this case is aligned with the implementation model of
an infrastructure called Eleggua [13].
The work presented in this paper is part of a project, developed
by the Software Construction Group, at the University of Los
Andes. The global project1 has as main objective the definition
and implementation of an infrastructure for application integra-
tion and cooperation to support Global Software Development
[14].
This document is organized in the following way: Part 1
presents the main characteristics and issues of the UML for
EAI Profile. Part 2 introduces our EAI-Rules profile. The
purpose of Part 3 is to show how business rules at a high
level are expressed using an activity model annotated with the
elements of our profile. Part 4 establishes how the activity
model can be transform into a model (PIM) based on our
profile. Part 5 presents the transformation rules from the PIM
to a PSM. Part 6 introduces some related works and compares
the approaches. We finished the paper with some conclusions
and future work.

EAI PROFILE

The EAI profile is a UML profile defined by the OMG
(Object Management Group) [16]. The profile provides a
standard mechanism to define an application integration model
using UML as language.

1 The project is supported and partially financed by the ”Instituto Colombiano
para el Desarrollo de la Ciencia y la Tecnologı́a Francisco José de Caldas”-
COLCIENCIAS. Colombia.

60 From high level business rules to an implementation on an event-based platform to integrate applications

Scenarios of Use

The scope of the profile contemplates three scenarios of use.
Scenario 1 considers the integration of applications through
connectivity. Applications share a common architecture
and data model for communication. The integration can be
synchronic or asynchronic, and it must be possible to model
service requests, responses and notifications.
Scenario 2 considers integration of applications that needto
share information; it describes how application share informa-
tion using pub/sub business events as communication. In this
scenario applications share business events and the model of the
process at a conceptual level. Nevertheless, at a low concrete
level, data models can be different. One of the objectives of
this scenario is that it should be simple to add new participants
and services to an existing infrastructure.
Scenario 3 considers integration of applications through
collaboration processes; it describes Business to Business
(B2B) integration of businesses. In this context, integrated
applications can be located on different organizations andhave
completely different business domains.

The Metamodel and the profile

The EAI working group defined a metamodel; this meta-
model of integration is a specialization of the FCM (Flow Com-
position Model) of the EDOC profile (Enterprise Distributed
Object Computing [4]. The EAI metamodel characterizes
aspects related to connectivity, composition and behaviorof the
integration elements. At a general level, this defines the syntax
and semantics of elements such as EAILink, EAITerminal,
EAIMessage, EAISource, EAISink, EAIAdapter, EAIFilter,
etc.
Based on the metamodel, the EAI working group has defined
its UML profile. The profile consists of two main components:
activity model and collaboration model. The first enables mod-
eling of control and data flow between applications involved
in the integration. The second provides more detail about the
semantics of collaboration. In particular, this describesthe
exchange of messages between applications.

Discussion

The EAI profile is a potential tool to define, in a standard
way, any integration model. However, some open issues make
difficult the understanding and practical use of it in a real
context [3] [5] [7] [10] [12].
Some of the elements presented in the profile are incomplete.
Aspects related to their semantics, lifecycle and constrains do
not have enough detail to enable a transformation toward an
implementation.
Additionally, the relationship between the two components
constituting the profile is not clear. The profile is missing a
mapping that correlates the concepts shown in the activity
model and those in the collaboration model. Software Ar-
chitects have to wait until implementation to make important
decisions because of these gaps. Moreover, currently no
industrial provider has completely implemented the profile.

To fill some of the gaps and issues detected in the UML for
EAI profile, we have defined the EAI-Rules profile and present
it briefly in the next section.

EAI-RULES PROFILE

EAI-Rules profile is a vocabulary that contains elements to
model application integration. The scope of this profile is sce-
nario 1, integration of applications through connectivity, and
scenario 2, integration of applications through shared informa-
tion. The profile is expressed using UML to define stereotypes
and OCL [17] to define the restrictions on the elements.

In this section, we present three new concepts missing in the
EAI profile. Other stereotypes are introduced later as needed.
The three concepts are: 1) activities of interest that trigger
events of integration 2) flow of information between activities,
and 3) actions executed as response to events. The profile con-
tains the semantics, responsibilities, and, restrictionsof each
element and the relationship with each other in the profile.

Fig. 1

MODEL OF OBSERVATIONS

Activities of interest

To model activities of interest that trigger events of inte-
gration, we have defined the concept ofObservation. An
observation has the responsibility of intercepting the execution
of a method in an application and generating a logical event of
interest to other applications. Figure 1 shows a UML diagram
of the main elements involved in an Observation. The Observa-
tion observes the execution of a method, there is a relationship
between the parameters of the observation and those of the
method, and an association between the observation and the
generated logical event.

Flow of Information

To model the flow of information between activities, the pro-
file defines the concept ofLogical Event. A logical event is
defined by its type (EventType in figure 2) and its parameters

Rubby Casallas, Catalina Acero, Nicolás López 61

(EventParameter in figure 2). The event type of the logical
event, represents a domain concept common to a group of ap-
plications. Applications interested on receiving notifications of
a particular event type, have to subscribe to it.

Fig. 2

MODEL OF LOGICAL EVENTS

Other stereotypes related to events are presented later to
annotate the business rules.

Actions

To model the actions executed as a response to an event, the
profile defines theECA Ruleconcept. An event type, a condition
or filter, and a set of actions define an ECA rule. A notification
of a logical event triggers the execution of a rule whose typeis
the same as the one defined in the rule. Once the rule is trig-
gered, if its condition is validated, the set of actions is executed.

Fig. 3

MODEL OF ECA RULES

These actions can generate new logical events or invoke
external application’s services. Figure 3 presents the UML
representation of the main elements involved in the definition
of an ECA Rule.

BUSINESS RULES ANNOTATED WITH THEEAI-RULES

PROFILE

We now present a simple example scenario to illustrate the
use of the profile. The example scenario takes place in the con-
text of the business processes of a software development house.
This organization has two fundamental business policies: (1)
Planning and tracking all the activities, and (2) Cost assessment
based on employee time logs registered for work activities.

These policies derive various business rules; we have
selected two of these in order to illustrate our approach:
R1: For each defect detected during the execution of a test plan,
an activity for correction has to be created and assigned to the
responsible user.
R2: The total time spent performing the defect correction task
has to be recorded for quality metrics purposes.
The rules above are expressed in plain English. The ultimate
objective is to transform these rules to something executable
automatically. The following sections present the steps topur-
sue this result. Each step consists of assisted transformations
based on the models.

CIM transformation

We have defined two assisted transformations to express the
business rules in a particular CIM: (1) Transformation from
plain English to an activity diagram that specifies the toolsthat
support the process and shows the exchange of information
between activities. (2) Annotations on the elements of the
diagram (activities, transitions, and events) with the stereotypes
defined in the EAI-Rules profile.
Figure 4 summarizes the result of both transformations on rules
R1 and R2. The example scenario includes the interaction
of two applications: Hammurabi, which is used to create
software-testing plans, registration of results of test executions
and creation of defect reports; andCronos, which is used to
plan activities and register time logs.
The main points of interaction that need integration for these
applications are: (1) when a defect correction is assigned to a
user inHammurabi(Fig. 4 activity 1), automatically,Cronosis
notified of this event and creates a new task for the developerin
charge (Fig. 4 activity 2). Afterwards, the developer in charge
has to register the time spent performing the activity (Fig.4
activity 3). (2) Once the developer finishes and closes the task,
(Fig. 4 activity 4) total time spent is sent toHammurabifor
generation of reports on defect corrections.

Annotations using the profile

The elements on the activity diagram have been annotated
with stereotypes belonging to the EAI-Rules profile (Figure4).
These stereotypes are:
• Observation: annotates the activityAssign defect correc-
tion. It indicates that the execution of theassignDefectmethod
is observed and as a consequence, a logical event is generated.
• LogicalEvent: annotates an element, of the activity dia-
gram, Signal Sending or Signal Receipt. Signal Sending in-
dicates the logical event generated by an observation. In fig-

62 From high level business rules to an implementation on an event-based platform to integrate applications

ure 4,defectAssignis the event generated byHammurabi(pro-
duce stereotype) and received byCronos (consume stereotype).
The figure shows also theLogicalEventannotation on the Signal
Sending and Receipt.

Fig. 4

ACTIVITY DIAGRAM

• Dispatch: indicates that a logical event generated by an
application is dispatched to applications interested in events of
this type. In this dispatching process, the event can go through a
transformation according to the business rules. The association
between the SignalSending and SignalReceipt is marked with
the stereotype dispatch because it represents the process of dis-
patching of the event from the producer application to the event
consumers. In this case, before the dispatching process, the log-
ical event can be transformed and new parameters can be added
to it.
• ECARule: indicates activities that are triggered as reaction
to a previously generated logical event. In figure 4, the activity
Create defect correction taskhas anECARuleannotation. This
means that when the eventdefectAssignis consumed, the rule is
triggered and it creates automatically, to the developer incharge,

a task to correct the defect.
The next section presents how to perform a transformation to

a PIM from the information provided in the activity model.

TRANSFORMING BUSINESSRULES TO A PIM

We use the example scenario to show the transformation.
This section presents the transformation required to modelthe
interaction betweenHammurabiand Cronos when a defect
correction is assigned inHammurabi.

Transforming an observation

Fig. 5

LOGICAL EVENT PRODUCTION

Figure 5 shows the class diagram corresponding to the
observation and generation of a logical event to assign defect
correction. The stereotypePrimitiveOperatoridentifiesHam-
murabi, this element is used to represent system applications.
The application has several methods some of them are of
interest for the integration model. In those cases, an Observa-
tion element has to be used to model the interception of the
methods.
The transformation is achieved in the following way: (1)
the swimlane (Fig. 4) represents activities that are realized
in Hammurabi. This external application is represented in
Fig. 5 as aPrimitiveOperator. (2) Assign defect correction
activity (Fig. 4) is represented as an Observation element
(DefectAssignObservationin Fig. 5) that is intercepting the
execution of theassignDefectmethod. (3) Arguments for the

Rubby Casallas, Catalina Acero, Nicolás López 63

assignDefect(defect,user)method are used to complete the
observation parameters.

Transforming a logical event

The execution of the method of interest, in this caseassign-
Defect, triggers the observation whose execution generates a
LogicalEventof local type. The Transformer transforms this
event into aLogicalEventthat might have more information,
data transformations or filtered information.
In figure 4, the link that joins the SignalSending and SignalRe-
ceipt elements is of typedispatch, this is represented in figure 5
by the classTransformerDefectAssign, which adds information
to the event and generates a newLogicalEvent. In the activ-
ity diagram, the link that joins activity 1 with the logical event
defectAssignhas theproducestereotype, this indicates that the
logical event must be published; this is represented through the
use of thePublicationOperator(Fig. 6).
Once the transformation generates a logical event, it is sent to
a PublicationOperatorelement. This element notifies all inter-
ested rules of the occurrence of the event. To perform the notifi-
cation, thePublicationOperatorrelies on theSubscriptionTable
element. This shared resource stores information on subscrip-
tions to the event types in the system (Fig. 6).

Fig. 6

LOGICAL EVENT DISPATCH

Transforming a ECA Rule

Through thePublicationOperatorelement, the ECARule,
subcribed to the event type, is notified of the occurrence of the
event. Once theDefectAssignActionrule receives the event, it
evaluates its conditions and executes the specified actions. In
our example, the action creates a task for the correction of the
defect.
Figure 7 shows the result of the transformation from the activity
diagram. The steps were: (1) the link marked with the stereo-
typeconsumeis represented in the diagram using thePublica-
tionOperatorand ECARuleelements. (2) A condition in the

ECARule is included by default to validate that the parameters
from the event match the ones needed by the rule. In this case,
the condition checks that the event has as parameters the identi-
fication for the project, test case, the defect and the responsible
user. (3) Finally, the application, modified by the action, is rep-
resented by aPrimitiveOperator.

Fig. 7

LOGICAL EVENT CONSUME

ELEGGUA PLATFORM

Figure 8 presents the main components of the Eleggua plat-
form. These are: in the center, a distributed Event Notification
System (ENS) and around it, the Application Representatives
(AR), one for each external application involved in the integra-
tion. The ENS provides event notification services and the ARs
mediate the communication of applications with the ENS.

Each Application Representative executes and manages Ob-
servations and ECA Rules. The distributed ENS manages event
types and subscriptions and offers services for event dispatching
and notification.

Figure 9 presents the components and relationships of the
infrastructure that implements the components in Fig. 8: the
DEM (Distributed Event Middleware) and the CP (Cooperation
Proxy) that implement the ENS and Application Representative
respectively.

The DEM is a distributed component that offers the basic
functionality of an ENS: subscription to event types and event
notification. The CP implements the application representa-
tive by offering services for registration and processing of ECA
Rules and Observations.
The chosen implementation is based on Enterprise Java Beans
[15]. The ECARuleProcessor(Fig. 9) is a session bean that
processes logical events generated by the observation processor
(local events) or notified by the DEM (global events).
Figure 10 presents theObservationProcessorand other main

64 From high level business rules to an implementation on an event-based platform to integrate applications

Fig. 8

ELEGGUA PLATFORM

Fig. 9

COMPONENTS OFELEGGUA

elements of the specific implementation for observations. The
ObservationProcessoroffers services to the aspect classObser-
vationAspect. This aspect class intercepts method execution and
creates anObservationVOobject with itsObservationParame-
terVO objects for processing. TheObservationRegisterbean
offers services for registration of new observations. Aspect ser-
vice interception uses AspectJ technology [1].

During execution, the aspect class that implementsObserva-
tionAspectintercepts the execution of the method and creates an
ObservationVOobject passed to theObservationProcessor.
Figure 11 presents theECARuleProcessorand other main el-
ements of the specific implementation for ECA Rules. The
ECARuleProcessorreceives logical events for processing and
executes them using aRuleExecutorClassfor an ECA Rule that
matches the event type. The methodcheckConditionis used

Fig. 10

OBSERVATION PROCESSOR ELEMENTS

to evaluate the condition of an ECA Rule; theexecutemethod
implements the actions of the rule.

Fig. 11

ECA RULE PROCESSORELEMENTS

TRANSFORMING THEPIM TO A PSM

We now describe the main elements of a transformation from
the PIM to a PSM based on Eleggua. For reasons of space, we
only give a brief description of the transformation of the main
elements described in the PIM: observations, events, and ECA
rules.

Rubby Casallas, Catalina Acero, Nicolás López 65

Transforming an Observation

An aspect class that extendsObservationAspectand imple-
ments the point cuts and advices represents each Observation
element from the PIM. This aspect intercepts the execution of
a given method and passes the observation to theECARulePro-
cessor.
During execution, the aspect class creates anObservationVO
with the ObservationParametersandMethodParametersmod-
eled in the PIM related to the observation element.
An ECARuleVOrepresents the transformation element refer-
enced by an Observation. TheECARuleVOhas it local attribute
set to true. This local rule executes the transformation and
notification of a Logical Event instance to the DEM.

Transforming a logical event

The LocalLogicalEventmodeled in the PIM referenced
by the Observation is modeled during execution as aLogi-
calEventVOproduced by theObservationProcessorsession
bean.
A LogicalEventVOgenerated by the ECA Rule that represents
a transformation element in the PIM models the logical event
referenced by the transformation.
The DEM manages and stores event types and subscriptions.
The ObservationProcessorpasses its produced events directly
to the EventProcessor. A local ECARuleVOrepresents each
transformation element from the PIM in the PSM.

Transforming an ECA rule

A global ECARuleVOrepresents each ECA Rule element
with its respective filter element from the PIM. Additionally,
the transformation includes creating a class that extends the
RuleExecutorClass, this class has placeholders in thecheck-
Condition() and execute()methods. Placeholders indicate
places in the code that the developer must complete. These
methods implement the filter element and ECA Rule element
from the PIM.
The transformation also assists the regeneration of the external
application code to include AspectJ interception of methods for
observations. The transformation generates a build file with
placeholders that recompiles and redeploys applications.

COMPARISON WITH OTHER WORKS

The BRMS (Business Rule Management System) deals with
the problem of maintaining a system due to changes in the
business rules. Usually, a business rule is set in the code of
the several components affected. A BRMS aims to overcome
this problem by “separating the definition of policy from
implementation and code details” [8].
There are several BRMS in the market, such as ILOG JRules
[9], HaleyRules [6], Blaze Advisor [2] and some more pointed
mentioned in [8].
The difference between our proposal and those BRMSs resides
in the scope and in the approach. Concerning the scope, our
work specifically addresses the problem of defining business

rules, which involve integration of applications. Our assump-
tion is that the execution of a complex business process involves
activities supported by different (distributed) applications.
In relation to the approach, ours is an approach based on MDA.
Even if we share with the other BRMS systems the expression
of business rules in a high-level language close to the user
language; the transformation towards an implementation is
different. The advantage MDA gives lies on the transformation
functions, which can produce different implementations from
the same model. In JRules the transformation is done always
to the (ILOG Rule Language), which is the language the rule
engine can execute.
Furthermore, to define business rules, in our case, the user has
to know the services of interest provided by the applications,
and be familiar with the EAI-Rules profile. The user is unaware
about any specific implementation; nevertheless, using JRules,
the user has to know the BOM (Business Object Model), which
is quite close to the java classes in the implementation.
A current disadvantage of our work has in comparison to the
market is that most of the systems have powerful tools to define
the rules and to monitor and administrate their execution; we
are not there yet. As we explain in the next section this is part
of our future work.

CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an approach to transform
high-level business rules to a specific implementation platform.
The approach uses the EAI-Rules profile, based on the EAI pro-
file, provides a vocabulary that contains elements to model ap-
plication integration.
We also presented an example scenario to show how the profile
can be used to describe business rules. The example presentsa
transformation from a CIM to a PIM annotated with the profile
using activity diagrams and the stereotypes defined. Finally, we
introduced a platform (Eleggua) that implements the profileand
a brief explanation of transformation from the PIM to a PSM
based on Eleggua.
The presented profile and transformations aim at reducing the
complexity involved in the definition of business rules. Never-
theless, the transformations presented are assisted, but are not
completely automatic. A lot of work is left to be done in devel-
oping tools that reduce the work
involved in the transformation process and ease the administra-
tion of the rules.
On the other hand, the validation of a PIM model is an area
that still needs further work. We are currently designing tools
that help model and simulate a business process PIM before a
transforming to any PSM using executable UML.

REFERENCES

[1] AspectJ team. http://eclipse.org/aspectj/. Last visited on 2005-01-23.

[2] Blaze Advisor. Business Rules – Fair Isaac Corporation.
http://www.fairisaac.com/Fairisaac/Solutions/Enterprise+Deci
sion+Management/Business+rules/. Last visited on 2005-01-
08.
[3] DSTC, Hitachi, Ltd., IBM Corporation, Oracle Corpora-
tion, Rational Corporation, Unisys Corporation. UML Profile

66 From high level business rules to an implementation on an event-based platform to integrate applications

and Interchange Models for Enterprise Application Integration
(EAI) Specification Issue Reporting. 2001
[4] Flow Composition Model (FCM) Specification.
www.omg.org. February 2004.
[5] Giorgio Bruno, Marco Torchiano, Rakesh Agarwal.
UML Enterprise Instance Models. ACM Software Engineering
Notes, 28(2), March , 2003.
[6] Haley Systems Business Rules Management Systems.
Natural Languages – Business Rules. www.haley.com. Last
visited on 2005-01-08.
[7] Hans-Peter Hoidn, Dave Smith. PricewaterhouseCoop-
ers. UML for EAI – Report to the ADTF. OMG TC Meeting.
November, 2001.
[8] Ian Graham. Trireme. Service Ori-
ented Business Rules Management Systems. Ver-
sion 2. www.trireme.com/ServiceOriented Busi-
nessRulesManagementSystems.htm June, 2005.
[9] ILog JRules 4.6. White paper.www.ilog.com. April
2004.
[10] John Knapman. UML for EAI. UML Profile and In-
terchange Models for Enterprise Application Integration (EAI)
Revised Submission.. neptune.irit.fr/Biblio/01-11-21.pdf.
2001.
[11] MDA Guide. Version 1.0.1.www.omg.org. 2003
[12] OMG. Documents & Specifications, Report a Bug/Issue.
www.omg.org/issues/issue4853.txt. Last visited on 2005-07-
01.
[13] Rubby Casallas, Nicolás López, Darı́o Correal. An
Event Infrastructure for Application Cooperation. To appear in
Proceedings of Component-Oriented Enterprise Applications
(COEA 2005). Erfurt, Alemania. September, 2005.
[14] Rubby Casallas, Darı́o Correal, Nicolás López. Mejo-
ramiento del proceso de pruebas en un contexto de desarrollo
de software globalizado. To appear in Proceeding of the XXXI
Latin-American Conference CLEI. Cali, Colombia. Octubre.
2005.
[15] Sun Microsystems. Enterprise
JavaBeans Specification. Version 2.1.
http://java.sun.com/products/ejb/docs.html.
November, 2003.
[16] UML Profile and Interchange Models for Enterprise
Application Integration (EAI) Specification. Version 1.0.
www.omg.org. Mars 2004.
[17] UML Unified Modeling Language Specification..
www.omg.org. Version 1.5. March 2003.

http://www.omg.org
http://www.ilog.com
http://www.omg.org
http://java.sun.com/products/ejb/docs.html
http://www.omg.org

Rule-based business process modeling and
execution

Stijn Goedertier Jan Vanthienen

Abstract—A process model is called rule-based if the semantics of its
case data and activity flows are expressed by means of rules. Rules have
been recognized before as powerful representation forms that can poten-
tially define the semantics of data and process resources. To date, however,
there is no consensus on how to link the enforcement of rules, the manipu-
lation of data and the execution of processes. Moreover, it is witnessed that
complex data and process resource descriptions in the form of a number of
constraints, deduction and reaction rules lack expressivity and comprehen-
sibility. In this paper, we set out for using process and rule set metamodels
to concisely represent the semantics of case data and activity flows in busi-
ness process models. In addition we show how to generate a syntactically
verified and semantically validated corpus of definite Horn clauses that can
be used in the execution of the modeled process.

I. I NTRODUCTION

Software engineering aspires to avoid the duplication of re-
sources. This is a fundamental principle which is based on
the experience that systems with duplicated resources sooner or
later run across a myriad of difficulties. As with data in the past
and process descriptions at present, logic is gradually becoming
the next resource to be managed outside individual applications.
Through the separation of so called business rules from appli-
cations, it is hoped that changes in business logic will no longer
result in an avalanche of required application updates, and will
thus reduce the IT bottleneck when bringing about business pol-
icy changes. Separating logic from applications is the goal of
rule-based software engineering, which has the potential of sig-
nificantly improving the theory and practice of system design.

This separation, however, raises the problem of how to link
the enforcement of business rules, the manipulation of data and
the execution of processes. Several approaches to this prob-
lem are described in the literature, such as Dietrich’s rule-
based agents [1] and D’Hondt’s approach which considers busi-
ness rule enforcement as an aspect-oriented programming cross-
cutting concern [2]. In this paper, business rule enforcement is
situated at the level of business processes rather than at the level
of individual applications. In particular, we propose a process
and rule set ontology forrule-based business process modeling
and an architecture forrule-based business process execution.

A. Existing process languages

Rule-based process modeling is different from existing pro-
cess languages, because it allows to define both the flow-control
and data perspective of business processes. Formal process lan-
guages like Petri nets [3] andπ-calculus [4] predominantly fo-
cus on the flow-control perspective of business processes and
validate sequence constraints only. Likewise, process execution
languages like BPEL attach little attention to declarative formu-
lation of case data semantics. In such process languages it might

Katholieke Universiteit Leuven,
Department of Decision Sciences & Information Management
Naamsestraat 69 - 3000 Leuven - Belgium
stijn.goedertier@econ.kuleuven.be, jan.vanthienen@econ.kuleuven.be

be possible to simulate aspects of data semantics using a process
description. The latter, however, is often argued to overburden
process descriptions. Moreover, the inclusion of data semantics
in individual process models goes against the above mentioned
principle to avoid duplication of resources.Rule-based busi-
ness process modeling, in contrast, has the potential of aligning
the semantics of both business vocabulary and business process
descriptions in a natural and concise manner.

B. Existing rule languages

The literature categorizes business rules in three basic types
[5]: constraints and derivation rules, which define the semantics
of data resources, and reaction rules, which define the seman-
tics of process resources. Rules have been recognized before
as powerful representation forms that can potentially define the
semantics of data and process resources. Dietrich et al., for
example, describe the behavior and knowledge of an artificial
agent using a set of derivation and reaction rules [1]. In this pa-
per we enhance the expressivity and comprehensibility of this
approach, making it suitable for rule-based process modeling.
Expressivity is enhanced, because we allow process rules with
composite events [6] and long-running activities. Comprehen-
sibility is enhanced because we consider rule sets rather than
rules as the atomic unit of logic.

The remainder of this paper is structured as follows. First we
give an outline of the architectural context of rule-based busi-
ness process execution and situate business rules in enterprise
models. Next we define a rule-based process metamodel that
can be used for describing business processes as sets of process
rules, which facilitates alignment with other types of business
rules. To enhance comprehensibility, we define a generic rule
set metamodel that is useful in representing different types of
rule sets. Finally, we display excerpts of a process description
and show as a proof-of-concept how to generate a corpus of def-
inite Horn clauses from it that can be used in the execution of
the modeled process.

II. T HE ARCHITECTURAL CONTEXT OF RULE-BASED

PROCESS EXECUTION

Data, processes and logic are essential resources of any infor-
mation system and can consequently be identified at any level
of abstraction. For the purpose of rule-based process execution,
it is useful to consider these resources at the highest level of a
service-oriented enterprise-architecture stack [7]. Such an ar-
chitecture stack, as displayed in figure 1, commonly consists of
a number of layers. Applications and databases of one layer
are concealed by the components and services of a higher layer.
Services can be combined forming long-running business pro-
cesses, which make up the highest layer.

Business process models are flexible descriptions of long-
running interactions between business partners. Process in-

68 Rule-based business process modeling and execution

application

layer

service and

component

layer

business

process and

rule layer

ERP

MCS
LDAP

DWH

sales

production

purchase

rule

enforcement
 Call For

Proposals

Fig. 1

ARCHITECTURAL CONTEXT

stances represent a sequence of activities that are triggered by
business events and that represent the invocation of services.
The execution of business processes is governed by a so called
process engine. In the context of rule-based process execution,
a process engine has the following components: a message han-
dler, a persistence mechanism for case data, an inference engine
and a mechanism to invoke services once their corresponding
activities have been initialized.

In correspondence with the perception-reaction cycle de-
scribed in [1] and the decomposition principle in reactive agent
architectures in general, we decompose the processing of an
event into a series of aspects, that can be addressed via a num-
ber of consecutive logic queries on an inference engine. Each
query refers to rules, which are to be derived from an enterprise
model.

0. Derivation rules: define facts that can be logically de-
rived from other case data elements. Derivation rules are
used throughout the entire event processing cycle.

1. Authorization rules: is the participant authorized to raise
the particular event? If this is not the case, any further pro-
cessing of the event message stops. Is the participant au-
thorized to provided the data elements that are contained
by the event message? The data elements that violate au-
thorization rules are left out.

2. Input validation rules: do the data elements – if any –
that accompany the event satisfy the business constraints,
given the available case data elements? Only if this is the
case, these data elements are incorporated in the case data
of the process instance.

3. Case data requirements:are all data elements that are re-
quired at this or future decision points available? If this is
not the case, these data elements should be collected from
the proper process participants or underlying database and
application layer. The advantage of this approach is that it
no longer requires process participants to exchange mes-
sages of which the content is fixed a-priori.

4. Process rules and activity preconditions:Given the new
event, and the events, data elements and activity states that

make up the state of the particular process instance, which
– if any – activities should be launched with which param-
eters? Are the preconditions, such as sequence constraints,
of the activities to initialize satisfied?

5. Notification rules: in case an activity is launched, which
participants should be notified and what data elements cor-
respond to this notification?

III. RULE-BASED BUSINESS PROCESS MODELING

Enterprise models are abstractions of different aspects of an
enterprise, typically with a purpose to understand and share the
knowledge of how the enterprise is structured and how it op-
erates [8]. In addition to the purpose of knowledge manage-
ment, enterprise models can be a foundation for model-driven-
architecture. In the context of rule-based business process mod-
eling, three submodels of an enterprise model are particularly
relevant, as displayed in figure 2.

• A Business Vocabulary modelcontains the knowledge ar-
tifacts of an enterprise model. It is often argued to ex-
press Vocabulary Models using fact-oriented ontology lan-
guages rather than object-oriented ontology languages [9].
At this level of abstraction, little matters how attributes
resort under objects. In the context of rule-based model-
ing, fact-oriented models are particularly useful because
they are closer to natural language and logic programming,
than object-oriented models. For the purpose of this paper,
we settle for a vocabulary language with only two con-
structs: unary predicates to indicate domain classes and bi-
nary predicates to indicate domain properties. These con-
structs correspond to the class and property constructs of
semantic web ontology languages [10]. In this paper, how-
ever, we refrain from using any specific ontology language
for representing business vocabulary.

• A Business Process Modelconsists of process descriptions
that describe how the enterprise interacts with external pro-
cess participants and which internal services should conse-
quently be invoked. To enable rule-based process model-
ing, we devise a lightweight business process metamodel
of which the constructs are outlined in the following sec-
tion.

• Business rules models govern the dynamics of data and
process resources. Consequently, Vocabulary and Process
models are related to business rules models [8]. Vocabu-
lary models are related toBusiness Rule Models, because
business logic contains derivation rules and constraints that
define or constrain predicates of the vocabulary model.
Constraints, for instance, can define the (conditional) car-
dinalities of artifact relations. Derivation rules define pred-
icates that can be logically derived from the available case
data. Process models are related toBusiness Rule Mod-
els because business logic defines the state transitions of
process instances. This is displayed in figure 2. Business
rules are undoubtedly powerful representations, but as we
will argue, rule sets rather than individual rules should be
considered as the atomic unit of logic in enterprise models.
To this purpose, we define a generic rule set metamodel in
section V.

Stijn Goedertier and Jan Vanthienen 69

ActivityType
EventType

Role

DecisionPoint

ProcessRule

raisedBy

1

*

involves

ProcessDescription

Participant
 ProcessInstance

raisedBy

1
 *

DataElementDescription

providedBy
0..1

*

requiredAt

DataElement

providedBy
0..1
*

Process Description

Process Instance

*

1

*
1

*
 1

triggers

activityEvent

Role

Event
 Activity

Parameter

1
0..*

ParameterDescription

NotificationDescription

DomainPredicate

DomainClass
DomainProperty

Precondition

Notification

1
 *

Fig. 3

A LIGHTWEIGHT PROCESS METAMODEL, AT DESCRIPTION AND INSTANCE LEVEL

Business

Rule

Model

Business

Vocabulary

Model

Business

Process

Model

defines state

transitions of

defines and

constrains

terms of

1. authorization

rules

2. input

validation rules

3. case data

requirements

4. process rules

& preconditions

5. notification

rules

0. derivation

rules

Fig. 2

BUSINESS RULES IN ENTERPRISE MODELS

IV. A RULE-BASED PROCESS METAMODEL

At this point it is not our intention to thoroughly describe the
precise semantics of yet another process language. Instead, we
specify a lightweight process ontology, that can be the founda-
tion for a rule-based process language of arbitrary complexity.
The main building block of this process ontology is a decision
point, in which control flow can be described using a set of pro-
cess rules. This rule-based nature of the control-flow descrip-
tion facilitates its integration with rule-based case data seman-
tics. How advanced control-flow patterns such as cancelation
and multiple instance patterns [11] fit into this rule-based frame-
work is outside the scope of this paper.

A. A process instance metamodel

Figure 3 represents a MOF/UML metamodel of rule-based
processes both at the level of process instances and process de-
scriptions. Let us begin our description of the process ontology
at the level of theprocess instance. In our view, a process in-
stance’s state is defined implicitly by its data elements, events
and activity states.Activities are long-running, asynchronous
invocations of services that are initiated by the process engine.

70 Rule-based business process modeling and execution

Depending on the required semantics of the rule-based process
language, activities might have states such as ‘initiated’, ‘exe-
cuting’, ‘failed’, ‘canceled’ and ‘succeeded’. In the process lan-
guage we use in our example, the states ‘failed’ or ‘succeeded’
are notified to the process engine by means ofactivity events.
In addition to these internal activity events, the process engine
perceives or is notified of externaleventsthat are raised by other
participants of the process. Case data is a collection ofdata el-
ementsthat are provided or retrieved either internally through
queries on the application and database layer or from other par-
ticipants. In the latter case, the process engine keeps track of
the participant that has provided a particular data element.

B. A process description metamodel

The main building block of aprocess descriptionis a deci-
sion point. The event types, activity event types, and activity
types that are relevant at a certain decision point are associated
with it. In addition, a decision point consists of a set ofprocess
rules that capture the precise semantics of the state transitions.
Process rules consist of a set of conditions which involve mul-
tiple events and data elements, and a set of conclusions which
involve activities to be initiated. Viadata element descriptions
the ontology allows to model the data elements that are required
at each decision point, such that missing data elements can be
retrieved dynamically from specific participants. Likewisenoti-
fication descriptionsdescribe which participants should be no-
tified of activity state transitions.

C. The case for process rules

Through the years a plethora of process languages and mod-
eling constructs have been introduced. The notion of busi-
ness events, for instance, goes back to the ongoing research in
the area of Event-Driven Process Chains [12]. Traces of this
work are present in metamodels such as the OMG’s Enterprise
Collaboration Architecture process metamodel [13]. Likewise
many modeling constructs have a grounding in logic program-
ming, such as Event-Condition-Action (ECA) rules, which have
been shown before to represent business processes [14]. Only
recently, the semantic web community has constructed a process
model to fit into the current semantic web ontology language
[15]. The rule-base process model, nonetheless, has some dis-
tinct features that enhance expressivity and comprehensibility
over existing process models.

Expressivity is enhanced, because process rules are able to
express composite events [6] and are able to deal with long-
running activities. Like ECA rules, process rules can be trans-
formed into a set of definite Horn clauses that can be used to
simulate reaction rules in an inference engine, as we will show
in section VI. In addition, our process model has a strong focus
on case data, allowing to keep track of the origin of each data
element and to determine case data requirements at each deci-
sion point. The advantage of this approach is that the content of
messages no longer needs to be determined a-priori. Instead, a
dynamic dialogue between participants becomes possible, con-
sisting of event notifications, activity requests and data queries.
Moreover, the focus on data elements and the rule-based context
facilitates the integration of the process model with rule-based
vocabulary semantics.

Enhancing expressivity by adding fine-grained modeling con-
structs often goes at the expense of comprehensibility. For in-
stance, we recognize that even a small number of process rules
can be difficult to verify and validate. To overcome this prob-
lem, the process model modularizes process rules into decision
points. In the following section, we will describe a rule set on-
tology that can be used for constructing and representing rule
sets concisely.

V. A RULE SET METAMODEL

A. Rule sets as the atomic units of logic

Rules are sometimes regarded as the atomic units of logic
in enterprise models. In many cases, however, rule sets rather
than rules should be seen as the atomic units of logic. First, to
enable verification and validation, rules pertaining to a single
decision regarding the vocabulary model or process model need
to be modularized in rule sets. For instance, the grouping of
rules that capture the discount policy of a retailer into one rule
set, provides an overview of all the discount cases. Likewise,
grouping process rules that pertain to a single process decision
point, enables to verify and validate the semantics. A second
reason why rules are not atomic is that groups with different
numbers of rules can be shown to have equivalent semantics;
moreover it is often the case that individual rules are dependent
of one another, for instance in the context of default logics.

For these reasons it is often useful to group rules like deriva-
tion rules, conditional constraints or process rules that define
the semantics of the same data element type or that pertain to
the same process decision point in one rule set. In such a rule
set, rules can be formulated using, for instance, a form of default
logic, and transformed into equivalent sets of rules that can be
more easily verified and validated, or that can be more easily
executed by inference engines.

B. Decision tables

Through the years many visualizations of rule sets have come
into existence, refer to [16] for an overview. For the purpose of
rule-based business process modeling, we use decision tables
as a graphical formalism mainly to visualize derivation and pro-
cess rule sets. Consequently, we base our rule set metamodel
on decision tables. We recognize, however, that not all kinds
of business rule can be conveniently captured using the deci-
sion table paradigm. Figure 7 displays an example of a decision
table, which is commented on in section VI. Graphically, a de-
cision table consists of four quadrants. The two upper quadrants
make up the condition sphere and the two lower quadrants rep-
resent the conclusion sphere. Likewise, the left two quadrants
of a decision table make up the abstract sphere with condition
labels and conclusion values whereas the right two quadrants
make up the concrete sphere with conditions and references to
conclusions. Properly built decision tables contain columns in
the upper right quadrant that consist of a conjunction of condi-
tions and are exhaustive and mutually exclusive. It is useful to
consider decision tables as a transformation of input rules into
table rules. A set of input rules, possibly expressed using a kind
of default logic, determine which combination of conditions in
the upper right quadrant leads to which conclusion values in the

Stijn Goedertier and Jan Vanthienen 71

DecisionTable

SubjectAtom
 DomainProperty

InputRule

PropertyAtom
Variable

ConcreteSphere
AbstractSphere

1

1

predicate

Rule

ConditionLabel

subject

property

DomainClass

subject

predicate

1

*

1

*

Conclusion

1

*

property
*

1
1

subject
 *

1

1

{ordered}

1
 *

{mutex}

*

*
 {ordered}

*

*

Condition

ConditionDependencyRule

Fig. 4

A DECISION TABLE RULE SET METAMODEL

lower right quadrant.

C. A decision tables rule set metamodel

Figure 4 displays a MOF/UML decision table rule set meta-
model that captures these ideas. A decision table rule set con-
sists of subjects, properties and variables, which are represented
by subject atomsandproperty atoms. Furthermore a rule set
consists of an ordered composition ofcondition labels. These
condition labels group the conditions of the rule set in sets of
exhaustive and mutually exclusive conditions. Eachcondition
is a logical formula that refers to the domain atoms and vari-
ables of the rule set. The actualrules of the rule set are an
ordered conjunction of conditions, such that a rule contains at
most one condition of each condition label. Notice that not
every conjunction of conditions is necessarily meaningful. In
other words, it might be the case that a specific condition is
only meaningful in combination with other specific conditions.
To express this dependency, a decision table can make use of
so calledcondition dependency rules. Figure 6 displays some
examples of such condition dependency rules, which are com-
mented on in section VI. In addition to conditions, a rule refers
to one or moreconclusions. These tablerulescan be considered
as a transformation of an equivalent set ofinput rules.

This generic rule set metamodel can be specialized to model
business rules such as conditional constraints, derivations or
process rules. In the next section we show how to generate sets
of exhaustive and exclusive Horn clauses from decision tables.

VI. GENERATING RULES

As a proof-of-concept we display excerpts from a vocabu-
lary, process and rule model using concise visualizations of the
above described process and rule set metamodels and show how
to generate Prolog clauses from it that can be used in the execu-
tion of the modeled process. Note that it is possible to generate
rules in any logic programming language. Decision table rule
sets, in particular, aim at transforming rules into exhaustive and
mutually exclusive, definite Horn clauses, which have equiva-
lent procedural semantics in many different rule execution en-
vironments.

As shown, rule-based process execution decomposes the pro-
cessing of event messages into a number of logic queries on
an inference engine. Each of these queries refers to a different
type of rule, which are to be derived from the business vocabu-
lary, business process and business rule models. In Prolog, these
queries have the following signature:

0. Derivation rules: derivation rules represent proper-
ties that can be derived deductively from the available
case data. Given the limited vocabulary language of
domain classes and domain properties that we departed
from, the signature of derivation rules in Prolog can be
represented as unary and binary predicates: :ClassPred-
icate(?Resource), :PropertyPredicate(?Resource, ?Re-
source) and :PropertyPredicate(?Resource, ?Literal).

1. Authorization rules: authorized(+Event, +Participant)
succeeds when the participant is authorized to raise the
event. Likewise, authorized(+DataElement, +Participant)

72 Rule-based business process modeling and execution

i
n

 f
o

 r
m

Make

Proposal

I
N

I
T

I
A

T

O

R

(

1

)

p

 r
o

 p

 o

 s

 a

 l

c

 f
p

Execute

Proposal

a

c

c

e

p

t
-
p

r
o

p

o

s

a

l

r
e

j
e

c

t
-
p

r
o

 p

o

s

a

l

Refuse

Call For

Proposals

Reject

Proposal

Accept

Proposal

Evaluate

Terminate

Terminate

P

A

R

T

I
C

I
P

A

N

T

(
n

)

i
n

 i
t
i
a

 t
e

c

 f
p

Fig. 5

THE CONTRACT NET INTERACTION PROTOCOL

succeeds if the data element description of the data ele-
ment, allows it to be provided by this participant.

2. Input validation rules: constraintViolation(-DataEle-
ment, -ViolatedConstraint) succeeds if, given the current
and additional case data elements, one of the new data ele-
ments violates a particular business constraint.

3. Case data requirements:requirement(+DecisionPoint, -
DataElementType, -Participant) succeeds if additional data
elements are required from a participant to continue the
process beyond a certain decision point. If this is not
the case, these data elements should be acquired from the
proper process participants or underlying database and ap-
plication layer.

4. Process rules and activity preconditions: reac-
tion(+Event, -Activity) succeeds if given the new event and
the events, data elements and activity states that make up
the state of the process instance, a new activity, satisfy-
ing the preconditions of the service to invok, should be
launched. The activity type and parameters of this activity
are asserted in the knowledge base.

5. Notification rules: notification(+Activity, -Notification)
succeeds if the state change of an activity requires some
process participants to be notified. The proper participant,
event and data elements to be contained by this notification
message are asserted in the knowledge base.

By means of illustration, we derive a private process descrip-
tion from the Contract Net Interaction Protocol [17]. This inter-
action protocol is not only a standard multi-agent coordination
mechanism [18], but also is a standard interaction pattern for
many real-life B2B transactions. The interaction proceeds as
follows. An initiator puts out a contract to tender by issuing a
request for proposal (RFP). Subscribed participants can respond
to this request with a proposal. In our example the initiator
accepts the best proposal if it is below an a-priori determined

reservation price and rejects the other proposals. This decision
is taken the moment a deadline has passed. Proposals submitted
after the deadline are not considered.

A. Visualization of a process description

Figure 5 displays this process description both for the ini-
tiator and for a participant. Although some visual elements
correspond to other process notations, our notation is different,
mainly because it distinguishes decision points in a process de-
scription, which are represented as circles in the diagram. The
diagram displays activity types as rectangles. External event
types are dotted lines, whereas activity event types are solid
lines flowing into a decision point. The outflow of a decision
point describes the activities that might be launched in response
to observed events. Notice that within a single process instance
multiple instances of reject proposal activity types can be cre-
ated. Synchronization of these activities, however, is not re-
quired.

B. A visualization of a process rule set

The state transitions at a certain decision point are described
by a set of process rules. Consider, for example, the second
decision point in the process description of the initiator. At this
point, a decision has to be made which proposals to accept and
which to reject. In the case no proposals are submitted before
the deadline, or in the case previous activities did not succeed,
the process instance should terminate.

These process semantics are defined by a set of process rules,
which can be visualized with decision tables. Because these ta-
bles are cumbersome to construct manually, we have used Pro-
loga [19] to construct it for us. Although Prologa fits in a propo-
sitional logic framework, Prologa proves a useful tool to visual-
ize and transform a number of input rules, expressed using Pro-
loga’s own default logic [19]. In particular, Prologa provides the
user with a number of features that facilitate knowledge mod-
eling, such as the reordering of condition labels to expand or
contract the table, the syntactical verification of rules and the
powerful visualizations that allow to semantically validate a rule
set [20].

Figure 6 gives an outline of the subjects, properties and vari-
ables that are the building blocks of the process rules. The con-
clusions of the rule set are defined by a set of input rules. In
addition a set of condition dependency rules indicates which
combinations of conditions are meaningless in this table. For
instance, the combination of a call for proposal succeeded event
and a call for proposal failed event does not occur in reality. In
consequence, these combinations of conditions are eliminated
from the decision table. The actual process rules can be re-
trieved from the columns of the two right quadrants of the table.
These rules translate in the following Prolog clauses.

% DECISION POINT: decisionPoint2
% PROCESS RULE: processrule2-1
reaction(Event, Activity) :-

% EVENT
(Event=EDL; Event=ECFPs),

% EVENT CONDITIONS
etTimerActivitySucceeded(EDL),
etCFPsucceeded(ECFPs),

% CONDITIONS
proposal(P),

Stijn Goedertier and Jan Vanthienen 73

reaction(Event, Activity)

1. etTimerActivitySucceeded

 Y

 N

2. etCFPsucceeded

 Y

 N

 -

3. etCFPfailed

 -

 Y

 N

 -

4. proposal

 Y

 N

 -

 -

 -

5. bestProposal

 Y

 N

 -

 -

 -

 -

6. price, reservationPrice

 Pr <= RP

 Pr > RP

 -

 -

 -

 -

 -

1. atAcceptProposal, P

 x

 .

 .

 -

 -

 -

 -

2.
 atRejectProposal, P

 .

 x

 x

 -

 -

 -

 -

3. atTerminate

 .

 .

 .

 x

 x

 -

 -

 1

 2

 3

 4

 5

 6

 7

Subjects
,
properties
 and variables
 :

 etTimerActivitySucceeded: EDL

 etCFPsucceeded: ECFPs

 etCFPfailed: ECFPf

 proposal: P

 price: Pr

 bestProposal: P

 callForProposals: CFP

 reser
vationPrice: RP

Condition dependency
 rules:

1.

 Condition etCFPsucceeded(ECFP) is possible only if not

etCFPfailed(ECFP).

2.

 Condition etCFPfailed(ECFP) is possible only if not

etCFPsucceeded(ECFP).

3.

 Condition bestProposal(P) or not bestProposal(P) is

possible on
ly if proposal(P).

Input rules:

4.

 atAcceptProposal or atRejectProposal or atTerminate is

possible only if etTimerActivitySucceeded (EDL) and

(etCFPsucceeded(ECFP) or etCFPfailed(ECFP)).

5.

 only atTerminate definitely if etDeadLine(EDL) and

etCFPfailed(ECFP).

6.

 o
nly atTerminate definitely if etDeadLine(EDL) and

etCFPsucceeded(ECFP) and not proposal(P).

7.

 atRejectProposal generally if proposal(P) and not

bestProposal(P).

8.

 atAcceptProposal generally if proposal(P) and

bestProposal(P) and Pr <= RP.

9.

 atRejectProposal gene
 rally if proposal(P) and

bestProposal(P) and Pr > RP.

Fig. 6

A PROCESS RULEDECISION TABLE

bestProposal(P),
price(P, Pr),
callForProposals(CFP),
reservationPrice(CFP, RP),
Pr=<RP,

% ACTIVITY ASSERTION
[...]
% PARAMETER ASSERTION
[...]

% ACTIVITIES
(Activity=AacceptProposalGUID).

% DECISION POINT: decisionPoint2
% PROCESS RULE: processrule2-4
reaction(Event, Activity) :-

% EVENT
(Event=EDL; Event=ECFPs),

% EVENT CONDITIONS
atTimerActivitySucceeded(EDL),
etCFPsucceeded(ECFPs),

% CONDITIONS
not(Proposal(P)),

% ACTIVITY ASSERTION
[...]
% PARAMETER ASSERTION
[...]

% ACTIVITIES
(Activity=AterminateGUID).

discount(Contract, D)
 –
 MAX D

1. inDelayWithPayment

 Delay=true

 Delay=false

2. quantity

 -

 Q >= 3

 Q < 3

3. deliveryTime

 -

 T < 7

 T >= 7

 T < 7

 T >= 7

1. D is 0.1*SPrice

 -

 x

 x

 .

 .

2. D is 50

 -

 .

 x

 .

 x

3. D is 0

 x

 x

 x

 x

 x

 1

 2

 3

 4

 5

Subjects
,
properties
 and variables
:

 salesContract: Contract

 standardPrice: SPrice

 quantity: Q

 deliveryTime: T

 discount: D

 customer: Customer

 customer: Customer

 inDelayWithPayment: Delay

Input rules:

1.

D=0 generally always.

2.

D =
0.1*
S
Price
 i
f
Q >= 3.

3.

D=
50
 i
f
T >= 7.

4.

O
nly
 D=
0
 de
finitely i
f
Delay=true.

Fig. 7

A DEDUCTION RULE DECISION TABLE

C. A visualization of a derivation rule set

Decision tables are useful visualizations of conditional con-
straints, derivation rules and process rules. In the next example
we show that this table is also capable of expressing higher-
order concerns such as aggregation. Figure 7 displays the dis-
counts a retailer might attribute to a sales contract, for instance,
in response to a request for proposal. From the table it is clear
that in some cases, a sales contract might qualify for multiple
discounts – this is called a multiple-hit table in the literature.
Suppose the retailer has the policy to always grant the highest
discount to a sales contract. The retrieval of the highest conclu-
sion value, might translate in the following Prolog clauses.
discount(Contract, Discount) :-

salesContract(Contract),
findall(D, discount_sub(Contract, D), Discounts),
max(Discounts, Discount).

% DERIVATION RULE: discount1
discount_sub(Contract, D) :-

salesContract(Contract),
customer(Contract, Customer),
inDelayWithPayment(Customer, true),
D is 0.

[...]
% DERIVATION RULE: discount5
discount_sub(Contract, D) :-

salesContract(Contract),
customer(Contract, Customer),
inDelayWithPayment(Customer, false),
quantity(Contract, Q),
Q < 3,
deliveryTime(Contract, T),
T >= 7,
(D is 0;
D is 50).

VII. C ONCLUSION

In this paper, we set out for using a business rule model to
represent the semantics of the data and control-flow perspective
of business processes. In particular, we have shown how a busi-
ness rule model defines and constrains the data elements of a
business vocabulary model and the state transitions of a busi-
ness process model. To this end we have constructed a generic,

74 Rule-based business process modeling and execution

lightweight process and rule set metamodel that can be the basis
of process languages of arbitrary complexity. From these mod-
els a corpus of different kinds of definite Horn clauses are to be
generated, which can be used in the execution of the modeled
process. In addition we have shown how rule-based process ex-
ecution decomposes the processing of event messages in a num-
ber of logic queries on an inference engine. The latter indicates
how to embed business logic in a service-oriented, event-driven
architectural framework that links the enforcement of rules and
the orchestration of services.

At the moment we are continuing our research in the follow-
ing three directions. First of all, we are working on a rule gener-
ator to automatically generate the execution-level rules from Se-
mantic Web-based vocabulary, process and business rule mod-
els. Secondly, we are looking into process validation facilities
for the validation of private process descriptions against prede-
fined public interaction protocols. In addition we envision to
extend the process metamodel to allow for the incorporation of
update and delete case data manipulation facilities both for the
process engine and the process participants.

REFERENCES

[1] Jens Dietrich, Alexander Kozlenkov, Michael Schroeder, and Gerd Wag-
ner, “Rule-based agents for the semantic web.,”Electronic Commerce
Research and Applications, vol. 2, no. 4, pp. 323–338, 2003.

[2] Maja D’Hondt and Viviane Jonckers, “Hybrid aspects for weaving object-
oriented functionality and rule-based knowledge,” inAOSD ’04: Pro-
ceedings of the 3rd international conference on Aspect-oriented software
development, New York, NY, USA, 2004, pp. 132–140, ACM Press.

[3] Rachid Hamadi and Boualem Benatallah, “A Petri net-based model for
web service composition,” inCRPITS’17: Proceedings of the Fourteenth
Australasian database conference on Database technologies 2003, Dar-
linghurst, Australia, Australia, 2003, pp. 191–200, Australian Computer
Society, Inc.

[4] L. G. Meredith and Steve Bjorg, “Contracts and types,”Commun. ACM,
vol. 46, no. 10, pp. 41–47, 2003.

[5] Kuldar Taveter and Gerd Wagner, “Agent-Oriented Enterprise Modeling
Based on Business Rules.,” inER, Hideko S. Kunii, Sushil Jajodia, and
Arne Sølvberg, Eds. 2001, vol. 2224 ofLecture Notes in Computer Sci-
ence, pp. 527–540, Springer.

[6] James Bailey, Franois Bry, and Paula-Lavinia Pătr̂anjan, “Composite
event queries for reactivity on the web,” inWWW ’05: Special interest
tracks and posters of the 14th international conference on World Wide
Web, New York, NY, USA, 2005, pp. 1082–1083, ACM Press.

[7] Lawrence Wilkes and Richard Veryard, “Service-Oriented Architecture:
Considerations for Agile Systems,”Microsoft Architects Journal, pp. 11–
23, April 2004.

[8] Marko Bajec and Marjan Krisper, “A methodology and tool support for
managing business rules in organisations,”Information Systems, vol. 30,
no. 6, pp. 423–443, Sep 2005.

[9] Terry A. Halpin, “A Fact-Oriented Approach to Business Rules,” inER,
2000, pp. 582–583.

[10] Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker,
“Description logic programs: combining logic programs with description
logic,” in WWW ’03: Proceedings of the 12th international conference on
World Wide Web, New York, NY, USA, 2003, pp. 48–57, ACM Press.

[11] W. M. P. Van Der Aalst, A. H. M. Ter Hofstede, B. Kiepuszewski, and
A. P. Barros, “Workflow Patterns,”Distrib. Parallel Databases, vol. 14,
no. 1, pp. 5–51, 2003.

[12] G. Keller, M. Nüttgens, and A.W Scheer, “Semantische Prozessmod-
ellierung auf der Grundlage Ereignisgesteuerter Prozessketten (EPK),”
Technical Report 89, Institut für Wirtschaftsinformatik Saarbrücken, Ger-
many, 1992.

[13] Object Management Group, “UML Profile for Enterprise Collaboration
Architecture Specification,” Februari 2004, Document number 04-02-05.

[14] Holger Herbst, “A Meta-Model for Business Rules in Systems Analysis,”
in CAiSE, Juhani Iivari, Kalle Lyytinen, and Matti Rossi, Eds. 1995, vol.
932 ofLecture Notes in Computer Science, pp. 186–199, Springer.

[15] “OWL-S: Semantic Markup for Web Services,” 2003.
[16] Grigoris Antoniou, Kuldar Taveter, Mikael Berndtsson, Gerd Wagner, and

Silvie Spreeuwenberg, “A First-Version Visual Rule Language,” Report
IST-2004-506779, REWERSE, 8 2004.

[17] Reid G. Smith, “The Contract Net Protocol: High-Level Communication
and Control in a Distributed Problem Solver.,”IEEE Trans. Computers,
vol. 29, no. 12, pp. 1104–1113, 1980.

[18] FIPA, FIPA Contract Net Interaction Protocol Specification, FIPA, 2002.
[19] Jan Vanthienen,Prologa 5.2 - tabular knowledge modeling - User’s man-

ual, Katholieke Universiteit Leuven, 2003.
[20] Jan Vanthienen, Christophe Mues, and Ann Aerts, “An Illustration of Ver-

ification and Validation in the Modelling Phase of KBS Development.,”
Data Knowl. Eng., vol. 27, no. 3, pp. 337–352, 1998.

 75

Author Index

Acero, C. 59

Atkinson, C. 41

Bertollo, G. 25

Bottazzi, E. 09

Casallas, R. 59

Falbo, R.A. 25

Ferrario, R. 09

Goedertier, S. 67

Hammoudi, S. 33

Janvier, J. 33

Kiko, K. 41

Kim, C.H. 51

Kim, K. 51

Kim, T.Y. 51

Lee, J.S. 51

Leppänen, M. 17

Lopes, D. 33

López, N. 59

Michalek, H. 01

Vanthienen, J. 67

View publication statsView publication stats

https://www.researchgate.net/publication/254859869

	0preface.pdf
	0toc.pdf
	Paper1.pdf
	Paper2.pdf
	Paper3.pdf
	Paper4.pdf
	Paper5.pdf
	Paper6.pdf
	Paper7.pdf
	Paper8.pdf
	Paper9.pdf
	P-author index.pdf

