
Preserving Multi-Level Semantics in Conventional Two-Level Modeling Techniques

João Paulo A. Almeida1, Fernando A. Musso1, Victorio A. Carvalho2,
Claudenir M. Fonseca3, Giancarlo Guizzardi3

1Ontology & Conceptual Modeling Research Group (NEMO), Federal University of Espírito Santo (UFES), Vitória, Brazil
2Federal Institute of Espírito Santo (IFES), Colatina, Brazil

3Conceptual and Cognitive Modeling Research Group (CORE), Free University of Bozen-Bolzano, Bolzano, Italy
jpalmeida@ieee.org, fernandomusso14@gmail.com, victorio@ifes.edu.br,

cmoraisfonseca@unibz.it, giancarlo.guizzardi@unibz.it

Abstract—Conceptual models are often built with techniques
that propose a strict stratification of entities into two classifica-
tion levels: a level of types (or classes) and a level of instances.
Multi-level conceptual modeling extends the conventional two-
level scheme by admitting that types can be instances of other
types, giving rise to multiple levels of classification (individ-
uals, classes, metaclasses, metametaclasses, and so on). As a
result, multi-level models capture not only invariants about
individuals, but also invariants about types themselves, which
become regular elements of the domain of inquiry (first-class
citizens). Despite the benefits of the multi-level approach, the
vast majority of tools for conceptual modeling are still confined
to the two-level scheme, and hence cannot accommodate multi-
level entities. This paper proposes a transformation of multi-
level to two-level models that preserves the semantics of the
original multi-level model. We employ the systematic reification
of the instance facet of a class and its linking to the type
facet. The feasibility of the approach is demonstrated by a
transformation of ML2 (multi-level) models to Alloy (two-level)
specifications.

Index Terms—multi-level modeling, model transformation,
multi-level theory, multi-level modeling language

1. Introduction

Conceptual modeling is usually undertaken by capturing
invariant aspects of entities in a subject domain, which is
supported in most conceptual modeling approaches through
constructs such as “classes” and “types”, reflecting the use
of “kinds”, “categories” and “sorts” in accounts of a subject
domain by subject matter experts. In the conventional two-
level representation scheme, a conceptual model is stratified
into two levels of entities, a level of types (or classes)
and a level of instances, where the level of types captures
invariants that apply exclusively to the level of individuals.
In this scheme, the subject matter can be understood as

This work has been partially supported by CNPq (407235/2017-5,
312123/2017-5), CAPES Finance Code 001 (23038.028816/2016-41),
FAPES (69382549) and FUB (OCEAN Project).

consisting of individuals, and the purpose of the conceptual
model is to establish which structures of individuals are
admissible according to some (shared) conceptualization of
the world [1].

The two-level scheme, however, reveals its limitations
whenever categories of categories are part of the domain of
inquiry. In this setting, we are interested not only in invari-
ants about individuals but also about categories themselves
[2]. For example, in the military domain, experts often refer
to “vessel types” or “ship classes” in their accounts. In-
stances of Vessel Type, such as Cargo Ship, Submarine,
Supercarrier or Nimitz-class Aircraft Carrier are
themselves types, instantiated by individual vessels. For
instance, the USS Abraham Lincoln (an aircraft carrier of
the US Navy) is an instance of both the Supercarrier
and Nimitz-class Aircraft Carrier types. In their turn,
Supercarrier and Nimitz-class Aircraft Carrier are
instances of Vessel Type. Thus, to describe the concep-
tualization in this domain, one needs to represent entities
of different (but nonetheless related) classification levels,
such as specific ships out there in a mission, types of
ships, and (even) types of types of ships (Vessel Type,
Submarine Type, Cargo Ship Type). Other examples of
multiple classification levels come from domains such as
that of organizational roles, software engineering [3], bio-
logical taxonomy [4] and product types [5].

The need to support the representation of subject do-
mains dealing with multiple classification levels has given
rise to what has been referred to as “multi-level modeling”
[5], [6]. Techniques for multi-level conceptual modeling
must provide modeling concepts to deal with types in var-
ious classification levels and the relations that may occur
between those types. Moreover, they must account for types
behaving as instances and, as such, respecting invariants and
holding values for properties they exemplify. Despite the
modeling expressiveness gained from the support provided
by multi-level techniques, they pose a significant challenge
to frequently used representation languages that adopt a
strict two-level divide (such as, e.g., Alloy, OWL-DL) or
that have limited multi-level modeling capabilities (as is the
case of UML as shown in [7]).

Over the last years, some of us worked out a founda-
tional theory for multi-level modeling (dubbed MLT*) [8].
Our investigation was motivated by the lack of (language-
independent) foundations for multi-level modeling. MLT*
embodies those conceptual notions that are key to the rep-
resentation of multi-level models, such as the existence of
entities that are simultaneously types and instances, the iter-
ated application of instantiation across an arbitrary number
of levels, the possibility of defining attributes and values
at the various type levels, etc. In this paper, we employ
MLT* to devise a well-founded solution to systematically
transform multi-level models into strict two-level languages
while fully preserving its original features. This paper ad-
vances on a recent short paper [9], on which we explore
the transformation of models represented in ML2 [10] (a
language that incorporates the rules of MLT* into its syntax)
into Alloy (a two-level formal language [11]), by general-
izing and formally describing the systematic emulation of
the semantics of multi-level mechanisms in the two-level
scheme. Additionally, we exemplify the power of emulating
original model semantics in two-level language by exploring
the simulation of ML2 models in Alloy.

The remainder of this paper is organized as follows: Sec-
tion 2 discusses workarounds which are required when we
are confined to two levels of classification, focusing on the
powertype pattern. Section 3 presents the fragment of MLT*
which is employed in our solution in Section 4. Section 5
discusses the ML2 to Alloy transformation formally defining
and exemplifying the required steps. Section 6 discusses
related approaches, and finally, Section 7 presents some
concluding remarks.

2. The Classical Two-Level Workaround – The
Powertype Pattern

Let us consider the biological taxonomy domain as a
paradigmatic example of a multi-level domain [4], [12].
The biological taxonomy for living beings classifies them
according to biological taxa (such as, e.g., Animal, Mammal,
Carnivoran, Lion), each of which is classified by a bi-
ological taxonomic rank (e.g., Kingdom, Class, Order,
Species) [13]. Cecil (the lion killed in the Hwange
National Park in Zimbabwe in 2015) is an instance of
Lion, which is an instance of Species. Species, in its
turn, is an instance of Taxonomic Rank. In this domain,
we are interested not only in capturing features of certain
organisms (e.g., Cecil’s cause of death), but also of types
of organisms (species), and their properties. For example,
a species (like other taxa) is named by a person (the Lion
species was named by Carl Linnaeus) and can be attributed
a conservation status. Further, being a member of a
certain species, an organism has certain features in virtue
of being a member of the species. For example, all lions
are warm blooded, while all frogs are cold blooded.

In the conventional two-level approach, entities in the
domain have to be classified either as classes (or types)
or as instances. Strictly speaking, there is no room for

Figure 1. The powertype pattern with a regular user-defined association

meta-types such as Species or meta-meta-types such as
Taxonomic Rank. Workarounds are available as discussed
in [14], [15], but these often introduce accidental complex-
ity that is not related to the complexity of dealing with
higher-order types, but complexity that emerges from the
specific workaround. For example, an early approach that
has aimed to accommodate multiple domain levels within
two modeling levels is the powertype pattern proposed by
[16]. In this pattern, all types are treated as regular classes,
and a “base type” (such as Organism, Taxon) is related
to a “powertype” (such as Species, Taxonomic Rank),
through a user-defined (and regular) association (such as
classified by, ranked in). See Figure 1 for a model
capturing this scenario using UML’s support for powertypes.

This workaround creates a number of difficulties, some
of which are discussed in [14], [15]. First of all, a modeler
needs to handle explicitly two notions of instantiation, a
native one provided by the modeling technique (and thus
between classes and instances) and another that corre-
sponds to the user-defined association (classified by or
ranked in). In the case of the latter, since it is a regular
user-defined association, no support for its instantiation se-
mantics is provided by the modeling technique, and hence,
instantiation semantics needs to be emulated manually by
the modeler. The pattern is based on the duplication of
the instances of the powertype: this is because they must
be admitted both at the instance level (e.g., Lion as an
instance of Species, carrying values for taxonAuthor,
population, warmblooded) and at the same time at the
class level (e.g., Lion as a specialization of Organism).
The management of the duplicated entities – although key
to the pattern – is left to the model user.

Some other problems stem from the reliance on “gener-
alization sets” to indicate that a subclass is an instance of a
powertype. For a classifier to be considered a “powertype”
in UML, it must be related to a “generalization set”. Thus,
in UML, the powertype pattern can only be applied when
specializations of the base type are explicitly modeled (oth-
erwise there would be no generalization set). We consider
this undesirable as it rules out simple models such as one
defining Species as a “powertype” of Organism, without
forcing the modeler to “hardcode” specific instances for
Species.

3. Background: The MLT* multi-level theory

Before we provide a systematic two-level solution, we
present here a formal multi-level modeling theory some of
us proposed in [8]. Here, we discuss the theory’s topmost
fragment, which is adopted in Section 4 as part of the two-
level solution.

The theory ranges over all possible types and individu-
als, which together constitute the entities we are interested
in (a1). Every entity (type or individual alike) is related to
one or more types through a primitive instance of relation
(or for short iof). Since types can themselves be related to
other types through iof, this enables chains of instantiation
of arbitrary lengths. Those entities that never play the role of
type in instantiation are the individuals (a2). We assume that
the theory is only concerned with types with non-trivially
false intensions, i.e., with types that have possible instances
in the conceptualization. Because of this, for every type
there is a possible entity that instantiates it (a3).

a1 ∀x(Entity(x))
a2 ∀x(Individual(x)↔¬∃y(iof(y,x)))
a3 ∀x(Type(x)↔∃y(iof(y,x)))

We establish that types are ultimately grounded on in-
dividuals. Thus a super-relation (iof’) is defined including
all pairs such that iof(x,y), but also all pairs derived from a
chain of pairs connected by iof relations. The transitive (iof’)
relation then always leads us from a type to one or more
individuals:

a4 ∀t(Type(t)→∃x(Individual(x)∧ iof’(x, t)))

Specialization between types is defined as usual, i.e., a
type specializes a supertype whenever all its instances are
also instances of the supertype (a5). Proper specialization
is defined for the cases in which the extension of the
specialized type is a proper subset of the extension of the
general type (a6).

a5 ∀t1, t2(specializes(t1, t2)↔
Type(t1)∧∀x(iof(x, t1)→ iof(x, t2)))

a6 ∀t1, t2(properSpecializes(t1, t2)↔
specializes(t1, t2)∧¬specializes(t2, t1)))

Finally, two types are considered equal iff all their
possible instances are the same (i.e., if they are necessarily
co-extensional):

a7 ∀t1, t2(Type(t1)∧Type(t2)→ (t1 = t2 ↔∀x(iof(x, t1)↔
iof(x, t2))))

Using the basic framework outlined above, relations
between types were defined accounting for different no-
tions of powertype used in the literature, more specifi-
cally clarifying and positioning conflicting definitions of
Cardelli [17] and Odell [16]. A type t1 isPowertypeOf a
(base) type t2 iff all instances of t1 are specializations of
t2 and all possible specializations of t2 are instances of t1.
Powertypes in this sense are analogous to powersets. The
powerset of a set A is a set that includes as members all

subsets of A (including A itself). A categorizes relation
between types was defined to reflect Odell’s notion of
powertype [16]. Differently from Cardelli’s, Odell’s def-
inition excludes the base type from the set of instances
of the powertype. Further, not all specializations of the
base type are required to be instances of the powertype.
Odell’s definition corresponds more directly to the notion of
powertype that was incorporated in UML. Thus, there may
be specializations of the base type that are not instances
of the categorizing higher-order type. For example, we may
define a type named Organism Type by Habitat (with in-
stances Terrestrial Organism and Aquatic Organism)
that categorizes Organism. Organism Type by Habitat
is not a (Cardelli) powertype of Organism since
there are specializations of Organism that are not in-
stances of Organism Type by Habitat (e.g. Plant and
Golden Eagle) [12].

a8 ∀t1, t2(isPowertypeOf(t1, t2)↔
Type(t1)∧∀t3(iof(t3, t1)↔ specializes(t3, t2)))

a9 ∀t1, t2(categorizes(t1, t2)↔
Type(t1)∧∀t3(iof(t3, t1)→ properSpecializes(t3, t2)))

4. A Systematic Two-Level Solution

Our solution involves incorporating the fragment of
MLT* discussed in Section 3 in a top-level library of the
two-level model. Since it reflects MLT*, explicit support
for key notions such as instantiation and specialization is
provided with no two-level constraint. Further, relations be-
tween types (is powertype of, categorization) are supported
in order to express key multi-level constraints.

Similarly to the powertype pattern discussed in section 2,
the instance facet of a type is reified in this approach. How-
ever, differently from the powertype pattern, the instance and
type facets are systematically linked to each other. The result
is that the expression of multi-level constraints becomes
possible, and, at the same time, the technique-native support
for instantiation, attribute assignment and specialization is
preserved.

4.1. The supporting representation scheme

For the purposes of creating the top-level library and
establishing the correspondence between the formalization
and the conceptual model, some representation rules are
established, as follows. First, we assume that each class
defined with a conceptual modeling technique corresponds
to a one-place predicate, and each binary association cor-
responds to a two-place predicate. Using this correspon-
dence, we can establish the top layer of our conceptual
model (Figure 2), introducing the classes Entity, Type
and Individual to reflect the Entity, Type and Individual
predicates defined in Section 3, along with associations for
instantiation, proper specialization, powertype and catego-
rization also corresponding to predicates defined in Section
3, namely, iof, properSpecialization, isPowertypeOf and cat-
egorizes (improper specialization was omitted).

Second, for every native specialization declaration1 we
introduce a constraint in accordance with the following
formula schema, in which the proxy predicates subclass and
superclass are replaced by the suitable domain predicates:

a10 ∀x(subclass(x)→ superclass(x))∧∃y(superclass(y)∧
¬subclass(y))

For example, in the case of the classes Lion and Animal,
and Animal and Individual, the following constraints are
implied:

a11 ∀x(Lion(x)→ Animal(x))∧∃y(Animal(y)∧¬Lion(y))
a12 ∀x(Animal(x) → Individual(x)) ∧ ∃y(Individual(y) ∧

¬Animal(y))

In the case of the classes Animal Species and Type,
the following constraint is implied (a13). Animal Species
specializes Type since its instances are types themselves
according to the theory.

a13 ∀x(AnimalSpecies(x) → Type(x)) ∧ ∃y(Type(y) ∧
¬AnimalSpecies(y))

The established correspondence results in the repre-
sentation schema shown in Figure 3, which incorporates
the model in Figure 2 as topmost layer, and extends it
introducing Animal, Animal Species and Lion. The fig-
ure also shows a possible object level, in this particu-
lar case with an instance of Animal Species, which was
called lionReified to avoid a name clash with the Lion
class, and an instance of Lion, called cecil. The object
level shows cecil linked to lionReified through the
instance of association. As discussed in Section 2, there
is a purposeful duplication of the Lion entity, at the class
level and at the object level (lionReified), revealing its
class and its instance facets.

Native instantiation2—such as that between cecil
and the class Lion, and between lionReified and
Animal Species—correspond to predication using the cor-
responding classes. Constants represent the entities being
predicated (e.g., Lion(cecil) and AnimalSpecies(lionReified).

Note that first-order logics is employed, and there is no
quantification over predicates or predication applied to pred-
icates themselves (instead, predication is over individuals

1. We use this term to distinguish between the two sorts of specialization,
with native referring to the specialization as supported by the two-level
conceptual modeling technique, as opposed to the properSpecializes
relation in the theory.

2. Again, we distinguish between instantiation as supported by the two-
level conceptual modeling technique and the iof relation in the theory.

Figure 2. The topmost layer.

Figure 3. Reification example.

and reified types). This means that our formalization strategy
reflects the content of a conceptual model in a stratified two-
level technique, which a clear segregation of predicates on
the one hand (classes in the two-level scheme), and non-
predicative elements of the domain of quantification (objects
in the two-level scheme).

4.2. The missing link between instance and type
facets

Thusfar, we are able to recreate the approach underlying
the powertype pattern. However, similarly to the powertype
pattern, we have not yet provided mechanisms to manage
those reified instances of types at the object level. As
discussed in Section 2, the management of the reified entities
and their correspondence to subclasses of the base type
— although key to the pattern — is left to the model
user. Because of this, there is no guarantee that only one
reification of Lion exists, and further that every instance of
Lion (like cecil) is related to that reified type through iof.

Because of this, for every type whose instance facets are
reified, we introduce a constraint effectively linking instance
and type facets with the following formula schema:

a14 ∀x(class(x)↔ iof(x,rei f iedclass))

Reading (14) from left to right, we have that every
(native) instance of a class is required to be related to the
specific reified class through iof. Reading (14) from right
to left, we have that every entity related to the reified class
through iof instantiates (natively) the corresponding class.
Applying the schema to Lion and lionReified, we have
that:

a15 ∀x(Lion(x)↔ iof(x, lionReified))

The schema can be applied to any type to be reified,
including the types in the topmost layer. If we apply this
schema to all other types in Figure 3, we have that:

a16 ∀x(Entity(x)↔ iof(x,entityReified))

a17 ∀x(Type(x)↔ iof(x, typeReified))

a18 ∀x(Individual(x)↔ iof(x, individualReified))

a19 ∀x(Animal(x)↔ iof(x,animalReified))

a20 ∀x(AnimalSpecies(x)↔ iof(x,animalSpeciesReified))

4.3. Consequences of the representation scheme

The proposed strategy results in the reflection of the
class level at the object level. This mechanism is similar
to introspection in programming languages with an explicit
meta-object protocol. An important requirement for this
reflection at the object level is that the reified entities are
related according to their native counterparts. This applies
to native instantiation, but also applies to the specialization
relation.

It follows directly from the linking schema (a14) that
the reified class is the only entity that can be linked in
that particular way to the corresponding class predicate.
Formally, theorem schema (t1) holds. For instance, (t2)
follows from (a15).

t1 ∀t(∀x(class(x)↔ iof(x, t))→ (t = rei f iedclass))
t2 ∀t(∀x(Lion(x)↔ iof(x, t))→ (t = lionReified))

Further, it follows from the linking schema (a14) and the
definition of proper specialization (a6) that the reified classes
corresponding to sub- and superclasses are adequately linked
by properSpecializes. That is, whenever the reified class
proper specializes another reified class, their counterparts
follow the native specialization scheme (a10) (and vice-
versa). Formally we have the theorem schema (t3). For
instance, (t4) follows from (a15), (a19) and (a6).

t3 properSpecializes(rei f iedsubclass,rei f iedsuperclass)
↔ (∀x(subclass(x)→ superclass(x))∧
∃y(superclass(y)∧¬subclass(y)))

t4 properSpecializes(refiedLion, reifiedAnimal)↔
(∀x(Lion(x)→ Animal(x))∧∃y(Animal(y)∧¬Lion(y)))

Figure 4, which expands on Figure 3 incorporating more
concepts inspired by Figure 1, shows the result of this
strategy, with the mirroring of the class level at the object
level (for simplicity, only the most specific instance of
links are shown; further, transitive proper specializes
links are omitted). We employ here colors to highlight
the presence of multiple classification levels for the do-
main classes, leaving the white color for library enti-
ties, including First-Order Type, Second-Order Type
and Third-Order Type, which account for a dynamic
part of the generated top-most library that we shall fur-
ther explore in Section 4.5. Note that native instantia-
tion in the object diagram matches with corresponding
instance of links. The same can be said of native special-
ization and proper specializes links. The reified instan-
tiation relation is multi-level, chaining cecil to Animal,
AnimalSpecies and beyond, what cannot be said of native
instantiation.

4.4. Representing multi-level modeling mechanisms

Given the correspondence between the two-level and
the reified multi-level model, we are now in a position
to enforce the semantics of the powertype pattern simply
by asserting the required relation between refied powertype

and basetype. In the example depicted in Figure 4, we
can assert further that categorizes(AnimalSpecies,Animal).
The semantics of categorizes along with the reflection
scheme enforces that all instances of Animal Species
(such as lionReified) are linked to the reified base-
type (animalReified) through proper specialization, and,
given the other constraints, that the class corresponding
to lionReified (Lion) also natively specializes Animal.
Importantly, different from the UML support for powertypes
discussed in Section 2, this approach does not force the mod-
eler to enumerate subclasses of Animal in order to establish
that all instances of Animal Species specialize the base
type Animal. This is a consequence of the categorizes
link between Animal Species and Animal.

Concerning attributes of types, native language support
can be used to attribute values and links to the refied type
(in other words, the type’s instance facet). For example, one
could say that lionReified was named by Carl Linnaeus
(instance of Person), and that its conservation status is
VULNERABLE (using a ConservationStatus enumeration
following the categories defined by the International Union
for Conservation of Nature)3. Note that relations crossing
levels are naturally supported in the approach, since even
the types present in the model are reified as instances.

This support can also be used to represent a multi-
level phenomenon called deep instantiation [4], when the
attributes of a higher-order type affect entities at lower
levels. For example, whether a species is warmblooded
in fact determines whether particular animals of that
species are warmblooded. In MLT*, this phenomenon is
addressed through the so-called regularity attributes [2],
[19]. In the case of a regularity attribute, values de-
fined for a higher-order type (such as second- and third-
order types) affect the intension of the instances of the
higher-order types. In other words, some attributes of a
higher-order type aim at capturing regularities over in-
stances of its instances, constraining the set of possible
instances of its instances. Here, we could say that the
attribute instancesAreWarmblooded of AnimalSpecies
regulates the attribute isWarmblooded of Animal. In the
case of lionReified, instancesAreWarmblooded=true
and hence all its instances (such as cecil) must have
isWarmblooded=true. In order to ensure that, whenever
this sort of regulation is called for, the following formula
schema is used:

a21 ∀x,y(regulatedclass(x) ∧ regulatingclass(y) ∧
iof(x,y)→ (regulatedattr(x) = regulatingattr(y)))

a22 ∀x,y(Animal(x) ∧ AnimalSpecies(y) ∧ iof(x,y) →
(isWarmblooded(x) = instancesAreWarmblooded(y)))

3. As shown in [18], one can use the different values of an enumeration
to derive subtypes of a type t associated to that enumeration. In particular,
a mutable attribute such as status can be used to derive dynamic higher-
order types (such as VulnerableSpecies) in the spirit of [19].

Figure 4. Reflecting the class level at the object level.

4.5. Stratification – addressing level blindness

A key requirement to a multi-level approach is to de-
fine principles (rules) for the organization of entities into
“levels”. Such principles are not provided by the so-called
“level-blind” approaches [20] (such as UML), which results
in problematic taxonomic structures as shown with empirical
evidence from Wikidata in [21].

Leveling is supported in MLT* by identifying some
types as “ordered”: (i) First-order types are those types
whose instances are individuals. Examples include Person,
Lion, Animal, Organism; (ii) Second-order types are those
types whose instances are first-order types. Examples in-
clude Taxon, Species, Animal Species; (iii) Third-order
types are those types whose instances are second-order types
(Taxonomic Rank), and so on, to cope with an arbitrary
number of levels [2].

Figure 4, when revisiting the top-level library of Fig-
ure 2, incorporates these ordered types. Assigning domain
types an order makes it possible to identify unsound multi-
level structures, with stratification rules that reflect theorems
of MLT* (see [8]). For example, specialization (proper or
not) cannot cross level boundaries, instance of only relates
entities of adjacent orders, in a strictly stratified scheme,
and is powertype of and categorizes can only be applied
between types in adjacent levels.

5. Transforming ML2 Multi-Level Models to
Alloy Specifications

A text-based multi-level modeling language called ML2
was designed using MLT* [10]. ML2’s metamodel reflects
MLT*’s top-layers, and the language incorporates the rules
of MLT* into its syntax. Given the strong relation between
ML2 and MLT*, a transformation from ML2 models to a
conventional two-level method such as Alloy [11] follows
quite closely the representation strategy discussed in Sec-
tion 4. In this section, we revisit the ML2-Alloy transfor-
mation worked out in [9], highlighting how it exemplifies the
generalized transformation approach discussed in Section 4.

First of all, an Alloy specification of the top-level MLT*
layer is imported in all of the generated Alloy specifications.
Class declarations, native specialization, typing of relations
and attributes, are all supported by Alloy directly. The for-
mula schema for linking reified types and their class facets
(a14) is used for each type in the ML2 model. Regularity
attributes are supported following the regulation schema
(a21). Finally, ML2 declarations concerning categorization
and powertype relations become declarations that reuse the
predicates defined in the MLT* Alloy specification.

Listing 1 shows an ML2 model of biological taxon-
omy reflecting the example presented in Figure 3. It in-
cludes the definition of third, second and first-order classes
— TaxonomicRank (Line 1); AnimalSpecies (Line 2);
Person, Animal and Lion (Lines 5–10) — and uses
the categorization and regularity mechanisms discussed in
Section 4.4 (Lines 2–3). It also declares Lion as in-
stance of Animal Species (along with its properties),
AnimalSpecies as instance of TaxonomicRank and two
individuals, Cecil and CLinnaeus.

Listing 1. Example ML2 model about biological taoxnomies.
1 order 3 class TaxonomicRank;
2 order 2 class AnimalSpecies : TaxonomicRank
completeCategorizes Animal {

3 regularity instancesAreWarmblooded :
Boolean determinesValue isWarmblooded

4 ref namedBy : Person };
5 class Person { name : String };
6 class Animal {
7 weight : Number
8 isWarmblooded : Boolean };
9 class Lion : AnimalSpecies specializes

Animal
10 { instancesAreWarmblooded = true
11 ref namedBy = CLinnaeus };
12 individual CLinnaeus : Person { name = ’Carl

Linnaeus ’ };
13 individual Cecil : Lion;

Listing 2 shows the generated Alloy specification in-
volving Lion (but not including the top-level library). Line
23 shows a signature Lion corresponding to the homony-
mous class which is declared natively to be a special-
ization of Animal. Line 24 corresponds to the reification

of Lion; since Alloy does not support instance specifi-
cation directly, a singleton signature is employed. Val-
ues for atttributes of LionReified (taxonAuthor and
instancesAreWarmblooded) are settled in lines 25–26.
Lines 27–28 correspond to the linking axiom (a15). Lines
29–30 implement the regulation of isWarmBlooded corre-
sponding to a22. Individuals are represented using singletons
(Lines 31–33). Listing 2 also contains the specification for
AnimalSpecies. Lines 8 and 11–12 follow the pattern of
reification discussed for Lion above. Lines 9–10 declare
AnimalSpecies to categorize Animal (relying on the rei-
fied counterparts).

Listing 2. Fragment of Alloy specification for the ML2 biological taxonomy
example.
1 sig TaxonomicRank in Order2Type {}
2 one sig TaxonomicRankReified in Order3Type

{}
3 fact TaxonomicRankReifiedDefinition {
4 all e: Entity | e in TaxonomicRankReified

iff (all e’: Entity | iof[e’,e] iff e’ in
TaxonomicRank) }

5 sig AnimalSpecies in Order1Type {
6 instancesAreWarmblooded: Boolean ,
7 namedBy: Person }
8 one sig AnimalSpeciesReified in

TaxonomicRank {}
9 fact AnimalSpeciesCompleteCategorizesAnimal

{
10 compCategorizes[AnimalSpeciesReified ,

AnimalReified] }
11 fact AnimalSpeciesReifiedDefinition {
12 all e: Entity | e in AnimalSpeciesReified

iff (all e’: Entity | iof[e’,e] iff e’ in
AnimalSpecies) }

13 sig Person in Individual { name: String }
14 one sig PersonReified in Order1Type {}
15 fact PersonReifiedDefinition {
16 all e: Entity | e in PersonReified iff (all

e’: Entity | iof[e’,e] iff e’ in Person) }
17 sig Animal in Individual {
18 weight: Int ,
19 isWarmblooded: Boolean }
20 one sig AnimalReified in Order1Type {}
21 fact AnimalReifiedDefinition {
22 all e: Entity | e in AnimalReified iff (all

e’: Entity | iof[e’,e] iff e’ in Animal) }
23 sig Lion in Animal {}
24 one sig LionReified in AnimalSpecies {}{
25 instancesAreWarmblooded = true
26 namedBy = CLinnaeus }
27 fact LionReifiedDefinition {
28 all e: Entity | e in LionReified iff (all e

’: Entity | iof[e’,e] iff e’ in Lion) }
29 fact

instancesAreWarmbloodedRegulatesisWarmblooded

30 { all x: Animal | x.isWarmblooded = (x.iof)
.instancesAreWarmblooded }

31 one sig CLinnaeus in Person {}{ name = "Carl
 Linnaeus" }

32 one sig Cecil in Lion {}
33 fact disjointIndividuals { disjoint[

CLinnaeus ,Cecil] }

Having the two-level Alloy specification enables the
modeler to further investigate the original multi-level con-
ceptual model by means of simulations and formal veri-
fication. For example, by adding the fragment shown in

Listing 3 are able to generate instances of the ML2 model
(line 1), such as the one presented in Figure 5, and check
the theorem (t4) (lines 2–4), presented in Section 5, within
a certain numbers of entities (called scope in Alloy). When
executing the check declaration for a scope of 20, the Alloy
tool informs the modeler that no counterexamples are found,
supporting the validity of (t4).

Listing 3. Simulating and verifying Alloy models
1 run {} for 14
2 check {
3 all t : Entity | (all x : Entity | x in

Lion iff iof[x,t]) implies t in
LionReified

4 } for 20

Figure 5 shows an example of model simulation. The
generated model can be examined to validate the model. The
presentation configurations of this simulation mask some en-
tities (some reified classes of the top-level library) and some
MLT* relations (non-proper specialization and powertyping)
to facilitate the readability by focusing on instantiation, spe-
cialization and feature assignment. Here, native instantiation
is represented by the classifiers present within each entity
between parenthesis, while the reified instantiation and spe-
cialization appear as arcs connecting entities. Note here the
color scheme with colors identifying different classification
levels, while library entities are identified in white boxes.
Most entities reflect reifications of classes and individuals
we have declared in ML2 holding values for the features
each instantiate, with exception of Entity 6 and Entity 10,
which were automatically generated by Alloy and point
to the possibility of other instances of AnimalSpecies
and Animal, respectively, in that configuration. Observe
that these generated entities follow the constraints of the
ML2 model, with value of isWarmblooded in Entity 10
being properly regulated by instancesAreWarmblooded
in Entity 6, for example. This kind of model simulation
serves to show the modeler the consequences of the choices
in the ML2 model.

The transformation was implemented on top of the
Eclipse-based ML2 editor https://github.com/nemo-ufes/
ML2-Editor. The full implementation of the transformation
and the listing of the original ML2 model and correspond-
ing Alloy specification can be found in https://github.com/
nemo-ufes/ml2-to-alloy.

6. Related Work

Gonzalez-Perez and Henderson-Sellers discuss in [3] the
nature of “powertypes”. Similar to us, the authors recognize
that instances of a powertype are instances and classes
at the same time and propose the explicit representation
of both facets, using a notational convention. They point
out that such approach advances the traditional two-level
approach by allowing the dynamic creation of subtypes of
the partitioned type, which is also achieved in our approach.
Differently from us, the authors do not explore the link
between the two facets, and do not discuss other multi-level
mechanisms.

https://github.com/nemo-ufes/ML2-Editor
https://github.com/nemo-ufes/ML2-Editor
https://github.com/nemo-ufes/ml2-to-alloy
https://github.com/nemo-ufes/ml2-to-alloy

Figure 5. Alloy simulation example.

In [18], Halpin discusses the problem of address-
ing higher-order modeling aspects in traditional modeling
frameworks that are restricted by a first-order semantics.
As put by the author: “As the move to higher-order logic
may add considerable complexity to the task of formalizing
and implementing a modeling approach, it is worth investi-
gating whether the same practical modeling objectives can
be met while staying within a first-order framework”. He
discusses some arguments for considering higher-order types
in conceptual modeling semantics including: (i) to allow
one to think of instances of certain categorization types
(e.g. AccountType, CarModel) as being types themselves;
and (ii) to directly represent relations and attributes that
cross-levels (e.g., a CarModel is associated to a number
of instances of ColorChoice. When choosing a particu-
lar Car of a given CarModel, a customer chosen feature
can be a ColorChoice). He proposes the representation
of categorization types as regular instances (of first-order
types). The subtypes of a categorized type are then related
to these instances by a is of relation that is: asymmet-
ric, intransitive, obey mandatory and uniqueness constraints
(e.g., every instance Account is of a unique instance of
AccountType), as well as what he terms local homogeneity
(e.g., only instances of Account can be related by is of to
instance of AccountType). Moreover, regarding (ii), Halpin
proposes replacing the otherwise level-crossing relation by
a pair of first-order relations with constraints between them.
One should notice that the semantics of is of relation for
Halpin correspond to the asymmetric and intransitive aspects

of iof in MLT* for “ordered” types [8] plus the definition
established in (a14). However, our approach goes beyond
these minimal constraints of correspondence between reified
types and instances and defines the semantics of several
relations to be established between reified types [2], [8].
Further, our approach combines stratification rules for “or-
dered” types with the possibility of representing “orderless”
types, which are required in a number of modeling scenarios
(see [8]). Regarding (ii), although discussing that particular
case, Halpin does not generalize a solution to constraints of
that sort. In our framework, his solution can be seen by as a
special case of the regulated attributes scheme as discussed
in Section 4.44.

OWL [22] enables multi-level modeling by applying the
notion of contextual semantics [23], often referred to as pun-
ning. It allows the declaration of features of both instance
and type facets within the same model. However, as dis-
cussed in [12] these two facets are treated independently in
reasoning to avoid higher-order semantics. Differently from
our approach, punning does not explore the link between in-
stance and type facets. The “independence” between the two
facets leads to non-intuitive interpretations. For instance,
consider the following statements: (i) Harry is an instance
of Golden Eagle, and; (ii) Golden Eagle is the same as
Aquila chrysaetos. Statement (i) treats Golden Eagle as
a class, while statement (ii) treats Golden Eagle as an

4. Although the regulation scheme discussed in Section 4.4 was focused
on unary predicates, in [10], there are a number of alternative regulation
schemes to generalize the formula.

instance. In OWL, it is impossible to infer that Harry
is an instance of Aquila chrysaetos, which violates our
intuition with respect to the multi-level model.

Kimura et al. [24] explore how to represent multi-level
models on MOF-compliant (two-level) modeling frame-
works. They reify the “definition” and the “instance” facets
of elements, and establish OCL constraints to emulate some
aspects of the semantics of the multi-level models (e.g., to
emulate instantiation and specialization). They do not dis-
cuss variants of the powertype pattern, deep characterization
or level stratification.

Similarly, Macías et al. [25] cope with the limitation
of a two-level modeling framework (in their case EMF) to
represent multi-level models. Their approach is based on the
representation of multi-level models by cascading the two-
level scheme in a stack of models. The only relation between
entities at different levels is instantiation. As discussed at
length in [2] this precludes the representation of important
multi-level phenomena (such as domain relations that cross
levels, variants of the powertype pattern), a criticism which
is applicable to other multi-level approaches (see [2]).

7. Conclusions

In this paper, we have shown a generalized approach
to transform multi-level models in a two-level represen-
tation scheme preserving the original semantics. The ap-
proach builds up on the powertype pattern, by system-
atically reifying a type’s instance facet and linking type
and instance facets systematically. The approach is able
to leverage mechanisms such as deep characterization and
level stratification to the two-level technique. To demonstrate
the approach’s feasibility, a transformation of ML2 models
to Alloy specifications was designed. This transformation
enables simulation and verification of (ML2) multi-level
models through two-level (Alloy) specifications.

The use of a formally-verified semantic foundation is
one of the distinctive features of ML2 when compared to
other multi-level modeling approaches in the literature [10].
Here, we put this semantic foundation to direct use, by
importing the MLT* formalization as a top-layer of our two-
level models.

We expect the representation approach we discuss here
to be applicable to other two-level representation languages
with minor effort. The use of first-order logics to capture the
general scheme for a corresponding two-level representation
can support us in this task. Nevertheless, specificities of
particular two-level techniques should still be addressed.
It is part of our present research agenda to explore the
implications of our approach to the representation of multi-
level models in OWL-DL, Ecore and UML, following our
work in [7], [12].

Finally, ML2 is similar to other multi-level languages
that rely on notions such as “clabjects” [26], [27] and m-
objects [5] and recognize the duality of type and instance
facets without the need for explicit reification of these
facets. We believe that our solution could be adapted to

transform multi-level models in some of these other multi-
level techniques while preserving their semantics.

References

[1] G. Guizzardi, “On Ontology, Ontologies, Conceptualizations, Model-
ing Languages, and (Meta)Models,” Frontiers in artificial intelligence
and applications, vol. 155, 2007.

[2] V. A. Carvalho and J. P. A. Almeida, “Toward a Well-Founded
Theory for Multi-Level Conceptual Modeling,” Software & Systems
Modeling, vol. 17, 2018.

[3] C. Gonzalez-Perez and B. Henderson-Sellers, “A Powertype-Based
Metamodelling Framework,” Software & Systems Modeling, vol. 5,
2006.

[4] C. Atkinson and T. Kühne, “Model-Driven Development: a Meta-
modeling Foundation,” IEEE Software, vol. 20, no. 5, 2003.

[5] B. Neumayr, K. Grün, and M. Schrefl, “Multi-Level Domain Mod-
eling with M-Objects and M-Relationships,” in Proc.6th APCCM,
2009.

[6] C. Atkinson and T. Kühne, “The Essence of Multilevel Metamodel-
ing,” in Proc.4th UML, 2001.

[7] V. A. Carvalho, J. P. A. Almeida, and G. Guizzardi, “Using a Well-
Founded Multi-Level Theory to Support the Analysis and Representa-
tion of the Powertype Pattern in Conceptual Modeling,” in Proc.28th
CAiSE, 2016.

[8] J. P. A. Almeida, C. M. Fonseca, and V. A. Carvalho, “A Com-
prehensive Formal Theory for Multi-level Conceptual Modeling,” in
Proc.36th ER, 2017.

[9] J. P. A. Almeida, F. A. Musso, V. A. Carvalho, C. M. Fonseca, and
G. Guizzardi, “Capturing Multi-Level Models in a Two-Level Formal
Modeling Technique,” in Proc.38th ER, 2019.

[10] C. M. Fonseca, J. P. A. Almeida, G. Guizzardi, and V. A. Carvalho,
“Multi-level Conceptual Modeling: From a Formal Theory to a Well-
Founded Language,” in Proc.37th ER, 2018.

[11] D. Jackson, Software Abstractions: Logic, Language, and Analysis.
MIT Press, 2012.

[12] F. Brasileiro, J. P. A. Almeida, V. A. Carvalho, and G. Guizzardi, “Ex-
pressive Multi-level Modeling for the Semantic Web,” in Proc.15th
ISWC, 2016.

[13] E. Mayr, The Growth of Biological Thought: Diversity, Evolution,
and Inheritance. Harvard University Press, 1982.

[14] J. D. Lara, E. Guerra, and J. S. Cuadrado, “When and How to Use
Multilevel Modelling,” ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 24, 2014.

[15] T. Kühne and D. Schreiber, “Can Programming Be Liberated from
the Two-level Style: Multi-level Programming with Deepjava,” in
Proc.22nd OOPSLA, 2007.

[16] J. Odell, “Power Types,” Journal of OO Programming, vol. 7, 1994.

[17] L. Cardelli, “Structural Subtyping and the Notion of Power Type,” in
Proc.15th POPL, 1988.

[18] T. A. Halpin, “Information Modeling and Higher-order Types,” in
Proc.16th CAiSE, 2004.

[19] G. Guizzardi, J. P. A. Almeida, N. Guarino, and V. A. de Carvalho,
“Towards an Ontological Analysis of Powertypes,” in Proc.JOWO
2015, 2015.

[20] C. Atkinson, R. Gerbig, and T. Kühne, “Comparing multi-level mod-
eling approaches,” in Proc.1st MULTI Workshop, 2014.

[21] F. Brasileiro, J. P. A. Almeida, V. A. Carvalho, and G. Guizzardi,
“Applying a Multi-Level Modeling Theory to Assess Taxonomic
Hierarchies in Wikidata,” in Proc.25th WWW, 2016.

[22] W3C, “OWL 2 Web Ontology Language - Document Overview
(Second Edition),” 2012.

[23] B. Motik, “On the Properties of Metamodeling in OWL,” Journal of
Logic and Computation, vol. 17, no. 4, 2007.

[24] K. Kimura et al., “Practical Multi-level Modeling on MOF-compliant
Modeling Frameworks,” in Proc.2nd MULTI Workshop, 2015.

[25] F. Macías, A. Rutle, and V. Stolz, “MultEcore: Combining the Best
of Fixed-Level and Multilevel Metamodelling,” in Proc. 3rd MULTI
Workshop, 2016.

[26] C. Atkinson and T. Kühne, “Meta-Level Independent Modelling,” in
Proc.14th ECOOP, 2000.

[27] Colin Atkinson and Thomas Kühne, “Reducing Accidental Complex-
ity in Domain Models,” Software and System Modeling, vol. 7, no. 3,
2008.

